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Abstract: We consider a quantum spin system with Hamiltonian

H = H(o) + λV,

where H^ is diagonal in a basis |,s) = <3)x \sx) which may be labeled by the con-

figurations s = {sx} of a suitable classical spin system on Zd,

We assume that H^°\s) is a finite range Hamiltonian with finitely many ground
states and a suitable Peierls condition for excitations, while V is a finite range or
exponentially decaying quantum perturbation. Mapping the d dimensional quantum
system onto a classical contour system on a d + 1 dimensional lattice, we use
standard Pirogov-Sinai theory to show that the low temperature phase diagram of the
quantum spin system is a small perturbation of the zero temperature phase diagram
of the classical Hamiltonian H^\ provided λ is sufficiently small. Our method can
be applied to bosonic systems without substantial change. The extension to fermionic
systems will be discussed in a subsequent paper.

1. Introduction

1.1. General ideas. Many models of classical statistical mechanics provide exam-
ples of first-order phase transitions and phase coexistence at low temperatures. It
became clear already from the first proof of such a transition for the Ising model
by the Peierls argument [Pei36, Gri64, Dob65] that a convenient tool for the study
of phase coexistence and first-order phase transitions is a representation in terms
of configurations of geometrical objects - contours. This has been systematically
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developed in Pirogov-Sinai theory [PS75, Sin82], see also [KP84, Zah84, BI89],
which allows one to prove these phenomena for a wide class of models, with or
without symmetry assumptions on the coexisting phases.

For quantum spin systems, the theory of first-order phase transitions and phase
coexistence is much less developed. While several papers deal with this problem
in the presence of a symmetry relating the two phases, [Gin69, Ken85], no general
theory is known which provides a systematic approach to quantum spin systems
once the symmetry constraint is relaxed

In this paper we propose to develop such a theory for low temperature quantum
spin systems which are small perturbations of suitable classical systems To be more
precise, we assume that the Hamiltonian of the system is of the form

where H^ is diagonal in a basis \s) = 0 Y \sx) which may be labelled by the
configurations s = {sx} of a classical spin system with finite single spin space
S = {1, .,\S\} and Hamiltonian

(s\H{0)\s) = / / ( 0 ) ( ^ ) , (1.2)

while V is a local or exponentially decaying quantum perturbation,

V = YJVA, (13)
A

where the sum goes over connected sets A and VA is an arbitrary operator on J^A =
®xeA^\τ except for the constraint that its norm \\VA\\ is exponentially decaying
with the size of A.

Assuming that the classical system has a contour representation in d dimensions
that allows to apply the methods of Pirogov-Sinai theory for sufficiently low tem-
peratures, we propose to study the quantum perturbation of this system by mapping
it into a suitable contour system in d + 1 dimensions, which can again be analysed
by the methods of Pirogov-Sinai theory. Actually, our method is very similar to
the method developed in [Bor88], were this strategy was used to develop weak
coupling cluster expansions for lattice gauge theories with discrete gauge group and
continuous time.

Our approach differs, however, from that used by Ginibre [Gin69] and Kennedy
[Ken85] In order to explain the main difference, let us first recall their method.
It is based on the idea of developing the density matrix e~^H of the model (1.1)
arround the unperturbed matrix e~^H using Trotter's formula

e~'ίH= lim ( V w » > " ( 0 ) Λ - M y . (14)

While the leading term of this expansion gives the partition function of the classical
spin system at temperature β, the expansion of V according to (1.3) will intro-
duce transitions between classical contours at various times, leading therefore to a
representation in terms of "quantum contours" on TLd x [0,/?].

In the symmetric case considered in [Ken85] and [Gin69], these quantum
contours could be controlled with affordable effort using standard methods. The
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asymmetric situation considered here, however, obviously requires significant mod-
ifications involving something like a "Quantum Pirogov-Sinai" theory. Such an ap-
proach is currently being pursued by Datta, Fernandez and Frόhlich [DFF95], leading
to results very similar to those presented in this paper1.

Here, we follow an alternative approach, motivated by [Bor88]. The main idea
is not to consider contours on 7Ld x [0, β], but to use a suitable blocked approach,
which allows to map a ^-dimensional quantum system onto a classical contour
system on the (d + 1 )-dimensional block lattice. As a consequence, our results make
it possible to apply directly the usual Pirogov-Sinai theory to quantum spin systems
as well, thereby allowing to analyze questions concerning the low temperature phase
structure, finite size scaling, analyticity properties, etc. using the well developed
machinery of standard Pirogov-Sinai theory.

1.2 Contour representations of quantum lattice models. In the remaining part of
this introduction, we present the main ideas of our approach. In the first step, we
rewrite the partition function Z = Tr e~$H of the quantum spin system as

Z = Tr TM where T = e~^H and β = Mβ (1.5)

with an integer M to be chosen later. We then expand the partition function Z of the
quantum system around the partition function Z c l a s s = Ίre~βHm of the classical spin
system using the Duhamel formula (a reference concerning the Duhamel formula is
e.g. [SS76]) for the transfer matrix T = e~$H. Introducing the family S/Q of all sets
A contributing to (1.3), the Duhamel expansion gives

τ = Π Γ(τ,n), (1.6)

where n is an multiindex, n : s&§ —> {0,1,2,...}, and Γ(τ,n) is obtained from Γ'0 ' =

e-βH by "inserting" the operator VA at the times x\,..., τ"/, see Sect. 2 for the precise

definition. Next, we resum (1.6) to obtain the expansion

where

T = Y/T{B), (1.7a)
B

T(B)= £ f(s/)9 (1.7b)

UtA,=B

with

n: supp n—sί

-Jdτ^.-.dτ"/
0

Γ(τ,n). (1.7c)

Results of this type were announced some time ago in [Pir78] However, a detailed discussion and
proofs have never been presented
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Using the basis \s) to rewrite (1.5) as

Z= Σ <5(1)|7V2)> (s^\T\s^) , (18)

and inserting the formula (1.7) to expand T around T^°\ we obtain

Z= Σ ΐl (s('-])\f(B^)\s^) , ( 1 9 )

where we have identified s ( 0 ) and s{M)

At this point, the quantum spin system is easily mapped to a classical con-
tour system in d + 1 dimensions. Before doing so, let us discuss the expansion
(19) from a more heuristic point of view. Starting with the leading term in
£ ( 1 ) , . . . , £ ( M ) , namely the term where all B(t) are empty, the matrices T(B(t)) re-
duce to the unperturbed transfer matrix T^°\ which implies that only the term with
5-0) = £.(2) = .. Ξ S(M) c o ntributes to the sum over s^ι\ .. ,s^M\ giving the partition
function of the classical spin system at the inverse temperature β. A non-empty set
B^\ on the other hand, corresponds to the insertion of one or several operators
VA, A C B^\ inducing transitions between different classical states s^~1^ and s^ It
should be noted, however, that for a fixed set of 2?^'s only those spin configurations

SV) = SV) = ... = s^M) contribute to (1.9), for which s{t~λ) and s{t) are identical on
all points x for which x ^ B^\

In order to rewrite (1 9) in terms of contours, we assign contours to "configura-
tions" specified by s^ι\ . ,s ( M ) and B^x\ ,B^M\ Namely, we introduce elementary
cubes as the unit closed cubes C C IR^+1 with centers (x,t), where t £ {1,2, . ,M}
and x G Έd. We say that an elementary cube C with center (x, t), x G Έd, lies in
the /th time slice, we say that it is in a quantum excited state if x G B^\ while we
say it is in a classical state if this is not the case Consider now a cube C in the tth

time slice which is in a classical state Then s(/~1} and s^ must assume the same
value sx G S on the corresponding point x G Έd, and we say that the cube C is in
the (classical) state sx

In order to explain our definition of contours, let us assume for the purpose
of this introduction that H^\s) is the Hamiltonian of a classical spin system with
nearest neighbor interactions, and that the contours of the classical system correspond
to bonds (xy) for which sv+Sv (see Sect. 2 for the more general case) We then say
that a cube C is part of the ground state region Wm, m G S, if it is in the classical
state m, and if all neighboring cubes in the same time slice are in the classical state
m as well All cubes which are not part of a ground state region are called excited
As usual, we define a contour as a connected component of the set of excited cubes.

Resumming all terms in (1.9) which lead to the same set of ground state regions
and contours, we finally obtain Z as a sum over sets {Y\,...9Yn} of non-overlapping
contours Given our definition of excited cubes, it is an easy exercise to show that
the weight of each such configuration factors into a product of contour activities
p(Yι) and ground state terms e~^m\Wm\ where em is the classical ground state energy
of the ground state m, while | Wm \ is the number of cubes which are in the ground
state m This gives the representation

= Σ ΠKΌΠ^'"1^1, (no)
{!Ί, J,,} i '"
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which is exactly of the same form as the contour representation of a classical spin
system. We can therefore apply standard Pirogov-Sinai theory to analyze the quan-
tum spin system considered here, provided we can prove a bound of the form

\p(Y)\ S e~y\γ\e-
MY\ , (1.11)

where γ is a sufficiently large constant, and eo = mmmem.
Observing that cubes in a quantum excitation are supressed by a small factor

proportional to λβ, while excited classical cubes are exponentially suppressed by a
"classical" contour energy proportional to β, such a bound can easily be proven,
see Sect. 4 for the details.

Notice that the weights p{Y) are in general complex. The version of the Pirogov-
Sinai theory to be used thus must deal with this fact. Actually, such a case has been
discussed in [BI89] and we are closely following their approach.

A novel feature of the models considered here stems from the fact that the
resulting classical model resides in a finite slab of thickness proportional to β; ac-
tually we should talk of a cylinder because of the periodic boundary conditions. It
is therefore not possible to directly apply standard Pirogov-Sinai theory. Actually,
this gives rise to an interesting problem in both quantum and classical spin sys-
tems: dimensional crossover for first order phase transitions. We will not discuss
the physics of dimensional crossover in this paper, but the technical modifications
needed to deal with finite temperature quantum spin systems do actually provide the
necessary framework to deal with this problem as well.

The organization of this paper is as follows: In the next section, we state our
main assumptions and results. In Sect. 3, we derive the contour representation (1.10),
proving in particular the needed factorization of contour activities. In Sect. 4 we
prove the exponential decay of the contour activities. Section 5 is devoted to the
discussion of the resulting contour model including the discussion of modifications
to Pirogov-Sinai theory on a finite slab. In Sect. 6 we discuss expectation values
of local observables, and in Sect. 7 we combine the results of the preceding section
to prove the theorems stated in Sect. 2. Details of the necessary modifications to
Pirogov-Sinai theory on a finite slab are deferred to an appendix.

We close this introduction with a discussion of possible extensions. We recall
that we assumed that // ( 0 ) is diagonal in a basis \s) = 0 χ \sx), where sx lies in a
finite spin space S. While this is a natural setting for quantum spin systems as, e.g.
the anisotropic quantum Heisenberg model, it is not for the discussion of bosonic
or fermionic lattice gases. In this situation, a typical choice for H(0) would be an
operator which is diagonal in the usual bosonic or fermionic Fock representation
where basis vectors are characterized by eigenvalues of the corresponding num-
ber operators nx. While the corresponding classical system still has a finite state
space (nx — n^ + n^ = 0,1,2) in the fermionic case, bosons now give rise to a state
space which contains infinitely many classical states per site. In most applications,
however, this is not a serious problem, because the hamiltonian // ( 0 ) suppresses
high values of nx (or, in the usual field representation, high values of the boson
field φx). Our methods and results are therefore applicable to bosonic lattice gases
without major modifications.

For fermions, on the other hand, the antisymmetrization of the wave function
leads to sign problems in the contour representation (1.10) which have to be dealt
with carefully. While this is a priori not obvious at all, it turns out, however, that
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fermion signs do not spoil the factorization properties needed to apply Pirogov-
Sinai theory (see [BK95], where the methods developed here are used to prove the
existence of staggered charge order in the narrow band extended Hubbard model)

2. Definition of the Model, Statements of Results

2 1 Assumptions on the classical model We start this section by stating the precise
assumptions for the classical model We consider a classical spin system with finite
spin space £ = {1,.. , |£ |}, spin configurations s : 7Ld —> S, x ι—» sx, and finite range
Hamiltonian H^°\s) with translation invariant interactions, depending on a vector
parameter μ G t , where ^lί is an open subset of R v. We assume that H^°\s) is
given in the form

ff(0)(s) = Σ ^ ) . (2 1)
X

where Φx(s) G IR depends on s only via the spins sy for which y G U(x) = {j/G
TLd I dist(x, y) ^ RQ}, where R$ is a finite number. In our notation we suppress the
dependence of H^ on Φx and μ.

As usual, a configuration g which minimises the Hamiltonian (2.1) is called a
ground state configuration. For the purpose of this paper, we will assume that the
number of ground states of the Hamiltonian (2.1) is finite, and that all of them are
periodic More precisely, we will assume that there is a finite number of periodic
configurations g^\...,g^f\ with (specific) energies

em = em{μ) = lim -ί- £ Φx(g{m)) , (2 2)
Λ->ZΊ \Λ\ x e Λ

such that for each μ G lJU, the set of ground states G(μ) is a subset of {g^ι\..., g^ ">}.
Obviously, G(μ) is given by those configurations g^ for which em{μ) is equal to
the "ground state energy"

eo = eo(μ) = minew(μ) . (2.3)
m

Note that we may assume, without loss of generality, that Φx{g^m)) is independent
of the point x for all ground state configurations g^m\ because this condition can
always be achieved by averaging Φx(s) in (2.1) over the minimal common period

Our goal will be to prove that the low temperature phase diagram of the quantum
model is a small perturbation of the classical ground state diagram provided the
quantum perturbation is sufficiently small. In order to formulate and prove this
statement, we need some assumptions on the structure of the ground state diagram
Here we assume that for some value of μo G lJU all states in {g^ι\. . , # ^ } are
ground states,

em(μo) = eo(μo) for all m = 1, .. ,r , (2 4)

that em(μ) are C1 functions in °U, and that the matrix of derivatives
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has rank r — 1 for all / i G f , with uniform bounds on the inverse of the correspond-
ing submatrices. We remark that this condition implies that the zero temperature
phase diagram has the usual structure of a v — (r — 1) dimensional coexistence
surface So where all states # ( m ) are ground states, r different v — (r - 1) -f 1
dimensional surfaces Sn ending in So where all states but the state g^ are ground
states,

Next, we formulate a suitable Peierls condition. In order to present it, we intro-
duce, for a given configuration s, the notion of excited sites x eZd. We say that
a site x is in the state g^ if the configuration s coincides with the configuration
g^m) on U(x), i.e. on all sites y for which dist(x,jμ) ^ Ro; a site is excited, if it
is not in any of the states g(ι\...9g(r\ Given this notation, the Peierls assumption
used in this paper is that there exists a constant yo > 0, independent of μ, such that

Φχ(s) ^ £o(μ) + To for all excited sites x of all configurations s . (2.6)

Finally, we assume that the derivatives of Φx are uniformly bounded in %. More
explicitly, we assume that there is a constant Co < oo, such that

S Co (2.7)

for all i — 1,..., v, μ £ °U, x £ TLd, and all configurations s.

Remark. Given the assumptions stated in this subsection, standard Pirogov-Sinai
theory implies that the low temperature phase diagram of the classical model has
the same topological structure as the corresponding zero temperature phase diagram
(see above).

2.2. Assumptions on the quantum perturbation. As pointed out in the introduction,
we propose to develop a theory which allows to control low temperature quantum
spin systems that are small perturbations of the classical system introduced above.
We consider quantum spin systems with Hamiltonians of the form

H = H{0) + λV , (2.8)

where // ( 0 ) is diagonal in a basis \s) ~ ® χ 1̂ ) that may be labelled by the config-
urations s = {sx} of the classical spin system,

= m°\s)\s). (2.9)

We assume that V is of the form

V = Σ,VΛ, (2.10)
A

where the sum goes over connected sets A and VA is a self-adjoint operator o n J ^ =

&)xeA ̂ χ * n addition to translation invariance, we assume that VA and its derivatives,

J-VA, ί— l,...,v, are bounded operators, with a suitable decay constraint on the

corresponding operator norms \\VA\\ and | | ^ - ^ | | . In order to formulate this constraint,
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we introduce the Sobolev norm

d
11-/= Σ 11̂11 + Σ

A.xEA \ i=\

-VΛ (211)

where \A\ is the number of points in A Given this definition, our assumption on
the decay of V is the assumption that

,.β < oo (2 12)

for a sufficiently large constant γg.

Remarks.

i) For a finite range perturbation, where VA =• 0 if the diameter of A exceeds
the range RQ of the interaction, the assumption (2.12) is automatically fulfilled for
arbitrary large γg < oo.

ii) If the quantum perturbation V is of infinite range, we need that \\VA\\ and
|| ^ - ^ || decay exponentially in the size |^| of A. Assuming exponential decay with a
sufficiently large decay constant 7, and observing that the number of connected sets
A of size .v that contain a given point x G TLd is bounded by (2d)2s, the condition
(2 12) can be satisfied provided 7 > yQ + 2\og(2d).

iii) Strictly speaking, an exponentially decaying pair potential, V = Y^χ VXίy,
where the norm 11̂ ,̂ 11 decays exponentially with the distance between x and y, is
not in the class considered in this section because V is not given as a sum over
connected sets A It is obvious, however, that such a potential can be rewritten in
the required form, by artificially connecting the two points x and y by a nearest
neighbor path In (2.11), this effectively replaces the size of the set A — {x, y} by
its l\ -diameter J2ι \χi ~

2 3 Finite volume states for the quantum system In order to discuss the phase
diagram of the quantum spin system, we will consider suitable finite volume states
( )q,Λ which are analogues of the classical states with boundary condition q, where
q = 1,. ,r We first introduce, for any configuration s and any finite set A, the
vector \SA) = (S)XEA \sχ)- Given a finite set A C TLa\ we then define suitable finite
volume Hamiltonians HΛ and HA on the Hubert space J ^ = ®x^λ ^* > w n e r e

A = UJG/1 ^ ( X ) Namely, we introduce operators

iO ) ( 2 1 3 )

(2.14)
xeΛ

and

HΛ=H(

Λ

0) + λΣ VA (2 15)
ACΛ

The Hamilton operator with boundary conditions q is then defined as the "partial
expectation value"

zj I rX
cl>\ττ I ̂ ,w)\ / O i /C Λ

flq^Λ — \9ΊA \ Λ \9nΛ I ' ^Z.lOj
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where dΛ is the set Λ\Λ. More precisely, Hq,A is an operator on 3tfΛ whose matrix
elements are

(sΛ\Hq,Λ\s'Λ) = (sΛ\ ® ( ^ J ^ l ^ ) ® |^> (2.17)

Given the Hamiltonian with boundary conditions q, we introduce the quantum state
( )q,Λ aS

() K<~βHA) ( 2 ! 8 )

where
Z M = T r j G e - ^ ^ . (2.19)

Note that H^ and HΛ are operators on J ^ , while Hq^Λ and its analogues,

H™ = (β&WV^) (2.20)

and

are operators on J^i-

nq,Λ — \adA\nΛ \QdAl

Remark. Following Ginibre [Gin69], it might seem more natural to implement

the boundary conditions with the help of suitable projection operators P^\. Here,

this would amount to defining P^J = \g^})(g^}\- With the help of this projection
operator, one would then define

and similarly for the finite volume states (2.18). Observing that

for all operators W on JCi> these two implementations of boundary conditions are
actually equivalent.

2.4. Statement of results. In order to state our results in the form of a theorem, we
recall that a local observable is an operator which is a selfadjoint bounded operator
on 3tfΛ for some finite set A. We also introduce, for each x in Έd and any local
observable Ψ, the translate tx(Ψ). Defining finally Λ(L) as the box

Λ(L) = {xeZd\ \Xi\ S L for all / = 1,...,d} , (2.22)

our main results are stated in the following two theorems.

Theorem 2.1. Let d g: 2 and let H^ be a Hamiltonian obeying the assumptions
of Sect. 2.1. Then there are constants 0 < βo < oo and 0 < JQ < oo, such that for
all quantum perturbations V obeying the assumptions of Sect. 2.2, all β ^ βo and
all λe<E with

\λ\ ύ λ0 := * (2.23)
eβo\\\n\\γΰ



418 C Borgs, R Kotecky, D Ueltschi

there are constants ζq and continuously differentiable functions fq{μ\ q = 1, . ,r,
such that the following statements hold true whenever

aq(β,λ,μ) := Re/,(μ) - minRe/m(μ) = 0 . (2.24)

i) The infinite volume free energy corresponding to Zq/^i) exists and is equal
to fq

f ^ λ Z ( 2 2 5 )

ii) The infinite volume limit

{Ψ)q= \\mJΨ)q,Λ(L) (2.26)

exists for all local observables Ψ
iii) For all local observables Ψ and Φ, there exists a constant CΨ^Φ < oo, such

that
\(Ψtx(Φ))q - (Ψ)q(tx(Φ))q\ g CΨ,Φe-Wξ< . (2.27)

iv) The projection operators

onto the "classical states" gβ^ obey the bounds

1

i/pte) \ _ ] ι < _ (2 29)

z
and

l/n(w) \ I < _ (2 30)

for all m^q
v) There exists a point μ0 G ύU such that am(μ0) = 0 for all m— 1,... ,r For

β// μ G ̂ , /Aβ matrix of derivatives

V dfr )
has rank r — 1, and the inverse of the corresponding submatrix is uniformly
bounded in %

Remarks

i) Following the usual terminology of Pirogov-Sinai theory, we call a phase
with aq = 0 stable By the inverse function theorem, statement v) of the theo-
rem implies that the phase diagram of the quantum system has the same structure
as the zero temperature phase diagram of the classical sytem, with a v — (r — 1)
dimensional coexistence surface £ 0 where all states are stable, r different
v — (r — 1) + 1 dimensional surfaces Sn ending in So where all states but the state
m are stable,

ii) Choosing β sufficiently large and λ sufficiently small, the bounds (2.29) and
(2.30) can be made arbitrarily sharp. In this sense, the quantum states ( )q are
small perturbations of the corresponding classical states whenever q is stable.
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iii) While Theorem 2.1 is stated (and proven) for general complex λ, the phys-
ical situation corresponds, of course, to real values of λ, as required by the self-
adjointness of the Hamiltonian H. As we will see in Sect. 5, the "meta-stable free
energies" fq are real in this case, making the real part in (2.24) and (2.31) super-
fluous.

In order to state the next theorem, we define states with periodic boundary
conditons on Λ(L). To this end, we consider the torus ApQr(L) — (Έ/(2L-\- Y)Έ)d

and the corresponding Hamiltonian

#per,Λ(L)= Σ H^ + λ Σ VA, (2.32)
xeΛper(jL) ACΛpeτ(L)

where the second sum goes over all subsets A C Λper(L) which do not wind around
the torus ylper(^). With these definitions, we then introduce the quantum state with
periodic boundary conditions as

( }PeM(i) = y^—Ίr*m( • e-^w), (2.33)

where

ZPer,Λ(Z) = Tr jr^e-*1*"™ . (2.34)

Theorem 2.2. Let H^°\ F, β and λ as in Theorem 2.1. Assume in addition that
λ is real. Then the infinite volume state with periodic boundary conditions,

(f)per= lim <f ) p e M ( i ) (2.35)
L—> oo

exists for all local observables Ψ, and is a convex combination (with equal weights)
of the stable states,

Σ W (236)Σ

Here
{qe{l...,r}\aq(μ) = O}. (2.37)

3. Derivation of the Contour Representation

As explained in the introduction, we start with the Duhamel expansion for the trans-
fer matrix. In this section, we will consider a fixed finite volume A = A(L) = {x e
Zd I |JC/| ^ L for all i = l,...,d}, and a fixed value q G {l,...,r} for the boundary
condition; further, we are not explicitly specifying this in our notation. Introducing
the transfer matrices

and
T = e~^Λ , (3.2)

we rewrite the partition function ZqiA as

M, (3.3)
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where β and M E N are related to the inverse temperature β by the equality

β = Mβ (3 4)

The Duhamel expansion (or Dyson series) for the operator T yields

Π ^ " P τ dτ'\ T(τ,n) (3.5)

Here, j / 0 is the family of all sets A contributing to the sum (2 15), n is a multiindex
n : st0 -+ {0,1, . . . , } with finite n = Σ,A^0 nA, τ = {τA,..., τn

Λ\ A e rf0} e [0, β]",
and the operator T(τ, n) is obtained from Γ(0^ by "inserting" the operator VA at
the times τ\, ,τn

A

A Formally, it can be defined as follows For a given n and τ,
let suppn = srf = {A\, .,Ak) be the set of all A s S/Q with M^ φ θ , n, = «^;, and
K, = F Λ Let

(ί, , . . , i w ) = 7E(TJ,,,.. ,τ"A\, . . , τ 4,. . , τ ^ )

be a permutation of the times τ such that s\ S S2 = = ^??

 a n d set

( F , , . . , ¥ „ ) = π ( V u . . . , V x , ,Vk, . . , V k ) ,

where on the right-hand side each Vt appears exactly nι times. Then Γ(τ, n) is defined
by

7XT,n) = e - " Γ - Vie-l«-«K\ V2 β -(

Next, we resum (3.5) to obtain the expansion

T = Σ T(B) ,
BCΛ

where

with

T(B) =
/={Au ,Ak}

U,A,=B

f (.s/) = π Γ(τ,n).

(3.6)

(3.7)

(3.8)

(3.9)

Before continuing with the expansion for the partition function as sketched in the

introduction, we discuss the factorization properties of the operator T(B) Given a

subset Λ' of Λ, we introduce the operators 7V(τ,n), fA/(jtf\ and TA>(B) that are ob-

tained from Γ(τ,n), f(jtf), and T(B), respectively, by replacing HqA = Σ r G / 1 / ^ , γ

by the operator ΣxeλΉqJ Using the fact that

[H$,H£l] = 0 for a\\x,yeΛ, (3.10)

while

[H$,VA] = 0 if dist(x,^)>7?o, (3.11)
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one immediately obtains that

T(B) = T^β- TB(B) = TB(B) T(^B- , (3.12)

where B is the set
B = {xeΛ\άist(x9B) ^ Ro} . (3.13)

Let us now consider a set B that can be decomposed as B=B\ UB2, with B\ Π
B2 = Ψ. Then

Tβ(B) = TB-χ(Bx)TB-2(B2) = TB-2(B2)TB-χ{Bλ), (3.14)

due to (3.10), (3.11), and the fact that

[VA9VA>] = 0 if AΓ)Af = ψ. (3.15)

For B C Λ, we therefore get the decompositions

Ts(B)=f\TSι(Bi) (3.16)
i=\

and

nB) = 1^UTSι(Bt), (3.17)

provided 5 = |J*= ] Bt, where B\,...,Bk are pairwise disjoint.
Deviating a little bit from the strategy explained in the introduction, we further

expand the transfer matrix T. Using (3.17), we observe that

(SB\ ® {sΛ\B\T(B)\s'ΛB) ® | 4 )

= K^Λ^~βΣ'€ΛχsΦΛSu(x))(sB\®(sΛ\B\Ts(B)\s'ΛχB)^\s'B) . (3.18)

Introducing thus the operator TB(s-^) on JfB as the partial expectation value

TB(sfB)=(sΛ\B\Tg(B)\sΛ\B), (3.19)

we get

T(B) = Σ e-^^φ'(s^\\SΛ\B)(sAB\ ® Γs(^)). (3.20)

As before, U(x) = {y e Zd \ dist(jc,j) ^ i?0}, while ~dB is the set

~dB = {x$B\ dist(*,£) ^ 27?o} (3.21)

Considering "configurations" Σ = (B, sΛ\B) on A specifying the set B as well as the
configuration sΛ\B outside it, we can combine (3.7) and (3.20) to get the expansion

(3.22)
Σ

Here the operators K(Σ) (on J#Λ) a r e defined by

K(Σ) = K(B,sΛ\B) = e-fc'eΛV**™) (\SΛ\B)(SΛ\B\ ® TB(sfB)) . (3.23)
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Remarks.

i) The operator Tβ(s^) inherits from Tβ(B) the factorization property (3.16).
Namely,

TB(SFB) = ®TBXSU), (3.24)
i=\

provided B = (J"=1 Bt with B\,...,Bn pairwise disjoint.
ii) For x and B near to the boundary of A, the spin configurations su(X) and s^

appearing in Φx and Tβ(s^) involve spins sv with y (£ A. A more precise notation

would therefore involve the spin configuration sΛ\B U gfA restricted to the sets U(x)

and dB, respectively

Next, we combine the representation (3.22) for the transfer matrix T with the
formula (3.3) to rewrite Z^Λ as

Zq,Λ= Σ ™(ΣU. ,ΣM) (3 25)

with the weights
M

w(Σu. ,ΣM) = ΎτjrιUK(Σt) (3 26)
t=\

For a given collection of configurations Σu. ,ΣM, Σt = (B^\s^BU)), on "time

slices" t= 1,...,M, we now assign a variable cr(γ ̂  G iS = {0,1, . , |£ |} to each
point in "space-time" lattice

ΊL = Zdx{\, ,M} (3.27)

by defining

giq) iίx^A,

v ifχeΛ\BW ( 3 2 8 )

0 if x e B^

Considering elementary cubes, i.e. the closed unit cubes C(x, t) with center (x,t) in

ΊLΛ = Λx {1,.. ,M} , (3.29)

we say that a cube C(x,t) is in the ground state m, if the configuration σ^t)
coincides with the configuration g^m) on all points y G U(x). Otherwise, the cube
C(x,t) is called an excited cube Note that a cube C(x,t) may be excited for two
reasons (possibly both): either the Ro-neighborhood U(x) of x contains a point
y G #^\ corresponding to the insertion of some operator VA with j^ G yί, i.e. due to
a quantum excitation, or it contains a point y for which the classical variable sp
differs from the ground state value g]T , which corresponds to a classical excitation.
Note also that a configuration where two successive cubes C(x,t) and C(x,ί+ 1)
are in a classical state, (J(xj) = sx and σ^ί+i) = ̂ x , has weight zero unless

<Γ(x,t) = σ(.γ,/+i); indeed, otherwise one has (s{t)\K(Σt)K(Σt+ι)\s(

x

t+l)) = 0. This is
true also for t = M once we identify t = M + \ with ί = 1 (periodic boundary
conditions on ΊL).
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Recalling the relation (3.23), we now extract a factor e~βφχ(gmϊ = e~^6m for
each cube C in the ground state m, leading to an overall factor of

where \Wm\ is the number of cubes in the ground state m. Considering, on the other
hand, the union D of all excited cubes, we assign a label <XD(F) to all elementary
faces F in the boundary of D, by defining OCD(F) = m if F is a common face for
a cube Q> in D and a cube Cm outside D in the ground state m, F = Q> Π Cm.
Defining the reduced weight co(σ ̂ ) by

w(Σl9...9ΣM) = e-liΣ»e"\w"\ω(σι)9 (3.31)

we observe that ω(σ^) depends only on the configuration σo and the label ocD,

ω(σ L ) = ω(σD,OLD) (3.32)

(The configuration outside D is entirely determined by the labels α/>.) The weight
ω(σD,ocD) inherits from (3.24) the factorization property

n

ω(σD,ccD) = Π ω ( σ A , α A ) . (3.33)
ί=\

Here D\,...,Dn are the connected components of D.
At this point, the rest is standard. One considers the sets

T Λ = U C(x,t) (3.34)
(χ,t)eJLΛ

and

T = U C(x9t)9 (3.35)

imposing periodic boundary conditions in the "time direction," and defines a (la-
beled) contour 7 as a pair (supp 7, α), where supp 7 C T^ is a connected union of
closed unit cubes with centers in ]LΛ (considered as a subset of T), while α is an
assignment of a label cc(F) to faces of dsupp 7 which is constant on the boundary
of all connected components of ΊΓ\supp 7.

The contours Y\,...,Yn corresponding to a configuration σ^Λ are then defined
by taking the connected components of the set D of excited cubes in TΓ̂  for their
supports supp Y\,...,supp Yn and by taking the labels m of the ground states for
the cubes C in Ty ί\supp7z that touch the face F, see above, for the corresponding
labels αz(F).

Resumming over all configurations in (3.25) that lead to the same set of contours,
and taking into account the factorization property (3.33), it is an easy exercise to
show that the resulting weight factors into a product of contour activities p(Yi) and
ground state terms ^ - W ^ l . This yields the representation

Z«Λ= Σ Π ^ ) Π ^ | f f l 1 . (3-36)
{Yu ,¥„} i ">
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which is exactly of the same form as the contour representation of a classical spin
system. We can therefore apply standard Pirogov-Sinai theory to analyze the quan-
tum spin system considered here, provided we can verify its basic assumption - the
Peierls condition. Namely, we should prove a bound of the form

\p(Y)\ ^ e-vme-fco|y| (3.37)

where y is a sufficiently large constant, eo = minm em, and | 7 | is the number of
elementary cubes in supp Y This will be done in the next section

Remark. The weights p(Y) are in general complex, even if the coupling constant
λ is real. Observing that the operators K(Σt) in (3.26) are selfadjoint for real λ, we
have, however, that

w(Σu . , Σ M ) * = w ( Σ M , , Σ X ) (3 38)

Considering two contours Y and 7* which can be obtained from each other by a
reflection at a constant time plane, we therefore get

p(Yy=p(Y*) (3.39)

provided λ G JR.

4. Exponential Decay for Contour Activities

We first give an explicit expression for the weight p(Y) Combining (3.25), (3.31),
(3 32), and (3.33) we have

Zq,Λ= Σ Γ ^ ^ ^ Π Φ A . α z ) , ) , (4 1)
Σu ,ΣM ι=\

where Du , Dn are the connected components of the union D of all excited cubes
corresponding to Σ\, ..,ΣM- This expression is equivalent to (3.36) once we take
for a contour Y = (D,ocD) the weight

P(Y)= Σ ω(σD,aD) (4.2)
σD->Y

Here the sum is over all configurations GQ consistent with the contour Y, i.e. over
all configurations GD on D = supp Y that, if extended outside supp Y by appropriate
ground states determined by the labels αp, yield the contour Y

Propositon 4.1. Let λ e IR, β > 0, and yQ ^ 1 be sueh that, for all x e TLa\

[e-X)β\λ\ Σ \VAWQW S 1. (4.3)

Then
\p{Y)\ ^

where
γ = min{βy0,R-d(yQ - 1)} - log(2|5|) (4.5)

The proof of the proposition relies on the following lemma.
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Lemma 4.2. Let B c Λ, and let sB, sB and s^ be arbitrary classical configurations

on B and dB = {x φ B | άist(x,B) ^ 2R0}, respectively. Let yg, β and λ be as in
Proposition 4.1. Then

\(sB\TB(sfB)\sB)\ ί e-toWe-to-W . (4.6)

Proof of Lemma 4.2. Let SA be an arbitrary extension of the configuration sβu^
to the full set Λ, and let SA be the configuration which agrees with sΛ on Λ\B, and
with Sβ on B. Then

\(sB\TB(sfB)\sB)\ = \(sΛ\Tβ(B)\sΛ)\ S \\TB(B)\\ , (4.7)

where, in agreement with (3.8) and (3.9), the operator Tβ(B) is defined by

TB(B)= Σ W ) (4.8)
s/={Alt ,Ak}

A

and

= Σ
n: supp n=j;

nAJ- 0
TB(τ,n). (4.9)

The time-ordered operator Γg(τ,n) is defined as in (3.6), with the Hamiltonian

ΣχeB

Hq°χ replacing # ( ° j . Observing that for all s > 0,

we now bound

||7i(τ,n)|| ^e-^^W \\VA\\n* . (4.11)

Combining (4.7)-(4.9) with the bound (4.11) and the fact that the assumption (4.3)

implies that j8|λ| | |^| | ^ 1 for all A e s^o, we obtain

\(sB\τB(sg0\sB)\\ ^ e-fcw Σ Π ( Σ
s/={Alt ,Ak} AE^ \nA = l

s/={Alt ,Ak]
Aie^o,UjAj=B

g e-βeo\B\e-γQ\B\ £ Π

sί={Au ,Ak]
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We proceed with the bound

Σ

=§ Σ ^ Π I Σ Σ (e - l)β\λ\\\VAl\\e^A \
k=\ Kl i=\

x£A,

oc 1

^ Σ ^1*1* ^ elΰl > ( 4 !3)

where we have used the assumption (4 3) in the second to last step. Combining
(4 12) and (4 13), we obtain the lemma. D

Prooj of Proposition 4 1 In order to bound the sum in (4.2), we first derive a
more explicit representation for the activity p{Y). We decompose the torus T and
the set of excited cubes D into time-slices, T = \Jt=\ T ^ and D — \]t=λ D^\ and
recall that G(XJ) = 0 iff the cube C(x,t) belongs to B^\ the set of sites where
transitions between times t and (t + 1) may occur. Summing over all configurations
σo consistent with the contour Y then corresponds to the following three restrictions:

(1) The configuration GQ is such that the ^-neighbourhood of each (x, t) with

σ ( λ,0 = 0 is included in Z>, i e B(0 c D(t) for each t = 1,. ,M.
(2) All cubes C(x9t) C D are excited, i.e. either G(y>t) = 0 for some y G U(x)

0 Γ SU(x) ^ Quix) ^ O r a ^ m = ^' ' ' ' r >

(3) Let F be a vertical face in the boundary of D, let m = OCD(F) be the label
of F, and let TΓ(r) be the time-slice containing F Then σ(x,t) = g[m) for all x G D{t)

whose distance from F is less then Ro.

Let us observe that since \SΛ\B]) 0 1 ,̂) = \SA\B2) ^ 1̂ 2) ^ o r anY *i>*2 C /I, we
may write the expansion of unity 1 = Σ 5 k/i)(5/i| o n <%Λ m the form

1 = Σ \SA\B\ ) 0 |^,) (s/t\β21 0 (^21 (4.14)
S 1

Inserting now (3.26) with (3 31) and (3.32) into (4.2), we may use the above
observation to get the expression

p(Y)= Σ Σ Σ Πe-^rf'-N*"*^..'
β(\) β{M) (1) (M) ,(1) (M) ι—\

-(I) ' (,\ D ^ ' X β * ' ) ' ' £ ) 0 W ) \ R ( ^ ) / ( I ) ' ' /(Λ / )

o(0

Here we defined 1^ — B^~1^ Π B^K The first two successive summations are equiv-
alent to the sum in (4.2), while the third one implements the trace in (3 26). Namely,
the sum over B^ι\... ,B^M^ in (4.15) obeys automatically the first restriction above;
the second sum must respect the two others (and there is no restriction on the third
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sum). Observe that the choice of a contour Y (or of several contours), together with

the choice of partial configurations ^ L 5 ( ί ) , 4ω> a t e a c n t m i e t defines completely

the configurations between each time slice.
In order to get a bound on \p(Y)\, we estimate the absolute values of the factors

of the terms on the right-hand side of (4.15). Taking into account the condition (2)
above and the assumption (2.6) on the classical part of the Hamiltonian, we have

e-βΣxeDitΛmΦΛ4\x)) ^ e-β(eo+yo)\D^\B{t)\ ^ ( 4 1 6 )

The scalar product between the two base vectors is equal to 0 or 1. In fact, we
could use it to reduce the number of terms appearing in the second sum in (4.15);
however, we just bound it by one. Combined with Lemma 4.2, we finally get

M

\p(Y)\^ Σ Π Σ
5 (D B(M) t=\ s(0

(4.17)

The summands do not depend any more on the partial configurations s^it),B(t) and

sfy. Their number is bounded by

M

Π (4.18)

To estimate the exponential in (4.17) we use the equality \Dΰ)\B(0\ = \D(t)\ - \B0)

and the bound \B0)\ ^ Rd

0\B^\. Thus e- to-DI^I ^ ^ - f t β - D O * 0 ! , and

\p(Y)\ ^ [\s\e-βeo
M

t=\
(4.19)

The last sum can be easily bounded, yielding

Σ i ^ Σ i = 2 | Z ) ( 0 ' ( 4 2 °)

Combined with (4.19), this completes the proof of Proposition 4.1. D

We close this section with a proposition providing the necessary bounds on
derivatives:

Propositon 4.3. Let λ e R, β > 0, and yς> ^ 1 be such that, in addition to (4.3),
we have

4\λ\ Σ T~VA eyeW ^ 1 . (4.21)

Then

γ-p(Y) ύ (βC0 + l) |7 |<?- (^ 0 + } ; ) | 7 1 . (4.22)

Here CQ is the constant from (2.7) and y is the constant defined in (4.5).
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Proof We first derive an analogue of the bound (4.6) in Lemma 4.2. To this
end, we have to bound the norm of θΓg(τ,n)/dμz . Using the representation (3.6) in
conjunction with the assumption (2 7) and the bound (4.10), we get

d

dμι

 B

k

7 = 1

eo{βCo\B\Y\ \\VA\r
AEs/

dVA.
(4 23)

Proceeding as before, we obtain

Σ#

c/={A,, ,Ak}

βC0\B\ Π «e-l)β\λ

• - I ) j 8 μ | | | l ^ | | )

1g e-βeo\S\e-, ΰ\B\ g -\B\k{~βCϋ\B\+k)

\B\}e\B\

(4 24)

Inserted into (4.15), and continuing in the same way as before, we obtain the bound
(4.22) D

5. Truncated Free Energies and the Stable Phases of the Model

While the next section will be devoted to a detailed discussion of the mean values
of general local variables, here we will anticipate the fact that the state ( )q can
be linked with the "probability" - in the ensemble (3.36) of labeled contours - that
a given site x is in Wq, the area outside contours and in the ground state φq). To
discuss the stability of phases in dependence on the "tuning" parameter μ (cf Sect.
2 1), we can thus use the standard Pirogov-Sinai theory There are only two features
that are not entirely standard - the fact that the weights p(Y) are in general complex
numbers and the fact that our model is actually considered on a slab of thickness
M (linked with the temperature β) with periodic boundary conditions in the "time"
direction The former was taken into account in [BI89] (also in [GKK88], but here
we will base our discussion on [BI89] and later works based on it, in particular
[BK90] and [BK94]) The latter is a novel feature of quantum models Even though
it leads only to small modifications, it is important to realize that the metastable
free energies used to determine the phase diagram will have contributions coming
from contours wrapped around T4 in the "time" direction This leads to certain
modifications in the definition of truncated free energies which will be described in
this section

We start with some notation As usual (see also Sect 3) a contour is a pair
(supp 7, α), where supp Y C T4 is a connected union of finitely many closed unit
cubes with centers in JLoo (we call those cubes elementary cubes in the sequel),
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while α is an assignment of a label α(F) to the faces F in dsupp 7 which is
constant on the boundary of all connected components of T\supp 7. Its interior
Int Y is the union of all finite components of ΊΓ\supp Y and Intm Y the union of all
components of Int Y whose boundary is labeled by m. Recalling that we assumed
d ^ 2, we note that the set TΓ\(supp Y U Int 7) is a connected set, implying that the
function α( ) is constant on the boundary of the set V(Y) = supp Y U Int Y. We
say that 7 is a ^-contour, if α^ — q on this boundary. Two contours Y and Y' are
called compatible or not touching if supp Y Π supp Y' — 0, and mutually external if
V(Y) Π V(Y') — 0. Given a finite set of mutually compatible contours Y\,...,Yn we
say that Yu i = l,...,n9 is an external contour in {7i,...,7n}, if supp 7; Π F(ly) — 0
for all y =M. Consider now a set of contours {Y\9..., Yn} contributing to (3.36). The
contours in {Y\9...9Yn} are then mutually compatible, and all external contours
are ^-contours. In addition, the labels of these contours are matching in the sense
that the boundary of each connected component of Xi\(supp Y\ U U supp Yn) has
constant boundary conditions.

Given this setup, it is now standard to derive a second representation for ZqiΛ

which does not involve such a matching condition. To this end, we first introduce
partition functions Zq(V) for all volumes V C ΎA for which Vc = TA\V is a (pos-
sibly empty) union of closed elementary cubes in ΈΛ. We say that 7 is a contour
in V, if V(Y) C V, and call a set {Y\9..., Yn} of mutually compatible contours in V
a set of matching contours in V if the boundary of each connected component of
F\(supp Y\ U U supp Yn) has constant boundary conditions. Denoting the union
of those components which have boundary condition q by Wg, we define

{Yi, J

where the sum runs over all sets of mutually compatible, matching contours in V
for which all external contours are ^-contours. Recalling the expression (3.36) for
Z#,yi, we note that the partition function (5.1) is actually equal to Zq^ if V = Xi,

Zq(TA) = ZqtA. (5.2)

We now rewrite the partition function Zq(V)9 in a standard way, as a sum over
contours without any matching condition, see e.g. [Zah84] or [BI89]. Introducing
the weights

Kq(Y) := p(Y)e^ f[ ψ^r^r , (5.3)

one gets

Zq(V) = e-faW Σ Π W O , ( 5 4 )
{Yι, ,Yn}CV°k=\

where the sum runs over all sets of mutually disjoint g-contours in V.
The weights Kq(Y) do not, necessarily, satisfy the bound

\Kq(Y)\ ^ ε^ (5.5)

with a sufficiently small constant ε > 0. While it turns out that such a bound can be
proven for stable phases q, it is false for unstable phases. In order to circumvent this
problem, we follow the standard strategy and construct truncated contour activities
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Kq(Y), truncated partition functions

{Y\, ,Y,,}CV° k=\

and the corresponding free energies fq in such a way that the weights Kq(Y) satisfy
the bound (5.5) and, in the same time do not differ from Kq(Y) whenever the phase
q is stable, i e. whenever the real part of the free energy fq of the truncated model
is minimal, Re/^ = min w Re/ m .

Our definition of the truncated weights Kq follows closely the treatment from
[BK94]. The main difference is that since the contours can have only a limited
extension in the time direction, we take their "horizontal diameter" as the parameter
to use in inductive definitions (and proofs) Namely, for a contour Y, we take the
diameter δ(Y) defined as the diameter of the J-dimensional projection

{y G Wίd such that (y,t) G C(x,t), for some C(x,t) C supp Y} . (5 7)

We define δ(V) in the same way. Notice that δ(Ϋ) <δ(Y) whenever supp Ϋ C
Int(7).

To introduce the weight Kq(Y) in an inductive manner, assume that it has already
been defined for all q and all contours Y with δ(Y) < n9 n G N, and that it obeys
a bound of the form (5.5). Introduce fq as the free energy of a contour model
with activities

^-i>(n rw) ifw^π-i ( 5 8 )

10 otherwise.

Consider now a contour Y with δ(Y) = n Since δ(Ϋ) <n for all contours Ϋ in Int 7,
the truncated partition functions Zq(Intm Y) are well defined for all q and m. Their
logarithm can be controlled by a convergent cluster expansion, and Zq(lntm Y)φO
for all q and m. We therefore may define Kq(Y) for ^-contours Y with δ(Y) = n
by

with

4 ( Ό = Π Z(« " ~β{^f(

q"~V) ~ Re/ir ' ^ r ) ) . (5.10)
mή=q

Here α is a constant that will be chosen later and χ is a smoothed characteristic
function We assume that χ is a C\ function that has been defined in such a way
that it obeys the conditions

0 ύ X(x) ^ 1, 0 S ^r ύ 1, (5.H)
ax

and
χ(x) = 0 i f j t ^ - l and χ(x) = 1 if x ^ 1 . (5.12)

As a final element of the construction of Kf

q, we have to establish the bound
(5.5) for contours Y with δ(Y) = n The proof of this fact, together with the proof
of the following Lemma 5.1, follows closely [BK94]. However, since, on the one
hand, the claims of Lemma 5.1 (as well as the definition of Kq(Y)) slightly differ
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from similar claims in [BK94] and, on the other hand, there is a certain number of
complications in [BK94] that are not necessary for the present case, we present the
proof in the appendix.

We use fq to denote the free energy corresponding to the partition function

and introduce /o and aq as
/ 0 = m i n R e / m ,

m

aq = β(Refq-f0).

(5.13)

(5.14)

(5.15)

Finally, we recall that volumes V as well as supports of contours, supp 7, are
unions of elementary cubes and \Y\ or |supp7| denotes their (d + 1 )-dimensional
volume. Similarly for the boundary ^ F of F we use \dV\ to denote its J-dimensional
euclidean area.

Lemma 5.1. Assume that p( ) obeys the conditions (4.4) and (4.22) and let

ε = e-y+α+2 a n d α = α _ 2 . (5.16)

Then there exists a constant εo > 0 (depending only on d and r) such that the
following statements hold provided ε < εo and α ̂  1.

i) The contour activities Kq(Y) are well defined for all Y and obey (5.5) and

d , ~ | 7 j

ii) Ifaqδ(Y) ^ α, then χq(Y) = 1 and Kq(Y) = K'q(Y).

iii) Ifaqδ(V) S S, then Zq(V) = Z'q(V\

iv) For all volumes V CΈA far which Vc = ΈA\V is a union of closed elemen-
tary cubes, one has

\Zjq\y )\ = e VJ.lOj

and

< ORΓn-i- 1 \\V\p~βf°\v\+o(ε)\dv\ ΓS 1 OΛ

Remarks.
i) Here, as in the appendix, O(ε) stands for a bound Kε, where K < oo is a

constant that depends only on the dimension d and the number of classical states r.
ii) For real λ, the free energy / is independent of boundary conditions and can

be expressed as

± (5.20)

Since Hq^A is a selfadjoint operator in this case, / is real. Rewriting the partition
function in terms of the (d + 1 )-dimensional contour model introduced in Sect. 3,
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see Eq. (5.2), we have

1 ,. J _ , „ _ . 1 ,. 1

Ml
l^L,T^^gZq(τΛ)^-^ τlrm—logZ,(F) (5.21)

iii) By contrast, the meta-stable free energies fq defined in (5 13) do in general
depend on q, even if λ is real It is worth noting, however, that the meta-stable
free energies are real-valued in this case. To see this, we first observe that by the
symmetry property (3 39), Zq(V) is real for all V, implying that Kq(Y)* = Kq(Y*)
Using the definitions (5 8) through (5.10), one then establishes by induction that
Z'q(V) is real while K'q(Y)* = K'q(Y*). Given this symmetry for K'q(J\ the reality
of fq now easily follows from the cluster expansion of \ogZq{V).

6. Expectation Values of Local Variables

To distinguish between different phases we have to evaluate expectation values of
local observables. Whenever we have a local bounded observable Ψ, represented by
an operator acting on Jfsupp Ψ with a finite supp Ψ C Έd, we have

\i)q,Λ — rp f^ — RHr, 1 Λ ~ ^ Γ V

Retracing the steps leading to the contour representation (3.36) of Zq>Λ, we can
get in a straightforward manner a similar expression for ZjΛ Namely, introducing

/ M \

wΨ(Σu ,ΣM) = Ίτ*Λ I Ψ Π ^ ( ^ ) J (6 2)

with K(Σ) given as before by (3 23), we have

^L= Σ wψ(ΣU ..,ΣM) (6.3)
Σu ,ΣM

Localizing the observable Ψ, by definition, in the first time slice, we define the
d + 1 dimensional support of Ψ as

£f(Ψ):= U C(x,\). (6.4)
jcGsupp Ψ

Assuming without loss of generality that supp Ψ and hence ^(Ψ) is a connected
set, we introduce the contours corresponding to a configuration σiL1 in the same
way as before, with the only difference that the supports of these contours are now
the connected components of D U £f(Ψ), where, as in Sect. 3, D is the set of
excited cubes in T4 By this definition, one of the contours corresponding to a^i

will contain the set £f{Ψ) as part of its support We denote this contour by Yψ
Continuing as before, we obtain the representation

Z^Λ = Σ Pψ(Yψ)TlPmlle~βemlWml , (6 5)
{Yψ,Y\, Λ} i m
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where

pψ(Yψ) — Σ (ΰψ(GD>#z>) J (6 6)

with the reduced weight ωy/ given by a formula of the type (3.31).
More generally, we introduce, for a volume V which contains the d + 1 dimen-

sional support Sf(Ψ) of Ψ, the diluted partition function

Zq{V) = Σ pψ{Yψ)\[p{Yi)Y[e'^w^ , (6.7)
{yy,7i, ,7*} i rn

s\xwYΨΏS{Ψ)

where the sum runs over all sets of mutually compatible, matching contours in V
for which all external contours are ^-contours. For V = Xi, Z^{V) = ZjA, which
implies that

For every term contributing to (6.7) we consider the collection &ψ consisting of
the contour Yψ as well as all contours Y among {Y\,...,Yk} encircling it (Int 7 D

and define

P(&ψ) = pψ(Yψ) Π Pin (6.9)

Denoting further supp <Wψ = \JYe^ψ supp 7, Int ®fψ the union of all finite compo-
nents of T \ s u p p ^ , I n t m ^ the union of all components of Int <&Ψ that are labeled
by m, and E x t ^ = Πre^f ^ x t ̂ ' w e m t r o ^ u c e 5 m addition to the weights Kq(Y)
defined in the preceding section for an arbitrary ^-contour 7, also the weight

1 Π "

attributed to the collection f^. As a result we get the representation

3V,yl5 Λ ' /=i

Here the sum goes over set of all collections <%fψ and all sets {7i,...,7AJ} of non-
overlapping q contours in V, such that for all contours Yu ί = 1,...,«, the set F(7Z)
does not intersect the set s u p p ^ .

Assuming for the moment that the weights Kqyψ(βψ) and Kq{Y) decay suf-
ficiently fast with the size of %/ψ and 7, respectively, we now use the standard
Mayer cluster expansion for polymer systems to get

ZAV) ~~ " ) Σ i Σ \flKq(Yk)}φc(*/Ψ,Yu...,Yn). (6.12)
n=0 n {Yu ,Yn} lk=\ J

Here φd&ψ, Y\9...,Yn) is a combinatoric factor defined in terms of the connectivity
properties of the graph G(β/o,Y\,...,Yn), introduced as the graph on the vertex
set {0,1,...,«} which has an edge between two vertices / ̂  1 and j ^ 1, iή=j\
whenever supp 7Z Π supp Yj # 0, and an edge between the vertex 0 and a vertex
z + 0 whenever V{Yt) Π supp ^ 4 = 0 (see for example [Sei82] or [Dob94] for a new
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simple and very lucid proof). The combinatoric factor φc(&ψ,Y\, ,7M) is z e r o if
G(YΨ,Y\, . .,7M) has more than one component.

To prove the convergence of (6.12) one has to show that the weights Kq\y and
Kq decay sufficiently fast with the size of ®/Ψ and 7, respectively. To this end it is
useful to introduce truncated models. For a contour Y with V(Y) Π £f(Ψ) — 0, we
define Kq(Y) as before, see (5.9), while for the collection °J/Ψ we define

K ** Π ^nnlmZΨl Π φ ) , (6-13)
ro=l Zq(lntmJ^ψ)Ye?JΨ

with χ'q(Y) as in (5 10) Given this definition, we introduce

Z'q
Ψ{V) = e-^v\γjK'qΨ^JΨ) £ flK'q(Yk) (6.14)

and

which can again be expanded as

0 0 1 Γ n 1

(̂ >;κ = Σ < v ( ^ ) Σ - r Σ Π ^ ) U , ( ^ ^ ,^) (616)
^ « = o m {YU jn] lk=\ J

The following lemma gives the absolute convergence of the expansion (6.16), which
in turn will yield Theorem 2.1 ii), iii) and iv).

Lemma 6.1. Let ε, εo and α be as in Lemma 5 1, and assume that ε < εo and
α ^ 1

i) For ei ery collection tyψ one has

α^ max 5(7) ^ α, (6.18)

then K' Ψ{°^ψ) = Kqψ^ψ)

iii) The cluster expansion (6.16) is absolutely convergent, and

(6.19)

iv) // aqδ(ΈΛ) S ά,
v) For an arbitrary volume V C T,

vi) There is a constant K = K(d) > 0 swc/z ί/zα/ /or V = T4,

ϊ | κ | j e - W κ | ) ( 6 2 1 )
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Proof. Observing that δ(W) ̂  maxy G ^ δ(Y) for all components W of Int^V, the
statement ii) of Lemma 6.1 immediately follows from Lemma 5.1.

In order to prove i), we first note that pψ(Yψ) ^ H^H/^IV), where β(Yψ)
satisfies an analog of the bound (4.4) (however, Yψ is not necessarily excited on
Sf{Ψ)\ namely

\p(Yψ)\ ^ e-^su^γ^e-^su^Yψ^ψ^(l + e-y)l^(y)l . (6.22)

Hence

P«p(^p)^ β ? ' S U p P ^' < ll^He-^o-e^lsupp^l^-ylsupp^X^CP)!^ ^ e~y\\^{Ψ)\^ (£23)

Using Lemma 5.1 we get

Zm(IntSV) (6.24)

Combined with the bound β(eq — e0) ^ aq + O(ε) we get

KΨ(9Ψ)\ £ \\Ψ\\e

Observing that Πre^X<7<7)Φ0 implies that aq\V(Y)\ ^ (α + 1 + O(ε))\Y\ for each
Y e <&ψ9 and noting that \S?(Ψ)\ = |supp Ψ\, we finally get

\K'Ψ(<3/ψ)\ < WΨWe-iy-^-^-o^l^PV^ψ^iΨ^^+^+oiB^isuppΨl ^ (6.26)

Statement iii) follows from i) and Lemma 5.1, i), while statement iv) follows
from ii) and Lemma 5.1, ii) and iii).

To get the statement v) and vi), we first write Zj(V) as

(6.27)

Using now (6.23) and the bound (5.18) in its strengthened form (A.43), we get

1^(^)1 ^ \\Ψ\\e e ° e λ ^ e ψe

x rmaxΛ< {e-
a-i\E^Ψ\u\e-κ{d)y\3u\y ( 6 2 S )

Extracting a factor

max (e

~ WΨ UCV\V(&Ψ)

^ max(e-*lκVV*< r f»lβι7l), (6.29)
ΰcr

where V(<&φ) = Γ \ E x t ^ , and bounding

l ϊ ' l (6.30)
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we get

\Zf(V)\ ^ | | y | | ^ + O | s u p p ^ ^ ^ . (6.31)
H ϋcv

Bounding the last factor by one, we get statement v), continuing as in the proof of
Lemma A 3 in the appendix, we get statement vi) D

7. Proof of Theorems 2.1 and 2.2

Proof of Theorem 2 1 In order to prove the theorem, we will use Lemmas 5.1
and Lemma 6 1, with α = y/2. We therefore need that γ > 4 - 21ogε0, which in
turn requires β and JQ are sufficiently large, see (4.5). Choosing appropriate βo
and 7ρ, we take β G (^/?o,βo] and choose λ0 according to (2.23). Then (4.3) and
(4 21) are satisfied once \λ\ ̂  ΛQ. For every β ^ βo we now choose M such that
β = fj £ (\βo, βo] Whenever aq = 0 we can then use the claims ii) from Lemma 5 1
and ii) from Lemma 6.1 to conclude that Kq(Y) = Kf

q(Y) for all Y and K' Ψ(<&Ψ) =
Kq,ψ(^Ψ) for all <&Ψ. As a result the bounds (5 5), (5.17), and (6.17) are valid for
Kq(Y) and Kqyψ(ι:Wψ). This allows us to use cluster expansions for evaluation of
Zq(V) as well as Z%(V).

Hence (2.25) follows directly from (5.2), (5.13) and Lemma 5.1 iii). Similarly,
we get (2.26) (with an explicit formula for (Ψ)q) from (6.12) Finally, given the
absolute convergence of the cluster expansion for the expectation values of local
observables and the exponential decay of the contour activities, the bound (2.27) is
standard

To evaluate the expectation value of the projection operator (2 28), we apply

the expansion (6 10) for the particular observable Ψ = P{^χ) = Ig^)(Q(U(X)\ Using

the factor ε|supp?M^WI m (6.17), one can show that the sum of all terms with

supply/ φ y C ? ) is of the order constε, a term that can be made small by taking ε

small We are thus left with contributions coming from the term Kq^ψ(ύJ/Ψ) with

(y,l). (7 1)

This means that necessarily WΨ = {YΨ} with supp YΨ = ff(Ψ) and a(δSf(Ψ)) = q
The only configurations σ yielding this Yψ are those for which σ = {oyJ} agrees
with g(q\ except possibly for the point (y9t) = (x, 1). For the activity

pΨ({Yψ})e^\u^ , (7.2)

this gives a contribution O(ε) if σx^\ +gx , and a contribution

δn,q, (7.3)
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if crx?i = giq\ Putting everything together, we obtain the bound

which proves iv).
Finally, v) is a standard claim in the Pirogov-Sinai theory. Namely, given the

bounds (5.5), (5.17), and the fact that fq can be analysed by a convergent cluster
expansion, we get \fq — eq\ ^ O(ε) and a similar bound for the derivatives of fq.
Statement v) then follows from the corresponding assumptions (2.4) and (2.5) on
the functions eq(μ). D

Proof of Theorem 2.2. The partition functions

rrr o — p//per Λ(L) (Π C\

peτ,Λ(L) — 1 1 J f / i t - K.' ̂ J

and

Zpeτ,Λ(L) = TΐjfΛΨe PCT>^) (7.6)

have representations Z(ΈΛpeτ^) and Zψ(ΈΛpeτ(<L)) similar to (5.1) and (6.5). The proof
of Theorem 2.2 follows from this representation in a standard manner [BI89, BK90].
One only has to notice that contours contributing to these partition functions may be
wrapped around the torus Xiper(L) in time as well as space directions. Nevertheless,
whenever a contour Y satisfies the condition δ(Y) ̂  | , one can define Ext Y as
the largest component of Tyiper\supp Y. For every configuration containing only such
contours, all external contours have clearly the same external label. Splitting now
Z(Xiper(jί/)) (resp. Zψ(TΛ^L))) into contributions containing at least one contour such
that δ(Y) > I and those where all contributing contours are such that δ(Y) ̂  f,
we get

rΎfrTC \ 7^ S T̂Γ \ i \ Λ *7 /TΓ \ ίΠ Π\
/-J \ Λίy\ ) £-ι \ -U-y4 / ~T~ / *Lιγtl V *^-Λ ) ' \ ' ' ' )

Here Zm(ΈΛpeτ) is given as a sum over all configurations containing only those

contours for which δ(Y) ̂  | and such that the common external label of external

contours is m. Taking into account the fact that term Zb l g(Xip e r) is exponentially

suppressed in L (one can use verbatim the proof from [BI89]), we get

< e-βfoM(2L+\)d

e-constγL^ ^ ^

and similarly

Moreover, whenever m is stable, m e Q(μ), we have Zw(Xiper) = Z^(Xiper) and
we can use the cluster expansion of l o g Z ^ T ^ ) and fm to show that

\Zm(τΛ)-e-i
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Namely, we just observe that the first terms in which these two cluster expansions
differ are of the order e~

comtyL (clusters wrapped around Xipci in spatial directions)
For m ^ Q(μ), on the other hand, we proceed as in the proof of Lemma A.3 to

get

\Zm(τΛpcι)\ S ] /

For m £ Q(μ) and L sufficiently large, we therefore get

\Zm(τΛpJ\ ^ 2e-fj^M{2L+X)de-κ{d)'M^L+X)d~X (7.12)

In a similar way, proceeding now as in the proof of Lemma 6.1, we get

\7ψ(Ύλ M < 2\\Ψ\\p(-])\suwψ\p-PfoM(2L+l)ίlp-K(d)<'M(2L+ιrI~[ (1 Π ϊ

provided m φ Q(μ) and L is sufficiently large.
Combining the bounds (7 8), (7.10) and (7 12), and using the fact that fm =

Re/W if the coupling constant / is real, which in turn implies fm = /o if m G Q(μ),
we get

provided L is sufficiently large.
Introducing now the truncated expectation values

'Ψ(
lψ\t

( }

(cf (5 6) and (6 14)), we get

eQ(μ)

* Σ \(Ψ)'m,τ, (Z!n(τΛpJ-e-^>^2^')\
meQ(μ)

+ Σ |^/7TCT^pci)|
m$Q(μ)

Next, we observe that (Ψ)'mτ can be bounded in the same way as {Ψ)'mτ , namely

l / ¥ / \ / I < | | ^ | | ^ y + 2 ^ c > ( ί ; ) ) ! s u P P t f / l < | | i Z / | | ^ ( / + 1 ) | s u p p t F | (Ί M\
I \ ± I m,ΎΛpcι l = l | x l l e = 11 x 11e \' -ι ' )

Inserting the bounds (7.10), (7 17) and (7 13) into (7 16), and dividing both

sides of the resulting bound by \Q(μ)\e~^/oM(2L+l)\ we get

meQ(μ)
(7.18)

provided L is sufficiently large In the limit L —> oc, this yields the claim of Theorem
2 2. D



Quantum Perturbations of Classical Spin Systems 439

Appendix. Pirogov-Sinai Theory in Thin Slabs - Proof of Lemma 5.1

In this appendix, we prove Lemma 5.1. Actually, it is a direct consequence of
Lemma A.I below. In order to state the lemma, we recall the definition of fq

n) as
the free energy of an auxiliary contour model with activities

n> (A,)
otherwise,

and define

ί ^ W (A.2)

γ ^ (A.3)

Observing that /o = lim^oo f^ and aq = lim^oo aq

n\ Lemma 5.1 follows di-
rectly from the following.

Lemma A.I. Assume that p( ) obeys the conditions (4.4) and (4.22) and let

ε = e-y+«+2 a n d £ = α _ 2 . ( A . 4 )

Then there is a constant so, depending only on d and r, such that the following
statements are true once (γ is such that) ε < ε0 and α ^ 3. For all n ^ 0 and Y
and V such that δ(Y) ^ n, δ(V) ^ n, one has:

ϋ ) l & ^
iii) If afδ(Y)Soi then χf

q(Y)= I,

iv) Ifa(

q

n)δ(Y) S α then Kq(Y) = Kq(Y%

v) Ifaq

n)δ(V) ^ α then Zq(V) = Zq(V\

vi) \Zq(V)\ ^

vii) \^

Proof We proceed by induction on n.

I. The case n = 0. There are no contours with δ(Y) = 0. This makes i)-iv) trivial
statements and implies that fq^ — eq. On the other hand, δ(V) = 0 implies \V\ = 0
and Zq(V) = Zq(V) = 1, which makes v)-vii) trivial statements.

//. Induction step n — 1 —• n.

Proof of i) for δ{Y) = n. Clearly, δ(Int Y) < n, and all contours Ϋ contributing
to Zq(lntmY) obey the condition δ(Ϋ)<n. This implies that \K'q(Ϋ)\ ^ ε | f | by
the inductive assumption i). As a consequence, the logarithm of Zq(lntmY) can be
analyzed by a convergent expansion, and

I logZq(lntmY) + β&-χ)\lntmY\\ ^ O(ε)\dlntmY\ . (A.5)
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Combining (A 5) with the induction assumption vi), we get

Zm(lntmY)π
Z'q(\ntmY)

Observing that

which implies the bound

< ea« s e
*O(ε)\Y\ (A 6)

(A 7)

(A 8)

Applying now the bounds (A.9) and (A.6) to the definition (5.9) and using the
equation \V(Y)\ = \lntY\ + \Y\, we obtain

(eq -eo)-a{" υ ^ O(ε),

we use the bound (4.4) to evaluate

\K'(YΛ\ < Ύ

f(vλpaf~l)\v(γ)\p-(y-°^\γ\ (A.10)

Without loss of generality, we may assume that χ'q(Y) > 0 (otherwise K'q(Y) — 0
and the statement i) is trivial) Let us notice that

\V(Y)\ ^ (A.ll)

Indeed, considering a disjoint union T of "rows" consisting of elementary cubes
C(x,t) with fixed cordinates xι,...,Xd and t, one notices that the set V(Y) intersects
at most (5(7) of elementary cubes in each such row and there is at most \Y\ such
rows that have a nonempty intersection with V(Y). By the definition of χq(Y) and
(A.ll), we get

for all mή^q As a consequence,

provided χ'q(Y) + 0. Combined with (A.10) and the fact that χ'q(Y) ^ 1, this implies
that

\K'q(Y)\ S e-[v-i-«-θ(0]|iΊ > ( A . 1 3 )

which yields the desired bound i) for δ(Y) = n

Proof of ii) for δ(Y) = n Using (4 22), (2.7), (4.4), and (A.8), we get

δ

(A 14)
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Using inductive assumption i) and ii) for contours contributing to Z'q{\ntm Y),
we can apply the cluster expansion to get the bounds

_d_

dμi

and

7)

in-l)

^ [βC0 + (1 + j?C0)O(ε)]|Intm Y\

^ [βC0 + (1 + βCo)O(ε)] . (A.16)

Using further the inductive assumption vi) and vii), as well as the bounds (A.5)
and (A.6), we get

dμi If Z'(Intm7)
^ [(3 βC0

~βC0)O(ε)]\lntY\ea

(A.17)

With the help of (A. 16) and (5.11) we get

d ~"v^ g 2 ( r -

(A.18)

Combining now (A.14), (A.17), and (A.18) with (A.6), (A.9) and the observation
that \V(Y)\ = \Y\ + \IntY\, we get

Using now again the fact that K'q(Y) (and its derivatives) vanishes unless (A. 12) is
fulfilled, we get the desired bound, provided ε is sufficiently small.

Proof of in) for k = δ(Y) ^ n and a^δίj) ^ α. We just have proved that i) is

true for all contours Y with δ{Y) ^ n. As a consequence, both /4 ~ and fm rnay

be analyzed by a convergent cluster expansion. Using the definition of fm and the

obvious fact that \Y\ ^ δ(Y) (again, d ^ 2), one concludes that all contours Y

contributing to the cluster expansion of the difference fm~ fm obey the bound

| 7 | ^ k. As a consequence,

lk-l) ~ Λn)\ ^ (Kef (A.20)

and
β\fm'l) ~ fmn)\δ(γ) ^ (Kε)kδ(Y) = k(Kε)k S O(ε), (A.21)

where K is a constant depending only on the dimension d and the number of
phases r. Combining (A.21) with the assumption aq

n^δ{Y) ^ α, we obtain the lower
bound

- O(ε) ^ α - α - = 2 -
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with α defined by (A 4) Combining this with (5.12) we get the equality

Proof of iv) and v) The statement follows from the just proven fact that χq(Y) — 1

for all contours Y with δ{Y)aq

n) ^ α, the definiton (5 9) of K'(Y) and the relations
(5 6) and (5.4) We proceed by a second induction on the diameters of Y and V.
For δ(Y) = 0 or δ(V) = 0 the statement is trivial Assume now that K'q(Y) = Kq(Y)

for all Y with δ(Y) ^ k < n and δ(Y)aq

n) £Ξ α. Comparing (5 4) and (5.6), we

conclude that Z'q(V) = Zq(V) for all V with δ(V) ^ k < n and δ(V)aq

n) g ά. Let 7

be a contour with <5(7) = A: + 1 and δ(Y)aq

n) g α Then Z^(Intw Y) = Zq(lntm Y)

since δ(lntm Y) S δ(Y) - 1 = k. Combined with the fact that χq(Y) = 1 by iii), we

conclude that Kq(Y) = Kq(Y). This completes the induction on k.

Proof of'υi) for δ(V) = n We say that a contour Y is small if aq δ(Y) ^ α while

it is large if aq δ(Y) > α. We then rewrite the partition function Zq{V) given in

the form (5 1) by splitting the set of external contours into small and large contours

and, for a fixed collection of large external contours {X\9 ,^}eχt> we resum over

(mutually external) small ^-contours in Ext = K\|Jz = 1 V{Xi). As a result we get

k
nail/f all(Ext) Π \p{Xι)Y\Zm{\ntmXι) (A 22)

with the sum going over sets of mutually external large contours in V. The partition
function Z^mall(Ext) is obtained from Zq(Ext) by dropping all large external q-
contours

Due to the inductive assumption iv), Kq(Y) = Kq(Y) if Y is small Since

\Kq(Y)\ ^ ε' r ' by i), Z^mall(Ext) can be evaluated by a convergent cluster expan-
sion, and

|Z*m a l l(Ext )| ^ e-PRQ f^Ext \e

0(^dExt' . (A 23)

Here fq

mal1 is the free energy of the contour model with activities

' K'JY) if δ(Y) ^ n and Y is small,

0 otherwise.

On the other hand,

by the induction assumption vi) Obsei*ving that the smallest contours contributing

to the difference o f / ^ and f^~l) obey the bound | 7 | ^ w, while

we may continue as in the proof of (A.21) to bound

AV) ^ M " ή ) Xi\ g O{z)\X,\
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Thus
Π |Zm(IntΛi)| S e-W'MΛ ieOωiA i _ (A25)

m

Combining (A.23) and (A.25) with the bounds

omχλβAn)\χλ ( A β 2 6 )

and

|3Ext| ^ \dV\ + Σ\dV{Xi)\ ύ \dV\+2{d+\yt\Xi\9 (A.27)
i=\ i=\

we conclude that

\Zq(V)\ < e0(ε)lδvle~^)lvl Σ e~^ [ R e /r a l l-R e4w )]lE x tl fl e-(y-o(ε))\xt\ ^ ( A . 2 8 )
{XU Λ}ext 1 = 1

Next, we bound the difference /^sma11 — fqn\ First, for all large contours X, we have

\X\ ̂  δ(X) ^ /0 : = - £ - . (A.29)

Next, we observe that

t r U ' ^ , (A.30)

where K is a constant depending only on d and TV. Recalling the condition α ^ 1,
we get

>) 1

o\ An) _ y smalli <; ^^ < Λ^(«) /A a n

provided ε is chosen small enough. Combining (A.28) with (A.31), we finally obtain

\Zg(V)\ S e
{Xl, ,Xjext 1=1

with
7 = 7 - 1 . (A.33)

At this point we need the following Lemma A.2, which is a variant of a lemma
first proven in [Zah84] (see also [BI89] and [BK94] for the proof of this lemma
exactly in the following formulation).

Lemma A.2. Consider an arbitrary contour activity Kq(Y) §: 0, and let Zq be
the partition function

Zq(V)= Σ Π W ™ ) . (A.34)
{Yu Λ}ί=l

Let sq be the corresponding free energy, and assume that Kq(Y) ^ ε'7 ', where
ε is small (depending on r and d). Then for any a ^ —sq the following bound
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is true

Σ ^ | E x t | Π ^ ( ^ ) ^ e°i§)m > (A.35)
{Y\, ,n}cxt *

TVZY/Z ί/ze sum running over all sets of mutually external q-contours in V

In order to apply the lemma, we define Kq(Y) = e~τ\γ\ if 7 is a large ^-contour,

and Kg(Y) = 0 otherwise. With this choice,

0 ^ ~s< ̂  ̂ )k ^ ̂ m (A 36)

As a consequence,

a{n)

(A.37)

provided ε is small enough. Applying Lemma A 2 to the right-hand side of (A 32),
and observing that ε .= e~τ g ε, we finally obtain the desired inequality

\Zq{V)\ ̂ eOMWe-WW (A.38)

Proof of vii) for δ(V) — n Beginning from the formula (A 22) above, we first
notice that

dμ,
^ (βC0 + (1 + /?C0)O(c))|Ext Y\ (A.39)

(cf (A 15)) since we can use ii) for small Y Using further the bound (A.23) we
can conclude that

-^-Z^malI(Ext) ^ (βC0 + (1 + βC0)O(ε))\Έxt Y\e~^ C" l E x t I^Cε^Ext I ( A . 4 0 )
dμι

 ι

Combining this with the bounds (4 22) as well as (A 23) for Z|m a l l(Ext) and the
inductive assumptions (vii) and (vi) for Zm(IntmXz), we get

g eθ(φv\e-h^W\ ^ j2 \(βC0 + (1 + βC0)O(ε))\Ext Y\

\)\\n\Y\ +(βC0 + ])\γ\\e-^ReC"-ReJ^\En\γie~(''-0(ι:))lχ'[ (A41)

Proceeding now as in the proof of vi) from (A.28), we finally get vii)
This concludes the inductive proof of Lemma A 1. D

For V — T4, the bound from Lemma A 1 vi) can be actually strengthened"

Lemma A.3. Under the assumptions of Lemma A 1 we have

\Zq(TΛ)\ ^ ^ / o l T i l ^ O O l ^ l m a χ { e - ^ | Ί Γ i | ?

with a constant K(d) that depends only on the dimension d
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Proof. Extracting from (A.32) the factor max e ~ ^ " | E x t | Π L i ^ ~ ^ 1 X ' ' ? we still
{X\, A}eχt

get the same bound. This factor can be, the limit n —> oo, clearly bounded by
a κ ( d ) y \ d u \ ) . As a consequence,

Zq(V)\ ^

which is still true for arbitrary F c l We now decompose U and V into time

slices, U = \JtUt and V = Σt

 vt, and observe that \V\U\ = Σλ\vλ - \Ut\\ while

\dU\ ̂  Σt |dπ(tΛ )|5 where π( ) denotes the projection onto ΊR.d. Using the isoperi-

metric inequality on IR^, we now bound

) < ft max (e
!/CF

ί ft
ί = l

( A 4 4 )

Restricting ourselves to F = T4, we observe that \Vt\ = \V\jM is independent of t

in this case. As consequence,

( - f \V\/M^-2dK(cl)y(\V\/M)

( A .45)

where we used that \dV\ = in the last step. D
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