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Abstract: The problem of stability of positive diatomic molecular ions with the
nuclear charges Z\ and Z2 and N electrons in a homogeneous magnetic field B is
studied for Zι,Z2,7V,£ — > oo. The conditions of instability are obtained for different
relations among Z\,Z2,N and B. A new version of the HVZ theorem for systems
in a homogeneous magnetic field is proved.

1. Introduction

It is well known [5] that a positive diatomic molecular ion with TV electrons and
nuclear charges Z\ and Z2 is unstable for large Z\ and Z2. It means that for every
positive N there exists a constant Zc > 0 such that whenever both Z\ > Zc and
Z2 > Zc, the hamiltonian of the system (after the separation of the center of mass
motion) has no discrete spectrum. Furthermore

ΪSn ZCN~{ ^ 2 . (1.1)
>oo

In this paper we discuss a generalization of this result to molecules in a magnetic
field. This case is more complicated for the following reasons. First we cannot
use the standard definition of stability, because the center of mass motion cannot
be separated in a homogeneous magnetic field in a standard sense. A key to this
problem is a new version of the HVZ theorem for the hamiltonian on the subspace
of functions with fixed rotational SO(2) symmetry which is proved in Sect. Al (see
Appendix). The idea of fixing of the type of the SO(2) symmetry as a substitute
for the separation of the center of mass motion for the HVZ theorem was suggested
earlier by G. Zhislin and the author [6]. But in [6] the HVZ theorem was proved
only for the case when either all the charges of the particles have the same sign or
the magnetic field B increases at infinity.

In this paper we consider molecular ions consisting of positive nuclei and neg-
ative electrons in a homogeneous magnetic field and the results of [6] can not be
applied.
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Furthermore the physical intuition (and the idea of the proof) for the HVZ
theorem to hold in this case are different than in [6].

Another problem is the estimation of the energy of the system in a region where
the distance between nuclei is small. For this goal, the "united atom estimate" was
used in [5], but in a magnetic field this estimate is not optimal. To solve this
problem some additional decompositions of the electron's configuration space and
some new estimates are suggested in this paper.

Notice that a magnetic field can play an important role in stability, because it
tries to localize particles in two dimensions. We take it into account in our study by
choosing all the sizes of subregions of the configuration space to depend not only
on the nuclei charges as in [5], but also on the magnetic field.

The main result of this paper is the statement that if the magnetic field B is
"weak" in the sense that for some OQ > 0,

(BZ~2 )3/2 [ln( 1 + BZ~2 )]3+<5° < Zi (1.2)

and ZΊ ^ Z\ , then inequality (1.1) for critical charge Zc holds in the magnetic field
case. We estimate also limits of stability in cases where (1.2) does not hold.

2. Definitions and Results

Let D\ be a quantum system consisting of two nuclei (with charges Z\ and Z2 and
masses M\ and M2) and N electrons. The mass of an electron is +1 and the charge
is — 1. The hamiltonian of the system D\ in a homogeneous magnetic field has the
form

N+2 I

7=3 2 ' J J

2 N+2 N+2

-Σ Σ2)k>|-1 + Σ KΓ', (2.1)
7=1 s=3 s,t=3;s<t

where ry = (rj,Γy,rj) are the coordinates of the /h particle,

r — (r — rΛ A — —7Yr2 —r1 fΠ i — 1 ?
'7-s ~~ v s 0/> ^Λ7 ~~ o .Λ 7' 7' ' •/ ~~ ' '

The hamiltonian Jf does not contain a spin part because of reasons to be de-
scribed later. We assume that Z\ +Z2 >N (positive ions) and Z2 ^ Z\.

For B — 0 one can separate the center of mass motion in the operator Jf. The
system D\ is stable (for B — 0) if the resulting operator HQ has discrete spectrum on
the subspace of functions with permutational symmetry satisfying the Pauli principle.

If Bή=Q we can separate the center of mass motion only in the direction of the
magnetic field (the 3rd axis). So, for this case we need to modify the definition of
stability.

Let us rewrite the operator Jf in the form

3P = T+V, (2.2)
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where T is kinetic energy and V is potential energy;

2 N+2

T = Σ 1/2MΓ'0 V, + Aj)2 + Σ l/2(ίV, + Λ7 )
2 , (2.3)

;=ι ;=3
2 W+2 ΛΓ+2

V = Ztfi rn\-1 - Σ Σ Zj\rj,\-1 + Σ Z/W~' - (2.4)
7=1 5=3 *.'=3

Operator V depends only on the coordinates of the particles. Let

be the 3rd coordinate of the center of mass position vector of our system. Operator
T can be rewritten in the form

T = T0- 1/2(M, + M2 + NΓ1 -4- , (2.5)
d&

where operator T0 depends only on the coordinates in 7?os

( 3 N+2 Ί
r\r = (rl,...,rN+2)eRW+2\ ^Mjή + £ rj = 0 V . (2.6)

7=1 7=3 J

Operator

corresponds to the kinetic energy of the motion of the whole system in the direction
of the magnetic field. Let

& o - T0 + V .

The stability of the positive molecular ion is determined by the spectral properties
of the operator ^f0

3. HVZ Theorem for the Operator J 0̂ and the Definition of Stability

Let S be the group of permutations of identical particles in the system D\ (electrons
and also nuclei if they are identical), α-be a type of irreducible representation of
the group S.

The operator Jf0 is invariant under the actions of the group G = S x SO(2) x W,
where SO(2) is a group of two-dimensional rotations around the direction of the 3rd

axis, W is a group of reflections of the 3rd axis.
Let m be the weight of an irreducible representation of the SO(2) group and

ω = ±1 is a parity. We shall denote by 3tfξ the restriction of the operator Jf0

onto the subspace of functions with symmetry σ = (α,w,ω). It is clear that J fo =

The important property of the operator J f0

σ is that the HVZ theorem holds for
it without any additional separation of the center of mass motion.
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The essential spectrum of 3?$ is defined by decompositions of the system into
clusters.

Another substitute for the separation of the center of mass motion for the operator
J fo was suggested earlier by J. Avron, I. Herbst and B. Simon [1]. They proved that
for the operator with fixed value of the pseudomomentum the HVZ theorem holds.
From many points of view their approach is more general than one used in this
paper. It works both in the neutral and charged cases. It is based on the translation
invariance and does not need rotational symmetry of the potentials. Unfortunately
operators with fixed pseudomomentum are more complicated for studying than those
with fixed rotational symmetry. At the same time the whole set of operators J f0

σ for
all σ describes spectral properties of the original operator Jfo and the considered
physical system as well as the whole set of operators with fixed pseudomomentum.

To formulate the analogue of the HVZ theorem for our case we need to introduce
some additional definitions.

Let D2 = (Cι,C2) be an arbitrary decomposition of the system into two nonin-
teracting clusters,

y] = {r I r 6 #03, n = 0, ί $ C,-}, RQ(D2) = RQ[Cι] θ R0[C2] -

For subsystems C/, j = 1,2 we define operators ^fo[Cj] by the analogy with the
operator Jfb for the whole system.

The operator <tffo[Cj] contains only variables corresponding to the particles in
the subsystem C7.

Let Jfb(£>2) = -#b[CΊ] + ^o[C2]. We denote by S[Cj] a group of permutations
of identical particles in C/; S(D2) be a group generated by S[C\] x S[C2] and a
permutation of subsystems C\ «-» C2 if they are identical (C\ ~ C2).

Let ά,m,ώ be types of irreducible representations of the groups S(D2), SO(2)
and Wi at J£2(Ro(D2)). For C\ ~ C2 by α~ we denote a type of one dimensional
irreducible representation of the group S(D2) for which the number —1 corresponds
to the permutation of clusters C\ and C2 and number +1 to all permutations from
S[C\] x S[C2]. Let — ά be the type of irreducible representation of the group S
which is a direct product of the types ά and α^ if C\ ~ C2 and — ά — ά if C\^C2.
We shall write that the symmetry σ = (ά,m, ώ) is induced by the symmetry σ =
(α, w,ω) (σ -< σ) if one of the next conditions holds

1 ) the representation ά is contained at the restriction of the representation α from
S to S(D2), m = m and ώ = ω;

2) the representation — ά is contained at the restriction of the representation α
from S to S(D2), m — m and ώ = — ω.

We denote by Pσ projector at &2(RQ(D2)) onto the subspace of functions with
the symmetry σ and let

#S(Σ>2) = ^v(D2)Pό, ^(σ-9D2) = Σ *β(Jh\ μσ = mininf ^0(σ,D2) .
σ-<σ

The location of the essential spectrum of the operator tffξ can be described by the
next theorem of the HVZ type.

Theorem 1. The essential spectrum of the operator Jf0

σ coincides with the half
line [μσ,+oo).
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The proof of the theorem will be given in Appendix 1.
The theorem shows that the bottom of the essential spectrum of the operator Jf0

σ

is defined by the decompositions of the system. So, bound states with the symmetry
σ correspond to the discrete spectrum of the operator J-f0

σ.
We shall study only the types of symmetry σ for which permutational symmetry

α satisfies the Pauli principle.

Definition 1. We shall say that a positive molecular ion is stable if there is at
least one type of symmetry σ satisfying the Pauli principle for which the discrete
spectrum of Jf0

σ is nonempty.

If for all physically realizable types σ the discrete spectrum of the operator
is empty, the positive molecular ion is unstable.

Remarks.

(1) Note that the discrete spectrum of one type of symmetry σ\, may overlap
the essential spectrum of the other type of symmetry σ^. In this case a discrete
eigenvalue of the operator J-f0

σι corresponds to a stable state of the physical system.
Our definition takes this situation into account.

(2) It is clear from the above definition that to study the stability of the positive
molecular ion one should investigate the discrete spectrum of the operator Jf7^. If
the type of the permutational symmetry α is fixed, the total spin of the electrons
and spin of nuclei are fixed too. We can also consider the states with the fixed
projection of the spin onto the direction of the magnetic field. For such subspaces
the interaction term between spin and magnetic field in the hamiltonian gives only
the shift of the spectrum. The existence of the bound states does not depend on it
and this term may be omitted.

We shall give another definition of stability (which is equivalent to the first one
due to Theorem 1) which makes clear that our first definition describes physical
stability of the system.

Notice that the operator J f is invariant under the actions of groups S, SO(2)
and W$ and we can consider its restriction J^σ onto the subspace &σ of functions
with the symmetry σ. Let

N+2

and
/ t f = l i m inf (^i^i/O IMΓ2 .

Definition 2. We shall say that a molecular ion is stable if for at least one type
of symmetry σ, satisfying the Pauli principle the next inequality holds

inf

By this definition the system is stable if at least for one type of symmetry, satisfying
the Pauli principle, it has states with small distances among the particles for which
the energy is less than the energy of decomposed system.

According to Theorem 1, this definition is equivalent to the first one and μ\ = μσ.
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4. Main Results

Theorem 2. Let there be such a number <5o > 0 that for #,Zι,Z2 the next inequality
holds

(B Z2-
2)3/2[ln(l + BZ~2)γ+δo ^ Zi . (4.1)

Then for any fixed TV there exists a constant ZC(OQ) such that if Z\ ^ Zc the
positive molecular ion is unstable, and for any fixed SQ > 0

Em Z'TV-1 ^ 2 . (4.2)
TV— >oo

Remarks.

(1) Theorem 2 is a generalization of the results of [5] to the case B > 0. Notice
that our definition of stability does not work for the case 5 = 0, but in this case
the statement of Theorem 2 coincides with the statement of [5].

(2) Inequality (4.1) can be considered as a sufficient condition on magnetic field
B to get the same limits on stability as in [5].

(3) If magnetic field B is not too strong B Z2~
2 ^ Z2/7 more precise estimates

for the limit on stability can be given by the next statement.

Theorem 3. One can find such a constant CQ > 0, that if one of the conditions 1, 2,
or 3 holds, the positive molecular ion is unstable

(1) (BZ-2) ^ Z~1/4 andZi ^ (2 + C0Z~1/12)jV,

(2) Z~1/4 ^ (BZ~2) ^ 1 andZi ^ (2 +

(3) 1 g (£Z2~
2) ^ Z2/7

Remark. Theorem 3 can not be applied directly to the case B = 0, but it follows

from the proof of this theorem that if B = 0 and Z\ ^ (2 + CQZ^l/l2)N the positive
molecular ion is unstable.

Consider now the case of strong magnetic field (5Z~2)3/2[ln(l +5Z"2)]3 ^
Z\ . In this situation an ability of the magnetic field to localize the system in two
dimensions may be large in comparison with coulombic interaction between nuclei.
So, for instability we should have nuclear charges many times greater than the
number of electrons. Theorems 4 and 5 give conditions of instability for this case.

Theorem 4. Let the next inequality hold for some δ$ G [0,5],

(£Z2-
2)3/2[ln(l +BZ-2)]3-δ° ^ Zl .

Then one can find a number Q which does not depend on Z\,Z2,N,δ$ such that
for

the positive molecular ion is unstable.

Theorem 5. One can find a constant CQ such that if the inequality

holds the positive molecular ion is unstable.
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5. Proof of Theorems 2-5

5.1. To prove the theorems it suffices to demonstrate that under their conditions the
inequality

/O ^ μl /ΊI2 (5.1)
holds for any ψ £ CQ(^O) such that Pσψ = ψ9 where Pσ is the projector in
j£?2CK3(ΛM~2)) onto the subspace of functions with the symmetry σ. Due to the in-
equality (2.5) relation (5.1) holds if and only if

^ μΊIΆII 2 (5.2)

for ViA e Cl(R^N+2}\ Pσψ = ψ. Our goal is to verify the inequality (5.2).

5.2. Following the strategy of [5], let us separate two regions in the configuration
space of the system: the large internuclear distance region and the small internu-
clear distance region. Estimates for the lower bound of the quadratic form of the
hamiltonian are different in these regions.

Let u(t\ v(t) G C2(R\\ u2 + v2 = 1, u(t) = 1 for t g 1, u(t) = 0 for t ^ 2.
It is obvious that

where

c depends only on u(t) and v(t), χ - is a characteristic function of the region

K^"1 ^ |ri2| ^ 2κZf 1

9 K is parameter which will be chosen later. To prove the
inequality (5.2) it suffices to show that

Iι[ιAM(|r12κ-1Z2)] ^μl A H 2 (5.3)

and

£i[<Hki2 κ-'Z2)] ^μσ\\Ψ\2 (5-4)

Function ψu has a support in a region where the distance between the nuclei is

small, function \j/υ has a support in the large internuclear distance region.

5.3. Large internuclear distance region (lower bound for L\[ψv]). Similar to the
case B = 0 [5] we shall decompose this region into subregions with the following
properties:

(1) each subregion corresponds to a decomposition of the whole system into
two subsystems C\ and C2 such that C\ contains the first nucleus and €2 contains
the second one;

(2) the effective interaction between C\ and C2 is positive and large enough to
compensate the localization error.
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Let 0(0 e C°°(R\_) and (see [5])

a) 0 ̂  0(0 ^ 1 Vί,

b) 0(ί) = 0 for t ^ (l+2ε),

c) 0(0=1 forί = (1+28)-',

d) 02(ί) + 02(ί-') = l Vί,

e) 0 ̂  0'(0 ^ coε-1,

where c<> - is a constant and a number ε > 0 will be chosen later. For i > 2 let
«ii = flΌn/H^iΓ1), "2; = ίd^ilki/Γ1)- K is obvious that «,,- + ι̂ , = 1.

Now we can define a partition of unity for the large internuclear distance region.
Let £>;( be an arbitrary decomposition of our system into nonempty subsystems

C\ and Ci such that the particle 1 belongs to C\ and the particle 2 belongs to €2.
For this decomposition we denote by

>2) = Π «11 Π »2p (5 5)

It is easy to see that
DJ

2)=\ (5.6)

and

',v =Y{L VD>v - Λ f - ' H I V Φ β ' dl2

όι^||2 - Σ Illv^Φόl ^ l l 2 . (5.7)
p>2 }

The last three terms in the right-hand part of (5.7) are so-called "localization
error." Let us estimate them.

It is obvious that for some constant c\ > 0 and p>2,

(5.8)

and

' " = Σ {|Viκ,,f -

|r 1 2r. (5.9)

So, for some constant c^ > 0,

1||2 (5-10)

Taking into account that
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we get from (5.7) and (5.10) that

where
L2[φ]=Ll[φ]-c3Nε-2\\φ\rl2\-l\\2

5.4. Let us estimate now the lower bound of L2[ψvW(D2)]. Let ψ\ = \l/v^(DJ

2\= J

- Σ Zp Σ

(5.11)

The function \j/\ has the symmetry σ with respect to the actions of the group
S(D2) x SO(2) x Wτ> which is induced by the symmetry σ (σ -< σ see Sect. 3), so

. (5.12)

We shall prove that at the support of the function ψ\ the next inequality holds:

p=l,2 ''€Q
/Φp, iφl ,2

^ 0 . (5.13)

Notice that at the support of \l/\ for p = 1,2; / G C,,

Hence
Σ Zp Σ \rίp\~l = ^(l + ε)Z2N \r\2\~1 . (5.14)

p=\,2 fφ«6C,^

Moreover

so
h ^ \ru\-lZ2{-2(l+ε)N-2κ~l-c3Nε-2κ~l+Z}} . (5.16)

Notice, that the inequality (5.16) holds for all ε e (0,1/4) and κ> 0 and due to it
and relation (5.7),

Lι[\l/v] ^ μσ||ι^ι;||2

for all κ> 0 and ε e (0,1/4) for which

(-2(1 + ε)AΓ - 2κ~l - c3Nε~2κ~l + Zi) > 0 . (5.17)

5.5. Partition of unity for the small internuclear distance region and preliminary
estimates. Let us estimate the lower bound of L\[\l/u\. First of all, notice that

μσ ^ infΓ P σ, (5.18)
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where Pσ is the projector onto the subspace of functions with the symmetry σ and
T is the kinetic energy operator (see (2.2)). The inequality (5.18) follows from
Theorem 1 if we consider the decomposition D2 into subsystems C\ and €2 such
that both nuclei are in the subsystem C\ and all the electrons are in €2. Obviously

inf TPσ = (ZλM~l + Z2M~l + N)B ,

and hence
μσ ^ (ZiAff1 + Z2M~l +N)B . (5.19)

5.6. Our next goal is to decompose the small internuclear distance region into sub-
regions corresponding to different decompositions of the whole system into two
clusters (C\,C1

2) such that both nuclei are in one cluster C\. In such subregions
for electrons from the subsystem C1

2 (inner electrons) the potential energy of the
interaction with the nuclei is small relatively to the potential of the internuclear
interaction. For the electrons from the subsystem C\ it is not small, but all these
electrons are localized in a small region of the configuration space and their kinetic
energy is large.

Let r0 = (r\M\ + 7*2^/2 )(Mι +M2)"1 be the position vector of the center of
masses of nuclei, r/o = YJ — r0, u(f) and υ(t) are the same functions as in Sect. 5.2.

Denote
UJQ = u(\rjQ\κ~lκ~lZ2),

where the number κ\ will be chosen later. Let VJQ = (1 — wj0)
1//2.

For an arbitrary decomposition D1

2 such that C\ and €2 are nonempty and both
of the nuclei belong to C\ define

U(D?2) = Π "jo Π M > (5.20)

ί/(A)= ΓKo (5.21)
7>2

It is easy to see that

E£/ 2 (#2)+tf 2 (A)=l,
D2

and for j > 2
Σ |V, t/(/y2)|2 + |Vy£/(A)|2 ^ cκ^κ^Zl , (5.22)
D2

where c is a constant depending only on the function u(t). Thus we have

LiWu] £ I3[^«£/Φι)] + Σ^3[Ά"C/(4)] , (5-23)

°2

where
= Iι[φ] - cKΓίC-

Let us estimate Z,3[ι^Mί7(Z)2)] f°r some fixed decomposition D'2. We will prove that

L3[φuU(Df2)] * μσ\\ψuU(Df2)\\2 . (5.24)

The inequality
|2 (5.25)

can be proved similar.
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5.7. Assume that C\ contains electrons with the number j = 3,...,p + 2. Let
i^ = ψuU(D2). Thus we have

2 N+2

Ψi>Ψi)- Σ Σ Zj(\rj5
7=1 5=3

. (5.26)

Notice, that at the support of the function ^ for outer electrons (s > p + 2) and
j = 1,2, \rjS\ > |r/o — r\2\ ^ κ(κ\ — 2)Z2

-1 and \r\2 ^ 2κZ2

l . Let κ\ = 34, then

Σ Σ Z j ( \ r j s \ - l i k 9 i k ) ^ lβ-lκ-lNZ2\\^\\2 ^ \6~l κ~λ ZλZ
2\\^\\2 . (5.27)

j=\ s=p+3

On the other hand the lower bound for the positive term describing the internuclear
interaction is

ZιZ2(\rjs -lψi,ψi) > 2-1κ-1Z1Z2

2||ιA/||2 . (5.28)

Let us pick K > KQ = 16c, then

cκ~l < l6~lZι and cκ^lκ~lN < 16~1Z1 .

From the relations (5.26) to (5.28) it is clear that for K > KQ,

1 2 p+2

L*m =t (Tφί,ιk)+-ZlZΪκ-l\\ψi\\2 - Σ Σ Zj(\rjs\-lιk9ιk) . (5.29)
4 y=l s=3

Summarizing the results of Sects. 5.1-5.7 we can say that to prove Theorem 3 it
suffices to show that the parameters ε G (0, 1/4) and K > KQ may be chosen such
that (5.17) holds and at the same time

1 2 p+2

" ~ (5.30)
4 7=1 s=3

where ψi is the function described above.

5.8. Proof of Theorem 3. Now we are going to use our preliminary estimates for

proving the theorems. Notice that for BZ2

2 ^ Zj the statement of Theorem 2
follows from Theorem 3. Let us start from this case.

Let us pick ε = Z~1/12 if condition 1 of Theorem 3 holds, ε = Z~l/2\BZ~2)^Ί

if condition 2 holds and ε = Z~l/2\BZ2

2)l/β if condition 3 holds; K = ε0 ε~3 The
parameter ε0 > 0 will be chosen later (see Sect. 5.11). Notice that the lower bound
of ε0 is defined by the condition K > KQ.

It is clear that for any fixed βo we can take CQ at the conditions of the theorem
such that the inequality (5.17) holds. So, we should verify only the inequality (5.30)
for K > KQ.

5.9. Let δ e (0, 1] and δ\ G (0, 1] be some positive numbers, which will be chosen
later,

p+2 p+2 p+2

T = T-δΣ (»Vy + Aj)2 + δδ, Σ (ίV, + Atf + δ(l - δ, ) Σ (/V; + Aj)2 .
j=3 5=3 ]=3

(5.31)
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It is obvious that

/H-2

*(μ°-δBp)\M2

By the corollary of the diamagnetic inequality [2]

S Vugalter

(5.32)

Thus for t = 1,2 we have

inf I δδι(ίVj +Aj)2 - Z, rjt ~l\ ̂  inf r,, - Zt rjt\~l

(5.33)

It follows from the relations (5.30)-(5.33), that

p+2

- pδ-lδ?ZΪ\\b\\2 (5.34)

5.10. Let us consider now a subsystem C\ consisting of electrons with the numbers
j = 3,...,/? -f 2. The subsystem CΊ is localized in a small region of the configuration

space. The term ΣjS^O'Y/ +Aj)2)\l/i,\l/i) corresponds to the kinetic energy C\. To

estimate it, notice that all the particles in C\ are identical and we can separate its
center of mass motion. Define

-\p+2

7=3

o}) = o -c,
P+2

ί=3

then

p-

7=3

where

= (/Vc + Aζ)
2

y=3 ^ Σy=3
(5.35)

Let us estimate the right-hand part of (5.35). Obviously

(O'V o +Aj0)
2ψί,ψi) ^ || (5.36)
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At the support of i/^ ,

Thus we have

p+2 ι p+2

Σ ((ίVjo +AJO)2ψi,ψί) ^ - £ IIV^H2

j=3 2j=3

= -(A0ψi, ψi) - 4pB2K\K2Z^\\h\\2 , (5.37)

where Zlo is Laplacian on the subspace RQ of the relative motion of the subsystem C\9

p+2

Σ
7=3

The function 0/ as a function of r^,...,rp+2 has a symmetry satisfying the Pauli
principle and according to Lemma A2.1 (Appendix 2) for sufficiently small y > 0,

- (4)^0 ^ ^5/3?cΓ2^~2^22ll^ll2 - (5.38)

By the relations (5.34)-(5.38),

. (5.39)

5.77. It follows from (5.39) that to prove the theorem it suffices to show that under
its conditions for κ\ =34 and K > KQ the next inequality holds

(5(1 - d^yp5/3K^2K-2Z2

2 + 4~lZlZlκ~l - δBp

- δl)pB2κ2

lκ
2Z~2 - pδ-lδ~lZ2

2 ^ 0 . (5.40)

First, notice that if the number of electrons p in C\ is small (p <^Z\) inequal-
ity (5.40) should hold, because the largest term in this case is the term 4~lZ\Z2κ~l.
At the support of the function ι/^ the internuclear distance is less than 2κ~l and this
term corresponds to 1/2 of the potential energy of interaction between the nuclei.

On the other hand, if p is very large the kinetic energy of electrons increases
as /?5/3 and all negative terms as p. So in this case the inequality (5.40) holds too.

Let BZ^2 ^ Zj~1/4 (condition 1 of the theorem holds). In this case K = εoZJ/4.

We pick δ = 1/2, δ\ = 1/2, pQ = ε^5Z^4. Suppose for a moment that we can pick
εo sufficiently small. Then for p ^ pQ,

4δ(l-δl)pB2κ2

lκ
2Z2

2 + pδ-lδ~lZ2

2, (5.41)

and for p > po

yp5βκ^2κ~2Zlδ(l -<5ι) ^ δBp + 4δ(l - δl)pB2κ2

lκ
2Z2

2 + pδ-lδ~lZ2

2 . (5.42)
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Let έo be a value of εo such that for ε0 — eb the inequalities (5.41) and (5.42)
hold for p -^ PQ and p > PQ respectively. Recall that K — εoZ |/4 and to satisfy

the condition K > KQ we must pick ε0 > κoZ[~1/4. Let us show that if the number

Co in the theorem is greater than TCO ' έjj~ , the minimal value of the charge Z\,

satisfying the condition Z\ ^ (2 + CoZ]~1//12)TV is large and εo>/cZ ]~
1/4. Really,

for all TV ̂  1 we have Zi ^ C0

12/13TV12/13 > κ4

0ε~4. Consequently K = έ0z|/4 > KQ.
Hence both the inequalities (5.40) and K > KQ hold, which completes the proof of

the theorem for BZ^2 ^ Z^1/4.

Let us proceed to the case Z j~1/4 ^ (BZ^2) ^ 1. For this case we pick δ = 1/2,

δι=(l- δ2\ where δ2 = min{l/2,(£Z-2)-2κ-2}, K = ε0Z\/7(BZ-2Γ3/1 Po = (Zi
κ(\ - δι)~l)3/5. Then the inequalities (5.41), (5.42) hold for ε0 small enough. Sim-

ilar to the case BZ^2 ^ Z j for any fixed εo we can find such a large number
Co that the inequality K > KQ is fulfilled, which completes the proof for BZ^2 ^ 1.

If 1 ̂  (BZ^2) ^ Z2/7 and condition 3 of the theorem holds, the inequalities

(5.41), (5.42) are fulfilled for δλ = (1 - δ2), δ2 = mm{l/2,(BZ22)-lκ~2}, δ =

l/2(BZ~2Γl/2po = zfκ9'5(BZ-2)9l™ and K = ε0Zj^Z"2)-1/2. The theorem is
proved. D

5.72. Proof of Theorem 2. To prove the theorem it suffices to consider only the

strong magnetic field case (BZ^2 ^ Z2//7). Let s2 > 0 be a fixed number, Z\ >
(2 + 82)N. We should show that if TV is large enough the inequality (5.1) holds.
Let us pick ε = 4-1ε2 and K >max{c^~3,K;o}. According to (5.16) we have

/i ^ kι2|Z2{4-1ε2TV -2-5c3ε2}>0

for sufficiently large TV, depending on ε2.
Recall that the function I\ was defined in Sect. 5.4. It follows from the above

inequality that L\[ψv\ ^ μσ||^t;||2.
The strategy of estimating of the lower bound for Lτ,[ψu] is the same as in

the case of weak magnetic field (see Sect. 5.11). We shall consider separately two
different cases: when p (the number of electrons in CΊ) is large and when it is
small. The difference between the strong magnetic field case and the weak one is in
another estimate for kinetic energy of the electrons (see Appendix 3) and another
lower bound of the energy of Hydrogen atom (see (5.44)).

Let δ = 1/2, δι = l. According to (5.31), (5.32),

p+2

(T^i) ^ μσ\M2 - \l2Bp\\U2 + 1/2 Σ (O'Vy +Λy)2^ ) . (5.43)
7=3

Let us consider the operator

h = (iVj+Aj)2-Zt\rjt\-1

in L2(R3) for t = l,2,rt is fixed. It is unitary equivalent to the operator.

- - 1
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Recall that we consider the case when TV — » oo, Z\ — > oo and BZ2

2 ^ Z2/7— >oo.

According to [1] for large BZ^2,

mfh = inf A i ^ B- -Z2ln2(BZ~2) . (5.44)

Thus we have
1 p+2 p+2

- Σ (iVj + Aj}2 - Σ Σ Zt\rtj\-1 ^ 4~lBp - 8pZ2

2ln
2BZ~2 . (5.45)

4 7=3 f= 1,2 7=3

From the relations (5.43), (5.45) and (5.30) it follows that

p+2

7=3

(5.46)

Let TO/CO be fixed. For p < 2~5κ~lZι\n~2(BZ2

2) the lower bound L3[^ ] ̂
μσ||^ || holds, because inf(/V/ + ̂ /)2 = B. Thus it suffices to consider only the case

p gt 2-5κ-1Zιhr2(£Z2-
2).

According to Theorem A3 (see Appendix 3), there is such a constant 72 > 0,
that

p+2

Σ ((Wj+Ajfil/M ^ mm{2Bp,Bp + 72p
3B-3K^-K-*Zl}\\^\\2 . (5.47)

7=3

If 5/7 > y2p
sB-3κ~s K-8ZS| it follows from (5.46) and (5.47) that

LAM ^ μΊI^II2 + 4-15jp||^||2 - 8/7Z2ln2(^2~
2) - ||^||2 . (5.48)

Recall that ^Z^2 ^ Z2/7 and Z\ -̂  oo. Consequently B > 32Z^ln2(5Z^"2) and

Let us assume that Bp<γ2p
3B 3κ1

 8 K 8Z|. By the inequalities (5.46) and
(5.47),

for large JV, because κ\ and /c are fixed, p ^ const Zιln~2(5Z2"2), Z\>N and

(5 - Z2"
2)3/2[ln(5Z2"

2)]3+^° < Zi. Theorem 2 is proved. D

5.73. Proof of Theorems 4 and 5. The main ideas of the proof are the same as
in Theorems 2 and 3, but in Theorems 2 and 3 we made the small internuclear
distance region large relative to Z^~2. In Theorems 4 and 5 Z\/N > 1 and to get
the optimal bound we pick the large internuclear distance region greater.

Let us take in (5.17), s = 4~l, C0 > 25(c3+4)ε~1, K = ε2[m£Z-2]-<5°/5 for

Theorem 4 and K = S2[lnBZ2

2]~l for Theorem 5. The number 82 will be chosen
later.

In this case the inequality (5.17) holds and it suffices to veriίy only (5.30) and
the inequalities (see Sect. 5.7)

cκ~l<Zι and cκ~lκ~lN < l6~lZι . (5.49)
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2If the conditions of Theorem 5 hold Z\ > CQ(\nBZ^2)N and K =
Hence for fixed 82 > 0, κ\ > 0, c > 0, we can choose Co such that (5.49) holds. Let
us check (5.30). As in the proof of Theorem 2 we have inequality (5.45). For small

(5.50)

It follows from (5.50) and (5.45), that

2 p+2

Σ Σ
j=l 5=3

(5.51)

Theorem 5 is proved.
Let us assume now that the conditions of Theorem 4 hold. In this case

Zi >C0[lnBZ~2]δo/5N9 κ = ε2[\nBZ22ΓδQ/5. As in the proof of Theorem 2 the
inequality (5.30) holds for p < 2~5κ~~1Zιln~2(#Z^~2) and it suffices to consider

only the case p ^ 2~57c~1Zιln~2(#Z^~2). For this case (5.48) holds and it is easy
to see that under the conditions of the theorem

n~2(BZ~2)]2 > 0 (5.52)

for fixed κ\ and sufficiently small ε2. Hence for small ε2 > 0 (5.48) implies (5.30).
Moreover, for chosen s2 > 0 and fixed c and κ\ we can pick Co such that the
inequality (5.49) holds also, which completes the proof of Theorem 4. D

Appendix 1.

Proof of Theorem 7. To prove the theorem it suffices to show that:

1. any λ G [μσ,-foo) is a point of essential spectrum of the operator Jfg;
2. there is no λ < μσ such that λ is a point of the essential spectrum.

The first statement can be proved by analogy with the HVZ theorem in the case
B = 0 [3, 7].

The main idea of the proof of the second one is also the same as in the case
B = 0, but for #ΦO we separate the center of mass motion and for any fixed A,
the region in the configuration space where all the distances between the particles
are less than A is compact. Because of this compactness for any fixed level of
energy only a finite number of orthogonal states with the energy less than this level
supported in this region may exist.

In the case B Φ 0 we separate the center of mass motion only in the direction of
the magnetic field and the obtained region is not compact. Nevertheless the following
important lemma holds.
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Lemma Al.l. Let Γ0

σ = T^Pσ be the restriction of the operator TQ onto the sub-
space of functions with the symmetry σ = (α,w,ω), χfl(r) G CQ°(RQ^), χa(r) — 1 if
Vi -rj\ ^a for ij = 1, 2, ... ,N + 2, χa(r) = 0 if 3(iJ) that \n - r, | ^ 2α. ΓΛen

for any c> 0 α«d α > 0 0«£ cfl« yϊm/ β finite dimensional subspace M such that
for any φ G P^J^C^os)? φ_LM the next inequality holds

(χaTSχaφ,φ)^c\\χaφ\\2. (A.I)

Proof. By analogy with χα(r) let us define functions χα,3<>) and χa,P(r). For any

r/ = (r/,r?,r?), let p/ = [(r/)2 + (r?)2]1/2. We shall use for χα,3 and χfl?p the same
definition as for χa but in it we replace r/ by r?, / = l, . . . ,7V + 2 to obtain the
function χa^ and r/ by p/, / — 1,2, ... , JV 4- 2 to obtain the function χαjp.

Let m = (mι,.. .,w/v+2) and Pw be the projector onto the subspace of functions
possessing symmetry of the weight m = (m\, . . . , w/y+i) with respect to the group

SO(2) x x 5O(2), Γ0^ - 7b/^ .

(Λ^+2) times

It is easy to see, that for any multi-index m the operator χa,3T™χa^ has pure discrete
spectrum. So, to prove the lemma we can show that there is only a finite number

of multi-indexes m = (/wι,...,/w#+2) for which ΣZJ[ /w/ = /w and

) < C\\X2a,p<P\\2 (A.2)

for at least one φ G CgCK0)> P™φ = φ.
Let us prove that there is such a number mo that if |/w7 0 > /WQ, for some yΌ G

[1, . . . , TV -f 2], /w7 0 G m inequality (A.2) does not hold.
For this goal we will use the next observation. Let M = max{Λ/ι,Λf2}. For any

j G [19N + 2] and φ G C$(RQ) we have

. (A3)
pj J

It is clear that the kinetic energy is small only if all the particles are localized not
far from the corresponding Landau orbits. These orbits have radiuses

But if the total charge Q is nonzero, m is fixed and mo — >• oo the difference between
the largest and the smallest Landau radiuses tends to +00. So the kinetic energy
can not be small for all particles if the distances among particles are bounded.

Let b > 0 be a positive number, <7/-be the charge of the particle with the number
7, qj = ZJ9 j = 1,2, qj = -1 for j > 2; v(t\ u(t) G C2(R\\ u2 + v2 = l, u = 1 if

t G [0,*], u = 0 if t > 2ft; Uj = u( \Pj - \mj\ >/2 \qj\ -1/2 \B\ ~1'2 \ ), Vj = (1 - w2)1/2.

It is easy to see that for any ψ G CQ(RQ),

(TfψM ^ (T?ψuj9ψuj)+(TWυj,ψvj)^ (A.4)

where c\ = maxt{u/2(t) + v I2(t)}. If the number ft > 0 in the definition of the func-
tion u is large, the second term of the right-hand part of (A. 3) is large for φ = ψvj.
Thus for large ft > 0 we have

(T^vj^vj) - Cl\\ιl/vj\\2 ^ c \ \ ψ v j \ \ 2 . (A.5)
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Let U = Uj=ιuj and F = (1 - t/2)1/2. It follows from (A.4) and (A.5) that

- (A.6)

Denote by ψ the function χ2a,pφ, where φ is a function for which (A.2) holds. At
the support of the function χ2a,pφ U we have

(A.7)

and
2 f t . (A.8)

It follows from (A.7) and (A.8) that either P™ψU = 0 or for some α > 0, which
does not depend on ι//9 all / = 1,2, . . . 9N + 2 and large m/0.

(A.9)

Hence if m0 is large and miQqio > 0 for at least one number j0 £ [1,

(A.10)

which completes the proof for this case.
Let us assume that AHZ #Z < 0 for Vz £ [1,7V + 2]. At the support of the function

%2a,pU according to (A.7) and (A.8) we have

m1JO\

/ = 1,2,...,# + 2. So

It follows from (A. 12) that

m^q^Qi - 8(tf

^ 4(6+ α), (A.11)

1 + \6(a + b)2\B\ . (A.12)

li-\6(a + b)2\B\qi

1/2 mV o l
/ . \~l/2π.

(A.13)

for / = 1,2 and

g m, g

for / > 2, because qι > 0 for / = 1,2 and qt < 0 for / > 2. Taking a sum of inequal-
ities (A.13) and (A.14) over / = l,...,N + 2 we get

/ W / n | 1 / 2 - Ci < /W < AH/ n έ7;mhqh

lQ-c2
(A.15)

where Q = Z\ +Z2 — N is the total charge of the system and constants c2 and c $
do not depend on m. It is clear that if /w7 0 large enough, β φ 0 and w is fixed the
inequality (A. 15) does not hold. So in this case \\ψU\\ =0 and the statement of the
lemma follows from (A.6).

Lemma is proved. D
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Appendix 2

Let C be a system of p identical particles, rt i = 1,2,...,/? be position vectors of
these particles in the center of mass system of coordinates, Σ^\ rΐ ~ Φ ^o be the
Laplacian on the subspace

ί p 1^o = <rQ\rQ = (rι,...,rp)9 Σrt = 0}
I i=ι J

e£o,M ^ -L i = I9...9p\ .

Denote by S the group of permutations of the particles.

Lemma A2.1. Let us assume that the function ψ transforms according to an irre-
ducible representation of the group S corresponding to a Young diagram with one
or two columns. Then one can find numbers p0 > 0 and γ > 0 (independent of I/O
such that for p> p§,

Proof. L e t r E t f 3 , f(t) G C0

2[0,1], ft t2f\t)dt = (4π)~l, If (01 ^ <Ί, </Wo)

— Ά( ro)/(kl *^~1) By ^(ΠJ J^P) we denote the function ^ as a function of
f . — r.^-r, i = l,...,p. Function ̂  has the same permutational symmetry as ψ and
for it we have (see, for example, [4])

where A is the Laplacian in P?p, y\ > 0.
Due to the equality

-Δ = -AQ - p~lAr ,

we get

By the properties of function /

and

Hence

The statement of lemma follows from (A. 18). D
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Appendix 3

In this section we obtain some estimates for the lowest eigenvalue of the kinetic
energy operator for a system of p particles localized in a compact region in a
homogeneous magnetic field for p —> oo.

The kinetic energy operator for this system has the form:

-ίBr™
d

where r} = (rjl\rj2\r^) are the coordinates of electrons. Let each electron be
localized in a ball with the radius d/2:

r ^ - j=l,2,...9pι d>0. (A.20)

We shall study the operator T(p) in the space &2(R3p>) with the Dirichlet
boundary conditions at |ry| = d/2. Let us assume that the magnetic field is strong:
d>2B-1'2.

Denote by S the group of permutations of electrons, α be a type of irreducible
representation of the group S, satisfying the Pauli principle. Let σ — (α, m, ω), where
m is a weight of the representation of the SO(2) group and ω is a parity with respect
to reflections of the third axis. We denote by Pσ the projector in J2?2(^

3/?) onto the
subspace of functions with symmetry σ.

Theorem A3. One can find a number 72 > 0 such that the lowest nonzero eigen-
value λσ of the operator TPσ in the region |r, | ^ d/2 with the Dirichlet boundary
conditions for all p > 0 satisfies the inequality

λσ ^ mm{2Bp,Bp

Let

Ω=

be the operator in Ω with the Dirichlet boundary conditions at

N(λ) be the number of eigenvalues of the operator T]_ (with regard to their multi-
plicity) which are less or equal to λ. The proof of Theorem A3 relies upon.

Lemma A3.1. The next inequality holds

N(4B) ^ 52Bd2 . (A.22)
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Proof of Lemma A3. 1. Let us make a partition of the region Ω into subregions Ωs

by the lines

the number of such regions is not greater than 4d2B.
Let ΩSO be a fixed subregion. It follows from variational reasons that to prove

the lemma it suffices to construct 13 functions φ\9...9φi3 such that

2) for any ψ e C0

2(Ω),

J[ψ] = f I

> 45 /

=!,...,13;
1=1,...,13,

2</Ω. (A.23)

Let the region Ω^ be given by inequalities

(2) _

(^1},ro2)) be the center of the region and ^ = ̂ .exp{ϊ5(^1}r(2>
easy to see that

where

-/iM] - / - R(rM - +

3rd)
+ >dΩ-B2 B~l f \ ψ \ 2 d Ω .

Ωι%

. It is

dΩ

(A.24)

Let φj, . . . ,(Pι 3 be the first 13 eigenfunctions for the Laplacian in the region ΩSO

with the Neumann boundary conditions. If t/Ί-Lφ? / = 1,..., 13, we have

. / 2

Ωι

*

^ 105
u*

and according to (A.24),

(A.25)

(A.26)

Hence the inequality (A.23) holds for

The lemma is proved. D

Proof of Theorem A3. Let r/1 = (r?,r?) be the projection of a vector r/ onto the
plane orthogonal to the direction of the magnetic field, Γ° be the operator defined
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by (A. 19) in the region

l>f >l * \, \rh * I (A.27)

with the Dirichlet boundary conditions.
Notice that the region (A.27) contains the ball (A.20). Thus the lowest eigen-

value A0 of the operator TQPσ may be only less than the same one for TP°'. Let us
estimate the lower bound for λ%.

For an arbitrary eigenspace of T° functions ψ,

Φ = Π Ψs(i)(ήl\^}ft(ί)(rf}), (A.28)
/=!

where φs^ are the orthonormalized eigenfunctions of the operator T\_ and /φ) are
the orthonormalized eigenfunctions of the operator

d2

in the region |r(3)| ^ d/2 with the Dirichlet conditions may be chosen as a basis.
Let us prove that if for some λ, a corresponding eigenfunction ifo of the operator

Γ° satisfies the inequality Pσ\fa φ 0, then

λ ^ min{2Bp,Bp + y2p
3B~3d~s} . (A.29)

Notice that function I//Q is a linear combination of functions (A.28). Consequently
among these functions there is a function ψ such that TQψ = λψ and Pσψ φ 0.

Assume that among the function φs^ at the representation (A.28) for ψ there
are at least p/2 functions corresponding to the eigenvalues of the operator T]_ which
are greater than 4B. Then λ ^ 2Bp.

Contrarily, let the function ψ has at least p/2 functions <%/), corresponding to
the eigenvalues of Γj_ which are less than 4B, in its representation (A.28). Due to
Lemma A3.1 operator Γj^ has less than 52Bd2 such orthonormalized eigenfunctions.
Hence to satisfy the Pauli principle (the condition Pσ\l/ φ 0) the function ψ must
have at least 4"1 p(52Bd2)~l different functions /φ) in (A.28). It is easy to see
that for small 72 > 0, the sum of 2Q8~lpB~ld~2 lowest eigenvalues of the operator

with the Dirichlet boundary conditions at |r^| = d/2 is greater than
Notice that inf T]_ =B and consequently λ ^ Bp + y2p

3B~3d~*, which com-
pletes the proof of the theorem. D
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