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Abstract: KdV theory is constructed systematically through the continuous limit
of the Kac-Moerbeke system The infinitely many commuting vector fields, the
conserved functionals, the Lax pairs and the biHamiltonian structure are recovered
as the limits of suitably defined linear combinations of homologous objects for the
Kac-Moerbeke system The combinatorial aspects of this recombination method are
treated in detail

1. Introduction

In the literature about integrable lattices, one meets the statement that the KdV-type
equations can be obtained as continuous limits of the evolution equations of suitably
chosen nonlinear lattices After the pioneering work of Zabusky and Kruskal [ZK]
on the continuous limit of the Fermi-Pasta-Ulam lattice, Toda pointed attention to
the intctpcώle lattice theories giving the KdV (or the Boussinesq) equation in the
continuous limit The limit process for the Toda lattice (from now on indicated
with the acronym TL) was first described by Toda and Wadati [TW], this was the
beginning of an effort, aiming to get more insight on the relation between discrete
integrable systems and KdV-type theories The second edition of Toda's book [Tod]
quotes, for example, Saitoh's papers [Sai], other references will be given in the
sequel

The discussion of the continuous limit has a counterpart in the realm of inverse
scattering The papers of Case, Chiu and Kac [CCK] are a classical reference on this
topic in the discrete version of inverse scattering presented here, the limit process
is easily performed at any step of the construction, yielding to the standard theory
for the Schrodinger spectral problem

Leaving aside the inverse scattering, and coming to the structural analysis of the
integrable evolution equations, we cannot avoid quoting Kupershmidt's monograph
[Kup] Here a general, purely algebraic setting is proposed for the integrable lat-
tices, extending to discrete systems the techniques for integrable KdV-type field the-
ories developed by the Russian school [Die]; after constructing a formal variational
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calculus and a theory of differential-difference operators, Kupershmidt discusses in
this framework the limit case in which the lattice spacing goes to zero

In this paper we are interested, in particular, in the ordinary KdV theory as a
continuous limit of the so-called Kac Moerbeke system This is a reduction of the
usual TL (from now on denoted with the acronym KM), if a = (a,) and b — (bj)
are the standard Flaschka coordinates for TL (i being the index for lattice sites),
then the phase space of the KM system is the submanifold defined by the con-
straint bj — 0 (see Sect 2 for the necessary details) The system was considered in
[KM], where the angle-action coordinates were constructed, it was also discussed
by Zakharov, Musher, Rubenchik and Manakov [ZMR, Man] The KM Lax opera-
tor is the differential-difference operator already considered in the papers [CCK] on
inverse scattering

The fact that the KM evolution equation gives the ordinary KdV equation in the
continuous limit was understood early (as reported in [Sch], Kac obtained the KdV
one-soliton solution from the limit process) The convergence of the KM solutions
to KdV solutions, for arbitrary initial conditions, was proved rigorously by Schwarz
in the quoted reference

In spite of the above mentioned relevant results on the correspondence between
KM and KdV theory, we think that there is still an opportunity to say something new
on this topic We list a number of problems which, in our opinion, are essentially
open

i) Most of the literature aims to recover from the continuous limit of the KM
system the KdV evolution equation

Ur = UχXλ + βllliχ ( 1 1 )

and/or its Lax formulation

(Λ L Γ T Λι/,ιv τV.Λ\i-,

dτ
( 1 2 )

where Lκdv(//) = cλX + u and Bfdv(ιι) = 4cXXλ + 6ιιc\ + 3z/λ. (Here, we denote by
τ the evolution parameter, reserving the letter t for the KM system ) On the other
hand, it is known that the vector field (1 1) is a member of an infinite hierarchy of
commuting vector fields, it would be interesting to obtain all these fields, and the
related Lax pairs, through a systematic limit procedure on the KM hierarchy

ii) Of course, one would like to obtain in the same scheme the full sequence of
KdV conserved functionals

iii) The KdV and Toda-type hierarchies are biHamiltoniair each vector field has
two different Hamiltonian descriptions, given in terms of two compatible Poisson
tensors It would be interesting to recover the KdV biHamiltonian structure as a
continuous limit In the quoted book, Kupershmidt discusses the limit of Poisson
structures on a lattice, even though his treatment allows to obtain the first KdV
Poisson tensor, it is not clear how to recover the second one Indeed, should one
interpret too naively some statement of the author (see p 119), he could be led to the
conclusion that the Poisson structures arising as continuous limits of a lattice theory
contain only the first power of the operator c\, this would exclude the possibility to
recover the second KdV Poisson tensor, which is a third order differential operator
in c\
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In this paper, we propose a solution for problems i), ii) and iii). Our derivation
of KdV theory from the KM system is based on a systematic method, which can be
as well applied to other systems, starting from a different lattice, we plan to recover
the Boussinesq theory in a subsequent paper

The biHamiltonian formalism plays a central role in our construction, for this
reason, our attitude is to define the KM and KdV systems in biHamiltonian terms,
and to introduce subsequently the Lax formalism, we take advantage from this
viewpoint in order to prove that the continuous limit can be performed for the
whole KM hierarchy

In order to set up the limit process for the KM system, we interpolate the se-
quence («,) of phase space coordinates with a smooth function a(x) of a continuous
variable x, and introduce a rescaled field variable u related to a by

a(x) = 2 + ε2u(x), (13)

ε being the lattice spacing This is, essentially, the variable change considered in
[Kup] to obtain Eq (11) and the KdV Lax operator in the ε ι—> 0 limit

The distinctive feature of our approach is a recombination principle which allows
to construct the full KdV theory (the infinitely many vector fields and conserved
functionals, the Poisson tensors, the Lax pairs) taking the limits of some suitable
chosen linear combinations of homologous objects for the KM system. We anticipate
here the main results arising through the application of this method, the proofs will
be given in Sect 5 (Propositions 5 4-6)

Let fl'{u) (s = 0,1,2, ) be the sequence of conserved functionals for the KM
system, given in terms of the u variable on account of the transformation (13),
similarly, let X[

s(ιι) (s — 1,2,3, ) be the KM vector fields (see Sects 3 and 4)
For each s we form the linear combinations

h\{u) = fϊ(u) + Σ CyfjXu) - cs, Z s » = X;(u) + Σ ϊs,X;{ιι), ( 1 4 )
/=0 /-I

where cSf and c\ are numerical coefficients determined by an explicit prescription
(see Sect 5) Our result is that the zero-spacing limits of the h\ and Z;'; are the
conserved functionals and the vector fields of order s of the KdV
hierarchy

J-o ̂ k = ̂ V0<λ ϋ- 4 ^ Γ = zrίu) (15)

Even in the case of the KdV equation (11) (i.e , the vector field Z 7

K d v in our
notations), the derivation based on Eq (15) turns out to be different from the
derivation given in [Kup], this point will be discussed in the Remark at the end of
Sect. 4

In our approach, the above results can be derived from the ε ι—> 0 limit of the KM
biHamiltonian recursion scheme, the limit of the biHamiltonian structure can also be
treated by means of a recombination In fact, let Q\{ and P\{ be the Poisson tensors
of the KM system, we will show that Qu and S* = Pr

u — \6QU give respectively,
for ε \—Ϊ 0, the first and the second KdV Poisson tensors

limlc^βr, l™^Wr (16)

The same limit technique can be applied to the Lax pairs For each s, let us consider
the KM vector field X^ and its Lax formulation dU/dts = [A\,U% to recover from
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here the KdV Lax pairs dLκdv/dτs = [ £ f d v , L κ d v ] we will consider the operators

B^iή^ΛKiή+Σc^A^u), (1.7)
7 = 1

and show that

l i m ^ F ± = £*>), ]«n 4 ^ Γ = *!*>) d 8)

One could be tempted to formulate the above results in a more picturesque style,
using the language of renormalization well known from field theory [GJ] We con-
fine this temptation to the next few lines, and dare to say that the lattice spacing ε
is a cut-off, while a(x) and u{x) = "(λjΓ2 are the "bare" and "renormalized" fields.
The recombination scheme for the functionals /s

ί: somehow recalls the Wick prod-
uct in our model one gets the wanted ε ι—> 0 limit replacing /s

r'; with h\ = fl -f
(a linear combination of the /"ί:'s for j = 0,1, ,s — 1) + a constant, whereas
in constructive field theory one operates on the action functional and replaces the
powers φs of the field variable φ with the Wick powers . φs , each of them be-
ing expressible as φs + (a linear combination of the lowest order powers φ1) +
a constant

The paper is organized as follows In Sect 2, we review the basic facts on the
KM system (also giving its second Poisson structure, which does not seem to be
well known in the literature), in the same section, we recall how to obtain the KM
system as a reduction of TL, and we fix our notational standards about KdV the-
ory In Sect 3, we discuss the interpolation of the discrete KM system in terms of
continuous field variables In Sect 4, we introduce the recombination method and
the zero-spacing limit procedure In Sect 5, we give the general proofs of the state-
ments (1 5), (1 6) and (1.8) As an exercise, in Sect 6 we show that the one-soliton
solutions for the evolution equations of the first three recombined vector fields Zs

i:

converge for ε ι—> 0 to the one-soliton solutions of the first three vector fields Z s

κ d v ,
here, we also include some remarks on the general problem of the c ^ O limit
for the flows of the recombined hierarchy Some of the computations presented in
Sects 2,4 have been performed using the MATHEMATICA symbolic manipula-
tion system Sects 2-5 of the paper could well be written in the merely algebraic
language of formal variational calculus, but we prefer to adopt a less abstract pre-
sentation, a formulation of our results in the very pure style of [Kup] will be given
elsewhere

2. Preliminaries: Kac-Moerbeke Versus KdV

In this section, we work with spaces of real sequences p = {pι\e^ > where #'
is the set of integers TL (infinite case) or 2? — Έy = Z/NΈ, with TV any integer
(periodic case) When necessary, suitable boundary conditions will be assumed in
the infinite case concerning the behaviour of sequences for i —> ±oc If p is a
sequence and r G ̂ , p(,) is the r-shifted sequence of elements p(,), — p,^, ι The
shift operator sending p into p^\) is denoted by A, obviously, the power A1 sends p
into p{l)

1 On the contiaiy, we denote by p' the / t h powei of the sequence p, with elements (// ); . = (/;,)'
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If we consider the real sequences over J^ as an algebra with the point-
wise product (pq)t '= piqt, then A turns out to be an algebra automorphism.
For any fixed sequence g and each integer r, composing the shift and the
multiplication operator by g we can form the operators gAι and A1 g,
these act on any sequence ψ = (φι)ιe^ according to the rules (gA1 )(ψ) = gψ{ι),
(A1 g)(\jj) = £/(/ )i/̂ (,), and we have A' g = g(,)A' If a second sequence h is
fixed, by composition we can construct the operator gA' h, and so on

Following [Kup], one can also introduce the associative algebra g of formal
pseudo differential-difference operators

G= Σ g,Δ , (2 1)
/ — — oc

where each coefficient g, is a sequence over &, rm a x is an arbitrary integer
(depending on G) This algebra carries a trace if the coefficient go in Eq (2 1)
is a sequence with elements #o,/, then Tr G .= Σιej goj

2 1 The Kαc-Moerbeke {KM) system The phase space of the system is a conve-
niently chosen set s$ of real sequences α — (α,)/e^ We denote by Tcrs>/ and T**z/
the tangent and cotangent spaces at any point α, their elements are represented as
real sequences, written as ά = (ά,) and δα = (δαt) respectively We have the pairing
(δα,ά) = Σιe? δα,άi

The manifold stf carries a biHamiltonian structure, i.e , a pair of Poisson ten-
sors Q,P which are mutually compatible in the sense of Magri [Mag] At each
point #, we have Qα T*s$ -* TU,Q/, δα ^-> ά = ^α(α^\)δα(\) — #(_i)c)<:/(_i)), or, in
operator form,

ά = -(αΔα - αΔ~xcι)(δα) (2 2)

The second tensor Pα T*.o/ —> Tα,o/ sends a covector δα into

ά = -(α3Aα - αΔ~]α3 + αΔα3 - α3A~ια + αΔα2Aα - αΔ~xα2Δ~λα){δα) (2 3)

Λn infinite hierarchy of commuting vector fields Xs (s = 1,2,3,. ) and con-
served functionals fs (s = 0,1,2, ) can be defined recursively on ,Q/ using the
biHamiltonian structure Q,P The starting point is the function

fo(α) = Σ l o g ^ i . ( 2 4 )

which is a Casimir of Q' Qdf0 = 0 The subsequent functionals and the vector fields
of the hierarchy are defined by means of the recursion relations

*v+i - Qdfs+X = Pdfs (s = 0,1,2, ) (2 5)

If /s is known, the above equation gives Xs+\ and fixes fs+\ up to the addi-
tion of a Casimir of Q (i e , /o or an arbitrary function of /o), from the func-
tional form of /o, it is evident that the ambiguity in fs+\ can be removed with
the following prescription fsΛ \ must be the sum over i of a polynomial ex-
pression in £//, fl/±i, βf, ±2, including no constant term Using this algorithm,
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one finds

X](a) = a(a2

X) - a2_λ)) ,

X2{a) = a{a\X) - a4__l} + a2a2

(l) - a2a2_l} + a2

(l)a
2

2) - a2_λ)a
2_2)) ,

\ ^ / \ / 6 6 , 4 2 42 , ^ 2 4 Λ 2 4

X 3 ( a ) = a ( a b

{ l ) - a \ _ λ ) + a a { ] ) - a a { _ λ ) + 2 a a { X ) - 2 a a { _ X )

~ 22a t-\)a(-2)

a2a\ (2 7)

and so on

Equation (2 5) tells us that each vector field Xs+\ of the KM hierarchy is

Hamiltonian with respect to both Q and P, the Hamiltonian functions being / s + 1 and

/s respectively As it is known from the standard theory of biHamiltonian systems,

this implies that the functionals /s are conserved quantities for all vector fields of

the hierarchy, and they are in involution for both the Q and P Poisson brackets,

moreover, the vector fields Xs mutually commute

One can also produce a Lax formulation of the KM hierarchy, resting on the

Lax operator

L(a) = Δ~ιa + aA (2 8)

If djdts denotes the Lie derivative along the vector field XS9 we have

^ = [ Λ , L ] , A, = ( L 2 l ) s k c w , (2 9)

where, for each G as in Eq (2 1), G skc w denotes the skew-symmetric part of G,

given by Gsi<cu =Σ',n=}(fJι^' ~Δ~'g,) Equation (2 9) can be as well employed

in place of the biHamiltonian recursion (2 5) to define the vector fields Xs For

s = 1,2,3, , the Hamiltonians f\ can also be characterized in terms of the Lax

operator, since

fs{a)=^sΊτL2\a) (2 10)

2 2 The KM system as a reduction of TL The relation between the two systems

is apparent in the Lax approach, and a bit more subtle from the biHamiltonian view-

point To clarify this point, it is convenient to review some facts about TL

We systematically use the Flaschka variables [Fla]. The phase space .M of TL is

a set of pairs m = (a,b), where a and b are if-indexed real sequences, at each point

m, Tm,/f and T*r'tf denote respectively the tangent and the cotangent spaces, whose

elements are represented as pairs m — {ά,b) and Om — (δa,δb)9 with the pairing

(c5/72,m) =Σi^y(δbιbι + δa{άt) Two compatible Poisson tensors P\ and Pj are

defined on : #, at each point m we have P\m T*r$ —> Tm,W, δm κ-> m = P]mδm,

with ά = a(δb(\) — δb) and b = aδa — a^-\)δa^-\), or, in matrix form,

ά\ ί 0 a(Δ - \)

/ , ) = „ - , - > o 11-> ( 2 I I )
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Similarly, P2m sends a covector (δa,δb) into the tangent vector

fU(Δ-Δ-ι)a a(Δ- \)b \ /δa"

An infinite hierarchy of commuting vector fields 3\. (s =1,2,3, ) and Hamiltonians
φs (s = 0, 1,2, ) can be constructed recursively on . # starting from

φQ(m) •= E log*/, φλ{m) = £ ft, ( 2 1 3 )

ψo is a Casimir of both Poisson tensors P\ and P2, while <pi is a Casimir of Pi
The higher order Hamiltonians and the vector fields of the hierarchy are defined
stipulating the recursion relation

.fs =P2dφs =P\dφs+] (s = 1,2,3, ) . (2 14)

For each s, the above equation determines φs+\ from φs up to the addition of a
Casimir of P\ The nature of the Casimirs allows to remove this ambiguity with the
following prescription φs+\ must be (the sum over / of) & polynomial in aι,bι and
their shifts of any order a,±,,bι+,/, including neither linear terms in b noi constant
terms In particular, the first vector field

*\{m)= (2 15)
V 2 ( β 2 - ^ ( - i ) ) /

gives, in the Flaschka variables, the evolution equations for the chain of exponential
springs first considered by Toda

All vector fields of the TL hierarchy admit a Lax formulation in terms of the
Lax operator

Λ(m) = Δ~xa + b + aΔ (2 16)

If d/dt\ denotes the derivative along $s, we have

^ = [ ( / l s W Λ ] , (2 17)

where Skcu is the projection already considered in Subsect 2.1 For s= 1,2,3, ,
the Hamiltonians φs considered above can be expressed as

φs(m)= -ΎrΛ\m) (2 18)

Now, let us observe that the TL Lax operator Λ(m) becomes the KM operator
L(a) if one sets b = 0 in Eq (2 16) From a geometrical viewpoint, this amounts
to consider in the phase space .// the submanifold formed by pairs m = (a, 0), this
submanifold can be identified with the phase space stf of the KM system, and it can
be shown that the geometrical structures considered in Subsect 2 1 are restrictions
to s/ of homologous structures living on Jί

Let us start from the biHamiltonian formalism The TL Poisson tensor P\ cannot
be restricted2 to -R/, conversely, PΊ restricts into the Poisson tensor Q of Eq (2 2)

2 Foi a lcview on the lesti iction techniques of Poisson tensois, see foi example [MMR]
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In order to recover the second tensor P of the KM system, we must consider,
besides P\ and P2, the higher order TL Poisson structures These can be introduced
using the recursion operator Nm = P2m oPln

ι

i (where the inverse of Pi is understood
in the framework of formal pseudo differential-difference operators) At each point
m = (aji), we have

/ (ab - aΔbMa - aΛ)~x \ (a + aΛ)\
Nm = \ (2 19)

\2(A~ιa2 -a2A)(a-aA)-1 b J

By means of N, one can define the tensors Ps = NS~2P2 (5 = 3,4,5, ), which
form (together with P\ and P2) a sequence of mutually compatible Poisson struc-
tures3 It turns out that TV2 restricts from e // to ec/, this implies restrictability of
p4 — N2P2, which goes into the KM Poisson tensor P of Eq (2 3)

Using the reducibility of JV2, one can show that all even order vector fields
-?2s of the TL hierarchy are tangent to the submanifold ,c/, for s = 1,2,3, , the
restrictions of the $2s

 a r e J u s t the KM vector fields Xs Similarly, the restrictions to
-c/ of the Hamiltonians φ2s are the KM Hamiltonians fs (the odd order Hamiltonians
c/)2v+i are identically zero on ,Q/)

2 3 A glossary of KdV theory In order to fix the notations, we add a few lines
about KdV theory Here the phase space is a set W of real smooth functions u
of a variable .v, ranging over the real line IR or the torus T = IR/Z Elements of
the tangent space TUW and the cotangent space T*ύU are smooth functions of Λ\
denoted typically by u and δu, we have the pairing (Su,ύ) = fdx δiί(x) ύ(x) The
geometrical and algebraic structures attached to the phase space Jlί will be marked
with the letters KdV, in order to avoid confusions in the rest of the paper We
have two Poisson tensors β κ d v , Sκάw, at each point u, Q™y . T*Ψ ^ Txflt sends a
covector δu into the tangent vector

ιι = δ u x , (2 20)

while S^d v sends δu into

(2 21)

We denote with Z s

κ d v (s = 1,2,3, .) and h™w (s - 0, 1,2, ) the vector fields and
the Hamiltonians of the familiar KdV hierarchy, these can be defined recursively
starting from

AodV) = \Sdxu(x) (2 22)

(which is a Casimir of Q) and stipulating that

zκdv = ρκciv(//7κdv = 5KdvrfAKdv ( ί = 0,1,2, . ) , (2.23)

with the supplementary requirement that hf^ be (the integral over x of) a polyno-
mial in u and its derivatives, containing neither linear terms in u nor constant terms.
F o r e x a m p l e Z , κ d v ( w ) = w x , Z 2

K d v ( t / ) i s t h e r h s o f E q ( 1 1 ) , h f ά Y ( u ) = \ j d x u 2 ,
hfdλ/(u)= [dx(u3 - \ιt2

χ\ etc

3 This sequence could also be constiucted via the so-called k'masteisymmetiy appioach," see
e g [DamJ
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Of course, this hierarchy can be described in terms of the Lax operator

Lκάλ/(u) =c\x + ιι (2 24)

If d/dτs is the derivative along Z s

κ d v , we have

d l ^ = [ £ f d v , L κ d v ] , ^ d v = 4 > - 1 ( ( Z , κ d v y ΐ ) + , (2 25)
dτs

where + denotes the projection on the nonnegative powers of d\ in the algebra of
formal pseudo differential operators, furthermore,

) , (2 26)

where Tr is the well known Adler traceform carried by this algebra [Die]

3. Interpolating the KM System

The constructions of Sect. 2 arise from an abstract algebraic structure, which can be
described as follows we have a commutative algebra (the sequences over ^, with
the pointwise product), carrying a distinguished automorphism (the shift operator
A) and a linear functional (the sum ΣieJ) invariant under this automorphism
There is an obvious, alternative realization of the same abstract structure, where
the sequences are replaced by real smooth functions of a continuous variable x,
ranging over the real line IR or the torus TΓ. In the present section we consider this
alternative realization, the system arising in this way can be easily interpreted as an
interpolation of the discrete KM lattice of Sect 2 (see the final Remark) and provides
the starting point to recover KdV theory through an appropriate limit process

Let us consider the algebra of real smooth functions a on IR or T (with ap-
propriate boundary conditions at infinity in the former case) We fix a fundamental
spacing i: G IR, the shift operator on smooth functions is the map Aί: a ι—> a^), where
ci(r.)(x) = a(x + t:) For each integer r, the rth power of ΔVι is the operator sending
a into <2(/;,), where a^^(x) — a{x + rε), this operator will be denoted by Alί: The
linear functional (a,) K^ Σiej a' o n sequences is replaced in the present framework
by the functional a ι—>• jdx a(x) (integration over the real line or the torus), which
is clearly shift invariant 4

If cj and h are fixed smooth functions, we can form operators such as gAlL,
AILg, c]A,vh, for example, the third one acts on a function ψ with the rule
(gA,ι:h)(ψ)(x) — g(x)h(x + n:)ψ(x + n:) Also, we can introduce an algebra of for-
mal pseudo differential-difference operators G,. = Σ]™^^ gtΔn)i where the coeffi-
cients g, are smooth functions of x This is clearly the counterpart of the algebra c\
in Sect 2, it carries a traceform Tr, where Tr Gί: = j dx go(x)

4 In the case wheie x langes ovei the line IR, it is necessaiy for our purposes to define the integial

J cl\ cι{\) foi each function of the form a{\) = c + ι{\), with c a constant and i vanishing lapidly

at infinity If a is of this form, we put J dxa{\) \— (dx v{x) ("subtiaction of the vacuum infinities");

according to this piesciiption, foi each constant c it is J dx c = 0 An analogous definition could well

be given foi Σιaι when / langes ovei the set Έ of integeis and {at) is the sum of a constant and a

rapidly vanishing sequence
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We now come to the interpolated KM system, its construction rephrases
Subsect 2 2, so it is hardly the case to mention the essential points Concerning
the notations, our style will be to maintain the same letters for the homologous ob-
jects in the discrete and continuous cases, adding the mark ε to any structure which
depends on the spacing

So, the phase space of the interpolated system will be denoted by J>/, its elements
are real smooth functions a on R or T The pairing between cotangent vectors δa
and tangent vectors ά is given by (Oa,ά) = fdx Oa(x)ά(x). We have a pair of
Poisson tensors Q\ Pι\ defined by formulas analogous to (2.2), (2 3) (provided that
we systematically replace the symbols a^}) and A' with «(,,) and An]), the recursion
relation

(s = 0,1,2, ) (3.1)

gives rise to a hierarchy of vector fields Xy and Hamiltonians /s\ starting from

fξ(a) = fdx log a(x) (3 2)

(in fact, ε independent) For .s1 = 1,2,3, , we stipulate that f[- be the integral over
Λ* of a polynomial in a(x) and the shifts a(/;;)(x), including no constant term, with
this supplementary requirement, the recursion formula (3 1) uniquely determines
/ s

;

+1, if fl is known The first Hamiltonians after /Q are

f\(a) = fdxa2(x\ f*(a) = fdx (\a\x) + a\x)a\x + ε) J (3.3)

The explicit expressions for the vector fields X{\ X'{ and X | are analogous to for-
mulas (2 7), with the obvious prescription of replacing α(/) with a^lί:)

The hierarchy has a Lax operator U(a) = aAL + A~]a; Eqs (2 9) and (2 10)
are still satisfied, i e ,

and

Aβ(fl)=^-Tr(Lβ)2 v(fl), (3 5)

intending the trace as explained above

Remark Let us add some comments on the relation between the interpolated and
the discrete KM systems Of course, the discrete index i of Sect 2, ranging over 3ί\
can be viewed as the label for a network of equally spaced sites on R or TΓ, of
coordinates x, = iε If ίl = TL, the points X\ lie on the line and ε is arbitrary, if
2ϊ = Z/V, the N points x, are placed on the torus, with ε = ±1/7V

Given a smooth function a of x and a sequence (<://), assume that a(xt) = a, for
each / G ̂ , in this case, we say that a interpolates («/), or, equivalently, that (α,)
is the discretization of the function α

Interpolation can be described geometrically, in terms of a projection More
precisely, let Π' be the map sending the function a of x into the sequence a { —
a(xj), Πy is a surjective application between the phase spaces of the interpolated
and the discrete systems The vector fields Xs of Subsect 2 2 and their continuous



Continuous Limit of Integiable Lattices I 515

homologues X'(( are related by

where TW denotes the tangent map and a is any function such that U[\a) — (α,)
The geometrical property expressed by Eq (3 6) corresponds to the general notion
of projectability for vector fields

4. The Zero Spacing Limit and KdV Theory

4 I Field rescaling Our purpose in this section is to recover KdV theory from
the interpolated KM system through the ε H-> 0 limit As a preliminary step, we
introduce (for ε finite and arbitrary) a rescaled field variable w, related to a by
Eq (13) For any fixed ε ^ 0, we can describe the rescaling by saying that there
is a diffeomorphism

Φv ,<?/ —> °U, a y-+ u = — r — ( 4 1)
ελ

(with JI/ an appropriate set of functions5) At any point a £ es/, the tangent map of
Φι and its adjoint are

TaΦ
ε T a r f ^ T u < W , ά ^ ύ = ^ , (4 2)

T*Φι T*'% -> T*<Q/, δu ι-> δa = -^ δu (4 3)

We can employ the dififeomoiphism Φι to transport on % the whole structure of the
KM system The correspondents of the objects considered in the previous section
will be denoted for simplicity with the same letters So, JU carries a hierarchy of
vector fields

1
Xι {ιι) .= (TaΦ

ι:)(XΪ(a))\a={φι:)_Hu) = -^Xs(a) (4 4)

and Hamiltonians

_ _,,,„• (4 5)

The first Poisson tensor on J// is

(4.6)
a=2+ί'~ιι

i e , from Eq (2 2), Qu = J^ ((2 + ιau)Λ,(2 + v?u) - (2 + A/)zU(2 + v?ιι)) The
second Poisson tensor Pι

u is constructed similarly
The Lax operator for the KM hierarchy on ύll is

V\u) .= L'\a)\a=(φrr]{u) = (2 + έu)Δi: + Δ.,(2 + Λ/) (4 7)

5 If \ langcs ovci the line IR, it is convenient to assume that, foi all functions a £ s/ and u £ '//,
a — 2 and // be lapidly vanishing at infinity
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4 2 The ε ^ 0 limit The Taylor formula φ(x + n;) = £ ^ ( 1 / / Ί ) ( r ε ) ' ^ ( ; r ) , for
the shift of a function ψ, means that Δ,, = exp(rεrλ) So, if we take the Lax operator
U\ιι) in Eq (4 7) and expand it in powers of ε up to order 2, we find (similarly
to [Kup])

L\u) - 4 + 2c2(dxx + u) + O(ε3) (4 8)

The appearence of the KdV Lax operator is a hint that we are following the right
path towards our goal Now, let us pass to the vector fields X!:. The first one is
given by

X\{u) = ~2 (2 + i2u) [(2 + ε 2

% ) ) 2 - (2 + c2«(_fi))
2] . (4 9)

From the Taylor expansion of u(x ± ε), we have U(±L) = u =h εwx + \ ε2ιιλλ + -f

(rβ/Ί20)uxxxχxx + O(ε7), which implies

o

X{'(ιι) = \6ι:ιιx + - r?(ιιXλX

2
+ — ε 5 (w λ γ m + 20«wλYλ + 30wγwλY + 30w2wλ) + O(ε 7 ) (4.10)

Similarly, we find

X (ιι) = 384εwλ + 128ε3(wγγγ + βuux)

96 J 40 70 ? \ 7
+ y ίΓ ( uXXXXλ + y MMxrγ + y WγHn + 30l/2wλ I + O(ϊJ) , ( 4 1 1 )

+ 960ε5(wUλγx +- 12wwxn + 22wγwxv + 30w2wγ) + O(ε7) (4 12)

The inspection of the above expansions suggests that the first three vector fields of
the KdV hierarchy could be recovered in the ε ι—> 0 limit by suitable recombina-
tions, so that the lowest order term in the expansion of each recombined field is a
KdV vector field. Indeed, this is obtained introducing, for each finite ε, the vector
fields

z;; = x;:, zιi = x{ - IAX\, Z\ .= x% - 4oxf + 48ox;: (4.13)

(that we can consider to be defined on both phase spaces srf and Jl/) The choice
of the coefficients in Eq (4 13) implies that

Z\{ιι) = \6mx + O(ε3) = \6εZfάw(ιι) -f 0(ε 3),

Zιi(ιι) = 64ε3(wxu + 6uux) + O(ε5) = 64ε3Z2

κdv(w) + O(ε5) ,
(4 14)

Z^;(ι/) = 256ε5(wγγγγγ + 10MWUX + 20wvwXλ + 30w2wγ) + O(ε7)
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These experimental facts lead us to conjecture that we could generate all vec-
tor fields of the KdV hierarchy with the same recombination method This re-
sult will be presented in the next section, for the moment, we maintain an
experimental attitude and test the ε ι—> 0 behaviour of the first KM Hamiltonians
We have6

ft(ιι) = Jdx log(2 + c2w)

= loglfdx + y Jdxu - j Jdxu2 + ^ Jdxu3 + O(ε") ,

fl'(u) = J dx (2 + A/)2 = 4 / dx + 4ε2 / dx n + ε4 / tfx */2 ,

- 24 / rf.v + 48ε2/ ί/Λ- u + 36̂ ;4 / dv u2 + 4ε6 / rfx (3w3 - 2w2) + O(εs)

(4 15)

So, setting

ti0 = f£-log! fdx, h\ = //' - 8/^ - (4 - 8 log2)/ Jx ?

h\ = /2-24/f + 96/2'-(961og2-72)/i/.Y, (4 16)

we infer

hE

0(u) = U} J dxu + O(ε4) - ε2 Λ^dv(w) + O(ε4) ,

h\(u) - 2ί;4 / dx u2 + O(ε6) = AvA hfdv(u) + O(^6) ,

hιί(u) = Sεβ f dx (2u3 -U

2

x) + O(t?)= \bv6 h^άv(w) + 6>(c8) (4 17)

Finally, let us consider the Poisson tensors Q\ Pι (see Eq (4 6)) We have

4 2
&';(<5w) = -3 δwv + — (δuxxx + 6M^MX + 3uxδu) + O(ε) , (4 18)

64 80 / 24 12 \
P(

u{όn) = — δux + — δuxxx + — uδux + — MYC)M + O(ε) , (4.19)
ε- is y 5 J J

this implies

βί; = ^ v̂ + θ(\), Sΐ, = — (cxxx + 4udx + 2MY) + 0(ε) , (4 20)
o \ ε / ε

6 In the peuodic case, /7Λ = J (the total measuic of the torus T) We recall that we have defined
fd\ :— 0 if \ langes ovei the line IR: see the footnote in Sect 3 In computing the expansions of the
Hamiltonians, we take into account that, foi any polynomial φ in // and its derivatives, it is / d\ φλ = 0;
this is gi anted when Y mnges ovei T, 01, alternatively, when x langes ovei IR and u is rapidly vanishing
at infinity
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where we have put

Sr' .= PV - 16Q1 (4 21)

In Eq (4 20), one recognizes the KdV Poisson tensors, this fact will be basic
in the next section We observe that, for any finite ε, Q and Sι: form a pair of
compatible Poisson tensors on the phase space JI/ Also, the definition (4 21) of
Si] is consistent with the recombination rules found for the first vector fields and
Hamiltonian functions, in the sense that we still have a recursion scheme, in fact,
using Eqs (4 13), (4 16), (4 21), and Eq (3 1), one can check that, for the lowest
values of s,

z;+ 1 = QRdh\+λ = S'dh; (4.22)

We are now going to develop systematically the approach suggested here, so as
to recover not only the first vector fields and Hamiltonians, but the whole KdV
hierarchy

Remark. From our viewpoint, the role of the first KM vector field Xχ is sim-
ply to give, in the v. ι—> 0 limit, the vector field Zfάv(u) = uΛ, i.e , the infinites-
imal generator of space translations on JU, to obtain the ordinary KdV equation
(1 1), i e , the vector field Z2

K d V, we take the limit of the combination Xf ~ 2AX\
For completeness, we compare this construction with Kupershmidt's derivation
of Eq (11) Kupershmidt employs only the first KM vector field X[\ accord-
ing to Eq (4 10), the evolution equation du/dt\ = Xf(u) becomes, at the lowest
orders in r.,

o

ιιu = 16εwλ + - c3(wΛλY + 6uuλ). (4 23)

The manipulation performed by Kupershmidt on this equation is described in terms
of his abstract language of evolutionary derivations, but amounts essentially to con-
sider a space-time coordinate change

ς = x + lόtfi, I] = | c 3 f i , (4 24)
3

under which Eq (4 23) becomes uτχ = u^c• + 6z/w>- The τ\ variable is clearly a
rescaled time, while ξ can be interpreted as the space coordinate for an ob-
server translating with speed 16ε with respect to the lattice7, the introduction of
this observer, which is a standard trick in the literature, is essentially motivated
by the aim to reabsorb the term in v,ux from Eq (4 23) No attempt is made
in [Kup] to recover the subsequent vector fields of the KdV hierarchy

When we subtract from X[ the vector field X\ to get the KdV, we essentially
perform the transformation (4 24) on the evolution equation du/dti = X-ti11)* because
X](ιι) behaves for ε h^Oas 16£z/λ, which is the generator of the one-parameter group
of transformations u{x) ^ u(χ + \6εt\) No interpretation of this sort, in terms of a
space-time variable change, is possible for the higher order recombinations such as
the vector field Xj; - 40X% + 480^f

7 One should not be astonished that *; can be both a lattice spacing and a speed, since all the space-time
and field variables employed in the papei aie dimensionless
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5. The General Recombination Scheme

The general recombination formulas for the infinitely many vector fields X^ and
Hamiltonians fl will be given in terms of a set of coefficients (c s / )

5.1. Definit ion. (c\,)s 012 is the family of real coefficients defined recursively in
/- 0 1 s

the following way
coo • = 1 , (5 1)

44 f IO-E;=,4'e>w-i-l&w) forj = 0

Cv+u, = I cs 7_! - 16cv/ for j = 1,2, ,s (5 2)

for j = s+\

(here ( | ) denotes as usual the binomial coefficient, for each pair i\k) D

One can arrange the above coefficients into an infinite lower triangular matrix

7

Knowledge of any row in this matrix allows to compute the subsequent one, ac-
cording to Eq (5 2), it should be noted that all elements css on the main diagonal
are equal to 1, and that

| 2 ^ ^ ) (*= 1,2,3, ) (5 4)

5.2. Definition. For each c, Z\ (s = 1 , 2 , 3 , ) and ¥s (s = 0,1,2, ) are the
vector fields and the Hamiltonians defined by

Z;'=±csjX^ (5 5)

K =Σ^fj-Cs, ( 5 6 )

wheie the constants cs are given by

^ (2/\,)jdx. Π (5 7)\ 0g έ r

For the lowest values of s, Eqs (5 1-7) give the vector fields and the Hamiltonians
considered in the previous section

5.3. Proposition. Let Q' and Sί: = P' - \6Qί: be the Poisson tensors considered
in Sect 4 Then Qrdhl

Q = 0 and

Z"+\ = Q*dK+\ = Sι'dh\ (s = 0,1,2, ) (5 8)



520 C Moiosi. L Pizzocchero

Proof We already know that h^ = /Q — CO is a Casimir of Q From Eqs (5 6)
(3 1) and (5 5) it follows that

Qι:dh^, = Σ cs + uQhψj = Σ cs+L]X; = Zf+1 (5 9)

Also taking into account the definition of Sί: and the recursion rule (5 2), we obtain

J ; ;+ + Σ (c v , 7 _i - i 6 c s / ) x ; = z ; + 1 (5 i o )
7=0 /-I

It should be noted that our argument entails only a part of the recurrence law,
namely the formula for c s f K / for / running from 1 to 51 + 1; for the moment, the
rule for cs+i,o is immaterial, as well as the explicit expression stipulated for the
constants c\ in Eq (5 7). On the contrary, these prescriptions will be essential in
the sequel, to characterize the behaviour of the Hamiltonians h\ at the lowest orders
in ε •

For convenience, we now restate a result essentially known from the previous
section

5.4. Proposition. We have

^ S'u= ^ 5 , ^ + O(ε) (5 11)

These are the leading terms oj two expansions oj the form

Qu = + Σ έm^Qim-Xu , 5,'; = +f ε 2 " 1 " 1 ^-! . , , (5.12)

Proof The method of Sect 4 ensures that such expansions in ε are possible, that
the leading terms are in l/ε3 for Qu and l/ε for S* and have explicit expressions as
in Eq (511) (compare with Eq. (4 20)). It remains to show that, in both cases, only
odd powers of ε appear in the developments. Indeed, it is evident from Eqs (4 6),
(2 2) and (2 3) that Qι;( = -Q~i] and P* = -P~E, the tensor Sf{ is also an odd
function of ε, since it is a linear combination of Qu and P(

u D

From the previous two propositions, we finally infer

5.5. Proposition. One has

ti]

s(u) = 4sε2s+2hfάv(ιι) + 0(ε 2 v + 4 ) (s = 0,1,2, ) , (5 13)

Z;;(z/) = 4 s + 1^ 2 s^ 1Z s

κ d v(i/) + O(^2 v + 1) (s= 1,2,3, ) (5 14)

Proof The essential point consists in showing Eq. (5 13), our arguments will be
divided in three steps

Step 1 We start by analyzing the expansions in ε of the Hamiltonians fl
Let us employ the representation f£(u) — γs TYL2,s(a)\a=2- -VΪU, holding for s =

1,2,3, , and note that we can write U(a) = aAί: + A_va = aAL -f a^-v.)Δ-ι, =
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Σ,=±i a(\π;-\r,)A>r, τ h i s implies

so, taking the trace, we find

+/ 2 s ) f : ,

(5 15)

with α = 2 + c2;/ We wish to make explicit the lowest order terms in the expansion
in e, of (5 16) To this purpose we note that, for each r i , . . . , ; > , it is

Γk _, + ^ - I

(5 17)
So, for each i \, ,;'2S, we have

= 2 2 ΐ + 2 2 \ Ϊ C 2 K + 2 2 s " ' c 3 C £ Γ2.v - * + ^ ) α- - ί ) «v + O(jΛ) ( 5 1 8 )

If we integrate over x, the term in c3 in the above formula disappears, because
I ί/ϊ!ί, = 0, if we also sum over r\,. ,Γ2S, we conclude that

f;{u) = 22s~'#(.v) f 1 /V/.Y + ί:2 jdxu) + O(c4), (5 19)

where #(s) is the number of finite sequences (/-], .,/^s) with values in ±1 and

zero sum Elementary combinatorics gives #(s) = (^s)

We note that developing f^'(ιι) up to O(ε4), we find no terms of order ε and ^ 3

In general, no odd powers of ε appear in the development* this follows from the
identity f~'('{u) = /Λ

ί:(w)̂  which can be derived directly, without expanding, from
the representation (5 16) So, we can state that

Λ > ) = Σ > 2 / / u / ( ί 0 , (5 20)
/=0

in particular, the first two terms are as we found above, i e ,

fclx, /s2(«) = 2 2 ϊ-' (2Λ Jcίxu (5 21)

The above equations hold for each s ^ 1 For s = 0, the corresponding Hamiltonian
/Q can also be expanded as in Eq (5 20), the first two terms being

/ooOO = log2 fdx, /02(w) = - Jdxu (5 22)
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For our purposes, it is not necessary to make explicit the terms of order ^ 4 in the
expansions of the Hamiltonians, it suffices to remark that, for 2/ ^ 4, each functional
A.2/(w) is (the integral of) a polynomial in u and its derivatives, containing no
costant term and no linear term in it

Step 2 Let us come to the Hamiltonians ti's (s = 0, 1,2, .) Each of them has an
expansion

W = Σ>2 /As.2/00 (5 23)
/=o

Our previous considerations enable us to state that

ΛooOO = 0, As0(w) = hs2(u) = 0 (s= 1,2,3, . ) (5 24)

This follows immediately from the definition (5 6) of hξ as a linear combination of

the Hamiltonians /;, from Eqs (5 21), (5 22) and from Eqs (5 4), (5 7) Now, we

state that it is also

hsA(u) = hsβ(u) - = As,2s(w) = 0 (5 25)

for each s ^ 2 If s = 2, this is already known (see Eq (4 17)) The general proof
can be obtained by induction so, we assume that Eq (5 25) holds for a given s

and show that it also holds for s + 1, on the grounds of the biHamiltonian recursion
relations In fact, we have Quduits^λ = S''udjrs = 0(l/fi)0(ε s 4"2), i e .

βXA' +i =O(r:+]) (5 26)

The expansion of Qι'{duh\+X can be computed in terms of the developments (5 12)

for Q\t and (5 23-24) for h\^x If we set to zero the terms in ι:k for k f^s, so as to

satisfy Eq (5 26), we obtain a triangular system of s — 1 equations

Q 3 uduhs+\ 4 —- 0, β-3.//^fΛ+1.6 + Q-\.ι4uhs + \ 4 = 0 ,

£?-3,^A-fl.2s+2 + Q-UiduK+Lls + + Qls-S.uduhsA = 0 (5 27)

Let us analyze this system, recalling that Q-^.u — ^\ a n <^ t n a t t n e functionals
/?sf i 2/ are integrals of polynomial densities in it and its derivatives, containing
neither constants nor linear terms in u Due to these features, the first equation
(dιthsλ i 4)x = 0 in the system (5 27) implies hsΛ\A = 0, substituting in the second
equation we find that (duhsΛ\ β)λ — 0, and so hs+\ 6 = 0, iterating this argument, we
infer duhs 112/ = 0 for each / ^ s + 1

In conclusion, we have proved Eq (5 25), which implies, together with Eq (5 24),

K{ιι) = ;;2s+2/7s 2sf2(w) + O(ι^4) (s = 0,1,2, ) . (5 28)

Step 3 We substitute Eq (5 28) in the biHamiltonian recursion formula (5 8), using
again Eqs (5 11-12), we obtain that the sequence of functionals /?s.2s 2 satisfies the
recursion scheme

QuLWduhs+L2s+4 - 4S™vduhs2s+2 (s = 0, 1,2, . ) , (5 29)

which is very similar to Eq (2 23) The basic features of the functionals hs.2s+2
s ^ 1 (differential polynomials in w, with no constants and no linear terms in it) have



Continuous Limit of Integiable Lattices I 523

been already emphasized, on the other hand, the recursion scheme (2 23) admits no
more than one solution with such features, for each choice of the starting point. The
starting point of the sequence /zs,2sf2 is /Z02OO — \ J dxu — h^άv(ιι), from here, and
from Eq (2 23), one immediately gets

As,2s+2(«) = 47zfdv(*/) (5 30)

So, Eq (5 13) is proved.
The remaining Eq (5 14) follows straightforwardly, expanding to the lowest

order in c the identity Zf = Q\dh\ D

The connection between the KM system and KdV theory can be rephrased in
terms of the Lax formalism By definition, the ZJ; vector fields are linear combina-
tions of the X^s, which admit the Lax formulations (3 4), so, if d/dθs denotes the
derivative along ZJ.;, we have

dU s

— = [B'iM l Bι;(ιι) =Σcs/A%u) (5 31)

We already know the lower terms in development of Lι:(ιι), we complete our analysis
considering the behaviour of B^(ιι) and summarize the results in the following

5.6. Proposition. One has

V\u) - 4 = 2rL κ d v (w) + O(ε3), (5 32)

5 » = 4 s H " 1 c 2 s - 1 ^ d v ( W ) + O(ε2s) (s= 1,2,3, ) (5 33)

Proof The result concerning the Lax operator is already known (see Eq. (4 8))
To derive Eq (5 33), we proceed in three steps, the integer s is fixed throughout
the proof

Step 1 For subsequent use, it is useful to emphasize a feature of the operator
B\(ιι) at the point u = 0. On account of Eq (4 7), we have Lι(0) = 2Aί: + 2z1_.,.,
so, from the expression (3 4) of A1- and Eq (5 31) it follows that B*(0) is a linear
combination with constant coefficients of differences of the form AIL — A-Uι with r
an integer between 0 and 2s Expanding in ε, we find only odd powers of ε and Γ\

S;(0)= Σ > 2 , , , + iί:2 '"^f"+ 1, (5 34)

where bs\,bsi, are real constants whose explicit expression is not relevant for our
purposes At a generic point u, we have the expansion

Bl;(u)=j:r/Bsp(u), (5 35)
p=0

for each p, Bsp(u) is a differential operator in rλ, whose coefficients are polynomials
in 11 and its derivatives In particular, at the point u = 0 we find, on account of
Eq (5 34),

Bsp(0) = 0 for p even, Bsp(0) = bspc{? for p odd (5 36)
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Step 2 The ε ι-» 0 limits of the ZJ: vector fields are the KdV vector fields Z s

κ d v ,
according to Eq (5 14), so, by comparing the Lax formulations (5 31) and (2.25)
we infer

[ £ » , ! » ] = 2 2 ϊ + 3 ε 2 v + 1 [ ^ d v ( « ) 9 L κ d v ( M ) ] + O(c 2 s + 2) (5 37)

Our aim is to obtain from this equation the maximum amount of information about
the operator B\ To this purpose, we use the expansion (5 35), and write Lε(u) = 4 +
2c2Lκdv(w) + Σq™ tfLqi11)* f o r e a c n q> Lq(u) is a differential operator Substituting
these developments in Eq (5.37), and considering the terms up to ε2\ we obtain a
triangular system of 2s — 1 equations

[Bs0(u)9L
κdw(u)] = 0, 2[£ v i («U κ d v (w)] + [Bφ),L3(u)] = 0, ,

2.s

2[£s.2s_20/),Lκdv(t/)] -f Σ [^.^(ί/),/^/)] = 0 (5 38)
</=3

Furthermore, extracting from (5.37) the terms in s2v+1, we find

2[Bs^{u\Lκάv(ιι)} + £ [ £ 4 , 2 S + 1 _ 9 ( H ) , Z ^ ( M ) ] = 22s+3[Bfdv(u),Lκάw(u)] (5 39)

Step 3 By discussing the triangular system (5 38), we will show that Bsp(u) = 0

for p = 0, 1,2, ,2s1 — 2, substituting this result in Eq (5 39), we will be able to
determine the operator 2?s,2S -i(w)> and this will conclude the proof

Let us start from the first equation in the system (5 38), which asserts that
the differential operator Bs$(u) is in the centralizer of Lκdv(u) The well known
characterization of the centralizer (see for example [DS]) implies in this case that
BSQ(U) is a linear combination of nonnegative integer powers of Lκ d v(ι/)

BsO(u) = Σbs o,(LKάWy(u), (5 40)
/

where the bso, are constant coefficients, independent of n On the other hand, at
the point u = 0 the 1 h.s of Eq. (5 40) vanishes on account of Eq (5 36), while
(L κ d v ) 7 (0) = r\7, so, we conclude that /?v0/ = 0 for each /, i e , Bs0(u) = 0 at each
point u

Inserting this result in the second equation of the system (5 38), we obtain that
also Bs\(ιι) belongs to the centralizer of Z,κdv(«), so,

Bs\(u) = Σbs\,<Lκάwy(u)9 (5 41)

where j ranges over a set of nonnegative integers and the bs\j are real constants
Again we fix our attention on the point u = 0, here the 1 h s of Eq (5 41) is ^i^x
due to Eq (5 36), while the r h.s is X^^si/V By comparison, we conclude that
the constants bs\ and bs\j all vanish, i e , that Bs\(u) = 0

The above arguments can be iterated on the remaining equations of the system
(5 38), one finally obtains that, at each point w,

BsJu) = 0 ( p - 0 , 1 , , 2 s - 2 ) (5 42)
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Keeping in mind this result, we turn our attention to Eq (5.39), from which we
infer that £ s > 2 s -i(w) - 4S+ ]Bfάv(u) is in the centralizer of Lκάv(u). So,

1 ^ d v s - i , / (^ K d V ) / (w) (5 43)

To determine the constants Z?Vi2s_i,/? we use again the trick of specializing Eq (5 43)

to the point u = 0, here the 1 h s is ^ s ^ s - i ^ " 1 due to Eq (5 36), while the r h.s

is 42 sr2. s~1 + J^ y £s,2v_i./<V By comparison, we infer bS2s-\ — 4 2 s and Z? s 2 s _i w = 0

for each / In conclusion, at any point u we have

= 4 s H £ f d > ) ; (5 44)

the thesis (5 33) follows from this and from Eq (5 42) D

Propositions 5 4, 5 5 and 5 6 contain the main results of the paper, of course,
their statements can be written as in Eqs (1.6), (1.5) and ( 1 8 ) of the Introduction.

Let us note that Prop. 5 6 on the Lax pairs rests on the previous result in
Prop 5 5, which has been proved using systematically the biHamiltonian recursion
relations, so, in our approach, the continuous limit of the biHamiltonian scheme also
gives the basic information about the limit of the Lax formalism

6. Final Remarks

In this paper, we have presented a zero-spacing limit procedure for the KM system,
drawing attention to its algebraic/geometric structures (hierarchical organization of
the conservation laws, biHamiltonian structure and Lax formalism) The convergence
of the limit procedure for the solutions of the associated evolution equations deserve
a separate discussion, it is outside our present purposes to give a systematic treatment
of this topic, so we will limit ourselves to an example and some remarks

A first exercise for going inside this matter is the study of the limit process
for the soliton solutions; here, we will analyze the one-soliton case for the first
three vector fields of the hierarchy It will turn out that the recombination principle
employed throughout this paper plays a basic role also in the present discussion
the coefficients cS} of Sects 4-5 also control the recombination of the frequencies
in the soliton solutions, and the prescriptions given for such coefficients allow to
obtain the KdV one-soliton solutions through the limit process

Let us consider the discrete KM system, in the infinite case (the index / labelling
the sites runs over TL) Let X\ be the vector field given by Eq (2.7), it is known
that the evolution equation dajdt\ = X\(a) admits the one-soliton solution

/cosh(3/Q + cosh2[K(i - 1/2) + v^K)^ + A]
a ι { ] ) y cosh(*:) + cosh2[K(i- 1/2) + vx(K)tx + A] ' ( j

depending on the arbitrary real parameters K and A, with v\(K) = 8 ύnh(2K) Equa-
tion (6 1) is equivalent to an equation appearing in [Man], clearly, the ratio v\(K)/K
gives the speed of the soliton center, whose position at time t\ = 0 is controlled
by A Similarly, the vector fields Xj and X3 in Eq (2 7) yield to one-soliton so-
lutions of the same form as in Eq (6 1), with V\(K) replaced, respectively, by
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\>2(K) = 32sinh(4/O + 128sinh(2A^) and v3(K) = 128 sinh(6/O + 768 sinh(4Λ:)+
1920sinh(2^)

We pass to the interpolated KM system (in the sense of Sect 3), and consider the
vector fields Xι

s' (s = 1,2,3) For each choice of the lattice spacing ε, we can con-
struct one-soliton solutions for these vector fields, replacing the index / in Eq. (6.1)
with the ratio x/ε, the parameters K and A in the above equation can be chosen
arbitrarily for any given ε If we make the choices K = εk (with k a real constant)
and keep A independent of ε, we are led to the solutions

/cosh(3ε/Q + cosh2[/c(x - ε/2) + v°s(k)t< + A]
Cl {X' s j y cosh(ε/c) + cosh 2[k(x - ε/2) + v!;(k)t, + A] [ j

Here, k and A are arbitrary, while

v\{k) = 8sinh(2c&), vι

2(k) = 32sinh(4ε/c) + 128sinh(2ε£) ,

vl(k) = 128sinh(6ε/c) + 768 sinh(4ε/c) + 1920sinh(2ε^) (6 3)

In the previous two sections we have shown how to construct from the vector
fields X'ϊ; the recombinations Zs

/;, in such a way that the ratio ZsVε2s-1 gives, in the
ε i—» 0 limit, the vector field 4 s + ] Z s

κ d v , in particular, the first three recombinations are
as in Eq (4 13) Let us use again the field variable a(x) rather than the resealed field
ιι(x) of Eq (4 1), which will appear at the end of this computation, for s = 1,2,3,
we consider the evolution equations dajdτs = Zι'(a)/ί:2s~\ which admit solutions of
the same form as in Eq (6.2), with v̂ ; replaced by μ\, where

μ\(k) = - v\{k\ μl(k) = -r (vc

2(k) - 24vF{(k)) ,

μl(k) = ~ (v^k) - 40vι

2(k) + 4S0v\(k)) (6 4)

Clearly, the preservation of the form (6 2) for the solutions, modulo a recombination
of v'j, v'o and V3 with the same coetficients as for the vector fields, is a consequence
of the commutativity of the flows under examination.

The final step in our considerations is the ε ι—> 0 limit of the solutions

/cosh(3ε/Q + cosh2[/:(x - ε/2) + μ$(k)τs+A]
Cl ( X ' T s j y cosh(ε/c) + cosh 2[k(x - ε/2) + μ^k)τs + A] ( j

It is easily checked that

μ\(k) = 16/c + — ε2/c3 + O(ε3), μ^k) = 256£3 + 256ε2k5 + 6>(ε3),

μ\(k) = 4096/c5 + l(ψ4- rk7 + O(ε3) (6 6)

Inserting these expansions in Eq. (6 5) and developing again up to 6>(ε3), we finally
obtain (for s = 1,2,3)

2k2

cΐ\x, τ s) - 2 + ε2 - — + O(r?) (6 7)
cosh (for + \6sk2s~ιτs + A)
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Passing to the rescaled field variable u, as in Eq. (4.1), we see that the function
uv-(x, τ s) = (l/ί;2)(αf'(jc, τ s) — 2) converges, for ε ι—> 0, to the familiar one-soliton so-
lution for the vector field 4 s + 1 Z s

κ d v A similar analysis of the one-soliton solutions
and their zero-spacing limit could be performed for the higher order vector fields,
with .v > 3

After this example, we return to the general problem outlined in this section
Setting up general convergence results for the solutions (with arbitrary initial data)
is a problem that should be attacked with appropriate tools One should prove
(for all values of s) that any solution ιι(x,τs) of the evolution equation du/dτs =
Zs

κdv(z/) is the ε ι—> 0 limit of a solution z/';(x, ts), corresponding to the vector field
7'<. / n 2 s - l

In connection with this topic, we mention the rigorous results obtained in [Sch]
on the continuous limit of the KM vector field X\ In this paper, Schwarz discusses
the KdV equation (1 1) as a limit of X\, using a space-time coordinate change
of the form (4 24) (incidentally, he also reports a computation of Kac on the limit
of the one-soliton solutions for Xu based on the above transformation) The beautiful
convergence results of Schwarz are stated in the framework of Sobolev spaces, and
concern the solutions of the Cauchy problem with arbitrary initial data

Apart from the specification of the analytical setting, there are some technical dif-
ferences between our approach and the one of Schwarz Concerning the derivations
of Eq (1 1), we repeat the comment following Eq (4 24) from our viewpoint, the
KdV evolution equation (11) does not come from X\ through a space-time transfor-
mation, but from a recombination of Xι and X\ Another difference is that Schwarz
does not explicitly introduce an analogue of our "interpolating KM system," with
a projection Πι onto the discrete system as explained in the Remark at the end of
Sect 3, rather, he gives a constructive prescription to interpolate a sequence (α, )
with a function a(\) (which amounts, in geometrical terms, to selecting a particular
right inverse of our projection Π')

In spite of the above facts, we think that Schwarz' method could be implemented
into our scheme, modulo the necessary embedding of our setting into the rigorous
framework of the Sobolev chains In fact, the essential point in the convergence
theorems of [Sch] is the possibility to obtain a priori bounds (uniformly in ε) on
some conveniently defined differential-difference analogues of the Sobolev norms
of uί:( , τ) These bounds on the solutions are derived using the functionals /?s,
which arc constants of motion for the vector field X\ under consideration On the
other hand, the //s's or their recombinations are conserved quantities for the full KM
hierarchy, so the technique proposed for X\ can probably be extended to treat the
higher order vector fields

Schwarz employs the estimates on X\ to infer a priori estimates for the solutions
of the KdV equation, in the ordinary Sobolev norms, such a priori bounds mean
that the solutions of the KdV equation do not develop shocks As a final remark, we
note that there are cases, known from the literature, in which the limiting system
of an integrable lattice develops shocks, depending on the procedure that defines
the limit In particular, Bloch and Brockett [BB] have illustrated a limit process
for the Toda lattice, yelding to a system of hydrodynamic type in which a shock
phenomenon occurs
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