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Abstract: We consider constructing the higher order Hamiltonian structures on the
dual of the Lie algebra from the first Hamiltonian structure of the coadjoint orbit
method. For this purpose we show that the structure of the Lie algebra g is inherited
to the algebra of vector fields on g* through the solution of the Modified Classical
Yang-Baxter equation (Classical r matrix). We study the algebra that generates the
compatible Poisson brackets.

Introduction

Let D be a ring of differential operators and E be a ring of pseudo-differential
operators. We have a direct sum decomposition such as

where E-\ is a subring of E consisted of pseudo-differential operators whose
orders are at most — 1. For PeE, we abbreviate ProjeDP and ProjeE_P as

P+ and P- respectively. Let L be a monic pih order differential operator, L =
dp + ap-\(x)dp~l H ----- h tfoOOj where d — -j^. We define the space of δ functions
K such as

* = Σ «*, ί
Ul, ,im

We regard that
K =

where C~°°(R) is distribution of R. Let M be a space of functional of L such as

= \ F(i) = Σ fΐ,: ;/;<"(*,,)
I / I , ,/w,7l, ,7m
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We call M as phase space. The phase space M is generated by

ap-\(xp-\ ),..., floOo), Xp-i,. . . ,*o G R

in the following sense

— 00 —00

= ft ± 1 δ(y>> - / ' Φ V ' ! δ(yim -

oo

± I (
— oo

(-y >

— oo —oo

Then we only have to consider the functional such as

oo oo

F(L) = Σ f ' ' f fi i (xί 9 j xi }aί (xi ) ' ' * aί (xi )dXj - - dXi ,
h, ,im~oo — oo

where //1? ,im(xil9 ...,Xim) £K. Thus we can regard the functions ap-\(xp-\\ ...,
flo(*o) Xp-i, - - j XQ £ R as generators of M. If F G M has the parameter jc, we call
F as function of x and sometime; denote F(x). We define the functional derivative

τ4^ such as r^ = δLiδ(x - y) and

δF(L) m oo oo

= Σ Σ / ••• / //i, ,^β/ιfeι
lΊ, ,ιMμ=l-cχ) -oo

X

From the above definition has parameter x. Then it is legitimate to write

as ^ (̂̂ ) For P G E, we write P_ι as coefficient of δ"1 of P. The inner product
of E is defined as follows:

oo

(P,Q}=
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Put Z = zp-ι(x)dp~l + -ZQ(X). We define the gradient VF(L) by

It is easy to see that VF(L) = Σ^"1 d~*-1 ̂ (*). For F(L\ G(L) G M, we define
the Poisson bracket by [1],

{F,G} = (L,[VF,VG]).

By the following property of the bracket we only have to calculate on generators,

oo oo Sip ZG

{F(L),G(L)}= Σ / / -M-(y){ai(x)9aj(y)}dxdy. (0.1)

In other words, we can see the Poisson bracket as a contravariant skew symmetric
2-tensor

00 °° δF δ(τ
ωl(dF,dG) = Σ / / co}j(x9y)— (x)— (y)dxdy,

where ω1^,^) = {ai(x\aj(y)} and dF = Σo^igp-i /-̂ o If^)^^)- By defini-

tion, Vdi(x) — d~l~lδ(x — z). Then we have

{ai(xlaj(y)} = (L, [d-'-^x - z), dΓJ~lδ(y - z)]}

Σ
k-μ=i+j+\

Notice that the resulting Poisson structure is linear with respect to the coefficients
of L. A vector field v on M is defined as follows:

p-l oo ftp

v(F(L}) = Σ / vi(x)—(x)dx.
1=0 -oo dα/

We mean that v(L) — ΣJ=Q υ(dj(x))dj . Furthermore we see that v(aj(x)) —

Πc vj(y)δ(x - y)dy = Vj(x). Then we have υ(L) = Σ& VjW and υ(F(L)) =

(v(L\ VF(L)). We define the Hamiltonian vector field Xgl for H eM by

X(G) = {H,G}9 GeM.

Notice that

XS\G) = (L,[VH, VG}) = ([L, VH]+9 VG).
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On the other hand Xg\G) is equal to (Xg \L\ VG). This leads us to

(0.2)

In general, on the manifold X, the Schouten bracket [ω, η] is defined as follows,
where ω, η are contravariant skew symmetric k and / tensors respectively.

for any covariant skew symmetric k + / — 1 tensor t, where i is inner derivative and
d is exterior derivative. The reader can refer precise definition of / and d in the next
section. In particular ω is 1-form, that is, ω is a vector field v on X, the Schouten
bracket [ι;, η] is called Lie derivative of η with respect to v. By easy calculation, we
see that the contravariant skew symmetric ω defines a Poisson structure on X if and
only if [ω, ω] = 0. Since L is a /?th monic differential operator, one can construct
Bn G E satisfying

where the coefficients of Bn are differential polynomials of that of L. It is easy to see
that vn(L) — [—Bn-9L]9 n ^ — 1 define the vector fields on M. Adler and Moerbeke
shows the following facts.

Theorem 0.1. [3].

(1) [Vn,vm] = (m-n)vm+n,

(2) X%*'ω\L) = -(k + \)(L(VHLk)_ - (LkVH)_L) k ̂  -1,

where VH G E is defined by [L, VH] = [L, VH]+.

In particular they show that Xχ'ω is a vector field of second Hamiltonian struc-
-i
kture of KdV equation defined by Gel'fand-Dikki [4-6]. Put ωk = =γ[vk-ι,ωl]9k ^

1. They show that ωl

9ω
2

9... define the compatible Poisson structures.

Theorem 0.2. [3]. Put ω = λ\ωl H h λkω
k, where λ\,..., λk e C. It holds that

[ω, ω] = 0.

Roughly speaking, Theorem 0.2 is induced from (1) of Theorem 0.1.
Let L = d + a\(x)d~l -f a200$~2 H be a Lax operator of the KP hierarchy.

We can define the phase space M as in the previous case. By Watanabe, the first
Hamiltonian structure is defined on the Lax operator of the KP hierarchy [16]. To
get the second Hamiltonian structure of the KP hierarchy systematically, it is natural
to consider to apply the method of Adler and Moerbeke. To apply this method to
the Lax operator of the KP hierarchy, there is an obstacle. In the case of L G D9 L
satisfies Z/+ = L and L_ = 0. These properties are necessary to prove Theorem 0.1.
Although the Lax operator of the KP hierarchy does not have these properties. One
can easily show that R = ProjD - ProjE satisfies the Modified Classical Yang
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Baxter Equation (MCYBE)

[RX,RY] - R([RX9 Y] + [X9RY]) = -[X, Y], XJ ^E. (0.3)

The motivation of this paper is to find suitable Re EnάE satisfying (0.3) that the
operator ±(R+l)P and =±(R - l)P taking the place of P+ and P- for P G £
to avoid the obstacle mentioned above. To this purpose we study what relation
the vector fields should satisfy to generate the compatible Poisson structures like
Theorem 0.2 in the general Lie algebra.

Let g be an infinite dimensional Lie algebra and R G End g is the classical r
matrix, that is, R satisfies (0.3). If one assumes R2 = 1, then g is decomposed
into the eigenspaces of g+ and g- of R, where g+ = {x G g\Rx = x} and 0_ =
{x G g\Rx = -x}. Since R is the classical r matrix, g± are Lie subalgebras. In
this case ^(R + 1) and ^(R — 1) are projection to g+ and g_ respectively. From

R = ^(R + 1) - ^(R — 1), R is the difference of the projection. In this paper we
study a little more complicated case. We assume that R has three eigenvalues 1,0, — 1
and g is decomposed into the corresponding eigenspace, g = g+ Θ go θ g~. Since
R is a classical r matrix, g± and go are Lie subalgebras, especially go is abelian.
Moreover we assume that the invariant and nondegenerate inner product (,} is
defined in g. Since R satisfies (0.3), g+ and g- are isotropic and go is orthogonal
to g± with respect to {,). We can choose the generators of g+9e\9e29...9 that of
g-,/i,/2,..., and that of go,h\,hi,... satisfying

(ei9fj) = δiJ9 (hi9hj) =δij.

Put L = L\e\ +Z/2^2 + £ 9+ We denote the commutative algebra over C gen-

erated by Lι,L2>... as A. For F(L) G A, we define VF(L) by dF(L

d+
tZ)\t=o =

(Z, VF(L))9 for Z G 0+. In this case VF(L) = Σ&i ^p// τhe Poisson bracket
on A is defined by

{F, G} = -(L, [VF(L\ VG(L)]). (0.4)

Let ω1 be a contravariant skew symmetric 2-tensor which corresponds to {,}. Fur-

thermore we define the Hamiltonian vector field for H G A, X/(F) = {H,F}. By
(0.4) and invariance of {,), we have

X$\L) = -R+([L,VH]) modtfo,

where R+ = ^(R + 1). If there is B G A ®c G such as [B9L] G g+. One can see that

v(L) = [R-(B)9L] is a vector field on A, where R- = ±(R - 1). Let [^ω1] be the

Lie derivative of ω1 with respect to υ. We have

dL \dL/ i

In this paper we do not treat the associative algebra but the Lie algebra. Thus we
can not define Ln. For this reason we consider B_\,Bo,B\,... G g such as

[B,,L]=Kn(L)eg+. (0.5)
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Instead of considering Ln, we impose the following 2-conditions on Kn.

(i) The invariance of vector fields on L with respect to dKn, n ̂  — 1, that is, if
v(L) is vector fields on L then dKn(v) — v.

It is easy to see that \Bn,Km(L)} = dKm(Kn(L)) G g+. Then we assume

m+n

(ϋ) dKm(Kn(L)) = £ b^K^L), Vmn € C
/=-!

Put Bn = Σ, £i £«e; + Σ/^i ^«/ Under the situation [£„,£] = ̂ (L) G #+, we can

determine the coefficients of Bl

n,B
l

n,i = 1,2,... From assumption (ii), the commuta-
tion relations of Bn's are obtained such as

m+n

[Bm,Bn] = £ ak

mnBk,
k=\

where ak

mn = bk

nm - bk

mn. We define the vector fields vn(L) by vn(L) = [R-(Bn),L],
n ^ — 1. With some technical conditions, we have the following results.

The commutation relations of Bn,n ^ —1 are inherited to vn, n ^ — 1,

m+n

(I) [Vm,Vn] -

Put ωk+l = [Vk,ωl], k ^ 0. Then ωk, k ^ 1 define the compatible Poisson struc-
tures, that is, for any linear combinations of ω = λ\ωl + + λkcok it holds that

(II) [ω,ω] = 0.

Section 1. Let g be an infinite dimensional Lie algebra and R be an element of
Enάg satisfying the Modified Classical Yang-Baxter Equation (MCYBE),

-[x,y]9 x,y£g. (1.1)

We suppose that g is decomposed into the eigenspace of R such as

9 = 9+ θ do θ 9- i

where

g± = {x G g\Ex = ±x}, g0 = {x G flf|Λx = 0}.

Let { , } be an invariant nondegenerate inner product on g. We also assume that R
is skew symmetric with respect to {,), i.e. (Rx,y) = —(x,Ry), x,yeg. We denote
R+ and R- as R± = ^f^. Notice that R+x = 0, jc G g-, R-X = 0, jc G g+ and
J?±z = dz^ c, jc G go. We also notice that R+x = x (resp. R-X = —x) implies x G g+
(resp. * E 0 _ ) .
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Proposition 1. The eίgenspaces g+ and g- are subalgebras of g. Moreover go is
abelian.

Proof. It is easy to see that

[R±χ,R±y] = R±[χ, y]R, x, y G g,

where [*, y]R = ±([Rx9 y] + [x9Ry]). If x, y G g+, [x, y] = [R+x,R+y] = R+[x, y]R.
Notice that

-([Rx,y] + [x9Ry]) = -([x,y] + [x,y]) = [x,y].

Then we see that R+[x9y] = [x9y] for x9y G g+. It implies [x9y] G g+. We can show
g- to be a subalgebra in the same way. Suppose x9 y G gv, then

[x, y] = 4[R+*,R+y] = 2R+([Rx, y] + [χ9Ry]) = 0. Q.E.D.

Proposition 2. [g±9gQ] C g±.

Proof. Suppose x G g+ and y G go. Then we have

R+[x9y] = 2R+^([Rx9y] + [x9Ry]) - 2[R+x9R+y] - 2 [x, |] = [x,y] .

We can show [g~9go] C g- in the same way. Q.E.D.

Proposition 3. Each g+ and g- are ίsotropίc with respect to ( , ). Moreover go is
orthogonal to g±.

Proof. Assume that x9y G g+ . From skew symmetry of R, we see that (jc, y) —
(R+x,y) = -(x, R~y). Since y G g+9 R-y = 0, then (x,y) = 0. We can show the
case of g- in the same way. Suppose x G g+ and y G #o Thus.

{*,;;) = </fc,;v) = (x9-Ry) = (x,0) = 0.

We can show (x9y) = 0, where jc G g-9 y G go, in the same way. Q.E.D.

Proposition 4. We can choose the basis of g9{en}^ C g+9 {fn}^=\ C g- and
{AΛ}~ι C gf0 ^c/z ^ {̂  ,/; ) = δij and (hi9hj) = dy.

Proof. At first we take e\ φO. From the assumption of nondegeneracy of {,), we
can take f\ eg-, such that (βι,/ι)=l=0. We normalize f\ to be ( e \ 9 f \ ) = 1. We
take ^2 according to the following two cases. Let us write g+ as g+ — M 0 Ce\ . If
/i is orthogonal to every element of M, we take an arbitrary element from M as
β2 Thus {/i, 62) = 0. If there exists the element of M, £2? such as {/ι,<?2)ΦO. Put
^2 = <?2 — (f\^2)e\. Then (β25/ι) = 0. From nondegeneracy of {,), we can take

the element of 0_,^, such as (f2^2) ^ 0. Put /2 =/2 — (f2>eι)fι Then it follows

that (β!,/2) - 0 and (e2,f2) = (e2J2) ^ 0. We normalize /2 to be <e2?/2) - 1.
To choose 23 and /3, we again consider according to the following two cases.
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Let us write g+ = N Θ Ce2 Θ Ce\. If f2 is orthogonal to TV, we take an arbi-
trary element from N as £3. Put e$ = £3 — (f\,e^)e\. Then (e^f\) = 0. More-
over £3 e W θ C e i , then (e^,f2] = 0. If there exists an element of TV,£3, such
as (£3,/2) 7^ 0, put £?3 = £3 - (e^f2}e2 - (e^f\)e\. Then it holds that ( e 3 , f 2 ) =
(e3,fι) — 0. By the non-degeneracy of (,}, we can take /3 such that (e3,/3)φO.
We normalize /3 to be (63,f3) — 1. We can choose e4,e5,... and /4,/5,... in the

same manner. Let h\,h2,... be the basis of #o If ( A ι , A ι ) φ O , put h\ = h \ / ( h \ , h \ ) ϊ .
In the case of (hι,h\)=Q.> we can choose A/ such that (h\,hi)ή=Q by virtue
of non-degeneracy of {,}. We exchange /J2 and such A/ whose index is small-
est. If (h2,h2)ή=Q, we exchange AI and ^2- We consider the case of (h2,h2) — 0.
Put

A! = A! H ——A2,
2 < Λ ι , A 2 >

then we have (h\,h\} = 1. We project A / , / Ξ> 2 to the orthogonal complement of
Ai such as hf - ( A / , A i ) A i . Then (Aι,A, ) =0, z ^ 2. If (h2,h2) ΦO, we put A2 =
Ϊι2l(h2,h2}ϊ. We consider the case of (h2,h2) = 0. By the non-degeneracy of {,),
there exists A / , / > 2 such that {/b, A/) ΦO. We exchange 3̂ and such A/ whose index
is smallest, that is, {^2,^3} ΦO. If {^3,^3} ΦO, we change h2 and A3. We consider the

case of (/?3,/z3) = 0. Put h2 = h2 + ^j^y*3- We see that (Ai, A2> = 0 and (/z2,^2> =

1. We can define ^3,^4,..., in the same way. Q.E.D.

Put [ei9ej] = Σk*ι cijek and Ui>fj\ = Σk*ι %jfk-

Proposition 5. It holds that

fa, fj] = Σ cjk ek - cj

ikfk mod gQ.
k^l

Proof. Put [βi,fj] = Σk>ι dkijek + dyfk + a, where α e ^o- One sees that

On the other hand, from the invariance of {,}, one sees that

/
= ,̂ Σ

Thus we see that c^ — dl

jk. We can show cfj = —dl

kj in the same way. Q.E.D.

Put L — L\e\ + L2e2 + - - G g+. We consider the commutative algebra A —
C[[Lι,L2, . .]]. For the element F G A, we define VF(L) e ̂  0c fif-, such as ^|/=0

F(L + tZ) = (Z, ^F(L)), where Z = Z\e\ + Z2e2 H ---- . Notice that VF(L) =
Σi Jrfi- We introduce the Poisson structure as follows. For F, G G A, the Poisson

bracket is defined by {F,G} = \(L,[RVF9 VG] + [VF,RVG]) = -(L,[VF, VG]).

From the calculation, {F, G} = Σi j JΓJr{Li>Lj}> we can regard the Poisson bracket

as a contravariant skew symmetric 2-tensor. We identify the Poisson bracket defined

above with ω1 = Σij^iiJΓ Λ ~JΓ' ^ne Hamiltonian vector fields associated with
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HεA defined by Xg\F) = {H,F} satisfy

We consider the complex of contravariant alternating forms with the coefficient A.
Let a\ be a space of vector fields on A. We consider the de Rham complex over a\.
Let Ωg be the space of covariant alternating g-forms over A. The exterior derivative
d\ΩP -* Ωq+l is defined as follows:

+ Σ (-y+
i<j

where X\9 ...9Xq+\ are elements of a\. Note that d2 = 0. For X G a\9 the inner
derivative ix : Ωq — > Ώ^"1 is defined as follows:

Put Ω = ®g^oΩq. We call (Ω,d) the de Rham complex. We denote ί\qa\ as a space
of skew symmetric ^-tensors of a\. Moreover we denote f\a\ = Θ^o Λ^ a\. In order
to introduce the bracket product in /\a\9 we use some new notations. The operator
defined below is a generalization of the inner product. For ω G /\qa\9 the operator
iω : Ωp -> Ω^-? is defined as follows:

iωt(Xι , . . . , Λ^) = ί(ω, Jfi , . . . , Jζ,.̂ ),

where Jq, ...9Xp-q G <zι and ί G Ωp. For ω G Λ^αi and η G Λ^αi, the Schouten
~λbracket [ω,?/] G Λ^9"1 is defined as follows [12, 13]. For any t G Ωp+q

This definition is well defined because of the following lemma.

Lemma 6. TTze operator zω, ω G Λ^αi w non-degenerate, that is, iωt = 0 /or
/ G Ωq implies ω = 0.

Proof. Put f / l 9 ) Z 9 = rfL/j Λ Λ ί/Lz 9. Then it is easy to see that

d

where <5/>t/ is Kronecker's delta with respect to the finite set / and J. Thus iωtil} jq =
1'1' '^. Then /ωf = 0 for any t G Ω^ implies ω = 0. Q.E.D.

It is easy to see that the Schouten bracket satisfies the following relation:

(-Yr[[ω,ηlζ\ + (-)"[[!/, ξ], ω] + (-Γ[[ί,ω],ι/] = 0,

where ω G Λ^αi, ?y G Λ^αi and ξ G Λ rαι. We call the second formula a Jacobi
identity of the Schouten bracket. Suppose that ω G ί\2a\ satisfies [ω, ω] = 0, then
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ω defines the Poisson bracket. For v G a\ and ω G Λ2αι, the Schouten bracket
[v, ω] is called the Lie derivative of ω with respect to v. By easy calculation, we
see that

[D,ω]V = w^-Σω^-Σωftlr.
k oLk k oLk

In line with [3], we calculate the Lie derivative [t^ω1], where the vector field v is
defined such as υ(L) = [R-(B)9L], where [B,L] G g+, B G A ®c 0.

Lemma 7. 7ί Ao/ίίs ί/zαί
F|>,ω] _ r yω-, γω

ΛH ~ L^ΛtfJ ~ΛvH

Proof. Put v = Σk

 vkΈΓ and ω = Σ ω'7^: Λ ' We see that

3 /7.a# a /ya// a k d I7 3
ω J --- coj -- v -- ω 7

^ 5A'5iy SLidLj dLk d

J dH d dvkdH d dvk dH d---- ---- ---
dLk SLt dLj dLj dLt dLk dLt dLk dLj

VΪSH d

Q E D

Recall that v(L) = [R-(B),L] and [B,L] G g+.

Proposition 8. It holds that

where (j[)τ is the adjoint operator of j^ with respect to {,}.

Proof. We first show that υ(L) = [R-(B\L\ defines a vector field on A.

Lemma 9. It holds that
[R-(B\L] G g+.

Proof. We may show R-[R_(B\L\ = 0. We see that

R-[R-(B),L] = ^R-([R(B),L] - [B,L]\

since [B,L] = [B9RL] G g+,

] + [B,RL])y

since y? satisfies MCYBE,

= [R-(B\R_L] = [R-(B),0] - 0. Q.E.D.
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By Lemma 7,

= -vR+[L, VH] - X/ [R-(B),L] + R+[L, VvH] moάgo

= -R+[vL9 VH]-R+[L,vVH] - [R-(X%*B\L\ - [R-(B),X

+R+[L9VvH] mod#o,

since X$'ω\L) is vector field,

= -R+[[R.(B),L\9 VH] - R+[L,vVH] - [R_(X^B\L]

+R+[R_B,R+[L,VH]]+R+[L,VvH] moάgQ. (1.2)

Notice that

For any two p, q G g, we can decompose such as p = p+ + PQ + P- and q

q+ + #o + #-, where jp+,^r

+ G 0+, /?o,^o e ^o and p~9q~ G g f _ . We see that

[R_p,R-q\ = \--po- p-,--qo-q-

Then we have R+\R_(B)9 R+[L9VH]]=R+[R-.(B\[L9VH]}. We proceed with

the calculation

(1.2) = -R+([[R_(B)9L]9 VH] + [[L,

-R+[L9vVH-VvH]-[R-(X£lB)9L]

= R+([[VH9R-B]+υVH--VvH9L])--[R-(X%lB)9L] moάgQ. (1.3)

We calculate ι;\77/ — \7y// independently of [3]. Notice that

_ _ „ „ , d dH d tdH dv'dH
VVH - VVH = EV -fc^fj - ̂ v -fj = -Ex-ΰ/j

By definition,

v(L) = [R-(B),L] = £ [Λ_(5),I]; e, =
/
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Thus we have

R_(B),-£-L\ } =(fi, \-£-R-(B),L+[R-(B),ej]
°LJ J Λ \ 1SLJ

Then we see that

VVH -
i,j

By calculation, we see that

= -Σ (VH,[R_(B),ej])fj = -Σ ([VH,R.(B)],ej)fj
J J

j

Moreover we have

. m -
" J - ~ ' 'L fi

Furthermore we see that

dR-(B\

dL (^ = ̂ (-^Γ)(e^ =dL j \ dL Jj j

Then we have

/^/? (R\\
l/; = -

ij

f.
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Notice that
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-,^
——(Z) = lim

dL ' ε-»o

This fact yields

/ T \ I T \

-Σ (ej, (̂ )̂ (*+& V7/Π)\ fj = -Σ ( ej,R- (^ (R+[L, VH])\ f j .

Since T and R- commute, we have

j,R_ ( R + [ L , V H ] ) f j

,R- (R+[L,VH]) fj

= -*-( ( 3 7 ) l(Λ+[i,F//]).

Then we have

u^/f - VvH = ~[VH,R-(B)] - R- — , VH]).

Finally we get

(1.2) = R+ [VH,R-(B)] - [VH,R_(B)} - Λ_

1

Note that

(R+[L,VH]),L

modg0.

(R+[L, VH]),L

(B)),L\

(*)

Σ

Although equality X$ (L) = —R+[L, VH] has ambiguity of modulo g0, gϋ is

orthogonal to VBf. Then we have R_(Xfl\B)) = -R-(jj;(R+[L, VH])). Thus
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Since

(*) = R+

+R-[R-(Xχ (B)\L\ modg$.

is a vector field on g+, we have

,£ mod #o Q.E.D.

We consider the vector fields which preserve the Poisson structure. Let {Bn}n^-\
be elements of g such that

[Bn,L]=Kn(L)eg+ n^-l.

We imagine Kn(L) like Ln+l. Since the algebra g is not associative but a Lie algebra,
we cannot define Ln+l. Instead of explicit realization of Kn(L), we assume the
following two conditions: (i) If v = v(L) is a vector field on L, then υ is also a
vector field on Kn(L) and dKn(v) = v,n ^ — 1. Before stating the second assumption
for Kn(L\ n ^ —1, we show the fact [Bn,Km(L)] e 0+. We define the vector fields
vn(L\ n ^ — 1 such as

vn(L) = [R-(Bn\L\.

From Lemma 9, vn, n ^ — 1 are vector fields on L. We decompose [Bn,Km(L)] into
2 parts as follows:

[BH,Km(L)-\ = [R+(Bn\Km(L)} - [R_(Bn\Km(L)}.

It is clear that [R+(Bn),Km(L)] € g+. Furthermore we see that

[R-(Bn\Km(L)} = dKm(vn) = vn(Km(L)) € g+.

On the other hand we see that

[Bn,Km(L)} = £ AJ,(I)[5B,e/] - dKm([Bn,L]) = dKm(Kn(L)).
ί^l

The second assumption is

m+n

dKm(Kn(L)) = Σ bl

mnKi(L\ blnneC i=-l,...m + n.
i=-l

(ϋ)

Put Bn = Σ/Sι 5ϊe, + Σiδι-δ»/ ynder the condition [5M,L] = Kn(L) e gf+, we
determine the coefficients 5J, and Bή in the localization of A = C[[L\,L2,...]] at
(0,0,...). We see that

0 = R-[Bn,L] = R_[R+Bn,R+L] - R^[R_Bn,L] = R_R+([Bn,L]R) - R_[R_Ba,L\.
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From this one can see R-[R-Bn,L] — 0 modgo Expanding Bn and L with respect
to the basis of g such as

-R-[R-Bn,L] = R- Bjfj9 = Σ B*LjR-[fj,ei]

= Σ Σ BnLiCJ

ikfk mod #o

Put ^4zy — Σμ>λLμc
l

μj. Furthermore we assign §„ the role of moduli. Then we have
the system of the equation,

\

A22 - . - \

/

-B*(All9Al29...).

By Cramer's formula, we have

/ ^21 ^22 \

i = -Bn

l det
tf/ -1,2 "'

An •••
i ^ 2.

Moreover we have

Ίζ (T\ Γ D Γ] V^ [ V^

ί i fe l \7δl, iέ l

Put A'y = ΣμδlV/μ and Dl = Σ.j^i^nLiCJt

A(2 A'22

'•• '••'••)

Σ ^

Then we have
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By Cramer's formula we have

An An

A D2

v)μ,v^ 7 ^ 1.

\ : :

From condition (ii) of Kn(L), we can calculate the commutation relations for Bn's
as follows:

[[Bm,Bn],L] = -[Bn9[BM9L]] + [Bm,[Bn,L]] = -[Bn,Km(L)] + [Bm,Kn(L)]

m+n

= -dKm(Kn(L)) + dKn(Km(L)) = £
i=-\

m+n . . "1

Ψnm -bmn)B^L\ '

Then we have [Bm,Bn] = Σ,T=-ι <*n*fti* where <n = tim ~ #mn We show the fol-
lowing rather general theorem.

Theorem 10. Suppose that R e Endg satisfies MCYBE (1.1). Then it holds that

Proof. We first show the following lemma.

Lemma 11. It holds that

Proof. It is easy to see that

vn(Bm) = ^(vn(L)} = ^([R
dL dL

Taking the differentials of [Bm,L] = Km(L), we have

Then we have

dBm = ad~ladBmdL - ad~ldKm(dL).
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From the fact that dBm = ^(dL), it holds that

= [R-(Bn),Bm] + ad^[R-(Bn),Km(L)] - ad? dKm(\R-(P« UD (1-4)

By definition, the vector field dKm(υn) acts Km(L) such as

dKm(υn)Km(L) = Σvl,
ij i j

On the other hand, we have

[R-(Bn\Km(LJ\ = Σ[R-(Bn\Kin(L)ej] = EKJ

m(L)[R-(Bn),ej] = vn(Km(L)).
j j

Since vn — dKm(vn\ we have

[R-(Ba),Km(L)] = dKm([R_(Bn),L\).

Thus we have υn(Bm) = [R-(Bn\Bm]. Q.E.D.

We proceed with the proof of Theorem 10. From Lemma 11, we have

[vm,vn](L)

= υm(vn(L)) - vn(vm(L)) = Vm([R-(BΛ),L\) - υa([R-(Bm),L\)

= [R-(vm(Bn)\L] + [R-(Bn\vm(L)} - [R_(vn(Bm)\L] - [R_(

= [R-([R_(Bm),Bn]\L] + [R-(BΛ),[R-(Ba),Ll\

-[R-([R.(BH),Bm]),L] - [R-(Bm),[R-(Bn\L]}

= [Λ_([Λ_(5M),5B]) + [R.(Bn\R-(Bm)} + R_([Bm,R-(Bn )]),!].

Furthermore we see that

R-([R-(Bm),B,,]) + [R-(BH),R-(Bm)]+R-[Bm,R-(Bny\

= l-{-2R([Bm,Bn}) + [RBn,RBm] - R[Bn,RBm] - R[RBn,Bm] + [Bm,Bn]},
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by MCYBE

,Bn]) - [Bn,Bm] + [Bm,Bn]} = -R_[Bm,Bn]

= - Σ ak

mnR-(Bk).
k^-\

Then we have [vm,vn] = -Σk*-\ amnvk- Q.E.D.

In [3], they show that the vector fields on the differential operator which satisfy
the Virasoro relations preserve the Poisson structure. We also introduce the vector
fields to preserve the Poisson bracket whose commutation relations are a generaliza-
tion of Virasoro. In [3], they construct the pseudo-differential operators Bn, n ̂  — 1,
satisfying

[Bn,L] = -Ln+l n^-l.

Furthermore they construct the vector fields satisfying the Virasoro relation such as

However we show that the algebra of vector fields vn(L) = [R-(Bn\L\, n ^ — 1
generate the compatible Poisson structures.

We exchange al

mn for — al

mn in the assumption (ii) of Kn(L). Then the commu-
tation relations are

m+n

[Bm,Bn] = - £ c^B, (1.5)
/=-!

and
m+n

[Vm9vn]= Σ amnvl (1-6)
/=-!

In the commutation relations for Bn's9 we assume non-degeneracy, that is, fl™+"φO.
We define the contravariant 2-tensor ωk

9 k^2 and assume some properties like [3]
such as

= [Vk,ωl], k ^ 1

and

[ϋ_ l 9ω] = 0, ω e span{ω^,A: ^ 2, [vi9ω
j]9 i+j ^ 2}

implies ω = 0 while [v-\9ω
l] — 0.

Theorem 12. 77ze L/e derivative of ωn with respect to vm is equal to the linear
combination of ωl,...,ωm+n, that is,

Before we prove Theorem 12, we apply this theorem to show that α/, k ̂  1 define
the compatible Poisson brackets.

Proposition 13. It holds that [ω\ωj] = 0, ij ^ 1.



Higher Order Hamiltonian Structures for MCYB Equation 775

Proof. From the definition and Jacobi identity of Schouten bracket, we see that

[α/V] = [[tfc-iVlV] = -[[ωl,ωl]9υn-ι] - [[ω\vn-ι]9ω
1]. (1.7)

Since ω1 defines the Poisson structure, [ω^ω1] = 0, then we have

[αΛω1] = -[[ωl,Όn-ι],ωl] = ~[ω\ω1}.

This implies [ωn,ωl] = 0. Next, we calculate the general case,

[ωm,ωn] = [{vm^ωllωn} = -[[ω\ωnlυm.λ] - [[ω\vm^lω1].

From the previous calculation, [ω1,ωw] = 0, then the first term vanishes. By
Theorem 12, [ω",t;m_ι] is equal to a linear combination of ω\...,ωm+n. Then the
second term also vanishes. Q.E.D.

Proof of Theorem 12. We show this theorem by 3 steps.

Step 1. We show at first

We see that
|>_ι,ω*+1] = [v-ι,[vk9ω

l]]9

by the Jacobi identity,

Step 2. The two assumptions,

[Vj,ωn]=Aj+nω
J+n +

[vm,ωk] = Bm+kω
m+k + -

imply
[υm,ωn] = Cm+nω

m+n + - +

where A^Bi and Cz € C.
By the Jacobi identity and Step 1, we have

[[vm,ωn],v-ι]

= [[ωn

9v-ι]9υm] + [[v-ι9υm]9ω
n]
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by assumption of induction,

= Cw+Λ-ιωm+II-1+... + Cιω1. (1.8)

From Step 1, we see that

s~<

O Q X ^m+n— 1 r m-|-W-ι . f , m_|_w_2 , , /or ,.1

•o) = m+n-2 - Lϋ-l»ω J + <-m+«-2<^ H ----- h C i C O .
α-l,/w+/ι-l

Using Step 1 again and again we have

,a - - v . l ,
a - - a-\,m+n-2-\,m+n-\

By the assumption for the kernel of [v-\, ], we have

[%>»"] = J&Γ-"-** + ̂ Γ2-"̂ -1 + + C2ω
3 + ̂ ω2 modco'.

^_15W+W_1 fl_ljW+M_2 «-!,!

5/^7 3. By Step 2 and

[t^ω1] = ω1, [t?-ι,ω2] = ̂ i^ω1,

we have
[t;0,co2] =^2ω

2 +^ιω\ A\,Aι G C.

Moreover [f^ω1] = ω2 and with Step 2, we have

[t;1)ω

2] = B3ω
3 +B2ω

2 H-^ω1, Bλ,B2,B^ e C.

By the same process, we can show

[ι?y,ω
2]=^+2ω^+2 + . +^ιω1, ^,...,^+2 6 C, y'^-L (1.9)

Furthermore by Step 2 and

[t;_ι,ω3] = «l_ι52
ω2 +β?-ι52

ωl

[ι;0,co2] =

we have
|>o,ω3] =
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In the same way as the previous case, we can show

[υJ9ω
3]=Aj+3ω

s+3 + ' +Aιωl

9 Aι,...,Aj+3 e C, j ^ -I.

Thus we can show

[vm,ω"]=Am+nω
m+n + +Aιωl. Q.E.D.
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