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Abstract: We present a fast algorithm for computing the global crystal basis of the
basic 6^(sln)-module. This algorithm is based on combinatorial techniques which
have been developed for dealing with modular representations of symmetric groups,
and more generally with representations of Hecke algebras of type A at roots of
unity. We conjecture that, upon specialization q —> 1, our algorithm computes the
decomposition matrices of all Hecke algebras at a nth root of 1.

1. Introduction

This article arose as an attempt to understand the extensive numerical tables pub-
lished by James in the appendix of [14]. These tables contain some decomposition
matrices of g-Schur algebras at roots of unity, which contain as submatrices the
decomposition matrices of Hecke algebras.

A major problem in the /^-modular representation theory of the symmetric group
S m is to find an algorithm to compute its decomposition matrix. As a matter of fact,
this matrix is naturally indexed by the same labels as the decomposition matrix of the
Hecke algebra Hm{ζ), where ζ is a complex pth root of unity. As observed by James,
these two matrices are very close to each other, although not equal in general, and
apart from its independent interest, the computation of the decomposition matrices of
Hecke algebras at roots of unity should be considered as an important step towards
the modular case.

The decomposition matrix of Hm(ζ) is in principle expressible in terms of spe-
cializations at 1 of certain (inverse) affine Kazhdan-Lusztig polynomials. Unfortu-
nately, these polynomials do not seem to be easily computable. The aim of this
paper is to present a fast conjectural algorithm for calculating the decomposition
matrices of Hecke algebras at roots of unity.

This algorithm was actually designed for solving a quite different problem,
namely, to compute in an efficient way Kashiwara's global crystal basis of the
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basic representation of the quantum affine algebra Uq{ύn). Determining the global
basis is an important question in statistical mechanics, related to the diagonalization
of the Hamiltonian of the XXZ model [6]. It turns out that our algorithm is directly
inspired by the techniques described in [15] for computing the decomposition ma-
trices of symmetric groups.

There are deep connections, essentially provided by Kazhdan-Lusztig theory,
between modular representations, quantum groups and affine Lie algebras [31, 22].
However, in this case, we were rather guided by elementary combinatorial consid-
erations. ^

The first hint that the Fock representation of ύn should have something to do
with modular representations is the combinatorial description of this representation
given in [5] in terms of Young diagrams. Indeed, one can observe that the raising
and lowering operators er, fr are, from a combinatorial point of view, identical to
Robinson's r-restricting and r-inducing operators [39].

A second evidence comes from comparison of the recent results of Kleshchev
[23, 24, 25] in the modular representation theory with those of Misra and Miwa
[36] on the quantum group side. Indeed, Kleshchev has discovered a /^-modular
generalization of Young's branching rule for the irreducible representations of sym-
metric groups which is formulated in terms of a certain graph labelled by partitions.
It turns out that this graph is exactly the crystal graph of the Fock representation
of Uq{*\p) described by Misra and Miwa in [36].

This suggests that the crystal basis of the basic representation should play a role
in the modular representation theory, and indeed, there is a strong experimental ev-
idence, also supported by theoretical results, that the matrices expressing the global
lower crystal basis of the basic representation of Uq(ύn) on the natural basis of the
Fock space, are ^-analogues of the decomposition matrices of the Hecke algebras
at a primitive nth root of unity.

The conjecture can be extended to the case of the g-Schur algebra, by consid-
ering the whole Fock space as an irreducible Uq(§ln)-modu\Q and introducing an
appropriate canonical basis. As the description of this basis involves the introduc-
tion of new combinatorial ideas related to our previous work on ribbon tableaux
[27], we will not touch this question here (see [30]).

A reasonable way of proving the conjecture would perhaps be to give an ex-
pression of the canonical basis in terms of affine Kazhdan-Lusztig polynomials,
similar to the one given by Du [9, 10] for Uq(ύn). In this case, our algorithm
would probably provide a fast method for computing a subfamily of these polyno-
mials.

This article is structured as follows. Sections 2 and 3 recall the necessary back-
ground on modular representations of symmetric groups and Hecke algebras at roots
of unity. Section 4 describes the Fock representation of Uq(ύn), with conventions
differing slightly from the usual ones, in order to be compatible with those of the
modular representation theory. Section 5 describes, following [36], the crystal graph
of the Fock representation, and gives some applications to the combinatorics of n-
cores and ^-quotients. Section 6 is devoted to the global lower crystal basis, and
presents a fast algorithm to compute it. Some properties of the transition matri-
ces are established, and the main conjecture is stated. Other properties of these
matrices, also supporting the conjecture, are given in Sect. 7, where the Mullineux-
Kleshchev involution is studied from the point of view of crystal bases. Section 8 is
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devoted to a reformulation of the main conjecture in terms of the upper crystal basis.
Section 9 discusses, following an idea of Rouquier, a possible interpretation of our
^-decomposition numbers in terms of the Jantzen filtration of a Specht module.
Finally, as this paper could not have been written without the tables of James,
we also conclude it by an appendix of tables giving the global crystal basis,
the Gram matrices of the Shapovalov form (conjectured to provide g-analogues
of the Cartan invariants of the Hecke algebras), and some examples of crystal
graphs.

The main results of this paper have been announced in [28].

Note After the submission of this paper we have been informed by I Grojnowski and by S. Ariki
that they could prove Conjecture 6.9 (ii). Recently, we have received a preprint of Ariki [2] in
which a proof of a generalized version of Conjecture 6.9 (ii) involving cyclotomic Hecke algebras
is presented. Grojnowski can deduce 6.9 (ii) from the results announced in [Gr].

To the best of our knowledge Conjecture 6 9 (i) and the interpretation of ^-decomposition
numbers proposed in Sect. 9 are still open.

2. Modular Representations of Symmetric Groups

We shall review some combinatorial aspects of the representation theory of sym-
metric groups over Wp = Z/pΈ. Our basic reference is [15].

2.1. The irreducible representations. To obtain representations of S w over F p one
can start from the p(m) ordinary irreducible representations S(λ) written in Specht's
form. (Here and in what follows, p(m) denotes the number of partitions λ of the
integer m). The matrix coefficients in this form are integers and can be reduced
modulo p. One gets in this way p(m) representations S(λ) over Wp. These are no
longer irreducible in general.

Definition 2.1. A partition μ = (mam(m - \fm~ι 2 α 2 l α i ) is said to be p-regular
if all its multiplicities αt are < p. Otherwise it is called p-singular.

Theorem 2.2 (James), (i) Let μ be a p-regular partition of m. Then S(μ) contains
a unique maximal submodule radS(μ). The simple module S(μ)/rad£(μ) is denoted
by D(μ).

(ii) As μ varies over p-regular partitions of m, D(μ) varies over a complete
set of inequivalent irreducible representations of S m over Έp.

Thus the irreducible p-modular representations of 2>m are labelled by /^-regular
partitions.

2.2. Branching rules. In characteristic 0, Young's branching rule tells us that

where the sum is over all predecessors v of λ in the Young lattice. The corresponding

problem in characteristic p is to describe D(μ) i%m

m_χ for a /^-regular partition μ.

This is difficult because in general D(μ) l^1 is not semisimple, and its composition

multiplicities are > 1.
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Recently, Kleshchev [23, 24] solved the following simpler problem: to describe

the socle {i.e. the sum of all simple submodules) of D(μ) l%^_r

Theorem 2.3 (Kleshchev). Let μ be a p-regular partition of m. Then

where the sum is over all predecessors v of μ in Kleshchev's p-good lattice {to be
described below). In particular the sum is multiplicity-free and its description is
combinatorial.

Let us explain the construction of Kleshchev's /?-good lattice. This is an infinite
graph whose vertices are the /?-regular partitions and whose edges correspond to the
removal of a good node. To define what a good node is, we need some terminology.

Let λ be a partition represented by its Young diagram. Let N be the node (or
box) at the intersection of row number i and column number j . The content of N
is c — j — i, and its p-resίdue is r = cmodp. N is called a r-node. For example,
the nodes of λ — (3 2 I 2 ) have the following 3-residues

0

1

2

0

0

1 2

A removable node is a node of the boundary of λ which can be removed,
leaving a predecessor v of λ in Young's lattice. An indent node is a concave corner
on the rim of λ where a node can be added, giving a child of λ in Young's lattice.
For instance, λ — (3 2 I 2 ) has three removable nodes (two have residue 0, one has
residue 2), and four indent nodes (one has residue 0, one has residue 1, and two
have residue 2).

Fix a residue r e {0,1,...,/?— 1} and consider the sequence of removable and
indent r-nodes obtained by reading the boundary of λ from left to right. Thus, for
λ = (3 2 I 2 ) and p = 3 one has:

residue r =
residue r —
residue r —

0
1
2

RR1
I
IIR

Given such a sequence of letters R, /, one can perform the following algorithm:

• read the sequence from left to right and put between brackets all pairs of
consecutive letters RI,

• repeat the procedure ignoring the letters between brackets, until no pattern RI
is left.

The first R outside the brackets (if any) then indicates the good node of λ of residue
r (if any).

For example, this algorithm applied to the sequence

IRRRIRIRIIIIRIRR
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goes through the following steps:

209

and the penultimate R corresponds to a good node.
With this rule, we see that λ = (3 2 I 2 ) has one good 2-node, no good 1-node,

and one good 0-node (the leftmost removable 0-node).

Definition 2.4. Let p be a prime number. The Kleshchev p-good lattice is the
infinite graph whose vertices are the p-regular partitions μ and whose arrows are
given by

v —1—> μ <<==> v is obtained from μ by removing a good i—node .

Example 2.5. The Kleshchev 2-good lattice up to partitions of 5:

0/-X

B
We should note that we have slightly reformulated Kleshchev's definition of a

good node. It seems to us simpler this way. As a matter of fact, this bracketing
procedure is a common operation on two-letter alphabets, and an essential ingredient
in the definition of a symmetric group action on the set of Young tableaux (see [29]).
Also it makes it obvious that Kleshchev's p-gooά lattice coincides with the crystal
graph of the basic representation of the affine Lie algebra sl^ described by Misra
and Miwa [36] (see Sect. 5).
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It follows from the definition that each partition λ has at most one good
node of a given residue. On the other hand it is not difficult to see that λ =
(nfm(m— l)am-1 • 2 α 2 l α i ) has no good node if and only if all multiplicities αz

are divisible by p. In particular, a nonempty /?-regular partition μ has at least one
good node. Moreover, if v is /?-regular and μ is obtained by removing a good node
from v, then v is also /^-regular. Thus Kleshchev's lattice is the connected compo-
nent of the empty partition in the graph Γp whose set of vertices is the set of all
partitions λ and whose edges correspond to the removal of a good node. We shall
see that Γp is also the crystal graph of the Fock space of ύp.

2.3. Decomposition matrices. Another basic problem in the /^-modular representa-
tion theory of S m is to compute the composition multiplicities dχμ of the simple
modules D(μ) in the /^-reduced Specht modules S(λ). The nonnegative integers
dχμ are called the decomposition numbers and the matrix D ( F / 7 S W ) = [dχμ] is the
decomposition matrix. For example for p = 2 and m = 5, this matrix is

(5)
(41)
(32)
(312)
(221)
(213)

( I 5 )

(5)
1

1
2
1

1

(41)

1

1

(3:

1
1
1

where means 0.
Although many properties of these matrices are known (see [15]) we still lack

a general algorithm for computing them for all m and p. The main properties are

Theorem 2.6. (i) dχμ = 0 unless λ and μ have the same p-core,

(ii) dχμ = 0 unless λ <! μ. Moreover, dμμ — \.

We recall that the p-covQ of λ is the partition obtained by removing all possible
/7-ribbons (or />-rim-hooks) from the boundary of λ (see [15]). Property (i) is known
as Nakayama's conjecture, and was first proved by Brauer and Robinson (1947).

In (ii) <3 denotes the usual dominance order on partitions, defined by

i=k i=k

λ < μ <̂ => £ λi s Σ μi f o r a 1 1 k -
z = l i = l

Denoting by ^ the lexicographic order, we see that λ <j μ => λ ^ μ. Thus, if the
rows and columns of D ( F / 7 S m ) are arranged in lexicographic order, (ii) means that
Ό(Fp(£m) has a "wedge shape," a fact first proved by Farahat, Peel, Mϋller (1976).

2.4. Grothendieck groups. It is useful to reformulate the definition of the decom-
position matrices in the language of Grothendieck groups (see [4], chapter 2).

Let F be a field. We let Go(FSm) denote the Grothendieck group of the cate-
gory of finitely generated FSm-modules. It is a free abelian group with basis the
set {[A]} of classes of simple F6m-modules A . Let also AΓ0(FSm) denote the
Grothendieck group of the category of finitely generated projective FSm-modules.
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It is a free abelian group with basis the set {[Yi]} of classes of indecomposable
summands Yj of the regular representation Fζ£m. The indexation of these bases is
such that Di = Yi/ra,dYi9 where radY; is the unique maximal submodule of Yj. There
is a natural pairing between Ko(F<2m) and Go(FSm) given by

It is customary to consider at the same time the Grothendieck groups associated
with all symmetric groups (see [40]) and to set

G{F) = 0 Go(FSw), K{F) = ®K0(F&m).
m m

The pairing above is extended to K(F) x Q{F) by requiring that

(Ko(F<Sm), G 0(FS/)) = 0 if

Also, G(F) and K(F) are made into rings by introducing an additional multiplication
corresponding to the induction from S m x S/ to Sm +/, that is, for a FSm-module
M and a FS/-module N9 one sets

If F = Q the field of rational numbers, it is well-known that

G(F) ^ JC(F) ^ Sym ,

the ring of integral linear combinations of Schur symmetric functions sχ in an in-
finite number of variables (the reader is referred to [32] for definitions relative to
symmetric functions). The isomorphism is the Z-linear map defined by

The above pairing coincides with the usual scalar product on Sym:

(sχ9sμ) = δλμ .

In the case F = Ψp, the rings G(F) and JC(F) can still be interpreted in terms
of symmetric functions. Let J^ be the ideal of Sym generated by the power sums
Pk with k divisible by p. Then the map

[Sζλ)]—> d(sλ) :=

extends to a ring isomorphism from ^ ( F ^ ) to Sym/J(p\ On the other hand, IC(WP)
is isomorphic to T^ = {J^p^)^~, the orthogonal complement of J^ in Sym with
regard to ( , ). The pairing ( , ) p between JC(JFP) and G(ΈP) is the one
naturally induced by ( , ), that is,

(II, d(υ))p = (ii, ιθ, u e Ύ^\ υeSym,

where d(v) := i mod J^p\ Let μ be a /^-regular partition of m. Let φμ e

and ημ e Tip) denote the images of the classes [D(μ)] e G 0 ( F / 7 6 m ) and [Y(μ)] G
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Ko(Έp<5m) under these isomorphisms. We have

(ημ,Φv)p = δλμ, (2)

and therefore dλμ = (ημ, d(sλ))p = (ημ, sλ). This yields

ημ = ΣdλμSλ (3)
λ

Hence the decomposition matrix Ό(Ψp<Zm) may be regarded either as the matrix
of the natural embedding of Ko(ΨpQm) into Go(Q6m) in the bases {ημ}9 {sχ}, or
as the transpose of the reduction moάp (or decomposition map) from Go(Q®m) to
GoCFp&m) in the bases {sχ}, {φμ}. The composition of these two maps is known
as the Cartan map. Its matrix C(ΨpQm) in the bases {ημ}> {φμ} is given by

C(Fp<Sm) = t r D ( F p S m ) D ( F ; 7 S m ) .

In particular it is a symmetric matrix. Its entries may be expressed as

dχv = (ημ9 ηv) .

We can now state the problem of the computation of the decomposition numbers
in the following way. The rings T ( / ? ) and SymjJ^ are endowed with canonical
Z-bases {ημ} and {φμ} coming from their inteφretation as Grothendieck groups in
characteristic p. These bases are dual with respect to the natural scalar product of
Sym. One would like to compute the transition matrices from these bases to the
basis {sχ} of Schur functions.

2.5. r--inducing and r-restricting operators. We introduce now some linear opera-
tors on Sym which are fundamental tools for computing the decomposition matrices
D ( F / 7 S m ) . They were first studied by Robinson ([39], Chap. 6).

For r = 0,1,...,/?— 1, define the linear operators er by

e r s v

 = / j Sλ j

λ

where the sum is over all partitions λ obtained by removing a r-node of v. Similarly,
define fr by

frsχ = Σsv ,
v

where the sum is over all partitions v obtained by adding a r-noάe to λ. The operators
er and fr are called respectively the r-restricting and r-inducing operators.

Lemma 2.7. Let <S(/7) denote the subring of Sym generated by the power sums pk
for k divisible by p.

(i) For P e S(p\ Q G Sym, one has

er(PQ) = Per(Q% fr(PQ) = Pfr(Q).

(ii) For P,Q 6 Sym, one has
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Proof, (i) It is enough to check the statement in the particular case P = pup and
Q = sχ, and this is a consequence of the well-known combinatorial description of
the Schur-expansion of Pkpsχ (see [32], I 3, Ex. 11). We omit the details.

(ii) Reduce to P = sχ and Q = sv, in which case it results easily from the
definitions of ( , ), er and fr. D

It follows from (i) that the ideal J^p) is stable under er and fr. Therefore
er and fr induce linear operators on G(Ψp) = SymjJ^. Also, (ii) shows that
/C(Fp) = T ( / 7 ) is invariant under the action of er and fr. By abuse of notations, we
shall still denote by er and fr these endomoφhisms of ΰφ p) and JC(Fp).

The origin of these operators comes from the description of the blocks of Ψp<5m

in terms of p-corQS given by the Nakayama conjecture. Indeed if v, v' are two
partitions obtained from λ by filling indent nodes y, yr (resp. by removing removable
nodes γ, / ) , then v and v' have the same p-coxε if and only if y and y' have the same
residue r. Therefore, if M is a Έp&m-module contained in a block, the r-inducing
operators fr of GQFp) and K,(Έ p) compute the classes fr[M] of the projections of

the induced module M ]^m+ι on the various blocks of Ψp&m+\. The interpretation
of the r-restricting operators er is similar.

3. Representations of the Hecke Algebras of Type A at Roots of Unity

Let Hm(v) denote the Hecke algebra of type A over C(f). This is the associative
algebra with 1 generated by the symbols Ti9 i = l,...9m— 1 subject to the relations

Let z e C and let Hm{z) be the algebra obtained by specializing v —• z. For generic
z (i.e. zή= a root of unity or 0) it is known that Hm(z) = (C2>m. Throughout this
paper we shall denote by ζ a primitive nth root of 1. When n = p is a prime,
the representation theory of Hm(ζ) is in many respects similar to the /^-modular
representation theory of ®w, as will be illustrated in this section. Here, our main
references are [7, 8].

3.1. Irreducible modules. The natural i -analogues of the Specht modules for Hm(υ)
have been described in [7] (see also [11] for a polynomial realization of these
modules). We shall still denote them by S(λ). The S(λ), λ\- m form a complete
set of nonequivalent simple //m(ι;)-modules, and the matrix coefficients in these
representations are Laurent polynomials in v. Hence it is possible to specialize v
to C a n d to get Specht modules S(λ) for Hm(ζ). These are in general no longer
irreducible.

Theorem 3.1 (Dipper, James), (i) Let μ be a n-regular partition of m. Then S(μ)
contains a unique maximal submodule mάS(μ). The simple module S(μ)/mάS(μ)
is denoted by D(μ).

(ii) As μ varies over n-regular partitions of m, D(μ) varies over a complete set
of inequivalent irreducible representations of Hm(ζ).
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Thus the irreducible representations of Hm(ζ) are labelled by w-regular partitions.

3.2. Decomposition matrices. One defines as in the case of the symmetric group the
decomposition matrix Ό(Hm(ζ)) of composition multiplicities of the reduced Specht
modules S(λ). For typographical convenience, we shall still denote its entries by dχμ

but these should not be confused when n = p is a prime with the decomposition
numbers of the symmetric groups, with which they do not coincide in general. For
example the matrix D(//5(—1)) is

(5)
(41)
(32)

(312)
(221)
(213)

( I 5 )

(5)
1

1

1

(41)

1

1

(32)

1
1
1

which is different from the matrix D ( F 2 6 5 ) shown in the previous section. However
there are some striking similarities. Thus,

Theorem 3.2 (Dipper, James), (i) dχμ — 0 unless λ and μ have the same n-core,

(ii) dχμ = 0 unless λ <! μ. Moreover, dμμ = 1.

In [14], James has proposed to regard the matrix Ό(Hm(ζ)) (where n = p) as a
"first approximation" of D ( F / ? 6 m ) . Indeed, it is shown in [14] that

D ( F p S m ) = D(//w(O) A,

where A — (aμv) is a unitriangular adjustment matrix with nonnegative entries, most
of the off-diagonal aμv being 0. It is even conjectured in [14] that

Ό(Έp<5m) = Ό(Hm(ζ)) if m<p2.

3.3. Grothendieck groups, r-inducing and r-restrίcting operators. Let Hm denote
Hm(v) or Hm(z) for some z e C We denote by G0(Hm) (resp. K0(Hm)) the
Grothendieck group of the category of finitely generated Hm-modules {resp. finitely
generated projective Hm-modules). This is a free abelian group with basis the set
{[A]} of classes of simple Hm-modules Dt (resp. the set {[Yi]} of classes of in-
decomposable summands Yi of Hm), and A = Yi/mάYi. There is a natural pairing
between Ko(Hm) and Go(Hm) given by

As in the case of the symmetric group, we shall consider at the same time the
Grothendieck groups associated with all Hecke algebras Hm and set

g = 0 G0(Hm), K = ®K0(Hm).
m m

The pairing above is extended to /C x Q by requiring that

= O i f m * / .
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Also, Q and /C are made into rings by introducing an additional multiplication
corresponding to the induction from Hm 0 77/ to Hm+ι. When Hm = Hm(v), we have

Q(v) 9* JC(v) 2έ Sym ,

the isomorphism still being given by

In the case Hm — Hm(ζ), the map

extends to a ring isomoφhism from G(ζ) to Sym/J^n\ On the other hand, JC(ζ)

is isomorphic to T ( " \ The pairing ( • , • ) « between /C(ζ) and Q{ζ) is the one

naturally induced by ( , ), that is,

(w, d(v))n = (u, v), u G Ί<n\ v G Sym ,

where d(v) : = vmodj^n\ Let μ be a ^-regular partition of m. Let φμ G Sym/J^
and f/μ G T ( w ) denote the images of the classes [D(μ)] G G0(Hm(ζ)) and [7(μ)] G
Ko(Hm(ζ)) under these isomorphisms. Then, {0μ} and {ημ} are linear bases of

and T^) respectively, satisfying equations

, (4)

(5)

(6)

The problem is to compute the transition matrices from these bases to the basis
{sχ} of Schur functions. (Again, we have deliberately used for simplicity the same
notations φμ, ημ as in Sect. 2, but when n = p they indicate in general different
symmetric functions.)

Finally, the linear operators er, fr on Sym defined in 2 in connection with a
prime p still make sense with p replaced by n. The results of Lemma 2.7 are still
valid (with p replaced by /?), so that the operators er, fr induce endomorphisms of
Q(ζ) and K(ζ) still denoted by er, fr. These are the r-restricting and r-ίnducίng
operators which can again be interpreted as the combination of restricting (or in-
ducing) and projecting onto the different blocks.

3.4. Branching rules. The definition of Kleshchev's p-gooά lattice does not use the
fact that p is a prime. Hence it makes sense to consider the «-good lattice of n-
regular partitions for arbitrary n ^ 2. It may be conjectured that this graph describes
the socles of the restricted modules

In any case, we shall see in the next sections that this graph (for arbitrary n) does
appear in the context of the representation theory of the quantized affine Lie algebra

uq(*ιn).
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4. The Basic Representation of Uq{ύn)

In this section we describe, following [36], the Fock representation of the quantized
affine Lie algebra Uq(s\n\ and the basic representation M(Λ0) embedded in it. We
note that M(ΛQ) can be regarded as a ^-analogue of the Grothendieck ring JC(ζ) of
the previous section, with the raising and lowering operators of Uq(ύn) acting as
^-analogues of Robinson's r-restricting and r-inducing operators.

4.1. Highest weight Uq{ύn)-modules. We first recall the definition of Uq{ύn). Let
ί) be a (n + 1 )-dimensional vector space over Q with basis {ho,h\,... 9hn-\9D}. We
denote by {Ao9A\9...,An-\9δ} the dual basis of I)*, that is,

(Λi9hj) = δij9 (Λi9D) = 0, (δ,hi) = 0, {δ,D) = 1 ,

and we set αz = 2At — Λ/-i — Λ +i + <5*o δ for / = 0,1,.. ., n — 1. In these formulas it

is understood that An — Λ§ and A-\ — An-\. The n x n matrix [(α,-, A7 )] is the gener-

alized Cartan matrix associated to sln. The weight lattice is P — (Φ^ΓQ1 ΈAi)@Έδ9

its dual is P v = (©"ΓQ 1 Έhi)Q)ΈD, and the root lattice is Q = 0 "~Q Zα, . One de-

fines C/^(sIn) as the associative algebra with 1 over Q(#) generated by the symbols

£u fh 0 = ί = n — 1? a n ( i qh, h £ Pv, subject to the relations

~R

4=0

' (-1)*

(-if

qhfjq-h-

k

Ί-{<*i,hj)~

k

Jh' -

i
Γ

y-l-<α,

A > J 5 ,

Λ M

Here we follow the usual notation for ^-integers, ^-factorials and ^-binomial
coefficients:

^ - A :

q-q-1 ] ! = [ * ] [ * - ! ] • • • [ ! ] , m [m]\

* J [m-k]\[k]\ '

We now recall some definitions relative to L^(slw)-modules. Let M be a Uq(ύn)-
module and A e P a weight. The subspace

MΛ = {υ e M I qh v = q{Λ>h) υ, h G
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is called the weight space of weight A of M and its elements are called the weight
vectors of weight A. The module M i said to be integrable if

() ®AeP
(ii) άimMΛ < oc for A e P,

(iii) for / = 0,1,...,«— 1, M decomposes into a direct sum of finite dimensional
Ui -modules,

where Ui denotes the subalgebra of Uq{ύn) generated by e, , fu qhι, q~hi.
A highest weight vector v E M is a vector annihilated by all raising operators

βi. The module M is said to be a highest weight module if there exists a high-
est weight vector υ such that M — Uq(ύn)υ. The weight of v is called the highest
weight of M.

By the representation theory of Uq($ln)9 there exists for each dominant inte-
gral weight A {i.e. (A,hi) e7L+ for / = 0,1,...,« — 1) a unique integrable highest
weight module M{A) with highest weight A.

4.2. The Fock space. An important representation of Uq(ύn) can be obtained by
letting it act on an infinite dimensional vector space with distinguished basis the set
V of all Young diagrams (or partitions):

T is known as the Fock space. To describe this action we need to introduce some
notation.

Let / E {0,1,...,« — 1} and let λ, v be two partitions such that v is obtained
from λ by filling an indent /-node γ (see Sect. 2). We set:

Ni(λ) = #{indent /-nodes of λ } — #{removable /-nodes of λ},
Nj(λ,v) = #{indent /-nodes of λ situated to the left of γ (not counting 7)}
—#{removable /-nodes of λ situated to the left of y}9

Nf(λ,v) = 4t{indent /-nodes of λ situated to the right of γ (not counting
y)} — ίt{ removable /-nodes of λ situated to the right of 7},
N°(λ) = #{0-nodes of λ}.

nodes to the left of 7

v —

Έ.
nodes to the right of 7

The following result is due to Hayashi [13], and the formulation that we use
has been given by Misra and Miwa [36].
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Theorem 4.1. The algebra Uq(ύn) acts on T by

q q ,
fiλ = Σv qNΐ(λ>v>> v, sum over all partitions v such that v/λ is a i-node,
eiv = Σλ 4~Ni ^'v^ ^' s u m o υ e r all partitions λ such that v/λ is a i-node.

It is easy to see that T is an integrable L^(slw)-module. It is not irreducible. Actually
it decomposes as

T * 0 M(Λ0 - kδ)®p{k) .

Obviously, the empty partition 0 is a highest weight vector of weight ΛQ. The

submodule Uq(sln)Φ is isomorphic to M(Λ0), the so-called basic representation of

Uq(ύn).
There is a natural grading of T given by

deg/l = m <̂ => λ\~ m .

This is the principal gradation of T (see [18]). Set

Γm= Θ Q( )̂A, M(Λ0)m=M(Λ0)nfm.
deg /l=w

Then, dimM(Λo)m = />*(w), the number of w-regular partitions of m.

To conclude, we note that the t/^(δlπ)-modules we have described should be
regarded as some ^-analogues of the Grothendieck rings of the Hecke algebras.
More precisely, denoting by T and M(ΛQ) the slrt-modules obtained by specializing
q to 1, we see that

T <* Q(υ) Θ Z Q , M(Λo) * K{ζ) ®z Q ,

via the mapping λ —> sχ. The raising operators et and lowering operators β of
δlw are identified in these isomorphisms with the /-restricting and /-inducing op-
erators. Thus a natural correspondence shows up between the vectors of degree
m of the basic representation of sln and the classes of protective modules of
Hm(ζ) Using this correspondence, the problem of computing the decomposition
matrices of the algebras Hm(ζ) translates into the problem of computing a certain
distinguished basis of the basic si „ -module realized as a submodule of the Fock
space.

5. The Crystal Graphs of T and M(Λ0)

Canonical bases of the integrable highest weight modules of afrme Lie algebras have
been introduced by Kashiwara as classical limits of the so-called global crystal bases
of the corresponding quantized aίrlne Lie algebras. The first step in determining these
bases is to obtain the crystal graph of the module under study. In the case of T
and M(Λo) the crystal graphs have been first described by Misra and Miwa [36].
We shall briefly recall their results.
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5.7. The crystal basis at q = 0 of T. Let A c Q(#) denote the subring of rational
functions without pole at q — 0. The lower crystal basis at q = 0 of J7, is the pair
(L,B) where L is the lower crystal lattice given by

L= @Aλ,
λev

and B is the basis of the Q-vector space L/qL given by

B = {λmoάqL \ λ € V} .

The main properties of (L,B) are stated in terms of Kashiwara's operators e^f, the
definition of which we shall now recall. These are endomorphisms of T coming from
the decomposition of T into a direct sum of simple ^-modules. The subalgebra U\
being isomorphic to Uq{ύi\ it is known from the representation theory of Uq{%\2)
that these simple Uι -modules are of the form

k=0

where

e ^ = ^ = 0 and

By definition et and ft operate on each Vι by

where we understand u_\ — u\+λ = 0. The endomorphisms ez , ft are then extended
to T using the isomoφhism of £/rmodules Φ : T = 0 ^ F/̂  (one checks that this
does not depend on the choice of Φ). We can now state

Theorem 5.1 (Misra, Miwa). The crystal lattice L is invariant under e^f^ that is,

Therefore, eu f induce endomorphisms of L/qL (still denoted by e~u f) whose
action on B is purely combinatorial, namely

(i) eiiymoάqL) = 0 if v has no good i-node,
(ii) if v has a good i-node and if λ is the partition obtained by removing this

node from v, then eι(v'modqL) = λmoάqL,
(iii) f^λmoάqL) = 0 if λ has no good indent i-node,
(iv) if λ has a good indent i-node and if v is the partition obtained by adding

this node to λ, then f^λmoάqL) = vmodqL.

Here, we have called good indent i-node an indent /-node y of λ such that if v is
obtained by adding y to λ, then y is a good (removable) node of v. Equivalently,
the good indent /-node of λ (if any) is indicated by the last / outside the brackets
in the algorithmic description of Sect. 2.

It follows from Theorem 5.1 that the action of eu ft on B can be recorded on
a graph Γn named the crystal graph of T, whose set of vertices is B and whose
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arrows are given by

λ —^ v <£=> ft{X mod qL) = v mod qL

Φ=4> λ is obtained from v by removing a good /-node .

5.2. The crystal basis at q = 0 of M{AQ). There is a unique decomposition of T

into a direct sum of L^( si ^-modules

0 M(Λ0 -

This defines a projection Π : J" —> M(AQ) which induces a projection Π :
L(Λ0)/qL(Λ0), where L(Λ0) := LΠM(Λ0). It turns out that B(Λ0) := 77(£)\{0} is
given by

B(Λ0) = {ΠμmoάqL) \ μ G Vn] ,

where PΛ denotes the set of ^-regular partitions. The pair (B(Λo),L(Λo)) satisfies
the same properties as those of (L,B) stated in Theorem 5.1. The crystal graph of
M(Λo) is none other than the connected component of Γn containing the empty
partition 0. Thus, comparing with Theorem 2.3, Definition 2.4, we have obtained

Proposition 5.2. When n = p is a prime, the crystal graph of M(ΛQ) coincides
with Kleshcheυ's p-good lattice.

5.3. Reduced n-quotίent and a bijectίve proof of a classical formula. We conclude
this section by discussing a classical combinatorial problem arising in the ^-modular
representation theory of S m (or similarly in the representation theory of Hm(ζ)) and
in the study of the basic slw-module M(A0). Denote by λ(n) and λ^ = (λ°,..., λn~λ)
the n-core and n-quotient of a partition λ (see [15]). The integer

\λ\n : = Σ deg A1' = -(degλ - d e g ^ } )
i=0 n

is called the n-weight of λ.

Problem 5.3. What is the number Nnm(θ) of n-regular partitions of m with
n-core ΘΊ

According to the Nakayama conjecture for 6 m (or its analogue for Hm(ζ))> the
/>-cores of the partitions λ of m parametrize the blocks of Έp<5m (resp. the «-cores
parametrize the blocks of Hm(ζ)). _

On the other hand, the set of weights of M(Ao) (and of JF) is

p(A0) = {wA0 -kδ \w e w9k e N } ,

where W denotes the Weyl group of ύn (see [18]). A partition λ, when regarded as
a weight vector of T, has a weight of the form wt (μ) = wA0 — kδ, where k = \λ\n.
The weight spaces M(AQ)WΛQ are 1-dimensional and in the realization of Sect. 4
they are precisely the lines spanned by the «-cores θ. The stabilizer WΛ° of Ao

in W is the subgroup generated by the reflections s\,s2,...sn-\ associated with the
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simple roots oc\,θί2,...,αn_i. We shall denote by we the unique element in W/WΛ°
such that wt(θ) = wβΛo, and by WQ a representative of H>#.

The number Nnm(θ) may therefore be interpreted in different ways. It is

(i) the dimension of the block of Hm(ζ) parametrized by θ,
(ii) if n — p is a prime, the dimension of the block of F ^ S m parametrized by θ,
(iii) the dimension of the weight space of M(Λ0) with weight wβΛ0 — sδ, where

s = (m — deg θ)/n.

In the fifties Robinson proved the formula

h+h+ +in-i=s

which shows that this number does not depend on θ but only on s (see [39], p.
112). This is clear from the interpretation (iii) since the character of M(/t 0) must
be invariant under the action of W.

We would like to point out that one can use the crystal graph of M(Λ0) to
obtain a bijective proof of this result. The basic idea is that the set of vertices of
the crystal graph of a £/^(cj)-module is endowed with a natural action of the Weyl
group of the Lie algebra g [21] (see [29] for an application of this action in the
case g = ύn).

From now on, we shall identify the vector μmod qL(Λo) of B(Λ$) with the
corresponding ^-regular partition μ. The action of a simple reflection Sj of W on μ
is defined by

SllX \ e;{wt{μXhi)μ if (wt(μ)Λ) ^ 0

In other words, stμ is the mirror image of μ in the reflection through the middle of
the string of colour i of the crystal graph going through μ.

Lemma 5.4. This action is a lifting to B(ΛQ) of the usual action of W on
in the sense that

Moreover the stabilizers of μ and wt (μ) coincide:

w μ = μ 4=^ w(wt (μ)) = wt (μ).

Proof One has wt C/Jμ) = wt (μ) — α; and wt (£;μ) = wt (μ) + αz. Therefore wt (svμ)
= wt(μ) — (wt(μ),λz )αz = Si(wt(μ)). To prove the second fact we can assume that
wt(μ) is dominant, since each JF-orbit in P(Λ0) contains a dominant weight. Thus,
we have wt(μ) = Λo — kδ for some integer k, so that Stab(wt(μ)) = Stab(Λo) =
WΛo (because wδ = δ for all w e W). Now for i = 1,2,...,« - 1, (wt(μ),^ ) = 0
which shows that Λvμ = μ. Hence wμ = μ for w G WΛ°. D

It follows that the orbits of the action of W on B(Λo) are all isomorphic to
W/WΛ\ and that they are parametrized by their unique vector of dominant weight,
that is, by their unique partition μ without «-core. Therefore for any pair θ, θ^ of
fl-cores, the map

BΘΘΪ : μ — > WΘΪ Wβ\μ)
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establishes a bijection (independent of the representatives we, WQΪ of we, w#t ) be-
tween the set of ^-regular partitions with Π-COTQ θ and the set of ^-regular partitions
with «-core θ\ which preserves the ^-weight.

Consider now the family of «-cores

θk = ( k n - χ ( k - l ) n - l . - - 2 n - l l n ~ l ) 9 k ^ 1 .

We have the following lemma, which is a particular case of [39], 6.36, p. 112.

Lemma 5.5. Let s be an integer ^ k + 1 and set m = deg θk + ns. A partition μ
with n-weight s and n-core θk is n-regular iff the r th constituent of the nth quotient
of μ is empty, where r = A: mod n.

It is easy to check that if μ satisfies the conditions of the lemma and μt =
Bθkθk+ι(μ), then the ^-quotient of μt is obtained from that of μ by performing a
circular permutation: μW = μt(/+i)? j e TLjnTL.

Now, let μ be a ^-regular partition with ^-weight s9 and set μt = Bμ{n)θk+ι(μ)
for A: ^ s — 1. Then, the map

is well-defined (i.e. does not depend on the choice of k). We call the (n — l)-uple
(μt(£+i)? ?μt(£+«-i)) the reduced n-quotient of μ. The above arguments show that
a ^-regular partition is uniquely determined by its «-core and its reduced ^-quotient,
which proves the formula of Robinson.

Example 5.6. We illustrate these definitions by computing the reduced 3-quotients
of the 5 partitions of m = 6 with empty 3-core.

μ μt (k — 1) 3-quotient of μt reduced 3-quotient

(6) (71) ((2), 0,0) (0,(2))

(412) (422) ((12),0,0) (0,(12))

(321) (3221) (0,0,(12)) ((12),0)

(51) (62) (0,0,(2)) ((2),0)

(32) (42)

6. The Lower Global Crystal Basis of M(Λ0)

We recall the definition of Kashiwara's lower global crystal basis and present a sim-
ple and effective algorithm to compute it. This algorithm is inspired by the methods
described in [15] for finding the decomposition matrices of the symmetric groups.
Then we state our main conjecture.

6.1. The definition of {G(μ)}. We need to introduce an involution v—>v

of M(AQ). We start from the involution P —> P of Uq(ύn) defined as the ring
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automorphism satisfying

Then, for v = Pφ e M(Λ0), we set ϋ = P0. Finally, we denote by C/Q the sub-

Qfogr ^-algebra of Uq(sln) generated by f(k) := .£*/[*]!, and we set M ( Λ 0 ) Q =

C/Q 0. We can now state

Theorem 6.1 (Kashiwara [19]). There exists a unique <Q[q,q~ι]-basis {G(μ),μ G
^ such that

(Gl) G(μ) = μmod qL,
(G2) G(μ) = G{μ).

The basis {G(μ)} is called the lower global crystal basis of M(ΛQ)Q (or M(Λo)).

6.2. The algorithm. Let m be a fixed integer. We want to compute the finite sub-
set of {G(μ)} consisting of the vectors of degree m. More precisely we want to
determine the expansion

G(μ) = Σ dχμ(q)λ
λhm

of these G(μ) on the natural basis {λ} of T. The matrix Όm(q) = [dχμ(q)] of the
coefficients of this expansion is a rectangular matrix whose rows are labelled by the
partitions λ of m and whose columns are labelled by the ^-regular partitions μ of
m.

Lemma 6.2. Let υ G M(Λ0) be a vector of the type

(7)

for some positive integers k\,...9kS9 and some sequence of elements (r\9...,rs)
of {0,1,...,n — I}. Then the coordinates of v on the basis {λ} of T belong to

Proof. By induction on s, it is enough to prove that for λ,τ eV, the coefficient
of λ in ff*τ is divisible by [ks]\. If this coefficient is nonzero, then λ is obtained
from τ by filling ks indent rs-nodes. To τ and λ we associate, as in Sect. 2, two
sequences Sτ and Sv of letters R and / indicating the successive removable and
indent rs-nodes. We write

Sτ = aqaq-\ --a\, Sλ = bqbq-\ b\ ,

where at, bi G {/?,/} and at = fy except for ks letters aj = / for which fey = R. Let
J = {jι < < Λ} be the set of indices j such that ajφbj. It follows from the
combinatorial description of the action of f on Young diagrams that λ will occur
exactly ks! times in f^τ, corresponding to the ks! different orders in which we can
fill the ks indent nodes. Let Uσ(i)9- ,jσ(ks)) be a permutation of the indices of J .
One checks that the term in f k

r

s τ corresponding to the addition of a node first in
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position yσ(i), then in position jσ(2)9 and so on, is equal to qN^λ where,

Here /(σ) denotes the length of the permutation σ. Hence the coefficient of λ in
f ^ τ is equal to

Σ qN{iά)+2ί{σ) = ^ ( i d ) + C l ) [ks]\ 9

σ

which proves the lemma. D

Corollary 6.3. We have dλμ(q) e Q[<?].

Proof. Since G{μ) GM(T1O)Q, it is a Q[q,q~ι]-linear combination of vectors of
the form (7). Hence by Lemma 6.2, the coefficients dχμ(q) belong to Q[#, q~1].
Now it follows from (Gl) that dχμ{q) is regular at q = 0, which forces
dλμ(q) e ®[q]. •

We can now describe our algorithm for computing Όm(q). Our method is very
similar to the techniques explained in [15] for finding the decomposition matrix of
the symmetric group 2>m modulo n (in case n — p is a prime). We shall first obtain
a "first approximation" {A(μ)} of {G(μ)} which satisfies

(A0) {A(μ)9μ eVn,μh m} is a
(Al) A(μ) = Σ/i^μO?)^ where

N[q9q-ι]9

of M(Λ0)m ^
= 0 unless A <! μ, ocμμ(q)=l, and

(A2)A(μ)=A(μ).

We explain the construction of {A(μ)}. The vector A(μ) will be of the type

A(μ) = JΪ? )f£τl)- f<i

kι)9 (8)

It is clear that f^k) = ffk\ so that (A2) will be automatically fulfilled. Therefore
it remains to explain how to get from μ the two sequences of integers (r i , . . . ,r 5 ),
( i i , . . . Λ ) such that (A0) (Al) hold true.

For this we shall follow the "ladder method" of [15], 6.3.51, p. 283. We need
some terminology. Consider a Young diagram μ whose boxes are filled with their
^-residues. For example, if n = 4,

3
0
1
2

3
0
1
2

3
0

1
2
3
0
1

2
3
0
1

1

2

3
0
1
2

2

3
0
1
2

3

0
1
2

3
0

1

2

3
0
1

2

3
0
1

2
2

3

The ladders are the straight lines of equation y = (1 — n)x + &, A: = 0,1,2, Here
we take the origin of coordinates to be the center of the leftmost bottom box of μ.
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Replacing each box by the corresponding node lying at its center we get a picture
of the following type (we have drawn only a few of the ladders intersecting μ):

By construction, the nodes of μ lying on a given ladder y = (I — n)x + k all
have the same residue n — A; mod n. Let s be the number of ladders containing at
least one node of μ. Denote these ladders from left to right by L\,... ,LS, so that L\
is the ladder through the origin and Ls is the rightmost ladder intersecting μ. Let k\
be the number of nodes of μ lying on Lz , and let rt be their common ^-residue. Thus
in our example s = 23, and for instance r^ = 2, fe = 2 , Γ22 = 3, #22 = 2,7*21 = 0,
£21 = 1. We can now define, for a ^-regular partition μ, the vector ^4(μ) by
formula (8).

Lemma 6.4. The vectors A(μ) satisfy properties (A0), (Al), (A2) above.

Proof. As already mentioned, (A2) is clear from the definition. Let us prove (Al).
This is done by induction on s. Let us assume that A(y) satisfies (Al), where v is the
partition obtained from μ by removing the nodes lying on the rightmost ladder Ls.
Let τ be a partition occurring in the expansion of A(v). Let λ be a partition obtained
from τ by filling ks indent rs-nodes (if possible). Taking into account Lemma 6.2,
all we have to prove is that

(i) λ < μ ,
(ii) if λ = μ then τ = v, and the coefficient of μ in f^v is equal to [ks]\

The proof of (i) comes from the fact that since μ is «-regular, the nodes of
μ/v lie in the ks lowest positions on the ladder Ls. We refer to [15], 6.3.54 for
details.

Now if λ = μ, then τ is obtained from μ by removing ks nodes of residue rs.
Since we have τ ^ v by induction, the only possibility is τ = v. One computes easily
in this case iV(id) = — (2) ( w e have used the notation of the proof of Lemma 6.2).
Hence the coefficient of μ in f^v is [ks]\, which proves (ii).

We now come to the proof of (A0). It follows from (Al) that the vectors A(μ)
are linearly independent. It is also clear that A(μ) is a vector of degree m = degμ of
M(ΛQ). The dimension of M(Λ0)m being equal to the number of ^-regular partitions
of m, we see that {A(μ)} is a Q(#)-basis of M(Λ0). Write

(9)
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Then βvμ(q~x) = βvμ(q) because of (G2) and (A2). Define the following square
matrices indexed by ^-regular partitions of m in decreasing lexicographic order

B = [βvμ(q)l A = [ocvμ(q)].

Then A is unitriangular with entries in N [ ^ , ^ - 1 ] by (Al), and the entries of A
belong to Q[g] by Corollary 6.3. Therefore the entries of B=A~ιA belong to
Q[q,q~1]. Hence {A(μ)} is a Q[q,q~ι]-bsisis of M(Λ0)<$. D

We note that Lakshmibai has constructed in [26], for the general case of a high-
est weight module over a quantum Kac-Moody algebra, a Q[q,q~^-basis consisting
of vectors of the form (7). It would be interesting to compare this basis with the
basis {A(μ)}.

Example 6.5. The basis {A(μ)} of M(Λo)s for Uq(U2) is given by

(A(5) = / O / I / O / I / O 0 = ( 5 )

= /i/o/f } /o0 = (41)

U(32) = /^2)/(i2)/o 0 = (32) + q(312) + <?2(221).

We now turn to the second step of the algorithm, namely, the computation of
{GOO} out of {A(μ)}.

Lemma 6.6. The coefficients βvμ(q) in (9) are such that βvμ(q) = 0 unless v ^ μ,
and βμμ(q) = 1.

Proof. Let μ be a fixed ^-regular partition of m and let τ be the greatest partition
in the lexicographic order such that βτμ(q)^O. Then the only nonzero summand
in dτμ(q) = Σvotτv(q)βvμ(q) is obtained for v = τ. Indeed, (xτv(q) = 0 for τ > v
and βvμ(q) = 0 for v > τ. Thus, βτμ{q) = dτμ(q). Now, since βτμ(q~ι) = βτμ(q)
and dτμ(q) is a polynomial in q, we have βτμ(q) = βτμiβ) — dτμ(0). If τ φ μ , then
dτμ(0) = 0 which contradicts the definition of τ. Therefore, τ = μ and βμμ{q) =
^ ( 0 ) = l . D

It follows that the basis {G(μ)} can easily be obtained by a "triangular" algo-
rithm. Indeed, let

μθ) = ( m ) > μ(2) = (m - 1,1) > > μ ( 0

be the list of ^-regular partitions of m sorted in lexicographic order. By Lemma 6.6,
G(μ ( ί )) = A(μ^). Now suppose by induction that we have computed the expansion
on the basis {λ} of the vectors

G(μ ( z + 1 ) ), G(μ ( / + 2 ) ) ( )

Then
1>) J,{q)G{μ{t)) ,

where the ys(q) are completely determined by

?»(?"') = ?»(?) and G(μ(i)) = μ(i)mod qL.
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Indeed, if Gcμ(l+ι)μiι)(q) = Σy=-r flyV>then W+K?) = Σ%-raJ<lJ + Σ;=i <*-j<?'• N e x t >

if the coefficient of μ ( / + 2 ) inA(μ^) - yi+i(?)G(μ (/+1)) is Σ " = - A 4 7 > t h e n 7i+2(?) =

Σ/=-ί /̂V' + Σ ' =i b-jqj. And so on. Finally, we note that it follows from (Al)

that ys(q) has integer coefficients and is zero unless μ^s) <3 μ(zλ

Example 6 7. We continue the previous example. We have μ (1) = (5), μ(2) = (41),
μ(3) = (32). We see that Λ(32) = (32)mod #L and ,4(41) = (41)mod qL, so that
G(32)=A(32) and G(41) =Λ(41). Next,

G(5) = A(5) -

Since (41) does not appear in ^4(5), y2(^) = 0. Finally, since (32) occurs with
coefficient 1, we have 73(q) = 1 and

G(5) = A(5) - G(32) = (5)

From the description of the algorithm we deduce immediately the following

Theorem 6.8. The coefficients dχμ(q) in the expansion

have the following properties:

(i) dλμ(q) G Z[q],
(ii) dμμ(q) = 1 and for λ + μ, dλμ(0) = 0,

(iii) dχμ{q) — 0 unless λ and μ have the same degree, the same n-core, and

λ<μ.

Proof The only point that has not been discussed yet is the fact that dχμ(q) = 0
unless λ and μ have the same n-core. This amounts to saying that G(μ) is a weight
vector of M(ΛQ ), which is clear from the construction. D

Comparing (ii) (iii) with the properties noted above for the decomposition num-
bers dχμ of the Hecke algebra Hm{ζ), we are led to our main

Conjecture 6.9. For λ G V, μ G Vn partitions of m, one has

(i) dλμ(q) G Nfo],
(ii) dλμ(l) = dλμ.

This conjecture agrees with the decomposition matrices computed by James for
m ^ 10 [14]. The case n = 2, (ζ = — 1) has been further considered by James and
Mathas [16] who obtained in this case the decomposition matrices up to m = 20.
We have also checked our conjecture on these matrices.
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7. The Basis {G(μ)} and the Mullineux-Kleshchev Involution

In this section we prove a symmetry property of the basis {G(μ)} related to an-
other classical combinatorial problem of the modular representation theory of the
symmetric groups.

Given an irreducible Sm-module D(μ) over a field of characteristic p, one can
form its tensor product with the one-dimensional sign representation of S w , which
is another simple module D(μ*). The problem is to describe in combinatorial terms
the involution μ ^ μ * . In characteristic 0, it is well known that μ* coincides with
the conjugate partition μ! of μ. The answer in the characteristic p case is more
difficult.

In 1979, Mullineux constructed an involution μ ι—»• μ v on the set of ^-regular
partitions and conjectured that μ* = μ v [37]. There have been several papers on
this subject giving more and more evidence that Mullineux's conjecture was true
(e.g. Martin [34, 35], Andrews and Olsson [1], Bessenrodt and Olsson [3]), but the
proof has been obtained only recently by Ford and Kleshchev [12], using the tech-
niques developed by Kleshchev in [25]. In fact, Kleshchev first gave the following
description of μ*:

Theorem 7.1 (Kleshchev [25)). Let μ be a p-regular partition and let

be a path from 0 to μ in Kleshchev's p-good lattice. (The notation means that
one first goes through k\ arrows labelled π , then k2 arrows labelled r2, and so
on.) Then, the path

(-n)*i {-r2p {-rs)
ks ^

connects 0 to μ*. (Here the labels (—rz ) are understood modulo p.)

After that, Ford and Kleshchev proved that this combinatorial description was
equivalent to the very different description of μ v by Mullineux. We shall therefore
call the map μ ι-» μ* the Mullineux-Kleshchev map.

The Mullineux-Kleshchev map is associated with a natural symmetry of the
decomposition matrices of the symmetric groups. Indeed, denoting by M^ the dual
of an &m -module M, we have

dλμ = [S(λ) : D(μ)] = [S(λ) 0 sgn : D(μ) 0 sgn] - [S(λfγ : D(μ*)]

We shall now prove an analog of this relation for the coefficients dχμ(q) of the
global crystal basis {G(μ)}. We first remark that the primality of p is never used
in the combinatorial descriptions of the Mullineux-Kleshchev map. In other words,
we can define using the crystal graph Γ(Λ0) of M(Λ0) an involution still denoted
by μ f—> μ* on the set of w-regular partitions by the following rule:

rh r

k2 rks

if 0 —^ - ^ —^ μ is a path from 0 to μ in Γ(Λo), then
(-n)*i (-np {_rs)ks

•" —> μ is a path from 0 to μ*.
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With this definition, we have

Theorem 7.2. For λeV, μe Vn, there holds

where \μ\n denotes the n-weight of μ.

If Conjecture 6.9 (ii) is true, this will prove that the formula dχtμ* = dχμ is also
satisfied by the decomposition numbers of Hecke algebras at roots of 1, a reasonable
statement which has already been conjectured [33, 12], and proved in case n = p
is a prime [38].

To prove this theorem we shall introduce, motivated by the previous discussion,
two natural involutions of T and M(ΛQ). The first one denoted by ' extends to T
the conjugation of partitions, namely, we set

λ' = the conjugate partition of λ ,
(v + wy = v' + w', (v,w e T),

)vy = φ(q-ι)v\ (φ G

With this definition, the theorem we want to prove can be rewritten as

G(μ*) = q^G(μ)'. (10)

The second involution comes from the automorphism # of Uq{ύn) specified by

(It follows from the form of the generalized Cartan matrix [(αz ,A7 )] which is sym-
metrical under i <-* —/mod n that these relations extend to an automorphism of
Uq(ύn).) This automorphism induces an involution still denoted by # of M(Λ0)
by setting

0# = 0, (Pvf = P V , (P G Uq(dn)9 v e M(Λo)).

Note that for n = 2, # = id, which has to be compared to the fact that in character-
istic 2 the sign character coincides with the trivial character of the symmetric group.
We shall first prove:

Lemma 7.3. For μ e Pn, G(μf = G(μ*).

Proof of Lemma 7.3. We know that G(μ) is the unique vector of M(Λ0)q satisfying

GOO = GOO, GOO =fr

k; - - . ^ O m o d qL(Λ0) ,

where 0 —1—> -^ μ is a path from 0 to μ in the crystal graph of M(AQ).

Now, it is clear that the involutions # and " commute, so that G(μ)# = (G(μ))# =
G{μf. Therefore, to prove Lemma 7.3, it remains to show that

=f-r •• •/!, 0mod



230 A Lascoux, B Leclerc, J -Y Thibon

This will result from

Lemma 7.4. For v e M(Λ0% (fυf =f-i(v#).

Proof of Lemma 7.4. By linearity, we may assume that υ is a weight vector of
weight A. The definition of^ (see Sect. 5) can be rephrased as follows. There exists
a unique expansion

k

where u^ has weight A + k&i and etUk = 0, and one has

Now, we have v* = Σkf-iut> where e_,«* = (e, Wi)# = 0. Hence, f_tv
# =

Σk f-ΐl)ut = (fflf, as required. D

Let us now conclude the proof of Lemma 7.3. It follows from Lemma 7.4 that

L(Λ0)= Σ Afh---fir$

is invariant under #. Hence, (qL(Ao))# = qL(Ao), and

G(μf = if"' • • χf '0) # mod qL(Λ0) =f^ • • -f^Jmoά qL(Λ0) . D

To prove the theorem, we have now to check that G(μψ = q^nG(μ)f . We first
establish

Lemma 7.5. For u e T, ffu = (q-χ~hιfu')1.

Proof of Lemma 7.5: By linearity, it is enough to check it when u = λ e V. On
the one hand, one has

and on the other hand

so that all we have to check is

Nr_i(λ,v)=l-Nl(λ',vf)+Ni(v/).

Now, it is clear that NLi(λ,v) = Nf(λ'9V)9 and taking into account the relation

Ni(v')=Nf(λ'9v')+N[(λfJ)-l9

the result follows. D
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Using Lemma 7.5, we can now prove

Lemma 7.6. Let v e M(ΛQ) be a weight vector of weight A satisfying v = v. Then,

where ( | ) denotes the usual symmetric bilinear form on the weight lattice of

ύn (see [18]).

Proof of Lemma 7.6. The hypothesis v = v means that υ is of the form

where βh ik(q~ι) = βix ik(q) and Λ = Λo - och ccik. Thus, it is enough to
prove the lemma in the case v — fλ fk0. We proceed by induction on k and
assume that u = fh-- ffi satisfies u# = q~^A+an\Λ+(χnV2ur. Then, by Lemma 7.5,

SO, V# = q-(Λ+«n I^+«Ί )/2?l+(^K,) v' = q-(Λ\Λ)/2

We can now finish the proof of the theorem. Since G(μ) = G(μ), we can apply
Lemma 7.6, getting

G(μf =

The second equality comes from the fact that

wtμ = wβ(Λo) — sδ ,

where θ is the «-core of μ and s = \μ\n (see Sect. 5). Therefore, since

(wθ(Λo)\wθ(Λo)) = (Ao\4>) = 0, (δ\δ) = 0 ,

(MΛo)\δ) = (Λ0\we\δ)) = (ylo|5) = 1 ,

we see that — (wtμ|wtμ)/2 = \μ\n. D

Corollary 7.7. dχμ(q) is a polynomial of degree ^ |μ|w. 7%w inequality is strict for
/lφμ* ;, α ^ dμ*'μ(q) = q^\ In particular, if \μ\n = 1, there are only two nonzero
entries in the column ofΌm(q) indexed by μ, namely dμμ(q) = 1 and dμ*'μ(q) = q.

Proof dχrμ*(q) = q^ndχμ(q~ι) contains no negative power of q, so degdχμ(q) ^
\μ\n. Moreover, d^μ*(0) = 0 except for λ1 = μ* which shows that the inequality is
strict if Aφμ*7. Finally, dμ*'μ(q) = qlμUdμ*μ*(q) = qM». D

Note that specializing q to 1, the last statement is in agreement with the de-
scription of decomposition numbers for blocks of weight 1 given by James [14].

Finally, we remark that from an algorithmic point of view, the theorem allows to
reduce the computation of {G(μ)} to the determination of approximately half of it.
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8. The Upper Global Crystal Basis of M(Λ0)

There is a natural scalar product, the so-called Shapovalov form, on the highest
weight module M(Λo), characterized by

(0,0) = 1, (ί*M) = (urfv), (MO) = (u9βiV), (11)

for u, v G M(ΛQ). The following remark is very useful.

Proposition 8.1. The scalar product ( , ) on M(ΛQ) is the restriction of the
scalar product on T given by

(λ,μ) = q-W»δλμ. (12)

Proof. We have to show that the scalar product defined by (12) satisfies (11). By
linearity, we may assume that u = λ and υ — μ belong to V. First we have

Next, if μ is not obtained from λ by adding a /-node, then (fλ, μ) = 0 = (λ, ez μ) .
Finally, suppose that μ/λ is reduced to one /-node. Then, (fλ,μ) = q~\^"+Nf(λ^\
while (λ,eiμ) = q-\λ\nq-Nf(λ,μ)m N o w ?

-14, = (wtA|wt λ)/2 = (wtμ + αf|wtμ + α, )/2 = -\μ\n + 1 + (wtμ|α, )

Therefore,

- |λ|π = -|μ|Λ + ^(A,μ) + Nf(λ,μ) , (13)

as required. D

It is interesting to note that equality (13) was already encountered by Robinson
under the form

in the modular representation theory of S m (see [39], p. 104).
The upper global crystal basis {Gup(μ), μ G Vn} of M(ΛQ) is the adjoint basis

of the global lower crystal basis {G(μ)} with respect to the scalar product ( , ).
That is, it is defined by (G(μ), Gup(v)) = δμv. It may also be characterized in the
following way [20]. The adjoint basis of {λ} is clearly given by { ^ M } . Define
the upper crystal lattice of T by

0 ^

and set M(Λ0)^ = {v £ M(Λ0) \ (v,M(Λ0)^) C Q[q,q~1]}. Then, Gup(y) is the
unique element of M(A0)^ satisfying

(i)
(ii) Gup{μ) ΞΞ q\^μmoά qLup.



Hecke Algebras and Crystal Bases of Quantum Affine Algebras 233

Example 8.2. Take n — 2. The basis {Gup(μ)} is given up to degree 4 by

In fact, it is more natural to regard {Gup(μ)} as a basis of the dual space
^ . Indeed, we have:

Proposition 8.3. For λeV,

qW*λ= Σ dλμ(q)Gup(μ)moά

Proof. The scalar product ( , ) of T induces a pairing ( • , • ) « between M(Λ0)

and F/MίΛo)1" given by

(M, i mod M{AQ)±)H = («,t;), (w G M(yl 0 ) , i? G J 7 ) ,

which satisfies ( G ( μ ) , GM^(v)mod M(Λ0)
±)n = δμv. We have dλμ(q) = (G(μlq^"λ)

On the other hand, write temporarily

μev»

Then,

as required. D
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The proposition shows that we can rephrase Conjecture 6.9 as follows. The
module TjM^A^)1- at q — 1 can be interpreted as the Q-space £?(() ®z Q —
Sym/Jn <S>z Q This space is therefore endowed with a canonical basis, given by
the classes φμ of the irreducible Hm(ζ)-moώx\QS D(μ). Our conjecture states that the
canonical basis {φμ, μ G Vn} coincides with the specialization q —> 1 of the basis
{G^(μ)modM(ylo)±, μ G P J of f / M ( i o ) 1 .

Finally, we remark that if the conjecture holds true, then the matrix

C(Hm(ζ)) = * Ό(Hm(ζ))Ό(Hm(ζ)) = [cμv]

of the Cartan invariants of Hm(ζ) can be expressed as

that is, as the specialization at q = 1 of the Gram matrix Cm(q) of the Shapovalov
form in the lower crystal basis of M(Λ0)m.

9. ^-Decomposition Numbers and the Jantzen Filtration

Assuming that Conjecture 6.9 holds, we see that we have obtained not only the
decomposition matrix of Hm(ζ) but a ^-analogue of it. A natural way of interpreting
these ^-decomposition numbers would be to find a filtration of the reduced Specht
modules

s(λ) = s(λy ^ s(λγ ^ s(λy ^

by //m(ζ)-submodules S(λ)1 such that

- Σ [S{λJIS(λ)M : D(μ)] qι . (15)

We owe the following observation to Raphael Rouquier. Let (14) be the Jantzen
filtration of S(λ) (see [17]). There exists a combinatorial formula for expressing the
sum

] e G0(Hm(ζ))

as a linear combination of [S(μ)]. If (15) is true, then one must have

(16)

(where d'λμ{q) indicates the derivative with respect to q of dχμ(q)). A comparison

of our tables with Jantzen's formula shows that (16) holds true. For example, when
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ζ = — 1 and λ = (5312), Jantzen's formula reads

235

* >o

while

- [5(631)] + [S(52)] + [5(10)] - [5(713)] + [5(6212)]

= [£(532)] + 3[£>(631)] + 4[D(64)] + [Z)(73)] + 2[Z)(82)],

+q2 GM/?(82)mod

This gives a strong support for conjecturing that the dχμ{q) describe Jantzen's fil-
tration of Specht modules.

10. Tables

This final section contains

the crystal graphs of the basic representation for n = 2, m ^ 8, « = 3, m ^ 7,
the matrices Όm(q) for n = 2, m ^ 13, « = 3, m ^ 10, w = 4, m ^ 10,
the matrices Cm(q) for « = 2, m ^ 7, w = 3, m ^1.

We note that tables giving the action of e, , / on {GM/7(μ)} for partitions with at

most 3 parts in the case of Uq(U2) have been computed in [6], Appendix 1.

10.1. The crystal graph of the basic representation of Uq(sl2)

, , , , < , , , π , ,,,,
o 11 I o 11 I o 11 I o |T~1 | o 11 | o 11 j o j i | o ]
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10.2. The crystal graph of the basic representation of

l o l l H o l i H | o l i H o i | o | i U |o 11 1 I o 11 H o

10.3. The global lower crystal basis of the basic representation of

(2)
(2) 1
(11) q

(3) (21)
(3) 1 0

(21) 0 1
(HI) q 0

(4)
(31)
(22)

(4) (31)
1 0
q 1

q
(211) q q2

(1111) q2 0

(5)
(41)
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(311)
(221)

(2111)

(5) (41) (32)

(11111) qz

(6)
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(411)
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(321)
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(222)
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1
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0
1

q
q2
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q
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q2
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q
o

q2
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(61)
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(511)
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(421)
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(31111)
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q
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0
0
1

q
0

q2

0
0
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q
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0
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0

0
0
0
0
1
0

q
o
o
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0
0
0

0
0
0
0
0
1
0

q
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q3
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0
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0
0
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(8) (71) (62) (53) (521) (431)
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(62)
(611)
(53)
(521)
(5111)
(44)
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(10)
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10.4. The global lower crystal basis of the basic representation of Uq(s\-s)
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10.5. The global lower crystal basis of the basic representation of Uq{ύ^)
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10.6. The Shapovalov form for the basic Uq{%\2)-module
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70.7. The Shapovalov form for the basic Uq(ύτ>)-module
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