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Abstract: It was pointed out by P. Dorey that the three-point couplings between
the quantum particles in affine Toda field theories have a remarkable Lie-theoretic
interpretation. It is also well known that such theories admit quantum affine algebras
as "quantum symmetry groups," and widely believed that the quantum particles
correspond to the so-called fundamental representations of these algebras. This led to
the conjecture that Dorey's rule should describe when a fundamental representation
occurs with non-zero multiplicity in a tensor product of two other fundamental
representations. The purpose of this paper is to prove this conjecture, both for
quantum affine algebras and for Yangians. The result reveals a hitherto unsuspected
role played by Coxeter elements (and their twisted analogues) in the representation
theory of these algebras.

1. Introduction

Quantum groups arose from the quantum inverse scattering method, developed by
the Leningrad school [13] to solve integrable quantum systems. They provide, in
particular, a way to understand the solutions of the quantum Yang-Baxter equation
(R-matrices) associated to such systems, and a general framework for producing
new solutions. Of special importance are the solutions which depend on a complex
("spectral") parameter; those which are rational, or trigonometric, functions of this
parameter arise from the quantum groups called Yangians, or quantum affine alge-
bras, respectively (see [11,12], and Chapter 12 in [8] for background information).

More recently, quantum groups have arisen in another guise in connection with
1 + 1 dimensional integrable quantum field theories, namely as the algebras satisfied
by certain non-local conserved currents. For example, Yangians appear as "quantum
symmetry algebras" in G-invariant Wess-Zumino-Witten models [1], while quan-
tum affine algebras appear in affine Toda field theories (ATFTs) [2]. In [10], Dorey
gave a remarkable Lie-theoretic description of the classical three-point couplings (or
"fusings") in certain integrable field theories, including ATFTs. It is the purpose of
this paper to interpret Dorey's rule in terms of the representation theory of Yangians
and quantum affine algebras.
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To describe our results in more detail, recall that an ATFT is a theory of scalar
fields with exponential interactions determined by the roots of a (possibly twisted)
affine Lie algebra. If g is a finite-dimensional complex simple Lie algebra, and g
is the associated (untwisted) affine Lie algebra, the quantum affine algebra ί/ε(g)
is a "quantum symmetry algebra" of the ATFT based on the dual affine algebra
g*, whose Dynkin diagram is obtained from that of g by reversing the arrows (the
deformation parameter ε is related to the coupling constant of the theory, which
should be purely imaginary for the quantum affine symmetry to exist - see Sect. 10).
Note that g is self-dual if g is simply-laced, but otherwise g* is a twisted affine
algebra f , where f is simply-laced and σ is a diagram automorphism of f.

The manifestation of this quantum affine symmetry of interest to us is the rela-
tion, conjectured by physicists, between the so-called "fundamental representations"
of ί/ε(g) and the "fusings" of the classical and quantum particles of the ATFT
based on g* It is well known (see [5,10 and 14], for example) that the masses
of the particles in the theory form the components of the eigenvector with lowest
eigenvalue of the Cartan matrix of g; in particular, there is a natural one-to-one
correspondence between these particles and the nodes of the Dynkin diagram of g.
One says that there is a fusing between the particles labelled i,j and k if a cer-
tain term in the lagrangian of the theory is non-vanishing (see Sect. 10) Choose a
colouring of the nodes of the Dynkin diagram of g black or white in such a way
that linked nodes have different colour, and let y be the Coxeter element of the
Weyl group of g obtained by taking the product of the simple reflections associated
to the black nodes, followed by those associated to the white nodes. Let Rf be the
y-orbit of the simple root α, if i is black, and of — αz if ί is white. Then, Dorey's
rule asserts that there is a non-trivial coupling between the particles labelled i,j and
k if and only if

(D) OeRt+Rj+Rk

A little later, it was shown in [23] that (D) also gives the fusing rule for the solitons
in the classical theory.

For the theory based on a twisted affine algebra ϊ , the particles are in one-to-
one correspondence with the orbits of σ on the nodes of the Dynkin diagram of
f, and a twisted version of (D) is required to describe their fusings. One defines a
"twisted Coxeter element" y for the pair (f, σ), with the property that the orbits of
y on the set of roots of ϊ are in one-to-one correspondence with the orbits of σ on
the nodes of the Dynkin diagram of f If g is the (non-simply-laced) algebra such
that g* = t , these orbits are naturally in one-to-one correspondence with the nodes
of the Dynkin diagram of g Proceeding as above, one obtains an analogue (TD)
of (D), in which the indices ij and k may be viewed as nodes of the Dynkin
diagram of g, although the analogues of the Rι are sets of roots of t. Then the
classical fusings of the ATFT based on g*, where g is non-simply-laced, are given
by(TD).

The situation in the quantum theory turns out to be slightly different. This time,
the fusings of the ATFT based on g* are given by (D) if g is simply-laced, but by
(D) Π (TD) otherwise (this can be verified case-by-case using the results in [9], at
least when g is not of type E or F).

Even without this physical motivation, (D) strongly suggests a connection
to representation theory because of its similarity to the condition occurring in
the Parthasarathy-Ranga Rao-Varadarajan (PRV) conjecture [24]. This conjecture,
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proved by Kumar [17] and Mathieu [21], asserts that, if μ\,μ2 and μ^ are dominant
weights of g, Wμ\ the Weyl group orbit of μ\9 and W(μ\) the irreducible g-module
with highest weight μ\9 etc., then

(PRV) 0 G Wμx + Wμ2 + Wμ3

implies

((C denotes the one-dimensional trivial g-module). Now, as Braden [4] pointed out,
(D) is equivalent to

0 e Γλi + Γλj + Γλk,

where Γ is the cyclic subgroup of W generated by y, so (D) is obtained from
(PRV) by replacing W by Γ (and restricting to fundamental weights).

The fundamental representations of £/ε(g) to which (D) is related can be charac-
terised as the finite-dimensional irreducible representations of £/ε(g) which contain
a fundamental representation Wε(λi) of £/ε(g), and are such that all other irreducible
£/ε(g)-subrepresentations have highest weight strictly less than λι (see [7 and 8]).
There is, in fact, a family of such representations V(λi9a) of £/ε(g), depending
on a parameter a G (Cx. The representations V{λuά) and K(λ, ,fe) are related by
twisting by an automorphism of £/ε(g) which fixes £/ε(g) and corresponds, at the
classical level, to the automorphism of the loop algebra g[M - 1 ] which sends t to
at/b (the central extension by which g is obtained from the loop algebra plays no
role here, since it acts trivially on all the representations of interest). Now recall
that, whether or not g is simply-laced, the particles of the ATFT based on g* are in
one-to-one correspondence with the nodes of the Dynkin diagram of g. If i,j and
k are three such nodes, we would therefore expect a fusing between the quantum
particles labelled ij and k if and only if

( 0 ) H o m w ( K ( 4 α ) ® V(λJ9b)® F(4,c),<C)*0 ,

for some a,b9c G (Cx. Thus, ( 0 ) should hold if and only if ij and k satisfy (D)
when g is simply-laced, or (D) Π (TD) otherwise. This conjecture was first made
explicit by MacKay [19,20].

In this paper, we prove this conjecture when g is not of exceptional type. We
also prove an analogous result for Yangians (it was actually in the context of
Yangians that MacKay originally made his conjecture). In fact, in the body of the
paper, we concentrate on the Yangian case, and describe at the end how to translate
the main results from the context of Yangians to that of quantum aίfine algebras.
As MacKay has emphasized [20], the truth of the conjecture indicates that there is
some beautiful structure in the representation theory of £/ε(g) which is not evident
at our present state of knowledge. It also suggests that it would be interesting to
study the representation theory of twisted quantum affine algebras, but this does not
seem to have been attempted yet.

One approach to the conjecture is through R-matrices. There is a canonical
map R(a9b) G Έnd(V(λi9a) 0 V(λj9b)) which is a rational function of the spectral
parameter a/b, and is such that τR(a,b) commutes with the action of £/ε(g) (τ
denotes the flip of the two factors in the tensor product). In some cases, explicit
formulas for R(a9b) (or rather its Yangian analogue) were given in [7] (and earlier
in [22], but without proper mathematical justification). There is a finite set of values
of a/b for which R(a,b) is well defined, but not invertible, and then its kernel
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is a subrepresentation of V{λ^ά)® V(λj,b). If one can choose a/b so that this
subrepresentation is fundamental, one deduces that (®) holds for some k,c. To use
this method to prove the implication (D) (or (D) Π (TD)) => (0), one would need
to compute the R-matrix associated to every pair of fundamental representations;
in addition, one would have to prove that every fundamental subrepresentation of
V(λi,a)(g) V(λj,b) arises from the R-matrix as above. Because of these difficulties,
we employ a different and simpler method, which makes no use of R-matrices, and
which establishes the reverse implication at the same time.

2. Yangians

Let g be a finite-dimensional complex semisimple Lie algebra with Cartan subal-
gebra ί) and Cartan matrix A = (aυ)ιjej. Fix coprime positive integers (di)iEi such
that the matrix (diUij) is symmetric. Let R be the set of roots, R+ a set of positive
roots, and R~ = —R+ The roots can be regarded as functions / —> Έ; in particular,
the simple roots α, G R+ are given by

α/O') = aϊ> (Uj £ I)

Let Q = 0 / e / Z αz c ψ be the root lattice, and set g+ = Σi£I IN α,
A weight is an arbitrary function λ : / —> 7L\ denote the set of weights by P,

and let
P+ = {λeP . λ(i) ^ 0 for all / e 1}

be the set of dominant weights Define a partial order ^ on P by

λ ^ μ if and only if λ - μ G Q+

Let θ be the unique highest root with respect to g:

Let (,) be the non-degenerate invariant symmetric bilinear form on g such that
the induced form on rj* is given by

If β e R, set dβ = \(β,β). Let ̂ F be the Weyl group of g, let {st}ιEl be the simple
reflections which generate it, and let w0 be the longest element of W. The dual
Coxeter number h of g is

where p is half the sum of the positive roots of g.
Fix a basis {//J/G/ U { χ̂

±}αe/?+ o f 9 s u c n that, for all i el, a9β e R+,

(//z,//y) = djλaιj9 (Xy

+,Xβ-) = δ^β, (X^Xjf) = 0

where Ha = Σi ni^i if α = ]ΓV «/αz . Let X ^ = Xα^
If {7̂ } is an orthonormal basis of g with respect to (,), let
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be the Casimir element of the universal enveloping algebra £/(g). We also denote
by Ω the element

Let K be 1/4 of the value of Ω acting in the adjoint representation of g (the value
of K is given in Sect. 3).

Definition 2.1 ([11]). The Yangian 7(g) is the algebra over C generated by ele-
ments x,J(x), for x G g, with the following defining relations:

[x,y](inQ), (1)

J(ax + by) = aJ(x) + bJ(y), (2)

[χ,J{y)]=J([χ,y]), (3)

= Σ ([xJpUίyJMzMWpJiJΛ, (4)

zj(w)]] + [[J(z%J(w)l [x

= Σ ([χJpU[yJqU[zMJr]]){ipJq9J(ir)}, (5)
P>V>r

for all x,y,z G %a,b G (C. Here, for any elements z\,Z2,z$ G Y(§), we set

{ }

/Λe sum being over all permutations π of {1,2,3}.
The Yangian Γ(g) has a Hopf algebra structure with counit ε, comultiplication

A and antipode S given by

(6)

A(J(x)) = J(x) 0 1 + 1 (8) J(x) + i[jc ® 1,0] , (7)

S(x) = -x, 5(J(x)) = -J(x) + KX , (8)

ε(x) - ε(J(x)) = 0 . (9)

We shall also need the following presentation of Y(Q), given in [12]:

Theorem 2.2. The Yangian 7(g) is isomorphic to the associative algebra with
generators X^9Hijr9i G I,r G N, and the following defining relations:

[Hhr,Hj,s] = 0, (10)

£ ±, (11)
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[HUr+uXJS\ - [HUr, XjίS+ιl = ± -diaij(Hitt XjyS +XjtSHυ ) , (12)

rv-f- -y 1 ? τ_7 / i o \

L / 4-15 / ? J — L / λ ' / v + 1 J ""̂  — di&ij v 7 ̂  / v ' is i r) ' \ /

n

for all sequences of non-negative integers π , . ,rm, where m = 1 — aυ and the sum
is over all permutations π of {I,.. ,m}

The isomorphism f between the two realizations of 7(g) is given by

f{Hi) = d-ιHit0, f(J(Hi)) - d~xHιΛ + f(Vi),

where

— ^ V ^-(R Λ(X+X~ + X~X+Λ —H2

4 ^ e z ] + di 2

D

Remarks. 1. The presentation (2.1) of F(g) shows that there is a canonical map
g —>• Γ(g) (it is known that this map is injective). Thus, any 7(g)-module may be
regarded as a g-module.

2. If π is a permutation of / such that

defines a Lie algebra automoφhism of g, the assignment

HUk ^ Hπ(i),k, XUk ^ Xπ(ι\k

defines a Hopf algebra automoφhism of 7(g). We denote both of these automor-
phisms simply by π.

We shall make use of two further types of automoφhism of

Proposition 2.3. There is a one-parameter group {τα}αGc of Hopf algebra auto-
morphisms of F(g) given in terms of presentation (2.1) by

τa(x) = x, τa(J(x)) = J(x) + ax ,

for x G g, and in terms of presentation (2.2) by

τa{Huk) = Σ (k) J-'HU,9 τa{X±) = Σ ( * ) <t~>X± D

This is Proposition 2.6 in [7].
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The second automorphism is an extension of the Cartan involution

φo(Hi) = -Hu φ*(Xt) = *? (17)

of g to 7(g).

Proposition 2.4. There exists a unique algebra automorphism φ of 7(g) such that

φ{Huk) = ( - l / + 1 / / α , φ(Xtk) = (-Vkχuk >

for all i G /, k G IN. Moreover, φ is a coalgebra anti-automorphism of 7(g).

Proof It is easy to check that applying φ to one of the defining relations in (2.2)
gives another of the defining relations. Hence, the assignment in the statement of
the proposition extends uniquely to an algebra homomorphism 7(g) —• 7(g), and
it is obvious that φ is an involution.

Using the isomorphism / in (2.2), it is clear that φ\Q — φ0 and that

φ(J(Hi)) =

Hence,

φ{J(Xt)) = T^ίtζVίΉ)]) ^

To prove that
(φ ® φ) o A = Δ°v o φ ,

where Zlop denotes the opposite comultiplication of Γ(g), it suffices to show that
both sides agree when applied to a set of generators of Γ(g), such as {H^X^,
J(Hi),J(Xι

±)}jei. This is now straightforward, making use of the formula for Δ in
(2.1) and the observation that (φo ® Φo)(Ώ) = Ω. Π

We shall also need the following weak version of the Poincare-Birkhoff-Witt
theorem for F(g).

Proposition 2.5. Let Γ+, Y~ and 7° be the subalgebras of 7(g) generated by the
X+k, the Xrk and the Huk, respectively (i el, k e JN). Then,

7(g) = Y~ . Y° . 7+ . D

The proof is straightforward.

3. Finite-Dimensional Representations

If W is a g-module and λ G P, the weight space

Wλ = {w G # Ί Ή w = λ(/)w for all i G /} .

If W^φO, /I is called a weight of JF, and the set of such weights is denoted by
P(W).

A non-zero vector w G W is called a g-highest weight vector if w e Wχ for
some i G P ( f F ) and Xf w = 0 for all / G /. Let W+ be the set of g-highest weight
vectors of W, and set W£ = W+ Π ̂  If ^ = E/(g) w, then ^ is called a highest
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weight g-module with highest weight λ. Lowest weight vectors and g-modules are
defined similarly. For any λ G P+ denote by W(λ) the unique irreducible highest
weight g-module with highest weight λ. If W is any finite-dimensional g-module,
we have

W^ 0 W{λfm^w\
λep+

where the multiplicities mχ(W) are given by

mλ(W) = dim(W+Π Wλ).

We recall that the Casimir operator β G ί/(g) acts on W(λ) by the scalar

(λ + 2p,λ) In particular, K = ^dgh.
Let W* be the dual g-module of W, and let Wφ° be the g-module obtained by

twisting W with the Cartan involution φ 0 of g. For λ G P, let λ = —wo(λ). It is
well known that

mλ(W) = mj(W*) = mj(Wφo)

Suppose now that V is a 7(g)-module. Set

V++ = {ve V+\X£k υ = 0 for all i e I9k G N } ,

and for any λ e P+, set F ;

+ + = V++ n F;.. Note that, by (2 2), F + + is preserved
by the action of 7°, and so, if F + + φ 0 , it contains a non-zero 7°-eigenvector v
(say), so that

#U v = dukυ ,

for some duk £ Ĉ Such a vector u is called a 7(g)-highest weight vector, V is
called 7(g)-highest weight if V = 7(g) v for some 7(g)-highest weight vector
v <E V, and the collection of scalars d = {d^k}iei,keΉ is called its highest weight.
It is not difficult to show that, for every d = ( ^ O / G U E N , there is an irreducible
7(g)-module V(ά), unique up to isomorphism, such that V(A) has highest weight
d. Lowest weight vectors and modules for 7(g) are defined similarly.

The following theorem of DrinfeΓd [12] classifies the finite-dimensional irre-
ducible 7(g)-modules

Theorem 3.1. (i) Every finite-dimensional irreducible Y(a>)-module is both highest
weight and lowest weight

(ii) If d = (di,k)ιei,keN> the Y($)-module F(d) is finite-dimensional if and only
if there exist monic polynomials Pi G C[w] such that

in the sense that the right-hand side is the Laurent expansion of the left-hand side
about u = ex) •

If V is a finite-dimensional irreducible 7(g)-module, we call the associated
/-tuple of polynomials (Λ)/G/ t n e DrinfeΓd polynomials of V.

In general, if F is any finite-dimensional 7(g)-module and v G V is a 7(g)-
highest weight vector, with

Hlίk 1; = d^i;
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for some dv

ik G <C, it follows from (3.1) that there exist monic polynomials Pf such
that

- l +
oo
V ^ ΛV Λ.—k—l

Proposition 3.2. Lei Fi,F2 be finite-dimensional Y(q)-modules, and let v\ e V\9

v2 G F2 6e Y(q)-hίghest weight vectors. Then,

This is Proposition 2.15 in [7].
The 7(g)-modules of interest in this paper are defined as follows.

Definition 3.3. If i G /, a G <C, then Va{Xt) is the finite-dimensional irreducible
Y{%)-module with DrίnfeΓd polynomials

We call Va(λi) a fundamental Y{§)-module.

Given a finite-dimensional 7(cj)-module F, we can define the following associ-
ated 7(g)-modules:

(i) V(a): this is obtained pulling back V through τa;
(ii) Vφ: this is obtained pulling back V through φ;

(iii) the left dual ιV and right dual V*: these are given by the following actions
of 7(g) on the vector space dual of V:

(yf)(v) - f{S{y)-υ\ y G Y(g)9f G <V,v G V ,

(yf)(v) = f(S~\y))-v, y G 7(g),/ G V\v G F .

Clearly, if V is irreducible, so are all the representations defined above.

Proposition 3.4. Let U, V and W be finite-dimensional Y(g)-modules, and let
ae<£. Then,

(i) (U®Vγ ^ F*®*/*;
(ii) V(ay * VV(-a);
(iii) Homy(fl)(C/, V®W)^ Homy(9)('K 0 t/, FT);
(iv) Homy(g)(ί7, F̂ 0 F) ̂  Homy(8)(ί/ Θ F?, FF);
(v) "V ^ F(-2κ), Fw ̂  F(2κ), ? (Fθ ^ CF)? 9* F;
(vi) (F 0 ϊFy ̂  ( ^ 0 FO, \V (8) FF) ̂  rFF (g) ̂ F;
(vii) (V(a)y *έ V\a\ \V(a)) ^ UV){a).

Proof Part (i) follows from the fact that φ is a coalgebra anti-automorphism of
7(g), and part (ii) from the identity

φ τa = τ-a <p ,

which is proved by checking that the two sides agree when applied to any of the
generators Hi^Xf^. Parts (iii)-(vii) are straightforward. D

The following result describes the DrinfeΓd polynomials of the modules defined
above. If z G /, define i G / by λj = λz .
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Proposition 3.5. Let V be a finite-dimensional irreducible Y(o)-module with
DrinfeΓd polynomials Pi (i G /), and let a G C. Then:

(i) The DrinfeΓd polynomials Pf of V(a) are given by

Pf(u) = P,{u - a)

(ii) The DrinfeΓdpolynomials tPι and Pj ofιV and V\ respectively, are given
by

'/>,(«) = P-(u + K), P\{u) = P-(u - K) .

(iii) The DrinfeΓd polynomials Pf of Vφ are given by

Pf(u) = (-\)dez(p )pΊ(κ + di - u)

Proof Parts (i) and (ii) were proved in [7]. We now prove part (iii) Let Oφί; G V
be a 7(g)-lowest weight vector, and let

H,,k v = d~ϊυ, (J~k e C) .

Then, υ is a 7(g)-highest weight vector in Vψ and, in Vψ, we have, by (2.4),

Hence, the DrinfeΓd polynomials Pf of Vφ satisfy

5 ^ = . + Σ(-i)'*'ί>-<-'. (.9)
M W k=o

On the other hand, by Propositions 3 1 and 3.2 in [7],

The result follows on comparing (19) and (20). D

Corollary 3.6. Let i e I, a e C Then:

(i) XVaiλi)) ^ Va_κ(λΊl (Vaiλ^Y *έ Va+κ(λΊ);
(ii) (va(λi)y ^ vκ^d.-a{λΊ) D

We shall also need the following result.

Proposition 3.7. Let V be a finite-dimensional highest weight Y(Q)-module Then,
Vφ is also a highest weight Y(c\)-module

Proof Let Oφve Vλ (λ e P+) be a 7(g)-highest weight vector. By (2.5), mλ(V)=l
and mμ(V) = 0 unless μ g λ. Let W be the g-submodule of V of type W(λ)\ then
v G W Let v~ be a lowest weight vector (for g) in W. Then, v~ is a 7(g)-highest
weight vector in Vφ and

Y(Q)-v~ D U(Q)>V~ = W ,

so v G Y(Q) v~, and hence

Ό - . D
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We conclude this section with the following results.

Proposition 3.8. Let V be a finite-dimensional Y(§)-module. Then, V is irreducible
if and only if V and ιV (resp. V and Vf) are both highest weight Y(a,)-modules.

Proof The "only if" part follows from (3.1) (i). For the converse, suppose that V
and ιV are highest weight (the other case is identical). Let v e Vχ (λ e P+) be a.
7(g)-highest weight vector. Let Oφ W be an irreducible 7(g)-submodule of V, and
let μ (say) be the highest weight of W as a g-module; thus, μ ^ λ. Then, fW is a
quotient of ι V, and these g-modules have maximal weights μ and λ, respectively (cf.
the proof of (3.7)). Since fV is a 7(g)-highest weight module, its highest weight
vector must map to a non-zero element of tW. Hence, I ^ μ, so λ ^ μ. Thus,

=V. D

Along similar lines, we have the following result whose simple proof we omit.

Proposition 3.9. Let V be α finite-dimensional Y(§)-module, and assume that, as
a ^-module, V has a unique maximal weight λ e P+. Then, 7(g) v is a proper
submodule of V if and only if V1 {resp. ιV) contains a Y(§)-highest weight vector
of weight strictly less than λ. D

4. Dorey's Rule

Let s\9S29 ..,sn be the simple reflections in the Weyl group W of g (in some order),
and let y = s\s2 sn be the associated Coxeter element of W. Define roots

Φi = SnSn-l " 'Si+ι(&i) ,

and let Rf be the y-orbit of φi. It is known that the φi are precisely the positive roots
which become negative under the action of y, and that each Ri contains precisely
h roots, where the Coxeter number h is the order of y (see [16,25,26]).

Definition 4.1. If p ^ 2, we say that indices i\,i2,...,ip El satisfy condition (Dp)

if and only if 0 e Rh + Rh + + Rip.

Note that the condition (Dp) appears to depend on a number of arbitrary choices:
we had to pick a Cartan subalgebra f), a set of positive roots R+, and an ordering
of the set of simple reflections. However, we have

Proposition 4.2. For any p ^ 2, the condition (T>p) is independent of the choices
made.

Proof. Let G be a (connected, complex) Lie group with Lie algebra g. If ί) is another

Cartan subalgebra, and R a set of positive roots with respect to ϊ), there exists

g G G such that f) = Ad(#)(t)) and R+ = Ad(g)*(R+). Then, the α, = Ad(gf)*(α/)

are the simple roots in R , and the Si = Ad(#) o s z o Ad(^ - 1 ) are the corresponding

simple reflections. Using the Coxeter element y = s\s2 sn, it is easy to see that,

in an obvious notation, Ri = Ad(#)*(^ ), and it follows immediately that

O e ^ + -+Rip iff 0 e Rh +
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Thus, we may work with a fixed Cartan subalgebra and set of positive roots,
and need only consider the effect of re-ordering the set of simple reflections. It is
well known (see [26], Lemma 2.3) that any such re-ordering can be achieved by a
sequence of moves of the following two types:

(i) S\S2 * Sn-\Sn H-> SnS\S2 'Sn-\;
(ii) s\ - -Si-ιStSi+ιSi+2 -snt-+ s\ Si-\si+ιSiSι+2 sn, where sιsi+{ = si+ιSi.

Thus, it suffices to prove that, if γ is the Coxeter element obtained from y by
performing one of these moves, the condition (D^) obtained by using y is equivalent
to that obtained using y. Define φt and R( in the obvious way.

For a move of type (i), it is easy to see that φf = sn(φj) if y=M, and φn =

sny~x(φn) Since y = snysn, it follows that Rj = sn(Rj) for all j . It follows as before

that the condition (Όp) is unchanged.

For type (ii), y — y and it is clear that φ3 = φj except possibly when j = i or
i+ 1. But

φj = Sn Sι+2{tti) = Sn Si+2Si+\(u.i) = φi ,

since ^ + i ( α z ) = αz , and

0 ί + l = S n - Si+2Sι((X.i^ι ) = S n 5 ί + 2 ( α I + i ) = 0 / + 1 ,

since ^(α/+i) = αz +i. Thus, ^ 7 = 7?7 for all 7. G

Remark. Despite this result, it is sometimes convenient to make a particular choice
of γ, as follows (see [4,5 and 10], for example). Choose a partition

/ = /oΠ7. (21)

such that

atj = 0 if ij G Io or if /,y G /. .

It is clear that such a partition exists and is unique up to interchanging Io and /..
Since 5/ and sj commute if ij G Io or if i,j G /#, the Weyl group elements

7o = Π ^ V = Π ^
ieio ieu

are well defined. Then we take y = yoy Note that y2

0 = 7̂  = 1, so that y"1 = y.yo.
With this choice, it is easy to see that

, _ ( y.QCi if i elo ,
Φi " \ αz if 1 G 7. .

Note that yφi = 70^ = — α̂  if / G 7O; on the other hand, if / G 7#, it is clear that
OLi occurs with coefficient - 1 in the root yφi = —γoal9 so yφi G R~. It follows that
<Xi G Ri if / G 7#, and - α z G Ri if / G 7O.

We observe next that, for an arbitrary choice of y,

Φi = λi-y~{λi .
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Indeed, recalling that Siλj = λj if / φy, and = λ( — α, if / = j 9 we have

y~\λi) = snsn-\ S Ί ( Λ ) = snsn-ι - -Si(λi)

= snsn-ι si+\(λi - oci) = λi - snsn-ι j , +i(α, ) = λ, - </>/ .

Hence, (Dp) is equivalent to the condition

yif1 K + f 2 λ h + ••• + f ' K ) = ίx K + f 2 λ h + ••• + f λ i p

for some r\,r2,. ..,rp G Έ. Since one is not an eigenvalue of y on ί)* (see [16],
Lemma 8.1, for example), this last equation is equivalent to

(Dp fιλh+yrni2 + ... + fPλip=0

for some r\,r2,...,rp e Z. Now, the PRV conjecture [24], now a theorem [17,21],
asserts that, if μi, μ2, , μP G P + and if 0 G FFμi + ^Γμ2 H h ̂ Fμp (where Wμ
is the Weyl group orbit of μ G P+)9 then

g W{μ2) ® ( /

Hence, we have

Proposition 4.3. If p ^ 2 and hJi^ Jp ^ ^ satisfy condition (Dp),

D

This result (and its proof) are due to Braden [4]. A generalisation of it can also
be deduced from the main results of this paper, without using the PRV conjecture
(see the remark at the end of Sect. 8).

In the case where g is not simply-laced, we shall need a twisted version of
condition (D^). For this, we recall that the dual affine Lie algebra g*, whose Dynkin
diagram is obtained by reversing the arrows in that of the affine Lie algebra g, is
the twisted affine Lie algebra associated to a diagram automorphism σ of a simply-
laced algebra g (see [15]). Following [25], choose nodes i\,hτ An of the Dynkin
diagram of g, one from each orbit of σ, and define the twisted Coxeter element y
of g by

(here, and elsewhere in this section, a ~ is used to denote objects associated with

g). Define roots φ-r of g by

φr — σ~ιs? s - s? (α ; ~),
τir ιn ln_\ ιr+\ v ιrJ '

and let R?r be the y-orbit of φ r. Note that there is a natural one-to-one correspon-
dence between the set / of nodes of the Dynkin diagram of g and the set of orbits
of σ on the nodes of the Dynkin diagram of g. Thus, if p ^ 2 and hJiτ -Jp € I,
the following condition makes sense:
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This is the twisted analogue of condition (Dp) that we shall need. As in (4 3),
is independent of the choices made in defining it. It suffices to prove independence
of the choice of node from each σ-orbit, for a given choice of total ordering of
these orbits Unfortunately, we have only been able to verify this by a case-by-case
check

We now make the conditions (D^) and (TD^) explicit, beginning with the case

P = 2

Proposition 4.4. (D2) and (TD2) are both equivalent to (CG2)

Proof For condition (D2), we take y to be the "white-black" Coxeter element
defined in the previous remark, and distinguish two cases:

(a) g is not of type An with n even In this case, h is even and it is well known
that w;o = yh'2\ moreover, it is easy to check that, for all / G /, / and / have the
same colour Suppose that / and / are both black Then, α, G Ri and 1- G R- so the
result follows from

If, on the other hand, i and i are both white, then y (αz) G Ri and y^(α-) G Rf, and
the result follows from

7.(αΓ) = -γ.γhl2(0Li) = -y-h'2y.(χ,) e -Rf

(b) g is of type An with n even In this case, h is odd, i and i always have differ-
ent colour, and WQ = γ9y(h~^'2 = y(h + ι)2yφ4 The argument now proceeds essentially
as in case (a)

This proves that, for all g, (CG2) implies (D2) The converse is the case p = 2
of (4 3).

For (TD2), we have only been able to verify the result by using a case-by-case
check. D

The crucial case for us is p = 3.

Proposition 4.5. Let the nodes of the Dynkin diagram of § be numbered as in [3],
and let 1 ^ / ^ j S k ^ n

(a) g — An. (i,j,k) satisfies (D^) if and only if
(i) i+j^n, k = n+l- (i + j), or

(ii) i +7 > n + 1, k = In + 2 - i - j
(b) g — Bn (n ^ 3): (i,j,k) satisfies (D3) if and only if

(i) ί + j ύ n - 1, k = ί + 7 , or
(ii) / + j ^ n + 1, k = 2n — i — j ; or

(iii) / < n, j = k = n,
and satisfies (TD^) if and only if one of the conditions (i), (iii) or

(ii)7 i+j^n, k = 2n-l-i-j
holds

(c) g = Cπ (n ^ 2). (i,j,k) satisfies (D3) if and only if
(i) / + j ^ n, k = i + j \ or

(ii) i + j ^ n, k = In — i — 7,
and satisfies (TD3) if and only if one of the conditions (i) or

(ii)7 i+j ^ n + 2, k = In + 2 - / - j

holds
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(d) g = Dn (n ^ 4): (ij\k) satisfies (D3) if and only if
(i) i+j^n-29k = i + y; or

(ii) i+j ^ n, k — 2n — i — j — 2; or
(iii) i ^ n — 2, n - i is even, j = A: = n — 1 or j = k = n; or
(iv) i^n — 2, n — ί is odd, j = n — \, k — n.

(eβ) g = i?6 ^ triples satisfying (D3) are

(2,5,6),(3,3,3),(3,3,6),(3,4,5)>(3,6>6),(4,4,4),(4,5,6),(5,5,5)>(6,6,6).

(e7) g = £"7: /ze triples satisfying (D3) are

(1,1,1),(1,1,3),(1,1,6),(1,2,2),(1,2,5),(1,2,7),(1,3,6),(1,4,4),(1,7,7),

(2>2>4),(2,3,5),(2,3,7),(2,4,5)>(2,6,7)>(3,3,3),(3,4,4)>(3,4,6),(3,5,7),

(3,6,6), (4,4,4), (4,5,5), (4,5,7), (4,6,6), (5,5,6), (5,6,7), (6,6,6), (6,7,7).

= £3 £/ze triples satisfying (D3) are

( , 3 , 7 ) , ( , , ) , ( , , ) , ( , 7 , ) , ( , 7 , 8 ) , ( , 8 , ) , ( , , ) , ( , , 3 ) , ( , , ) ,

(2,2,5), (2,2,8), (2,3,8), (2,4,5), (2,4,6), (2,5,5), (2,6,6), (2,6,7), (2,6,8),

(2,7,8), (3,3,3), (3,3,4), (3,3,7), (3,4,5), (3,4,7), (3,5,6), (3,5,8), (3,6,8),

(3)7,7),(4,4,4),(4,4,5))(4,4,6),(4,4,7),(4,4,8),(4,5,8),(4,6,6),(4,6,7),

(5,5,5), (5,6,7), (5,6,8), (5,7,7), (6,6,6), (6,7,7), (6,7,8), (7,7,7), (7,8,8),

(8,8,8).

(f) g = F4 (a?, short): the triples satisfying (D3) are

(3,3,4), (3,4,4), (4,4,4),

and those satisfying (TD3) are

(1,1,1),(1,1,2),(1,1,3),(1,2,3),(1,3,4),(1,4,4),(2,2,2),

(2,2,3),(2,2,4),(2,3,4),(3,4,4),(4,4,4).

(g) Q — G2 (o<2 short): the triples satisfying (D3) (resp. (ΓD3)) are

(1,1,1),(1,2,2),(2,2,2) (resp. (1,1,1),(1,1,2),(1,2,2),(2,2,2)). D

Remarks. 1. It is interesting to note that, in each of (a)-(d), case (ii) of condition
(D3) can be written k = h — i -j, where h is the Coxeter number of g, and that in
case (b) (resp. (c)), condition (ii)' can be written k = h — i — j (resp. 2h — i — j),
where h is the dual Coxeter number of g. (This mysterious factor of 2 in the Cn

case is apparently well known to physicists.)
2. If g is of type D5, the triple 2,2,2 satisfies (CG3) (because W(λ2) is the

adjoint g-module), but does not satisfy (D3). Thus, the converse of (4.3) is false
when p = 3. This result was first noted in [18].
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The proof of (4.6) is a straightforward, if tedious, computation. We discuss the
example of g = £ 4 to show what is involved. From [15], we see that g is of type
Aη and σ is the obvious involution:

o o—
1 2 3 4

y =

α2 + α3 + 2α4, φ2 = 2α4,

0 ! = α4 + α5 + α 6 + α 7,

The orbits are as follows

2 = α4 + α5 + α6,

2α 4 )} ,

2α4,

α5,

4 = α4

= α4

R\ =

4,zb(a3 + a 4 ) ,±(a 2 + a3 + a4), ±(ai + a2 + a3 + a4)}

,±a7,±(a4 + a5 + a6 + a 7 ),±(ai + a2 + a3 + a4 + a5)} ,

a3), ±(a 6 + a 7 ) ,±(a 4 + a5 + a 6 ) ,±(a 2 + a3 + a4 + a 5 ) ,

db (0C3 + 0(4 + a5 + a6 + a7), ±(ai + a2 + a3 + a4 + a5 + a6)} ,

^3 = {±(a 4 + a5), ±(ai + a2 + όί3), ±(a 3 + a4 + a5), ±(a 3 + a4 + a5 + a6),

± (a2 + a3 + a4 + a5 + a6), ±(a 2 + a3 + a4 + a5 + a6 + a 7),

± (aj + a2 + a3 + a4 + a5 + a6 + a7)} ,

a2
a4)} .

By inspection, one sees that i,j\k satisfies (D3) or (TD3) exactly in the following
cases:

( D 3 ) . (1,1,2), (1,2,3), (1,4,4), (2,3,3), (2,4,4), ( 3 , 4 , 4 ) ,

( T D 3 ) : (1,1,2), (1,2,3), (1,3,3), (1,4,4), (2,2,3), (2,4,4), ( 3 , 4 , 4 ) .

These results are in accordance with (4.6).

For p §; 4, the following result determines (Dp) inductively in terms of ( D 2 )

and ( D 3 ) .
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Proposition 4.6. Fix p ^ 4 and i\j2,...Jp El. Then, hJi^-Jp satisfy (Dp) if
and only if there exists 2 ^ r ^ p such that either

(i) i\,ίr satisfy (D2) and i2,...,ir,---Jp satisfy (Dp_2) (the Λ indicates that
the index is to be omitted), or

(ii) there exists j e I such that i\,ir,j satisfy (D3) and y, z'2,..., ίr, , i p satisfy

(Pp-l).

The same result holds with (Dp) replaced by (TD^) throughout.

Proof The "if" part is trivial, and the "only if" part follows immediately from
the following simple fact about root systems. Let β\,β2, ,βp be roots (p ^ 3)
and suppose that β\ + β2 H (- βp = 0; then, there exists 2 ^ r ^ p such that

βι + /?r is either zero or a root. To prove this, just observe that —2 = —(β\,βx) =

{βi H h jβp,/?i), so, for some 2 ^ r ^ /?, we must have ()8 r,β λ) < 0. D

We conjecture, based on extensive computer calculations for small values of p
and algebras of low rank (including the exceptional algebras), that one can always
take r — 2 in this result.

The main purpose of this paper is to study the following conjecture, first made
explicit by MacKay [20] (when p = 3), but implicit in the work of several authors
on aίfine Toda field theories (see [5,10 and 23], for example).

Conjecture 4.7. Let p ^ 2 and let ί\Ji,...Jp e I. Then,

Homy ( β )(K β l (^) ® Vai(λh) 0 • <g> Vap(λip)9V)*Q , (23)

for some a\,a2,...,ap G C, if and only if ί\, z'2,..., ip satisfy

( (Dp) when Q is simply-laced ,

\ both (Dp) and (ΎDp) when g is not simply-laced .

It follows immediately from (3.6) and (4.4) that this conjecture is true when
p — 2. The main result of this paper is to prove the conjecture when p — 3 and g is
not of exceptional type (this is the content of Sects. 5-8). In dealing with the p = 3
case, it is useful to observe that, if i,j,k satisfies (23), so does any permutation of
i,j,k (the same is obviously true of condition (D3)). To see this, note first that, by
(3.4) and (3.6) (i), (23) holds if and only if

Λ ) 0 Vb(λj), Vc.κ

which in turn holds if and only if

λk) 0 Va(λi)

Thus, (23) is preserved by cyclic permutations of (i,j,k). On the other hand, by
3.6 (ii), (23) is equivalent to

4-) 0 Vs(λj) 0 Vά(λr),€) + 0 , (24)

where ά = κ + dt — a, etc. But, it is known that there exists a diagram automorphism
π of g such that π(z) = / for all / e /. Twisting by the corresponding automorphism
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of Y($) shows that (24) is equivalent to

Hence, (23) is also preserved by the permutation (i,j\ k) ι—> (k,j, /) Since this,
together with the cyclic permutations, generates the whole symmetric group on
three letters, (23) is preserved by all permutations of (i,j\k). It follows that, in
proving (4.5), we may always assume that i,j and k are in some fixed order.

As to the case p ^ 4, we note that Proposition 4 6, together with the p = 2
and p = 3 cases of Conjecture 4 7, implies the following weak version of the "if"
part of (4 7) for arbitrary p.

Proposition 4.8. Let g be of type A,B,C or D, let p ^ 2 and let i\j2,> >Jp £ ^
satisfy (Dp) if g is simply-laced, or {Dp) and (TD^) if a, is not simply-laced Then,

Homy(g)(KflI(ΛM ) 0 Va?(λlf) 0 Va2(λl2) (8) 0 ^ ( λ ^ j )

®Vat+ι(λhil)® ®Vap(λlp),<C)ή=0,

for some a\,a2,...,ap G C

Proof We assume that z'i,Z2, JP satisfy (ii) in (4 6) (the other case is easier)
By the p = 3 case of (4.7),

g )(Kα i(ΛZ l)0 Va,(λlf)® Vb(λj)9

HomYiQ)(Vc(λj)®Va2(λi2)® 0 Vaι+ι(λUι

for some a\,a2,.. .,ap,b,c G C. By (3.4) and (3.6), there are non-zero (hence in-
jective) 7(g)-module homomoφhisms

Vc(λ-) -* Vap-K{λϊp)® 0 Vai + λ-κ{λh+χ)®Vat_λ-κ(/%_ι)® 0 Va2-K(λh) .

By twisting with a suitable automorphism τa (see (2.3)), we may assume that
c — b + K Taking the tensor product of the last two homomoφhisms, we then
obtain an injective homomoφhism

Vh+κ(λj) ® Vh(λj)

I

®Vat+κ{λ t)®Vaχ+κ{λϊλ).

Finally, composing with the injective homomoφhism
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given by (3.4) and (3.6), we obtain an injective (hence non-zero) homomorphism

C

I
Vap-κ(λίp)® • ® Var+1.κ(λir+1 ) ® Var_λ-K(λίr_χ ) ® <g> K β 2 _ κ ( ^ )

Equivalently,

Var(λir)® Va2-2κ(λi2)® ® F f l r_1

D

The same argument shows that the conjecture stated after the proof of (4.6)
implies the "if" part of (4.7) in full generality (when g is not of exceptional type).

5. Some Preliminary Lemmas

In this section we collect some results which describe the restriction of Γ(g)-
modules to "diagram subalgebras" of Γ(g).

Definition 5.1. Let 0 + J C /.

(i) gj is the Lie subalgebra of g generated by the Ht and the X^ for i e J;
(ii) Yj is the subalgebra of Γ(g) generated by the H^ and the X^ for i G J,

k e N.

(iϋ) Qj = ΣteJ Z «» QΪ = ΣteJ N ' *-

It is clear from (2.2) that there is an algebra homomorphism Γ(gj) —» Yj which
maps Hik ι—>• /ζ ̂  and Jζ.^ ι—> ̂ .^, for all / G /, k e N. In particular, every Γ(g)-
module may be regarded as a 7(gy)-module. If V is a highest weight 7(g)-module
with highest weight vect or v, set

Note that Vj is preserved by the action of ί), since [I), ί>] C 7y.

Lemma 5.2. Let 0 + / C /.

(i) Lei V be a highest weight Y(g)-module with highest weight λ e P+ {as a
q-nϊodule). Then,

Vj= 0 Vλ-η.
neQ+

(ii) If V is an irreducible Y(§)-module, then Vj is an irreducible Y(§j)-module.
(iii) If V and W are irreducible Y\o)-modules with highest weights λ and μ,

then,

The proof is straightforward (see Lemma 4.3 in [7] for part (ii)).
The canonical map Y(§j) —> Y(Q) is not a homomorphism of Hopf algebras.

Nevertheless, we have
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Lemma 5.3. Let V and W be finite-dimensional irreducible Y(§)-modules and let
0 φ J C / Then, Vj 0 Wj is a Y(§j)-submodule ofV®W. D

This is Lemma 2.15 from [7]. The following is a more precise result.

Lemma 5.4. Let U, V and W be finite-dimensional irreducible Y(c\)-modules with
highest weights {as ^-modules) λ,μ and v, respectively, and let 0 φ J C /

(i) Assume that λ + μ — v G Qj Then, any non-zero Y(Q)-module homomor-
phism U 0 V —> W maps Uj 0 Vj onto Wj In fact, this restriction defines an
injectiυe linear map

Homy(g)(C/ ®V,W)^ Homy(g</)(C/y 0 Vj, WJ) . (25)

(ii) Assume that Uj 0 Vj is a highest weight Y($j)-module and that U 0 V
has an irreducible quotient Y(c\)-module with highest weight v < λ + μ Then,

Proof The fact that any 7(g)-module homomoφhism / * U 0 V —• W maps Uj 0
Vj into Wj follows from (5.2) (i) and (iii). If / φ θ , the image of / contains a
7(g)-highest weight vector w G W. By (5.2) (i) and (iii) again, w is in the image
of the restriction of / t o Uj 0 Wj. By (5.2) (ii), / is surjective, and the linear
map (25) is injective.

Part (ii) follows immediately from part (i). D

Lemma 5.5. Let V and W be finite-dimensional irreducible Y(q)-modules, and let
0 Φ J C / Assume that Vj 0 Wj contains a non-zero Y(Qj)-highest weight vector
u which is also an ^-eigenvector of weight v eP+. Then, ( F 0 W)γ contains a
Y(Q)-highest weight vector

Proof Clearly, λ + μ-v £ Qf. It follows that u e (V 0 W)j+. The result now
follows from the discussion preceeding (3.1) D

6. The An Case

In this section g is of type An (n ^ 1) The Coxeter number h of g is n + 1.
Proposition 4.6 implies that Conjecture 4.7 is a special case of

Theorem 6.1. Let 1 ^ i,j,k ^ n, a,b,c G C Then,

Hom7 ( g )(K f lα / ) 0 Vb(λj),Vc(λk))Φ0 (26)

if and only if one of the following holds:

( i ) i +j < n + 1, k = i + 7 , b-a= \{i + j), c - a = \j\

(ii) / + 7 > n + 1, £ = i + y - « - 1, b-a = n + \-\ £

1-7)

Remark It follows from 6.3 (i) below that the space

Homγ(β)(Va(λi)®Vb(λj),Vc(λk))

is one-dimensional when it is non-zero.
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We shall also prove the following:

Theorem 6.2. Let 1 ^ i ^ j ^ n, a,b G C. Then, Va(λi) 0 Vb(λj) is not a highest
weight Y(§)-module if and only if

b — a— -{j — i) + r for some 0 < r ^ min (/, n + 1 — j).

Hence, Va(λi)® Vb(λj) is reducible as a Y($)-module if and only if

b — a = ± ί -(j — i) + r j for some 0 < r ^ min(/,n+\ — j) .

Remark. One can show further that, when b — a=j(j — i) + r for some
0 < r ^ min(/,«+ 1 - 7 ) , the 7(g)-module Va(λi)<S> Vb(λj) has a Jordan-Holder
series of length two:

0 -+ V ^ Fβ(A0 0 Vb(λj) -> Kβ+i α f _ Γ ) ® Ffl+ i o . _ , + r ) α , + r ) -^ 0 ,

where V is an irreducible 7(g)-module such that

as g-modules.

We begin with the following.

Proposition 6.3. Let 1 ^ /,y,A: ^ «.

(i) We have

Homg(*F(A,.) β ^(A,), W(λk)) = { C Vk = i+j σr k =
y 0 otherwise.

(ii) ^5 ^-modules, we have

(iii) Le/ a,b,c e C.

Hom r ( g )(F f l(Λ) 0 ^(Ay), F c (^)) = 0

if kή=i +j or i + j — n — I. Ifk = i+j or ί + j — n — 1, αwd a and b are fixed,
the space

value of c, ZΛ W/Z/CA case it is one-dimensional

Proof Part (i) is easy, part (ii) is well known (see [11 and 8]), and part (iii) is
immediate from parts (i) and (ii). D

Proof of 6.1. By induction on n. The case n = 1 is proved in [6]. Twisting by φ
and using (3.5), we see that

® Vh(λj\
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if and only if

Hence it suffices to prove the theorem when i + j < n+ \.
Assume that

Hom 7 ( g )(Fβ(;,) 0 Vb(λj\ Vc(λk))*0 (27)

Since ί + j < n, 6.3 implies that k = ί + j Noting that

λt + λj - λi+j e Qj ,

where J = {1,2, . . , / + y - 1}, (5.4) gives

whence b — a — ^(i + y ) by (3.6).
The value of c can be computed as follows Using (3.5) and (3.6), (27) implies

that
Hom y ( g ) (^ + ^ ( / + y ) (A 7 ), ^ + i ( / 2 + 1 ) ( ^ + i - z )

and hence, by taking left duals, that

The first part of the proof now shows that

a- (c-]-(n+iyj = ! ( / + , ! + l - / - y ) ,

i e
1

c-a=-j

For the "if" part, suppose that k = i-\-j,b — a= \{i + j) and c — a = \j. Using
(5 4) with J = {n - i - j - 2, ..,«} and (5.5), we see that

Since there is no non-zero dominant weight strictly less than λn+\-i-j, it follows
that for some c' G C,

Applying (3 5) and (3 6) shows that

But then, by 6.3 (iii), c' is uniquely determined, and by the "only if" part, c' = c
The proof of 6.1 is now complete D

Proof of 6 2 By induction on n. If n = 1, the result is contained in [6]. Assuming
the result is known when g is of type Am for m < n, we prove it when g is of
type Λn by induction on min(z,« + 1 — y). If z = 1 or y = «, the result follows from
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(6.1) and (6.3), since

W{λλ) <g> W(λj) S W(λι + λj) θ W(λJ+ι) ,

W(λn) 0 FF(λ,) = W{λn + λj) θ

Assume now that min(/,« + 1 — j) > 1. To prove the "only if" part of (6.2),
consider the case i + j < n + 1 (resp. the case / + j > n + 1).

Since Va(λi)<g) Vb(λj) is not a highest weight 7(g)-module, there exists an irre-
ducible 7(g)-module V with g-highest weight λ = λt + /ly — ?y, for some 0 + η E Q+,
such that

Homγ(Q)(Va(λi)®Vb(λj\V)*0.

By (3.5), (3.6) and (6.1), we have

Hom y ( g )(Kβ +i ( ^ 0 ® Vb(λj\ Va+^n

(resp.

If ft-αφ|(7-ί) + r for any 1 < r ^ /, then by the induction hypothesis on

min(/,w + 1 - y ) , ^ + i ( V i ) ® ̂ (λ,-) (resp. ^ ( λ / ) ® ^ - i ( V i ) ) i s a highest weight

7(g)-module, so

i.e.
η S α, + + αΛ ,

(resp.
λ, + ŷ +i ύ λι -h Λ + λj-η,

i.e.

This, together with the requirement that 2 G P + , forces η — αt H + αy , so
/I = A, _i + Ay+i. Noting that λ, + Ay - A/_i - Ay +i e βj 7 , where J = {/, ί + 1,... J},
it follows from (5.4) that

By (3.6), we see that b — a— ^(j — i) + 1, as required.
We now prove the "if" part of (6.2), assuming it when g is of type Am for

m < n, and for smaller values of min(i,n— j -\- 1) when g is of type An. We
consider three cases.

Suppose first that i + j < w + 1 (resp. i+ j > n-\- 1). Let

b - a = -(j - i) + r for some 0 < r g / , (28)

and assume for a contradiction that f£(Az ) ® ̂ (Ay ) is a highest weight 7(g)-module.
Let J' = {1,2,...,«- 1} (resp. J' = {2,...,«}). Since ^(A, ) 0 ^(A7 ) is assumed
to be 7(g)-highest weight,

^ C 7(g) . (Όi 0 vj),
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where v\ and Vj are 7(g)-highest weight vectors in Va(λi) and Vt(λj). But then (5.2)
implies that

Va(λi)j, 0 Vb(λj)j, C Y(Qj>) (Vt ®Vj),

and hence that Va{λi)ji 0 Vb(λj)jf is 7(gj/)-highest weight. By the induction hy-
pothesis on n, b ~ a cannot take any of the values in (28). This is the desired
contradiction.

If / + j = n + 1, the argument used above fails when b - a = \(n + 1), since in
that case Va(λι)Jι 0 Vt(λ/)j/ is 7(gy/)-highest weight. But for this value of b - a,
the contradiction is immediate from (3.6).

We have now completely proved Theorem 6.2, except for the final statement,
which follows immediately from (3.6) and (3.8). D

7. The Dn Case

In this section g is of type Dn, (n §; 4). The Coxeter number h is 2n — 2.
Conjecture 4.7 is a special case of

Theorem 7.1. Let I ^ / g j S k S n, a9b,c e C Then,

Homy(fl)(Kfl(^) 0 Vb(λf)9 Vc(λk)) + 0

if and only if one of the following holds:

(i) i+j ^n-2, k = i+j,b-a= \{i + j \ c-a= \j\

(ii) i+j ^ n, j ^ n - 2, k = In - i - j - 2, b - a = \{i + j \ c~a= \j\

(iii) / ̂  n — 2, j — n — 1, b — a — ^(« + f — 1), c — a = \{n — i — 1),

{ n — \ if n — i is even ,

n if n — i is odd ,

(iv) / S n — 2, j — n, b — a — \{n + i — 1), c — a = j(n — i — 1),

if n - i is even ,

n — 1 if n — i is odd .

Moreover, the space of homomorphisms in (26) is one-dimensional when it is
non-zero

We shall also prove

Theorem 7.2. Let 1 ̂  / ̂  j ^ n Then, Va(λt) <S> Vb(λj) is not a highest weight
Y(c\)-module if and only if one of the following holds:

(i) jύn-2,

!

\U — 0 + r for some 0 < r ^ min(/,n — j), or

n — 1 — r — ^(j — /) for some 0 ^ r < min(/,w — y) ,
( i i ) i ^ n — 2, j = n—I or n,

b - a = -{n —\—i) + r for some 0 < r g i
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(iii) / = j = n — 1 or n,

b — a — n — r — 1 for some 0 ^ r S n — 2 with n — r even

(iv) i = n-l,j = n,

b — a — n — r —\ for some 0 ^ r ^ n — 2 with n — r odd.

Hence, Va(λi) 0 Vb(λj) is reducible as a Y(q)-module if and only if±(b — a) takes
one of the above values.

We first recall from [7], Theorem 6.2, the g-module structure of the fundamental
7(g)-modules.

Proposition 7.3. Let a e C. Then as a ^-module,

κ(λi) * ί Θί
1 ifi = n-l or n,

where λo = 0. D

We first prove

Proposition 7.4. Let 1 ^ j ^ n -2 and let v\ and Vj be Y(§)-highest weight
vectors in V(λ\) and V(λj), respectively.

(i) Va(λ\) 0 Vb(λj) is not a Y(o)-highest weight module if and only if b — a =

^(7 + 1) or/i-1(7 + 1).
(ii) Ifb-a=\(j+\)orn- \{j + 1)), then Va(λx)® Vb(λj) has a Jordan-

Holder series of length two, namely

0 -> F(g) (»i ® vj) -> Va(M) ® K6(A,) -» ^ + i / A / + 1 ) - 0 ,

or

0 -+ Γ(g) (O l ® P >) - fί(λi) <8> ̂ (λ,) - Va+n_λ_iy(A,_i) -» 0 ) ,

respectively {if j = n — 2, the first short exact sequence should be replaced by

0 - 7(g) . (ϋi ® uy) ^ Fβ(λi)Θ Vb(λj) - , F β + i ( w _ 2 ) α _ θ 0 F f l + i ( w _ 2 ) α w ) ^ 0 ) .

Let ό - α = 1(7 + 1) and J = {1,2,...,* - 2}. By (6.1), the 7(g)-sub-
module ^(/ί ; )j (g> Ffl(/li)y of ^(A/)(g) Va(λ\) has a 7(gj)-highest weight vector of
weight λj+\ = λ\ + λj — OL\ — — otj for g. Hence, by (5.5), Vb(λj) <g> Va(λ\) has a
7(g)-highest weight vector of weight λj+\. But then, by (3.14), Va(λ\)<8 Vb(λj)
cannot be 7(g)-highest weight.

For the converse, assume that Va(λ\)® Vb(λj) is not 7(g)-highest weight, let
M = Va(λ\)® Vb(λj)/Y(q)'(v\ 0 u ; ), let N be an irreducible quotient of M, and
let λ E P+ be the maximal weight of N as a g-module. The dominant weights
λ < λ\ + λj are of two types:

(i) j ^ 3, λ = Ai + Ay _ 2 ^ 0 < * ^ [772], and

(ii) λ = λy+i-2*, 0 g * g [(7
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with the understanding that λo = 0 In case (i),

which implies that

and hence that λj ^ 2λ\ + ̂ j-ik This implies that k — 1, i.e. λ — λ\ + ̂ j-i But
then λ\ + λj - λ e Qj,, where J' = {j - l,j,...,«}. Hence, (5.5) implies that

which is absurd. Thus, case (ii) must hold. As above, one sees that k — 0 or 1 (and
k — 1 if j = /? — 2), so we must have either

(iia) H o m y ( g ) ( ^ ( λ i ) ® ^(Λy-),^(λy +i)) + 0 (if j <n-2\ or
(iib)

for some c e C .
In case (iia), note that λ\ + /I/ — Λ / +I = αi + + α; G β^//5 where / / r = {1,

2,.. ,« - 2 } . Hence,

which gives b - a = \{j + 1) and c - α = ~j, by (6.1).
In case (iib), we get

and hence, taking left duals,

Homy(g)(Kc_Λ

Finally, twisting with φ gives

We are now in the situation of (iia). Hence,

2n — I — c — (n — a) = -j and 2n — 1 — b — (n — a) = -(j — 1),

i.e.

fe — α = w — -(y + 1) and c - α = n - 1 j .

We have now proved (i) In fact, the preceding argument shows that, if V is an
irreducible quotient of Va(λ\) 0 Vb(λj) with highest weight different from λ\ + λj,
then either

b-a=l-(i+j) and V ̂  Va+^(λJ+ι),

or

b-a = n-Uj+l) and F ^ F + Λ _ μ l / V i ) . (29)
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We prove part (ii) of (7.4) when b — a = \{j + 1 ) ; the other case is similar.
First, if N is any 7(g)-submodule (or quotient module) of Va(λ\)0 Vb(λj), then,
since Homγte)(Va-n+ι(λι)®N9Vb(λj))Φ09 (resp. Hom r ( g ) (W ® Va(λx\ Vb-n+ι(λj))
ΦO), we see by using (7.3) that

moC/V)Φθ if j is odd, and m\(N)ή=0 i f y i s e v e n .

If L = 7(g) (υ\ <g> vj) is reducible for 7(g), let V C L be an irreducible 7(g)-
submodule. Then, Lr = Ve(λj-ι) for some e G <C, and we get

But this is impossible when b — a — \{j + 1), by (29).
Let M be the quotient Va(λι)® Vb(λj)/L. Then, M = Y(Q)-Mλj+1, since oth-

erwise M would have an irreducible quotient which would have to be of highest
weight λj-\, and we have seen above that this is impossible for this value of
b - a. Since M is non-zero, this shows that Mχj+γ Φ0. On the other hand, since
MχJ+1 Q M+, we have

This multiplicity is one, and so Mχ x is one-dimensional. Thus, M is a highest
weight 7(g)-module with g-highest weight λj+\. If M is not irreducible for Γ(g),
it contains an irreducible 7(g)-submodule, which must be of the form Fί/(Λ/+i_2j0
for some 1 ^ k g [(j + l)/2], rf G C. By (7.3), this means that mλι(M) = 2 if
y is even, and mo(M) = 2 if j is odd. But this would mean that mo(L) = 0 or
mχ^L) = 0, and we have seen that this is impossible. D

To prove (7.1), we need

Proposition 7.5. Let 1 ^ i S n - 2, a e C

(i) If n — i is even,

iff b — a = n — ί — 1, c — β = -(n — ί — 1 ) ,

iff b — a = n — ί — 1, c — α = - ( « — / — 1) .

(ii) If n — i is odd,

iff b — a = n — i — 1, c — α = - ( n — / — 1 ) ,

iff b — a = n — ί — 1, c — <z = - ( « — z — 1 ) .
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Proof. We prove the first statement in part (i); the proofs in the other cases are
similar. In [7], Proposition 6.2, we established that, if b — a = n - ί — 1, there exist
c, c' e C such that

Uomγ(Q)(Va(λn) ® Vb(λn), Vc(

and

To see that c = c' = α + £ ( « - / - 1), notice that since mλι(V(λn) ® V(λn)) = 1,
the values of c and c' are uniquely determined by a and 6. But now, twisting by
φ and applying τa+b gives

Hom r ( g )(Fβ(Λ,) 0 ^(; . Λ ), Va+b-c(λi))φ0

and

and hence
a -\- b — c — c and a^b — c' — c1.

Conversely, suppose that Homγ^(Va(λn) <g> Vb{λn), Vc(λi))ή=0. We prove by in-
duction on n that b — a and c — a have the stated values. If n — 4, the result fol-
lows from (7.4) (i) by using a diagram automorphism of order three of Γ(g), so
the induction begins Assume the result when g is of type Dm with m < n. Now,
2λn — ?H G Qj, where J = {2,3,...,«}, so by the induction hypothesis on n, we get

The value of c — a is determined as before. •

Proof of Theorem 7 1 We only have to prove the theorem in cases (i) and (ii),
since (7.5) establishes cases (iii) and (iv).

The "only if" part is proved by induction on n. The induction actually begins
at n = 3, when g is of type A3, and the result in that case is contained in (6.1).
Assume now that n ^ 4 and that the result is known when g is of type Dm for
m < n.

Suppose then that

)® Vb(λj), Vc(λk)) + Q . (30)

This implies by Proposition 7.4 that

and hence

Let F be a non-zero element in H o m 7 ( g ) ( K + i ( / _ 1 ) ( / l i ) 0 Vb(λj\ Va+n_3(^-1) ®

Vc(λk)), and let υ\ and υ} be 7(g)-highest weight vectors in Va+\,χΛλ\) and

), respectively. We first prove that one of the following must hold:

(α) b - a = \(i+j) and F(v{ 0 υj) = 0;
(β) b - a = n - 1 - \{j - ί) and F(v{ ® Vj) = 0;
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(γ)F(υι®υj)Φ0, i+j ^ n, k = i+j-2, b - a = \(i+j) - 1, c-a=\j\
(δ) F{vλ ® ± \

If F(vχ ®vj) = 0, then, by (7.4), we see that either (α) or (β) must hold. On
the other hand, if F(v\ <g> Vj)ή=09 then, using the fact that A/_i + λk — λ\ — λj e Qj,
where J = {2,3,...,«}, we see from (5.5) that, if / > 2,

The induction hypothesis on n now shows that either (y) or (δ) must hold. If i — 1,
the same conclusion follows from (7.4). Finally, if i = 2, we get b = c and j = k,
so

F : Va+ι_(M)

Since a-\- j+a + n — j , 3.2 implies that F(v\ 0 ty) = 0, contradicting our assump-
tion. This completes the proof that one of (oc)-(δ) must hold.

Next, we prove that (30) implies that (α) must hold. Observe that if we twist
by φ and apply τa+b-n, then (30) implies that

Hom y ( 8 )(^(A, ) ® Vb(λi), Va+b-c(λk))*0 .

Suppose that a, b and c satisfy the conditions in (y) or (δ) above. Then, it is
easy to see that a,b and a + b — c do not satisfy any of the conditions (a)-(δ).
Thus, the only possibilities are (α) and (β). We prove by induction on / that (β)
is impossible.

If / = 1, we know by (7.4) that k = j + 1 (since i ^ j ^ k) and that b — a =
\(j + 1), so (β) is impossible in this case. Assume that (α) is the only possibility
for i - 1. If (β) holds for i, we see from (7.4) that

^ . ^ , ( j . _ / + 1 ) ( V i ) , ^ n - 3 W_i)

or equivalently that

ΉomndK-^-i)®VίHrH_ι_ι(J_l+l)(λj-l), Vc(λk)) + 0.

Since (α) holds for / - 1, we get

i.e. j = «, contradicting our assumption that j < n. This completes the induction,
and proves that (30) implies (α).

We now show, again by induction on /, that (30) implies that either (i) or (ii)
in the statement of (7.1) must hold. If / = 1, the result follows from (7.4).

Assume the result for i — 1. To complete the induction we consider four cases:

Case 1. j < k ^ n - 2. By (7.4), (α) gives k = / +j or In - ί - j - 2,

and

c-(a-l-) = l-U+D,

i.e. c — a = |y. Thus, either (i) or (ii) in 7.1 must hold for z.
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Case 2 j = k < n — 2. Again, (α) gives

Unfortunately, (7 1) does not apply to this because j + 1 ^ j However, the non-
vanishing of this last space of homomorphisms is equivalent to

and hence, twisting by φ and then applying τn_i, to

We can apply the induction hypothesis to this inequality, and this gives that j + \ =
i — 1 + y or 2n — {i — 1) — j — 2, and

and

-«--(/+7-

In both cases, we get / -\-2j — 2n — 2 and c - a = \j, so (7 1) (ii) is satisfied (we

already know that b — a = ^(i + j))

Case 3 ί < n — 2, j — k — n — 2 We show that this case is possible only if / = 2
(it is obvious that / must be even). We first determine the value of c Observe that
(30) implies that

and hence, twisting by φ and applying τ/7_i, we get

Hom y ( g )(F_ f l(;, ) 0 F_ ί + Λ _iΛ-2), F _ H

Since (α) must hold for this, we get

c = a + -(n - z) .

By (7 4), we see that (30) implies

which gives

By (7 4) again, the module on the right-hand side of this space of homomoφhisms
is irreducible. Thus, if v\ and vn-2 are 7(g)-highest weight vectors in Va+ι,ι+ιJλ\)

and Va+i(n_^(λn-2), respectively, v\ 0 vn-2 must be in the image of any non-zero
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homomorphism F in

Since A/+i — Ai G βj", where J = {2,3,...,«}, we see from (5.5) that

The induction hypothesis on n now proves that i = 2.

Gzse 4. i =j — k = n — 2. In this case, we have b = a-\- n — 2 and c = a + ^(« — 2).
Equation (30) implies that

But (α) does not hold for this if nή=4, and (7.1) (ii) holds if n = 4.
Finally, the inductive step, and with it the proof of the "only if" part of (7.1),

is complete.
We now prove the "if" part. Suppose that (i) holds. Taking J = {1,2,...,

n — 2}, we see that Va+\,i+.Λλj) (8) Va(λi) has a 7(g)-highest weight vector of weight

λi+j. This vector cannot generate a reducible highest weight 7(g)-submodule, since
otherwise it would have an irreducible 7(g)-submodule, which would necessarily
be of the form Vc(λr) for some r < i +j, and this is impossible by the "only if"
part of (7.1).

Suppose now that (ii) holds. Recall from the discussion in Sect. 4 that we may
assume that i ^ j ^ k.

Consider first the case when nj and j are all even. By (7.5),

Hence,

Hom r ( 9 )(Ka_ , ( n + ί_1 }(An) ® Va(λ,), Va+j_h(n^_λ){λn)

or equivalently,

We consider the composite of a non-zero element F of this space of homomorphisms
with the non-zero homomorphism

given by (7.5). This composite cannot be zero, otherwise the image of/7 would be
a 7(g)-module N for which

(31)
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Moreover, the irreducible g-modules occurring in N would be among the set

{W(2λn),W(λn-2),W(λn-4)9.. tWίλ^-i-j)} .

Since / g k = 2n — i — j — 2,

moi'N 0 W(λi)) = 0, mo(W(λj)) = 1 ,

so (31) is impossible

The proofs in the other cases are similar applications of (7.5) and the g-module
decomposition of the fundamental 7(g)-modules. We omit the details.

This completes the proof of the "if" part of (7.1). D

It remains to give the

Proof of 7 2 We proceed by induction on n. As usual, the induction starts at n — 3,
where the result is known from (6.2). Assume now that (7.2) is known when g
is of type Dm form < n. To prove the result when g is of type Dn, we consider
first the case when i g j rg n - 2, and proceed by induction on min(z,« — j). The
induction starts when ί = 1, this case being covered by (7.4).

Assume that Va(λi) 0 Vb(λj) is not 7(g)-highest weight. Let Vi and Vj be 7(9)-
highest weight vectors in V{λt) and V(λj), respectively, and let TV be an irreducible
7(g)-quotient of V{Xt) 0 F(Λ7)/7(g) (uz 0 vj). Then, we have

and Nχι+)Ί = 0. Assume for a contradiction that b — a takes none of the values

~U: ~ 0 + r> 0 < r ^ min (/, n - j) ,

or

n — 1 + ~(i — j) — r, 0 ^ r < min(z,n — j) .

If ιΓ +7 = n > we use (7.4) to get

H o m ^ ^ ^ α i ) ® Ffl+, (A,--i) ® Vb(λj),N)±0 ,

and hence

(32)

By the assumption on b — a and the induction hypothesis on min(z,n — j), Va(λj-\)
0 Vb(λj) is 7(g)-highest weight. Hence, λ\ + λ ^ ^_i + /7, so Λ = kt + λ7 - η,
where /7 = ^ " = 1 rz αz G β + satisfies

^ ^ αi + 2α2 + + αz-_i + 2(α, + + α,7_2) + αΛ_i + αw .

If rx = 0, let J = {2,3,..., n}. Then, by (5.4),
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By the induction hypothesis on n, we have

ί \U — 0 + r f° r some 0 < r ^ / — 1, or

n-2+\{i-j)-r for some 0 ^ r < i - 1 .
But all these values have been excluded.

Using λ G P+, one sees that the case r\ > 0 is possible only if / = 2, and then
either η = λι, or η G Q^,9 where J' = {1,2,.. .,n — 2,n — 1} or {1,2,. ..,n~ 2,n}.
In the first case, λ = λj and (32) becomes

HomyωCK^iαO® K 6(λ y),Kβ + n_ i (.+ 1 )(λi)® Γc(Ay ) ) Φ 0 , (33)

for some C G C . By the assumption on 6 — α, ^ + i ( λ i ) ® Vb(λj) is 7(g)-highest

weight, but then (33) contradicts (3.2). In the second case, (5.4) gives

UomY(9jl)(Va(λ2) ® Vb(λj),Nj,)±0,

and then (6.2) gives

b-a= -j or -j^ + 1 .

Both of these values have been excluded.
Thus, we have obtained the desired contradiction when i +j ^ n. If i + j > n,

one uses a similar argument, but using (7.4) to replace (32) by

This proves the "only if" part of (7.2) when j ^ n — 2.
For the "if" part, note that the i ~ 1 case is contained in (7.4). Suppose that

/ > 1. If b-a= \{j -i) + r9 where 0 < r ^ min(/,«-y), let J" = {1,2,...,
Λ - 1}. By (6.2), Va(λi)jtt 0 Vb(λj)jff is not 7(g)-highest weight, so by (5.5), nei-
ther is ^(λϊ) ® ^(Λy). If 6 - a = n - i + ~(i - j) - r, where 0 < r < min(i,n -
j), one uses the same argument with J" replaced by {2,3,...,w} and uses the
induction hypothesis on n instead of (6.2). For the remaining value b — a —
n — 1 + \{i — j), note that, if i+j, we have

by (7.1), while if / =j, then by (3.4) and (3.6), we have

In any case, this implies that ^(λ z ) <8) ̂ (Ay) is not 7(g)-highest weight.
We now consider part (ii). If j = n, the result follows by the above argument,

using (5.5) and (6.2) (and the same J"). If j = n - 1, replace / " with {1,2,...,
n-2,n}.

Finally, parts (iii) and (iv) follow immediately from (7.5). D

8. The Bn and Cn Cases

In this section, we give the analogues of Theorems 6.1 and 7.1 when g is of type
Bn or Cn.
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Theorem 8.1. Let g be of type Bm and let 1 ^ i S j ύ k ^ «, α,fe,c e C

o/i/y z/ one o/ the following holds'

(i) z + 7 ^ « — 1, k = i + y, b — a = i + j , c — a — j ,

(ii) i < n, j = k = n, b — a = n -{- ί — I, c — a = n — i — 1 D

The proof of this theorem is very similar to that of (7.1). Although we shall
omit the details, we remark that the argument used to prove the existence of a
non-zero homomorphism of 7(g)-modules

va{λλ)® vb{λj) ^ VΛλ^-i-t-,)

(for suitable a,b,c) when g is of type Dn fails to produce a non-zero homomorphism

when g is of type Bn (as would be predicted by condition (D) alone) because of a
difference in the way that tensor products of spin modules for g behave in the two
cases. Namely, in the Bn case, the tensor product of the spin module with itself
contains every fundamental g-module except the spin module, whereas in the Dn

case, the tensor product of the two spin modules, or of a spin module with itself,
contains only "half" the remaining fundamental g-modules.

Theorem 8.2. Let g be of type CM, and let 1 ^ / ^ j ^ k <; n,a,b,c G C Then,

9 ) (F f l (y 0 Vb{λj)

z/ and only if i + j ^ n, k = i+j, b — a = \{i + j), c — a— \j D

The proof of this theorem is similar to that of (6 1). Note that the fundamental
F(g)-modules are irreducible as g-modules in both the An and Cn cases (see [11
and 8])

Remark We can use (6 1), (7.1), (8 1) and (8.2) to prove (4.2), avoiding the use
of the PRV conjecture In fact, we can prove a more general result. Suppose, for
example, that g is of type Dn and that i,j ^ n - 2,a,b G C Let V be any irreducible
quotient 7(g)-module of Va(λj) 0 Vb(λj), and let λ be the highest weight of V as a
g-module Then,

Uom^W(λi)® W(λj),W(λ))ΦO (34)

Indeed, since / is dominant and ^ /., -f Λ; , we have either

(i) / = λk for some k, or
(ii) / = λ]{ + λ( for some k,f.

In case (i), we know that (ij\k) satisfies the conditions in (4.5), and then (34) is
easily checked in case (ii), /, + // — A/v — λ/ e Qj, where J — {2,3, ,/?}, so by
(5 4) and an obvious induction on n, we have



Yangians, Integrable Quantum Systems and Dorey's Rule 299

which implies

Similar arguments apply in the other cases.

9. The Quantum Affine Case

In this section, we indicate how to translate the preceding results from the context of
Yangians to that of quantum affine algebras. We use freely the notation established
in [8], Chapter 12. We assume throughout that the deformation parameter s is not
a root of unity.

To find the quantum affine version of (6.1), for example, one replaces 7(g) by
Uε(Q),Va(λi) by Vε(λl9a), etc., and conditions such as

b-a= ^ O ' + /λ c-a= -j

in (6.1) (i) by
b/a = εί+j, c/a = εJ .

Similarly, in (6.2), the condition for Vε(λi9a) ® Vε(λj,b) not to be a highest weight
C/ε(g)-module is

b/a = εJ~i+2r for some 0 < r 5Ξ min(/,« + 1 — j) .

The main results in Sects. 7 and 8 can be translated in the same way. We leave this
to the reader, as well as the straightforward problem of appropriately reformulating
the proofs.

10. Appendix: Dorey's Rule and Affine Toda Theories

In this section, we sketch how Dorey's condition arises in the context of ATFTs. We
shall consider only those ATFTs based on untwisted affine algebras. The exposition
is a slightly expanded version of that given in [14].

We begin by summarizing some results related to Coxeter elements, for which
we follow [16]. Let α0 = -0, X^ =X^9 and 7 = /Π{0} . Let ki(iel) be the
coprime positive integers such that

ief

(so that &o = 1X and set

^ = Σ
ief

Since X+ is a regular element [16], its centralizer is a Cartan subalgebra r/ of g.
Note that [X+,X~] = 0, so X± e ί)7. Recall also that h = Σiefk-

Let H e ί) be such that αz(//) = 1 for all i e /, and set

Thus, A lies in a connected complex simple Lie group G with Lie algebra 9.



300 V Chari, A Pressley

Note that the centralizer of A in g is I) On the other hand, it is clear that

Aά(A)(X±) = ω±λX± ,

where ω = e

lπ"/z:rυh It follows that Ad(^)(ί)/) = f/ In fact, it is known [16] that
Ad(y4)li)' is a Coxeter transformation of I)', i e. one can choose an ordered set of
simple roots α j , ^ , ,0L;

n of g with respect to r/ such that

γ'=Ad(A) I)' =SlS2

where s is the zth simple reflection in the Weyl group of g with respect to r/.
Define, for / G /,

and let 7?' be the /-orbit of (/>'
Choose root vectors Xα/, for every root α7 of g with respect to r/, such that

and set

, = Σ * (35)

It is clear that Aά(A)(//,) — Hu so /?, G ί). Obviously, the //z are linearly indepen-
dent, and hence form a basis of ί)

We now turn to Toda field theory The ATFT based on the afBne Lie algebra
g is defined by the lagrangian

dΨ dψ m

where Ψ is a function of the coordinates (x, ί) on 1 + 1 dimensional spacetime with
values in I), ( , ) is the invariant bilinear form on g, m2 is a (positive) mass scale,
and β is a coupling constant (usually either real or purely imaginary). Since the Ht

are a basis of ί), we can write

(36)

where the ψj are scalar-valued functions. The component xj/ι is associated with the
zth particle of the theory The potential term

in can be expanded formally as a power series in the ψi,

p=0 i],ι2, , ι p e i

and one says that there is a coupling (or fusing) between the particles labelled
zΊ,/2,. ,JP if Vl]l2 ipή=0
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From (36),

1
V

where the sum is over all permutations π of {1,2,...,/?}. Next, using (35), we get

(37)
Since the weight of

[Xβ[,[Xβ'2,--.AXβ'p,x
+]---]]

with respect to ί/ is β[-\- β'2-\- - + β'p, it is clear that the term on the right-hand

side of (37) corresponding to β[, βr

2,... 9 β
f

p can be non-zero only if

and hence that

vhh i p ± o ; 1 2 ; ,

Thus, the j^-point coupling Viχi2 ^ + 0 only if i\J2,' Jp satisfies (D^). The con-

verse statement also holds when p = 3, but this requires a case-by-case analysis,

which we omit.
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