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Abstract: Suppose that the integers are assigned i.i.d. random variables {ωx} (taking
values in the unit interval), which serve as an environment. This environment defines
a random walk {X^} (called a RWRE) which, when at x9 moves one step to the
right with probability ωx, and one step to the left with probability I — ωx. Solomon
(1975) determined the almost-sure asymptotic speed (= rate of escape) of a RWRE.
For certain environment distributions where the drifts 2ωx — I can take both positive
and negative values, we show that the chance of the RWRE deviating below this
speed has a polynomial rate of decay, and determine the exponent in this power
law; for environments which allow only positive and zero drifts, we show that these
large-deviation probabilities decay like exp(—Cw1/3). This differs sharply from the
rates derived by Greven and den-Hollander (1994) for large deviation probabilities
conditioned on the environment. As a by product we also provide precise tail and
moment estimates for the total population size in a Branching Process with Random
Environment.

1. Introduction

In this paper we consider the large deviations of the position of a nearest-neighbor
random walk on Z with site-dependent transition probabilities.

Let ω = (cox)X£z be an i.i.d. collection of (0, l)-valued random variables, with
marginal distribution α such that supp α C (0,1). For every fixed ω, let X = (Xn)n^o
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be the Markov chain on TL starting at XQ = 0 (unless explicitly stated otherwise),
and with transition probabilities

cox if y = x -f1

Pω(Xn+l=y\Xn=χ) = { l-ωx ify=x-l. (1)
0 otherwise

The symbol Pω denotes the measure on path space given by the environment ω. The
process (X,ω) is an example of a random walk in random environment (RWRE),
and X has law P = / ocΈ(dω)Pω.

This model exhibits a number of phenomena not shared by the classical random
walk.

Abbreviate p = p(x,ω) = (1 — ωx)/ωx and {/) = f f(ω)az(dω) for any func-
tion / of the environment. It was established by Solomon [11] that X is ω-a.s.
transient iff (logp) ΦO. In the transient case lim^oo^ = -foo P-a.s. if (log/?) < 0
(and liiϊifl-xx)^ = — oo P-a.s. if (logp) > 0). With ι?α — limn^00n~lXn denoting
the P-a.s. speed of the RWRE, there are two speed regimes, namely,

(i) »« = (l-(p»/(l+ (/>}) when (p) < 1 and va = ((p~l) - l)/((p~l) + I)
when (p l ) < 1. (See Remark 2.1 for a transparent derivation of this result.)

(ii) υΛ = 0 when (p)-1 ^ 1 ̂  (p~l).

This law of large numbers is supplemented in [8] by central limit type theorems.
For instance, in regime (i) the classical central limit theorem holds if (p2) < 1. In
regime (ii), on the other hand, if (log/0) < 0 < log(p) then n~sXn converges in law
with s e (0,1) the unique solution of (ρs) = 1.

In the recurrent case the motion is extremely slow. Sinai [10] proved that in
this case (logn)~2Xn converges in law, and Kesten [7] identified explicitly the lim-
iting law.

The large deviations of n~lXn in the quenched setting, namely, conditional on
the environment, are derived in [5]. Specifically, the limit I(v) of — n~l \ogPω(Xn =
[υn\) is characterized as the solution to a variational problem involving specific
relative entropy with respect to a certain stationary Markov process.

In this paper, we study the large deviations of n~lXn in the annealed setting,
namely averaging over environments ω according to the measure αz. We shall
assume hereafter that (p) < 1, hence the RWRE is transient and of strictly positive
speed yα (the case (p~l) < 1 follows by reflection).

How can the walk deviate significantly from its almost-sure limiting speed uα?
For ordinary RW, this is exponentially unlikely and given that such a deviation has
occurred, it is most likely to arise from movement at an approximately constant
different speed. For RWRE there are other possibilities-large deviations can arise
from relatively short, atypical segments in the environment.

The next two theorems are our main results, characterizing the subexponen-
tial slow-down probabilities P(n~lXn G G) in the mixed-drift cases for any open
G C (0,ι>α) which is separated from uα. A polynomial rate of decay is obtained
when a negative local drift is possible, whereas for environments which allow
only positive and zero drifts, the large-deviation slow-down probabilities decay like
exp(-Oz1/3).

Let pmax denote the supremum of p over the closed support of α, and let ρm{n

denote the corresponding minimum.
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Theorem 1.1 (Positive and negative drifts). Suppose that {/?}<! and oo>pmax>l.
Then, there exists a unique s > 1 satisfying (ps) = 1 such that for any open G C
(0, uα) which is separated from uα,

lim logP(n~lXn e G)/logn = I - s .
n—»oo

The condition pmax < oc can be relaxed (see Remark 5 in Sect. 6).

Theorem 1.2 (Positive and zero drifts). Suppose that (p) < 1, but pmax = 1 and
α({l/2}) > 0. Then, for any open G C (0, uα) w/z/c/z «• separated from ι;α,

1^ G G) ̂  limsup«-1/3 logPCn"1^ G G) < 0 .

The next proposition complements Theorems 1.1 and 1.2, by showing that the
large-deviation probabilities outside (0,t;α) always decay exponentially. If all drifts
in the environment are in the same direction and bounded away from 0, then any
deviation from the limiting speed va is exponentially unlikely.

Proposition 1.3. For (p) < 1 and any closed set F which is disjoint from [0, ι;α],

lim sup n~λ log P(n~lXn G F) < 0 . (2)

If also pmax < 1 then (2) holds for any closed F that does not contain υΛ.

The above results cover in particular all cases in which the RWRE has a positive
speed and the marginal environment distribution α is finitely supported. (Other cases
are described in the last section.)

Sections 2,4 and 5 contain the proofs of Theorems 1.1, 1.2 and Proposition 1.3
respectively, while Sect. 6 discusses some variants and unsolved problems. We note
that the upper bounds in Theorems 1.1 and 1.2 are harder to prove than the lower
bounds. Indeed the lower bound in Theorem 1.2 is straightforward; establishing that
it is sharp was the initial impetus for our work. The key to our upper bounds is
Lemma 2.4. As explained in Sect. 3, this lemma applies in a wider context, supplying
also precise tail and moment estimates on the total population size of a Branching
Process in Random Environment (called BPRE).

2. Positive and Negative Drifts: Proof of Theorem 1.1

Throughout this section, the hypotheses of Theorem 1.1 are in force. Since pmax > 1,
the convex, continuous map λ ι-> (pλ) from IR+ to R+ satisfies lim^^00{pA) = oc.
Moreover, (p) < 1, yielding both the existence and uniqueness of s > 1 such that
(ps} = l. We fix this value of s for the rest of the section.

Let Xn denote the Markov chain, initialized at zero, with the same ω-dependent
transition kernel as in (1) but now with the value of ωo set to be ωo = 1. Let

τk = iπf{n:Xn=k} (3)

and
m+k

Rk(m) = k~l Σ 1°§P(0> with Rk = ^t(O). (4)
i=m+l

The following simple tail estimate for τk is used in the proof of the lower bound
on P(n~lXn e G).
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Lemma 2.1. For all n and k,

Proof. Let σk = inf {n ^ 1 : Xn = k or Xn = 0}. By Chung [2, pp. 65-71], we
have

/*-ι x-1

Pω(Xσ, = 0) = 1 - ( Σ>
\ z=0

and the lower bound follows since Pω(τ^ ^ n) ^ PωCλ^ = 0)n. D

For y G Z, let τ^ = min{« : Xn = y}. The next lemma provides an exponential
tail estimate on Ly = maxjjμ — Xn '.n ^ τy}9 the longest excursion of the RWRE
path to the left of y. This estimate is crucial to the proof of both the upper and the
lower bounds on P(n~lXn G G).

Lemma 2.2. For every y G Z and any k ^ 1,

P(Ly ^k)ϊ -^- .

Proof. Note that for each k ^ 1,

Θytk — Pω(Ly ^ k) = Pω(Xn = y — k for some n > 0 | XQ = y)

is a stationary process (when ω has the distribution αz). By, e.g., [2, pp. 65-71],

Θ^= Σ5,ΠL-(t-i)X*) ^g ή p(jc) = z (5)

The lemma follows by observing that E(Z) = Σ/Ξo (pY+k wnue P(^^ = ^) =

Since G C (0,fα) is open and separated from VΛ, it suffices to establish the lower
bound for G = (v — 2η, v) as in the next lemma.

Lemma 2.3. Let 0 < 2η < v < υΛ. Then

ίw"1^, G (v - 2η,v))/\ogn ^ l - s . (6)

Proof. Fix i; and ?/ as in the statement of the lemma. Observe that the event
n~lXn G (i; — 2η,v) contains the event

- < i( v-nϊn < n, the excursion distance L(V-n\n < ηn, and τvn > n > ,

namely, that the RWRE hits (v — η)n at about the expected time, from which point
its longest excursion to the left is less than ηn, but the RWRE does not arrive
at position vn by time n. Recall that P(τ(V-η)n G ((v — 2η)n/v0ί9n)) — » 1 as n -^ oo
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(by Solomon [11, Theorem 1.16]), and set ξ = 1 — (ϋ — 2η)/va > 0. Since t(V-η)n is
independent of {ωx : x ^ (υ — η)n}, it follows by stationarity that

P(τm > n I τ(υ-η)n G ((t; - 2η)n/vΛ,n)) ^ P(τηn > ξn) .

Hence, by the exponential bound on P(L(V-η)n ^ ηn) (see Lemma 2.2), we establish
(6) as soon as we show that

lim inf log P(τηn > ξn)/ log n ^ 1 - s . (7)
n— >oo

To this end, let yδ = (ρs~δ\ogρ)/(ps-δ) for <5 ^ 0, and note that yQ > 0 > (logp)
by convexity of c \-^ xlogx. Hence, for every δ > 0 small enough y$ is finite and
positive.

Applying Cramer's theorem to the i.i.d. real-valued random variables
{\ogp(x)}xez gives

lim inf - \ogP(Rk_l ^ yδ) = -ysSδ ,
k^oo k

where sδ = s-δ-(yδ)~l \og(ps~δ) (see, e.g., [4, Corollary 2.2.19 and Lemma 2.2.5]).
In other words,

P(Rk-ι ^ yδ) ^ e-
(Sdyδ+o(l»k as k -^ oc . (8)

Choose

so that e~(Sδyδ+o(l^k — n~Sδ+0^ as n and k tend to oo, and consider the event

s$n = < ω : max Rk-\(mk,ω) ^
[ m=Q,\,...,[ηn/k]-\

Since {Rk-ι(mk)}m^o are i.i.d. variables, we obtain from (8) that

1 1 / \

lim inf logP(j/n) ^ lim inf log ( γ^τn~Sδ } = 1 - sδ . (9)
n^oc logn n-^oo \ogn \k(n) J

Decomposing the event «*/„ according to m* = min{m ^ 0 : Rk-\(mk) ^ y} and
ignoring the time which the chain Xn spends outside [w*&, m*k + A:), we get by
stationarity that

P(τ^ > ξrc X,) ^ ̂ R inf > Pω(τ^ > ξn).

By Lemma 2.1,

inf Pω(τ* > ξ/i) ^ inf (1 - «>-<*-D*)^) ^ (1 - n~
l)^l\ (10)

Combining (9) and (10) and taking δ I 0 (for which s$ -* s), we establish (7), thus
completing the proof of the lemma. D



672 A. Dembo, Y. Peres, O. Zeitouni

The upper bound on P(n~lXn G G) hinges upon moment estimates on the hitting
times τ>. To derive these observe that τ^ = X)f=1(τ/ — τz _ι) (with TO = 0), is the
sum of the identically distributed, (dependent) random variables (τ/ — τ/_ι), the law
of each of which is identical to the law of τ\. Let Cy = E(τ\) and note that by
Minkowski's inequality for all k ^ 1,

E(4)=SC r F. (11)

Our goal is thus to prove that Cy < oo for all y < s.
To this end, let WQ = 1 and for negative integers x, let Wx be the cardinality of

the finite set &>x = {n G {!,...,TI} : Xn-\ = x,Xn = x + 1}. Then, TI = 2Z - 1 for
the integer valued

Z= Σ ^ (12)

With «o = 0 and £fx = {n\ < n^ < - - < nψx} we have the representation

(13)

where Nx^ is the number of excursions to the left of x (each starting and ending at
c), during the time interval {«/_! ,...,«;}. The key observation is that the random

variables Nx , for Λ: = 0, — 1, . . . and / = 1,2, ... are independent under the measure
Pω with

Denote Nx = Nx . In particular, Eω(Nx) = ρ(x,ω) so that for every y Ξ> 0

E[(EωNxγ] = (p?) . (14)

Remark 2.1. The representation (12) yields the following transparent derivation of
Solomon's formula for the limiting speed fα. Since {Nx }z are non-negative, iden-
tically distributed, and independent of Wx, we deduce from (13) that E(Wx-\) —
E(WX)E(NX). Since WQ = 1 and E(NX) = (p) < 1, we conclude by monotone con-
vergence that

E(Z)= E E(WX)= £ (p)-' = ( l-(p))- 1 <oo. (15)
X= — 00 Jt= —00

The speed fα is now computed from (15), since va = l/E(τι)= 1/(2E(Z) — 1)
(cf. [11, Theorems 1.15, 1.16]).

We deduce next that Cy of (11) is finite for all y <s.

Lemma 2.4. E(Zy) is finite for every y <s.

Proof. Without loss of generality, we consider hereafter y ^ 1. Fix y G [l,s), ε>0
and a non-positive integer x. Let cy?ε = ( ! — ( ! + ε)"1/7)"7. Since zγ ^ (1 +,



Random Walk in Random Environment 673

z - y\y for every z, y ^ 0, it follows from (13) that

As EωNx = p(x) is independent of Wx we have that

(16)

(17)

Under the measure Pω the random variables Nχ1^ ~ EωNx for / = 1,2,... are i.i.d. of
zero mean and are also independent of Wx. Therefore, for some universal constant
By < oo, by the Marcinkiewicz-Zygmund inequality

(see [6, Theorem 1.5.1]). The independence of the two terms on the right-hand side
yields

E (18)

Since E(Nχ) < oo is independent of jc, by combining (16), (17) and (18) we have
thus shown that for every ε > 0 there exists K7tε < oo such that for c = 0, — 1,...,

We deduce next that for every γ G [l,s) there exists ay G (0,1) and CΊ < oo such
that for * = 0,-1,...,

E(07) < cva~x . (20)
\ Λ ' ' / ^ '

Indeed, we have already seen that E(WX) = (p)~x, hence (20) holds for y = 1. To
see that (20) holds for every integer y G [2,s) note that then (y — 1) ^ y/2 V 1,

thus j^(y/2vl) <; Wx~
l. Applying a finite induction on y we set ε > 0 small enough

such that ay — (\ +ε){p7} G (α y _ι,l) and define cy = l +KyiBcy-\/(ay — β y_ι)<oo.
Then, by (19) and the induction hypothesis

which since WQ = 1 results with (20) holding for y. Note that y1 = \s\ — 1 G [l,s) is
an integer for which (20) holds, and it is left to establish (20) only for y = / + η < s
such that η G (0, 1). Since then y' ^ y/2 V 1, we follow the same argument as be-
fore with y' replacing y — 1. Fixing 7 G [l,s), we have from (20) by monotone
convergence that

as required. D

In view of the lower bound of Lemma 2.3, the following upper bound completes
the proof of Theorem 1.1.
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Lemma 2.5. For every v G (0, ι?α), if γ <s and n is large enough, then

P(Xn<vn) ^ nl~y .

Proof. Fix A>— s/\og(p) and let k = k(n) = Alogn. On the same probability
space on which {Xt} is defined, we define the process {Yt} and the hitting times
τik = mm{t ^ 0 : Yt = ik}, where the only change between {Xt} and {7^} is that
for t ^ τ/jt, i = 0, 1, . . ., the process Yt is reflected at position (i — \)k (via the use of

ω(/_i)* = 1 for ί ^ τίk\ Let TV - \vn/k~\ + 1 and T^ = τik - τ(l _ι) j t, i =l,...,N.

Note that T^ are identically distributed, each stochastically dominated by τk. Hence,

E(7i) ^ E(τ*)- Fix /ί G (l/s, 1). By (11) we know that E(τ^) < Ckλ'λ for some
C < oo. Moreover, by Holder's inequality,

Thus by Lemma 2.2, E(7i)/E(τΛ) -> 1, and therefore Solomon [11, Theorem 1.15]
implies that, E(Tk)/k — > ϋ"1 for A: — > oo.

On the event that L^ < A: for / = 0,...,JV, the two processes {Jζ} and {7,}

coincide for all t ^ τw = Σ^Li ^^ Moreover, in this case, {Xn ^ (N — \)k} only
if ?Mt > w. Therefore, by Lemma 2.2, for all n large enough,

/ TV ... \ / \

^ P Σ τk >n I + PI max Lik ^ k
V6ι ) \ *=*>,...N )

]rf >n}+n-(^ . (21)
ι=l

Since i;"1 > f"1 = limsup^^QQ ^"^(ΓjtX there exists 77 > 0 small enough such
that

i=l

^ 2P

We now observe that {τ1— E(Γ^)} is a sequence of i.i.d. mean-zero random
variables. Since Tk is stochastically dominated by τ^, it follows from (11) that
E(\Tk -Έ,(Tk)\y') ^ CW' for all / G (0,s). Therefore, by Markov's inequality, for
/ G (7,5), and all n large enough,

P(τk-

Hence (see Nagaev [9, (1.3), (1.7a)]),

/ΓWl /0.,
ηn I ^ 7VP(71 - E(7*) > ιj/ι) + G.5^1^ ^ i1^ .

D
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3. Moments of Total Population Size in BPRE

Let Mι(Z+) denote the collection of probability measures {p = {p(i)}™Q - p(i) ^ 0,
Σ/ XO = 1} on the nonnegative integers satisfying the further constraint

00

p(p) = Σ *XO < °°
/=!

Let the environment ξ = (ξm)mez+ be an i.i.d. collection of MI (TL± )-valued random
variables with α denoting the law of each ξm. We assume that (p) = Jp(ξo)α(d£o)<l
For each realization ξ there evolves a population {Wm}m^z+ governed by the laws of
the standard temporally non-homogeneous branching process, initialized at WQ = 1.

Specifically, let Nm\ i=l,...9Wm be independent random variables, each drawn

according to ξm, with N$ indicating the number of immediate descendants of the
/th individual at generation m. Thus,

is the size of the population at the (m + 1 )th generation. It is well known that
the condition (p) < 1 implies certain extinction of the BPRE, namely that the total
population size

oo

z= Ewm
m=0

is a.s. finite (see [1, Theorems 1,3]). The RWRE setting we considered in Lemma 2.4
corresponds to a special case of BPRE in which ξm(i) = ω_m(l — ω-mj for / G TL+

is a Geometric distribution, so that p(ξm) = (1 — ω_w)/ω_m.

As done in Remark 2.1, since {N^}i are non-negative, identically distributed,
and independent of Wm we have E(Wm+ι) = E(Wm)Έ(Nm). Then, with WQ = 1 and
E(Wm) = (p) < 1, we conclude by monotone convergence that the mean total pop-
ulation size for the BPRE is

oo oo

E(Z) = £ E(Wm) = Σ (p)m = (1 - ( p ) Γ l < oo .
m=Q m=0

The next lemma supplies moment bounds on the total population size of the
BPRE.

Lemma 3.1. Assume that for some y > 1 both (ρy) = / p(ξo)y u(d ξo) < I and

^o)<oc. (22)
i=0

Then, Cy = E(Z^) < oo, hence P(Z ̂  z) ^ C7z~^ for all z e

Proof. Upon setting m = — x and replacing ω by ξ the proof of Lemma 2.4 ap-
plies to the more general setting of the BPRE. By Holder's inequality, the only
requirements of the proof are that (py) < I and that E(A^) < oo. These are exactly
the assumptions of Lemma 3.1. D
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Remark 3.1. The conditions of Lemma 3.1 are also necessary for E(Zy) < oo.
Indeed, for y ^ 1, E(Z^) ^ E(^/) = E(7V0

r), hence E(Z?) = oo when (22) fails.
Also, for all m G N,

Hence, ΈWl ^ (py)w for every y ^ 1, m G N. Therefore, EZ^ ^ ΣΓ=oE(^) is

infinite for every y ^ 1 such that (p7) ^ 1.

4. Positive and Zero Drifts: Proof of Theorem 1.2

We shall follow the notations and general outline of the proof of Theorem 1.1,
indicating only the changes for the case where pmax = 1 and α({l/2}) > 0, which
we consider here. For the lower bound on P(n~lXn G G), it again suffices to consider
G = (v - 2η, v), 0<2η<v. Setting ξ = 1 - (v - 2η)/va we find that

liminf n~lβ \ogP(n~lXn e (v - 2η,v)) ^ liminf n~lβ logP(τ™ > ξn) .
«—»oo n—>oo

Let k = k(n) = θnlβ with θ > 0 to be determined below. Using the notations (3)
and (4), the conditional probability P(τ# > ξn \Rk-i = 0) is exactly the probability
that a simple random walk stays in the interval [—(k — !),(&— 1)] for at least ξn
steps. Since k2n~l —> 0, a well-known eigenvalue calculation gives

lim k2n~l logP(τ/t > ξn \Rk-i = 0) = — ίπ2/8

(see Spitzer [12, p. 243]). Thus, for all n large enough,

Recalling that k = k(n) — θn1^, we see that this lower bound is maximal for

(23)
41ogα({l/2})

yielding the lower bound

-lXne(v-2η,v)) £ -^ -logα({l/2})
2/3

(24)

(note that (24) remains true with ξ = 1 — v/va since P(n lXn G (v — 2η,v)) is non-
decreasing in η).

Turning now to the upper bound, we define the process {Yt} as in Lemma 2.5,
but now for k = k(n) = Bn1^, with B a large positive constant. Fixing v G (0, ι;α),
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from (21) and Lemma 2.2 it follows that for every C\ < \ log(p}|,

P(Xn <vn)^p(jr 7f > n

^ 2P Σ T^'-" >n/2\ + e-^an . (25)

Recall that N = \vn/k] + 1 and {T^2'"1'}, are i.i.d. with

^ P(Io ^ *) ^ e-
c>Bn'β . (26)

The next lemma supplies tail estimates on T^ = T which are key to the proof of
the upper bound.

Lemma 4.1. For every vf G (0, fα), every C < oo, B > 0, am/ α// n large enough,

where k = k(ή) = Bnl/3.

Proof of Lemma 4.1. Fix v' e (0, t;α) and C < cχo. By (26) suffices to prove that
P(T£ > A /t;') ̂  «~c. To this end, let α(^ be the probability measures on (0, 1) ob-
tained from α by moving η > 0 of the mass of α({^}) from p = 1/2 to p = 1/2 — η
(of course η < α({l/2})). Fix η>0 small enough so that both fρ(ω)3C+la(η\dω)< 1

and t/ < ι;αθf) . Let P^ denote the law of the RWRE when the environment ω is
chosen according to the law (α(??))z, and s^ > 1 the corresponding value of s. Then,
for all k,

P(τk>k/vf) ^ Pί"\τk>k/υ') ^ P(η\X[k/vΊ<k) ^ kl-*η}+«l\

where the last inequality follows from Theorem 1.1. We conclude by observing that
3. D

Fixing ε > 0, let t (ε) = sv + (1 — ε)fα and consider the binomial random variable

^= Σ l{Ί?-»>k/v(e)}

By Lemma 4.1, for all positive constants A and C, the random variable W is stochas-
tically dominated by a Binomial(«3/4,«~^c+1)) variable provided that n is large
enough. Fix A and let M = M(n) = nl/3/(A\ogn). It thus follows by Chebycheίfs
inequality that for λ = CA log n > 0,

P(W>M) ^ e-λM(eλn^AC^ + 1)̂  ^ 2^c«1/3.

Let (5(ε) = (l - ε)(ϋα - ϋ)/(2ϋ(ε)) and for each subset / of {!,..., [TV/2]} of

cardinality M let E1 = {£.€/ rf
 z'"1} > δ(ε)w}. Since {Σ^2] ^f1'"0 > n/2} and
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{ W ^ M} imply that at least one of the Ej occurs,

(\N/2~\ n

p £ jf

V -1

Γf -1} > δ(s)n , (27)

where the last inequality follows by observing that Ej are equally likely and there
are at most nM possible subsets /.

The random variable 7# is stochastically dominated by the random variable ob-
tained when setting ωx = 1/2 for all jc| < k. The latter is the exit time of a simple
random walk from the interval [—(3k— !),(& — 1)], which is stochastically dom-
inated by the exit time from the interval [—(2k— 1), (2k— 1)]. Hence, for every
ε > 0, some c = c(ε) < oo, and all k large enough,

P((2kΓ2Tk >*) ^ ce-χd-Φ2/* \/x ^ o

(see Spitzer [12, p. 243]). Consequently, for λ = (1 - 2ε)(2£)~2π2/8 and n large
enough, by Chebycheff's bound

Σ Tf ~°
ι =ι /

< e-(\-3ε)δ(ε)nl/3π2/(32B2)

Setting « — > oo followed by e | 0 and ^,C T oo we see from (25), (27) and (28)
that for every B > 0,

< υn) g -min{| log(p)|5,(l - ί;/ι;α)π2/(64^2)} < 0 . D

5. Exponentially Unlikely Deviations: Proof of Proposition 1.3

Step 1. The event {n~lXn ^ — η} implies that the excursion length L0 is at least
ηn. By Lemma 2.2, for each fixed η > 0, the probability of the latter event decays
exponentially in n.

Step 2. It suffices to show that

logP^"1^ ^vΛ + 2η)<Q, (29)

for every η > 0. This is done in two steps. First, we note that a RWRE with positive
speed spends finite expected time in the nonpositive half-line; more precisely,

/αm(30)
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provided that (p) < 1 (see [11, Theorem 1.19(i)]). Denote the right-hand side of
(30) by Cα. It follows that

Efa-τ*) ^ Cα (31)

for any k ^ 1, where τ^ was defined in (3).
For the second step, given η > 0, fix k large enough so that

By (31) and Eτk = kEτ\ = k/v^ [11, Theorem 1.15], this implies that

<32)

Consider a modified environment in which ωik is set to 1 for all /, and at all other
integers c, the transition probabilities ωx are still picked according to α. Denote by
τj^ the number of steps the walk in the modified environment, started at (i - 1)&,

takes until it reaches ik. Let τ^'M = τj^ ΛM, where M is large enough such that

E(τf ) > E(τ*) - 1. The variables τjp'M for / ^ 1 are i.i.d. of bounded support. For
each large enough n, we can find an integer m = m(n) such that

(33)

The inequalities (32) and (33) imply that n < m(E(τf ) - 1). Since the sum Σ?=ι

τ^'M is stochastically dominated by τ^, it follows by Cramer's theorem that for
some c > 0,

P(n~lXn £ ϋα + 2ι/) g P(τ^ g i)

4°'M ^ m(E(τf )-
ι=l

The assertion (29) follows since the ratio n/m is bounded above as n — > oo.

Step 3. Assume pmax < 1, namely that ωmin = 1/(1 + pmax) > 1/2. Clearly, it suf-
fices to show that for every η > 0,

limsupfl-1 logP(n~lXn < (1 - 4η)vΛ) < 0 . (34)
«— >oo

If the trajectory of a nearest neighbor walk on TL traverses between x — 1 and x
exactly once, we call the latter arrived position a regeneration point and the time
following the step between these positions its regeneration time.

Let Y = (Yn)n^o denote a simple, asymmetric random walk, which is indepen-
dent of ω, with 70 - 0, and P(7Λ+1 - Yn = 1) = 1 - P(7W+1 - Yn = -1) - ωmin.
For every fixed ω = (CDX)X^Z construct Bernouli((ωJC — ωmin)/(l — ωmin)) random
variables ξj(x) which are independent of each other and of 7. Let X = (Xn)n^o
with

*„+, =Xn + ξn(Xn) + (1 - ξn(Xn))(Yn+l -Yn), X0 = 0 .
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It is easy to see that the process (X, ω) is identical in law to the RWRE. Furthermore,
every regeneration time of Y is also a regeneration time of X.

Let #o = 0 and 0 ^ θ\ < Θ2 < - - denote the regeneration times of 7. Denote
the corresponding distances of regeneration points by Wi — 7#ϊ+1 — YQI and Z/ =
Xθl+l — Xβi Lemma 5.1 below imply that w = Έ,W\ < oo, thus there are a.s. in-
finitely many regeneration points of 7. A direct computation of the joint probability
law of ($/, Yθl}

1iL\ reveals that {Wί}^λ is a sequence of i.i.d. random variables.
A similar computation reveals that the incremental trajectories (7ί+0. — Yθι : t =
0, . . . , θi+\ — θj) for i = 0, 1, . . . are independent and of the same law for each / ^ 1.
The random variable Zz is determined by the /th such trajectory, the environment (ωx)
for x 6 [Xθ^ Xβi+l ) and the otherwise independent {ξj(x)}. It follows that {Z/}??0 are
independent, and identically distributed for / ^ 1. With (X0n — X0l)/(θn — θ\) — >• fα

a.s. ([11, Theorem 1.16]), and (Yθn - Yβl)/(θn - θ\) -> (2ωmin - 1) one has that
z = EZi = M>ι>α/(2ωmin - 1) < oo.

Fix η e (0, 1/3). Let k = n(l - 3f/)(2ωmin - l)/ϊv and δ = η/(l - 3η) > 0. Then,

^ P(Yn ^ ΰ#(l + 2δ)) + P(WQ > wkδ) + P Σ,Wi> wk(l + δ)
\/=ι

(35)

Noting that wk(l +2δ) = (2ωmjn — !)«(!— fy) it is clear that the first term on the
right-hand side of (35) is bounded above by exp(— en) for some c > 0 and all
n large. Lemma 5.1 below implies the same type of bound for P(Wo>wkδ).
Lemma 5.1 also guarantees that E[exp(/lfFι)] = exp(/lw -h o(λ)) for λ > 0 small
enough. By Chebycheίfs inequality, this leads to

P(θ*+ι > ι) ^ e~cn +

for some c\ > 0 and all n large enough. With {Z/}z ̂ ι positive i.i.d. random variables,
of finite mean, and since k(l — δ)z = n(l — 4η)Vχ, by ChebychefΓs inequality we
have for some c^ > 0,

P(n-lXn < (1 - 4^/K) ^ P(θk+l > n)

The proof of (34) is thus completed by establishing that indeed the distances between
regeneration times of the simple, asymmetric random walk 7 have exponential tails.

Lemma 5.1. For every y ^ d G N,

Wl > 2y) ^ 2P(W, > y) ^ 2(pmax + pd

m^[y/d]~l . (36)

Proof. Fix y ^ 1. Let σ^ = inf {« : Yn = y}. The event {W0 + JFi > 2^} implies
that either {fFo > J^} or there is no regeneration point of 7 in the interval [y -h l,2jμ].
The latter event is determined by (Yn)n^σy and by the strong Markov property of
σy its probability is exactly P(Wo > y). To prove the second part of (36), it suffices
to consider y = kd with k G N and d G N such that pmax H- p^ax < 1 . Fixing such
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d we shall prove by induction on k that

The basis for this induction (the case k = 1) is automatic. Proceeding to the
inductive step, we denote the position of the first regeneration point of the killed
process (Yn\^σy by W$ . Observe that W$ ^ W0 and W$ e {l,...,y}. Condi-

tioned upon {WQ =w}, the event [WQ > y} implies that the process (Yn)n^σy

must visit the point w — 1 . Therefore, by the strong Markov property
of σy,

P(W0 >y\W0

y = w)ί P(σw_, < oo I Y0 = y) = p^Γ'

(use (5) with p(x) = pmax for all x). Consequently, for all k G N,

P(W0 > kd) £ Σ P((m - \)d < W™ ̂
m=\

which by the induction hypothesis yields,

P(W0 >kd)^Σ (Pmax + Pd

mmr-2p(^m)d+ί ϊ (P

This completes the inductive step, and the proof of the lemma. D

6. Concluding Remarks

1. A setting which we have not covered is that of pmax = 1 while α({l/2}) = 0.
We believe that in this case, the large deviation probabilities can decay like
exp(—CnP) for any β G (1/3,1), with the value of β determined by the behavior
of the measure α( ) in the neighborhood of 1/2.

2. We conjecture that in the setting of Theorem 1.2,

lim «~1/3 logPί/T1^ eG) = ~ inf (1 -
«—>OO 2«ΞG'

^logα({l/2})2/3

Such a lower bound is given in (24). What is missing is the corresponding
(tight) upper bound.

3. Let 0 < v < fα, and suppose that the large-deviation event n~lXn <E (0,t;) occurs.
We speculate that in this case, the environment ω is likely to have the following
structure:

• When pmax > 1: one interval of size (1 + o(l))(\ogn)/y in which the em-
pirical measure of ω is near psoc, with the remaining environment as well
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as the actions taken by the random walk being the typical ones (recall that
y= (ps\ogp)).

• When ρmax = 1 and α({l/2})>0: one interval of size (1 + o(l))θnl/3

within which ωx = 1/2 for all x, with the remaining environment being
a typical one (see (23) for the value of θ). We also expect then that the
chain behaves typically outside this interval, whereas inside the interval it
behaves like a reflected at 0 simple random walk conditioned to stay there
for (1 — v/Va)n steps.

In both cases the position of the atypical interval is expected to be roughly
uniformly distributed over (0, vn).

To establish such results one has to refine the upper bounds of Sect. 2 and 4
so that if the setting described above is excluded, the upper bound shall be of
lower order than the estimates of Theorems 1.1 and 1.2.

4. In the quenched setting a typical environment ω is fixed. When pmax < 1 or
Pmin > 1 ("case B" in the terminology of Greven and den-Hollander [5]) the
local drifts always point in the same direction, and it is shown in [5] that for
almost all environments ω,

7(ι?) = lim -I logPω(Xn = \vn\)\ > 0 for all
n-^oo n

On the other hand, when pm{n < 1 ^ Pmax> ("case A" in [5]) the random
environment has local drifts in both directions and I(v) = 0 on the whole
interval between 0 and fα. This subexponential rate is due to the a.s. exis-
tence of arbitrarily long stretches in the random environment in which neu-
tral drifts or local potential wells temporarily "trap" the walk, allowing it to
slow down. More precisely, in the setting of Theorem 1.1 we shall find for
almost every ω that there is an interval of length k = (I+o(l))\ogn/(sy)
in which kRk ^ (1 + o(l))logn/s (for example see [3]). The corresponding
lower bound on Pω(n~lXn e G) shall thus be exp(-nl-l/s+o(l^. Similarly,
in the setting of Theorem 1.2, by the Erdόs-Renyi strong law (for longest
run of heads) we shall find for almost every ω that there is an interval
of length k = log/ι/(-logα({l/2}))(l +0(1)) within which ωx = 1/2 for ev-
ery c. The corresponding lower bound on Pω(n~lXn G (v — 2η, v)) shall thus be
Qxp(-Kn/(logn)2( 1+0(1))) with K = 0.5|0.5πlogα({l/2})|2(l - V/VΛ). Since
such lower bounds, due to one non-typical segment in the environment, proved
to be quite tight in the annealed setting, we expect that the same should apply
in the quenched setting.

Our assumption that the closed support of α is contained in the open interval
(0,1) is used only in the context of Theorem 1.1, where it can be replaced by
the weaker assumption of (ps) = 1 for some s > 1. Indeed, the latter condition
suffices for (22) to hold (since Eω(N%) ^ ky(\ + p(0)7) with ky < oo), thus for
the upper bound to apply. Similarly, this condition suffices for our application
of Cramer's theorem enroute to the lower bound of Theorem 1.1.

Acknowledgement. We are indebted to Robin Pemantle for several helpful conversations, especially
concerning the proof of the upper bound in Theorem 1.2.
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