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Abstract: The aim of this note is to study the asymptotic behavior of a gaussian
random field, under the condition that the variables are positive and the total vol-
ume under the variables converges to some fixed number v > 0. In the context of
Statistical Mechanics, this corresponds to the problem of constructing a droplet on
a hard wall with a given volume. We show that, properly rescaled, the profile of a
gaussian configuration converges to a smooth hypersurface, which solves a quadratic
variational problem. Our main tool is a scaling dependent large deviation principle
for random hypersurfaces.

1. Introduction

What is the most probable shape for a random interface on a wall under the
constraint that this interface stays above the wall, is pinned down at its bound-
ary, and moreover that the volume between the wall and the interface is fixed?
This question about the shape of a droplet has been treated in one dimension
when the random interface (i.e., here a random curve) is a classical random walk,
see [3,4]. Dynamics of such droplets are also of interest and are studied in [1],
see also [9] for questions dealing with the fluctuations around this most probable
shape.

In dimension larger than one, the problem is much harder; we treat here a simple
model: the case of a gaussian interface. We show that, under appropriate scaling, a
large deviation principle holds which enables us to find this limiting shape as the
solution of an elliptic PDE. One of the major difficulties is to control the positivity
condition at the boundary of the droplet. We present a scaling-dependent result
which relies essentially upon the "entropic repulsion" phenomenon as exhibited
in [6,7].

More precisely, let A = (0, \)d be the unit cube in ΈLd

9 VN =NΛΠ Έd, d ^ 2,
be the (discrete) box of side (TV — 1) and set ΩN = JR.VN. Our a priori distribution
is the centered gaussian field P^ on Ω#, with density with respect to the Lebesgue
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measure λN(dX) = Y[iev dX(i), of the form

Qά(i9j)(X(i)-XU)r\ h(dX),
)

where ZN is a normalizing constant, Qd(Uj) = ^l|z-y|=i is the transition matrix of
the simple random walk on Έd', and we set X(j) = 0 for j φ V^. Thus the spins are
"tied down" at the boundary of V^. Pjy, sometimes called the Euclidean massless
free field, can be viewed as the Gibbs distribution to the nearest neighbor quadratic
interaction / - {J{U}(X) = Qά(ίJ)(X(i) - X{j)f, {ij} C Zd} with 0-boundary
conditions.

For a given configuration X € ΩN, we introduce the continuous profile t: Λ —>
XN(t) e R:

= Σ KNt - i)X(ί\ where h(t) = Π 0 -

XN is the linear interpolation of X along the bonds of )jTLd\ in particular XN(i/N) =

X(i\ i G FAT. We will use different scalings sN \ 0 and set XN — εNXN.
In constructing our droplet, we need two kinds of conditions. First we assume

that the droplet lies on a hard wall, that is, the variables are restricted to the positive
configurations:

Ω+ = {Xe ΩN:X(i) ^ 0, i e VN} = {XN:XN(t) ^ 0, t G Λ] .

Moreover, the total volume under the variables converges as N —> oo to a given
v > 0:

f

= {XN : I {XN, \Λ) - v\ ^ <5ΛΓ}, for some δN \ 0 ,

where (/,#) = jAf{t)g(t)dt denotes the scalar product in L2(Λ).

Our purpose is to show that ^ ^ ,

the law of the profile conditioned on Ω^ Γ\AN(υ,δN\ concentrates to a limiting
hypersurface ψΌ9 solution of the variational problem

: Ψ e H^(Λ)9 ψ ^ 0, (ψ, \Λ) = t ? | , (1.1)

where //QCΊ) denotes the usual Sobolev space, i.e. the closure of CQ°(Λ) with
respect to || V^||L2(Λ ). In Sect. 3 below, we give the following explicit expression
for φv: let ©^ be the Green function of the Laplacian with Dirichlet boundary
conditions on dΛ, then

φv(t) = cυ<δΛlΛ(t) = cΌfQΛ(t,s)ds, t e n ,
A
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with cv — V/(\Λ,(&Λ1Λ) That is, φv solves the Poisson equation

—Aφ υ — CV\A with l imφ υ (t) = 0 for s G dΛ .
teΛ

Our main tool will be a large deviation principle for {P^ oXN ,N e N} derived in
Sect. 2. This large deviation principle has the particularity that its topology improves
with SN converging faster to 0, cf. Theorem 2.5. The main problem, due to the 0
boundary condition, is the positivity condition Ω^ at the boundary of VN. The
convergence, based on the a priori estimate

derived in [7], depends critically on the rate at which ε^ \ 0. For fast scaling
εN = o(N~χl2) and <5# \ 0 with δ^ ^ O(ε2

NN), our main result, Proposition 3.6,
states

lim 0>+(B2(ψv;ε)) = 1, for all ε > 0 , (1.3)

where B2(φv;ε) = {φ e L2(Λ) : \\φv — φ\\L2^ < ε} is the open ball in L2(Λ).

On the other hand, for slow scaling of the form EN — o(l/logN) for d — 2 and
sN = o(l/log1/2(Λf)) for d ^ 3, the positivity condition Ω^ has to be approximated
by

ΩN(ΠN) = {X eΩN: X(ί) ^ 0 , ie VN, dist(/, F^) ^ NηN}9 for some ^ \ 0 .

More precisely, let

be the corresponding conditional distribution, then using the large deviation prin-
ciple and some estimates for P^(Ω^(ηN)) of [7], we show in Proposition 3.9 the
convergence

l i m ^ ( 5 2 ( ^ ; 6 ) ) = l , (1.4)
JV—> oo

for each ε > 0 and ηN,$N \ 0 with

δ >

θ(ε2

N\og2(NηN)/ηN) d =

θ(ε2

Nlog(NηN)/ηN) d^

This type of results has been proved for the one-dimensional droplet using local
central limit theorem techniques, in the gaussian setting in [3], and in [4], for
general interactions. The one-dimensional case is very special, since the spins can
be represented as sums of independent variables. In particular, this allows to improve
the convergence in (1.3) to the supremum norm.

The difference between the two regimes in (1.4) and (1.3) can be intuitively
explained in the following way: choosing a volume v/εκ large enough in (1.3)
pushes the interface far away from the wall, so that the variables remain positive
up to the boundary. For very slow scalings ε^ ^ 0(1/log JV) d — 2, and ε^ —
O(l/log1/2(Λ0) d ^ 3, we expect that the positivity condition Ω^, rather than the
volume condition A^(V,OM), characterizes the limiting hypersurface.
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Our method, based on the random walk representation of PN, cf. [5], allows
us to treat slightly more general finite range quadratic interaction potentials β and
non-linear conditions of the type

r .
\ XNI

fF(t,XN(t))dt-υ
A

for some F G C(Λ X R ) . However a generalization to non-quadratic interactions,
i.e. to non-gaussian models, cf. [2], remains open.

In Sect. 2 we derive the large deviation principle for {PN oXN , N G N}. In
Sect. 3 we give a proof of (1.3) and (1.8) and present some further convergence re-
sults of the approximate microcanonical distribution. Finally Sect. 4 contains a fluc-
tuation result for the exact microcanonical distribution, which is the d-dimensional
pendant of [9].

2. The Large Deviation Principle

Let {Q(hjX i,j G ^ } be the stationary, symmetric, irreducible transition matrix
of a random walk {ξn, n G N} on TLd. We will assume that Q is of finite range
R > 0. Let τN = inf{n ^ 0 : ξn φ VN} be the first exit time of VM and GN,

be the corresponding Green function. Here and below P z and Έt denote the proba-
bility and expectation with respect to the random walk starting at i G TLd. Next let
PH be the centered Gaussian field on ΩN with covariances

cov^ (/, j) = E°N[X(i)XU)] = GN{i9 j), U J£VN.

We give a Gibbsian representation of P^: consider the interaction potential </ =

τ ί v , ί Q(h j)(X(i) ~ XU)f F = {/, j}
JF(X) = <

1̂  0 otherwise ,
and let

K = Σ MX) = \ Σ Q(U JXX(i) - x(J)f ,
F:FΠVNή=φ Z {iJ}ΠVNφ0

(we set X(j) = 0 for j $ VN) be the Hamiltonian of the box VN. Then P^ is the
corresponding 0-boundary Gibbs distribution on VM, i.e.,

P°N(dX) = ^xp(-

with ZN = JΩN Qxp(-Jί?N(X))λN(dX), cf. [5]. Let A be the symmetric dxd matrix

associated with the covariances of Q:

\y\2

A = y Ay= Σ (y k
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and define the good rate function / : L2(Λ) —> [0, oo]:

oo otherwise .

Next, let h : [—1,1]^ —> [0,1] be a piecewise continuous function with compact
support in [-1, l]d such that λ(0) = 1, J[_ι ι]d h{t)dt = 1, and set

XN(t) = * N Σ KM ~ k)X(k\ teΛ,
kevN

where {εN} is a positive sequence converging to 0 as TV —• oo. The aim of this

section is to derive a large deviation principle for {P^ oXN , N G N}. The quality
of the result depends critically upon the rate at which ε^ converges to 0. More
precisely, we consider 4 regimes:

Jo(l/log1/2(ΛO) d = 2 .
SM = \ very slow regime, (2.1)

10(1) d^X

ίo(l/logΛO

ε j V ~\o(l/ log 1 / 2 (7V))

εN = o(N-"2) d

εN=N~ι d^2,

d = 2
slow regime,

2: 2, fast regime ,

very fast regime .

(2.2)

(2.3)

(2.4)

In case (2.4), we assume that the function h is of the form h{t) = Πf=i P(*/)> where
p is piecewise differentiable on [—1,1] with p(0) = 1, p(l) = 0, and

p(ti) - p(-ti) = 1 - p(l - if), ίi e [0,1] .

Finally for a Borel measurable set Γ G @(LP(Λ)\ p G [2, oo], we denote by Γ°*p

and Γ , the interior, respectively the closure, of Γ in LP(Λ). Also Bp(φ; ε) is the
open ball in LP(Λ).

The main result of this section is the following large deviation principle:

Theorem 2.5. Set ε'N = ε2

NN2~d and let Γ e &(L2(Λ)). Then in the very slow
regime (2.1), we have a full large deviation principle in the L2-norm:

- inf / ^ liminf ε^logP^(X^ <Ξ Γ)
fo,2 N—>oo

^ lim sup ε^ logP^(X^ G Γ) g - inf / . (2.6)

TV^-oo f2

Next, in the slow regime (2.2), we get a lower bound in L°°-norm:

liminf ε'NlogP°N(XN G Γ) ^ - inf / . (2.7)

Finally, in the very fast regime (2.4), for each 2 ^ p < 2d/(d — 2), we get an
upper bound in Lp-norm:

lim sup ε^ \ogP°N(XN G Γ) ^ - inf / . (2.8)
N-+00 Γp
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Note that (2.8) is optimal, since, by Sobolev's embedding theorem, / has com-
pact level sets in LP(Λ) for 2 ^ p < 2d/(d - 2). The proof of Theorem 2.5 is
given in several lemmas, following the usual pattern of large deviations. We first
give a Legrendre transform representation of our rate function /: let {Ws : s ^ 0}
be the diffusion process on R^ generated by

and let (5A be the Green operator corresponding to Dirichlet boundary conditions:

τ(W) 1

/ f{Ws)ds\ teΛ, feCb(Λ)9

A |_ 0 J

where τ(W) = inf{s ^ 0 : Ws φ A} is the first exit time of A.

Lemma 2.9. / is the Legendre transformation of \^>A\

I(φ)= sup !(f9φ)-hf9®Λf)\ φeL2(A).
fecb(λ) I * )

Proof Let {ln:n G N*} C (0,oo) and {en : n G N^} G C^°(Λ) be the eigenvalues
and eigenfunctions of the self-adjoint extension of — ΔA corresponding to Dirichlet
boundary conditions:

—ΔAen — lnen and lim en(x) = 0 for a G dΛ ,

cf. Sect. 8.1 of [15]. Then

(f,(δΛf) = T — (f,en)
2,

nE¥ίd n

and therefore

sup \{f,φ) - Uf,®Λf)\ = \l: h{f,en)
2 = I{φ). D

Lemma 2.10. Let φ e C&(Λ), then

Xm^ ^E°N[(XN, Φ)2] = {Φ, <&ΛΦ) • (2-11)

Proof. Note that (XN,φ) = εNN-dΣkevN ΦN(k)X(k), where

φN(k) =Ndj h(Nt - k)φ(t) dt= J h(t)φ(t/N + k/N) dt, k e VN .
A [ 1,1]̂

Thus

^ΓE°N[(XN,φ)2]=N-2-d Σ ΦNik)GN{kJ)φN{j)
£N kjevN

kevN ln=o
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Let {ξ*9 s ^ 0} be the rescaled random walk given by ξ» = ξ-ψ1 and set τ(ξN) -

mf{ξ* :s^0, ξ* $ A}, then

kevN L«=o

= Σ ΦNW I Kt)ΈklN\ f φ(ξ% + t/N)ds\ dt

= NdΈμN[F(ξN)],

ξN) = / φ(ξ^where F(ξN) = /0 φ(ξ^)ds and μN is the distribution on A given by

/ f{t)μN(dt) = N~d j h{t) Σ f(t/N + k/N)φN(k) dt.

We may assume that φ ^ 0 and JUJV(Λ.) = 1 (otherwise write φ = φ+ — φ_ and
rescale). Then, with respect to the weak convergence on A,

μN(dt)^μ(dt) = φ(t)dt. (2.12)

By the invariance principle, we know that, with respect to the weak convergence
on the Skorohod space £^40,00),

IP o {ξf, s ^ 0}- 1 ̂ P o {Ws, s ^ 0}- 1 , (2.13)

cf. Theorem 1.2, p. 278 of [10]. We would like to apply (2.12) and (2.13) in order
to prove the convergence

Km ΈμN[F(ξN)] = Έμ[F(W)] = fΈt
N->oo

τ{W)

I φ{Ws)ds φ(t)dt=(φ9(δAφ).

However, F φ C ^ D ^ ^ o o ) ) , since τ is neither bounded, nor continuous. The un-

boundedness is easily taken care of with Fχ(W) = Jo φ(Ws)ds and letting
T —>• ex). Next, due to the regularity of dA, we have

lim τ(W') = τ(W) for F w a.a. W .
w'-^w

This implies
N

for each T ^ 0, cf. Exercise 8.2.38 of [15], and concludes the proof. D

The crucial step in our proof of Theorem 2.5 will be the exponential tight-
ness. We first deal with the simpler case (2.4). Note that, by Sobolev's embedding
Theorem, for each L > 0, the ball {φ e HQ(A) : HVφH^^) ^ L} is compact in
LP(A% 2 ^ p < 2d/(d - 2).

Lemma 2.14. Assume (2.4). There exists α > 0, such that

< oo . (2.15)
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Km li
#->oo

> L) = -oo .

Proof. Let us first verify, that, for some constant c\ < oo,

(2.16)

(2.17)

where we set X(j) = 0 for j$VN. Write hd-\(t) = Π t 2 P ( ^ ) a n d

(1,0,...,0), then

i ? H 0 = k T£-*(M- W ) = Σ Am - h)hd.λ(Nt - ί)χ
ό t N v t \ ievN

= Σ Am - h - l)hd-i(Nt - ί)X{i + e{\))
ievN-e(\)

= - Σ Am - iχ)hd-χ{Nt - i)X(i + e(l)) ,
ieVN-e(\)

since p ' ^ ) = — p'{s — 1) under (2.4). Thus adding the two last lines yields

2

Cj- Σ

for some c2 < oo, where F# + 1 , respectively F^ + 1 , denote the odd and even points
of VN+\. Note that the supports of h(N — /) and h(N — j) are disjoints for
/Φy with ij e V^+ι or ij e V^+v This yields

A
lxN(t)

for some constant c^ < oo. Of course the same type of equality holds for tj, j =
2,...,d. This shows (2.17). Next, as a consequence of the irreducίbίlity of the
transition matrix Q, we can find a constant C3 < 00, such that

Qά(i,J

cf. P5, p. 70 of [14]. Finally, let us view
positive eigenvalues {/̂ , n e VN}, then

Ki,j)(X(i)-X(j))2

(2.18)

W°N as a quadratic form on ΩN with

= Π ΊΠW I > β > °



Construction of ί/+l-Dimensional Gaussian Droplet 475

Thus, for each α' < 1,

= lim sup N~d log
N-+00 N->oo

= - - l o g ( l - α ' ) < oo,

which, in view of (2.17) and (2.18) shows (2.15). Equation (2.16) follows imme-
diately. D

We now turn to the proof of the exponential tightness under (2.1). For simplicity,
we restrict ourselves to the nearest neighbor interaction Q& and denote by — Δ& the
discrete Laplacian

-Aάφ(k)= Σ Qd(kj)(φ(k)-φ(j))=^ Σ d

za\j-k\=i

In this case we can give explicitly the eigenvectors {e%, n G V^} C ΩN and eigen-
values {/̂ , n G VM} C R + of — A& with Dirichlet boundary conditions on δVN: Let
{ew, n G N^} C Q(/t) and {/„, n G N^} C IR+ be the eigenfunctions and eigenval-
ues of the (continuous) Laplacian — A A = —\A with Dirichlet boundary conditions
on dΛ:

en(t) = 2dl2Π sm{nriiti\ t G Λ, ln =
 % = — Σ Λ? > ( 2 19)

then

cf. Proposition 9.5.3 of [11]. In particular {e%, n G V^} forms an orthonormal basis
of ΩN equipped with the scalar product (x,y)vN = N~d J2kevN

 x(^y(^'

Next, let SeN = {φ G L2(/l) : 0 ( 0 = Σ i t e ^ Λ ( M ~ k)φ(k/N)9 t G Λ}, be the
set of "interpolated" functions. For given {α(«), n G N^} C R + with lim^i^oo α(«)
= oo, we define an Hilbertian norm || \\^N on

nevN

where jμ = {̂ n, n G M^} is such that

ΦWN) = Σ ynen(k/N\ keVN. (2.20)

Lemma 2.21. For each L,δ > 0, ί/zen? βxwί φ\...,φM e L2(Λ), such that

M

KL,N = {φe^N: U\UN SL}C U W ; < 5 ) for large enough N .
i=l

Proof. First note that {e%, n G VN} is an orthonormal basis, thus if φ is given by
(2.20), we have

N~d Σ ΦWNf = Σ Λ2 •
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Also, there exists a constant c > 0, such that

\\Φ\\2

L2,Λ) ^ cN~d Σ φ(k/N)2 φe^N (2.22)

Next, KL = {ye l2(Zd) : E « G N ^ Φ ) ^ ^ L l i s a compact subset of
Thus, for each δ\ L > 0, there exists ^ 1,...,yV f, such that

M

:U
7=1

Without loss of generality, we may assume that maxy=i5 ,M Wl = 0 , if
for some no = no(δf,L) > 0. Set

t: A -> 0f(O - Σ y>Λ(ί), ί: A -> φι

N(t) = Σ KNt - k)^

Then, for TV ^ n0, by (2.22),

- U I 0 e J?N :N~d Σ \Φ(k/N) - φ'WN)\2 ^ δ1

ί=\ y kevN

M

Now the result follows, since

Lemma 2.23. Assume (2.1). Le/ {α(«): w G N^} ^ί/5/y α(«) ^ O(|w|2) and

limsupε^ Σ Φ ) | « | ~ 2 < 00, (2.24)

then, limsup^^^ε^log.fi'texpί^-llXTvll2^)] < 00, for some β > 0. In particular

lim limsupε^logP^(Xτv $KL9N) = -00 .

Proof. We know that JΓ G Ωiv satisfies

X(k)= Σ {X,e%)vNe»{k)= Σ ΞN

nen(klN), k € VN ,
nevN nevN

where, under P^, {Ξζ = {X,e^)γN, n e VN} are independent centered gaussian with

variance E^[(Ξξ)2] = ^r- . Also, inf^^o^ 2 /^ ^ c|«|2, for some constant c > 0,

cf. (9.5.14) [11]. Thus

O 2
= £N
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and, for 0 < β < supneNί/ | ^ , using the independence of {Ξ%},

= log4
nevN

, λ _ l Λ 2βa(n)\ ^ ^ \ Λ _ ( Λ Ω2a(n)

which implies the result by (2.24). D

Proof of Theorem 2.5

The upper bound under (2.1). Note that Lemma 2.10 yields

lim 4 log 4 [exp (λ(jN9φ)X\ = hφ,<5Aφ)9 φ e Cb(Λ).
Λ^oo L \£N J\ 2

Since Cb(Λ) is dense in L2(Λ), we get by Lemma 2.9 and standard large deviation
results the following weak upper bound:

Λftf G B2(φ;δ)) g - inf /, φ G L2(Λ\ δ > 0 ,
5 ( 0 5)

cf. Sect. 5.1 of [8]. The strong upper bound follows from the exponential tightness
Lemma 2.23.

The upper bound under (2.4). The only change is the exponential tightness (2.16)
which holds in the stronger /^(/Q-topology, 2 ^ p < 2d/(d — 2).

The lower bound under (2.1). It suffices to show that, for each ε > 0 and φ G

liminfε^logP^XAί eB2(φ;ε)) ^ -I(φ).

Let Qx be the gaussian measure on Ω^ with covariances GM and mean EOQ [X(k)] =Q [

εΰιφ(k/N\ ke VN. Then

= ^ - Σ QVJXΦW) - ΦU/N))2 = ε-^-
4 ^

where H ( ρ ^ | P ^ ) - JE^ ^ log ^ denotes the relative entropy, and therefore

/ ^ ) = \\\\Vφ\A\\2

L2(Λ) = I(φ), (2.25)

cf. [7]. On the other hand, let t: Λ^> φN(t) = YJi€YNh{Nt-k)φ{k/N), then

\\ΦN - Φ\\L2(Λ) = °' an(i> f° r e a c h ^ > 0,

lim Q%(XN e B2(φN; δ)) = lim P°N(XN e 5 2 ( 0 ; <5)) = 1 , (2.26)
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since, by (2.22),

with

max (?*(£,*) = maxE°N[\X(k)\2] = {
kevN kevN " { O(\ogN) d = 2 ,

cf. [7]. Now the lower bound follows from (2.25) and (2.26) by the usual change
of measure argument, cf. Lemma 5.4.21 of [8].

The lower bound under (2.2). The only difference is the last step in the L°°(Λ)-
topology:

lim Q°N{XN G Booiφjf, δ)) = lim P°N(XN G £oo(0; δ)) = 1 ,

with

kevN

^δε~x) SNdmzxP°N(\X(k)\ ^

*N

F V 2maxkeVN GN(k,k)J

Remark 2.27. The large deviation principle allows us to change the a priori measure
PH via Varadhan's lemma, cf. 2.1.24 of [8]. More precisely, let

F e CP(Λ x R ) Ξ { F G C ( Λ x R ) with \F(t,x)\ ^A+B\x\p

9 for some A,B < oo} ,

and set Έ(φ) = JAF(t,φ(t))dt. Next, for 1 ^ p < 2 and β G R, define

exp (-έ
where ZN(βΈ) = ^ [ e x p ( - ^ F ( X ^ ) ) ] . For example, for h{t) = l[OΛ)d(t) and F(t,x)

= F(x), the new measure is of the form

Varadhan's lemma implies

lim ε'N logZN(β¥) = - inf {I(φ) + βF(φ)} = -λ(βΨ) ,
A^->oo φeL2(Λ)

and {P^ oXN , N G N } satisfies a large deviation principle with rate function

In particular, if K(βΈ) = {ψ eH^Λ) :I(φ) +βF(φ) = λ(βF)}9 then for each
ε > 0,

lim sup ε'N \ogP°/(XN φ B2(K(βF); e)) < 0 . (2.28)



Construction of d+\-Dimensional Gaussian Droplet 479

Consider the special case of a linear functional Ψ(φ) = (</>,/), for some / G

Then P^ oXN is gaussian with mean

m β

N ( t ) = E ° / [ X N ( t ) ] = ^ - E ° N [ X N ( t ) ( X N , f ) l t e Λ ,

and unchanged covariance cov oj(XN(t),XN(s)) = covpo (XN(t),XN(s)). If we
N N

choose β = β(Ό) = cΌ = υ/(f,(δAf), such that l i m ^ o o ^ ^ , / ) ] = t>, then

K(βW) = {φv} and lim s u p ^ ^ ε^ logP%β(XN φ£2(fe e)) < 0, (see also Lemma 4.1,
below).

3. The Convergence of the Approximate Microcanonical Distribution

As an immediate consequence of Theorem 2.5, we have the following convergence
result for approximate microcanonical distributions.

Corollary 3.1. Consider the slow regime (2.2). Let Γ be a closed subset of L2(Λ),
such that infΓo,oo / = infΓ/ < oo, and let K(Γ) = {φ G Γ : I(φ) = infΓ/}, then
for all ε > 0,

\imsupεf

N\ogP0

N(XN $B2(K(Γ);ε) \XN e Γ) < 0 .
TV—> oo

We want to specialize this result to the following situation: for v G R, δ ^ 0
and F G CP(Λ x R ) set W(φ) = JΛF(t9φ(t))dt9

: \¥(φ) - v\ ^ δ}, MN(v,F9δ) = {XN £M(v,F,δ)} .

Note that M(v,F,δ) is a closed set of L2(Λ) for 1 ^ p < 2. Next recall

Ω+(^) = {0 G L 2 (/ί) : φ(t) ^ 0, ί G Λ,}, O+(ιy) = {XTV G Ω+(^)} ,

where Λ^ = (η9l- Ά)d In case f/ = 0, we write Ω+ = Ω+(0) and Ω+ = Ω+(0).
Next, let K(v,F) and K+(v,F) C //o(yl), be the set of solutions to the variational

problem

inf{/(<£): 0 G M(υ,F,0)} = λ(v) ,

inf{/(0): φ G M(ι>,F,0) Π Ω+} = λ+(v). (3.2)

In case F G C ] ( i x R ) with F x( , φ) G Z2(^l) for φ G //QH^X Ά ^ K(v9F) solves
the Euler equation

-AA\I/ = lFx(t9 φ)9 for some / = l(v) G R ,

with Dirichlet boundary conditions \imt^aίteΛ Ψ(t) = 0 for a G δ^l. In non-
degenerate situations, that is Fx( 9ψ) φθ, there exists β = jS(t ) G R, such that
ψ G A-(jSF), cf. Remark 2.27.

Corollary 3.3. Assume (2.2) and take F G CP{A x 7?) wzϊA p < 2. Let v eΈi be
such that λ(v) < oo, then for each ε > 0,

p ^ g ^ φ 2 ( ( , ) ; ) | ^ ( , , ) ) 0 .
δ\0
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Next, if λ+(v) < oo, then for each ε > 0,

lim limsupε^logP^(X^ $B2(K+(υ,F);ε) \MN(v,F,δ) Π Ω+iη)) < 0.
δ,η\O N^oo

Example 3.4. Consider the quadratic case F(t,x)=x2. In this case M(v9F9δ) is
closed in L2(Λ) and we can apply the above corollary. For each v > 0, φ G K(υ9F)
solves —AAφ — l\φ, where l\ is the first eigenvalue associated with —ΛA. Thus
K(v,F) = {y/ϋe^y/ve^} and K+(v,F) = {y/vef}, where e\ is the positive L2(Λ)-
normalized eigenfunction and ej~ = — ej1". In particular, with respect to the weak
convergence on Jί\(I?{Λ)\ letting first N —• oo and then τ/,<5 \ 0,

and
^ |M^(ι;,F^) Π Ω ^ ) ) o i ; =* ̂  . D

We would like to introduce the exact positivity condition

Ω+ = {XN:XN(t) ^ 0 , t e n }

in our conditioning. The major difficulty is that our large deviation principle
is too rough for an accurate estimation of P^(Ω^). In fact, one has infΩ+/ =
0=t= inf(Ω+)θ,oo / = oo, but

lim N-"+ι logP£(Ω+) = -κd , (1.2)
N—>oo

cf. [7]. We will work with monotonicity arguments. More precisely, let C^p(Λ x R)
be the set of F G CP(Λ x R) such that x —> F(t,x) is strictly monotone increasing,
for a.a. t e A. We will assume that F is "normalized," i.e. F(0) - JΛF(t,O)dt = 0.

Proposition 3.5. Consider the fast regime εN = o(N~ι/2). Take F e C],{A x R)

with p < 2 and v > 0 swc/z ί/zα/ A+(t;) < oo. Then, for each ε > 0,

F,δ) Π O+) < 0.

In the very fast regime ε^ = ^ , we may choose F G C j ( i x R) for 2 ^ p <
2d/(d - 2) and replace B2(K(v,F);ε) by Bp(K(υ,F);ε).

Proof In view of the upper bound in Theorem 2.5 and lsc property of the rate
function /, we have

lim lim sup ε^ \ogP°N(XN e B2(K+(v,F); εf Π MN(v,F, δ)ΠΩ+)

-inf{I(φ) : φ e B2(K+(v,F);εf ΠM(v9F90) Π

= {φeL2(Λ): JΛF(t,φ(t))dt^s} and setMN(

λ(s) = M{I(φ): ψeλf(s,F)}9 seWL. Then, by the FKG property of P°N, cf. [13],

P°N(MN(v,F, δ) Π Ω+) ^ P°N(MN(v - δ,F) Π O+) - P°N(MN{υ + (5,F) Π O+)

(ί; - δ9F))P%(Ω+) -
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Now, by the upper bound

ε; logP°N(XN e MN(v + δ,F)) S -λ(v + δ) ,
N-+00

and, by the lower bound,

\immfεf

N log P°N(^N G MN(v - δ,F)) ^ -λ(v) ^ -λ+(v).
N>ooN—>oo

Since ε'N = ε^N2~d = o(Nι~d) by assumption, the result follows from (1.2) as soon
as we verify that

λ(v + δ) > λ(v\ δ > 0 .

By assumption 0 < λ(v) ^ Λ+(ι0 < oo, thus we may suppose that λ(υ + δ) <

oo. Take φ e M(v + ^,/ 7 ) , such that I(φ) = λ(v + (5). Then \φ\ e M(v + <5,F) and,

since F G C\{A X R), there is jff G (0,1) such that JAF(t,β\φ(t)\)dt = v. That is,

β\φ\ eλf(υ,F,0), and therefore

λ(v) S λ(υ) ^ β2l(\φ\) S β2I(Φ) - β2λ(v + δ) < λ(v + 5). D

In case of a linear conditioning of the form

AN(v,f,δ) = {XN : \{XNJ) -υ\^δ}9

where <5,ι; > 0 and / G C^(yi), we can let 5 = (5^ \ 0 with TV —> oo. Recall the
definition

^ + = p°N(. μ^(ϋ,/,δjv) n β+) o i , " 1 .

Proposition 3.6. Take εN = o(N~ι/2). Let φv : A -^ R + , ^ ( 0 = ^ / ( O
c, = ϋ/(/, ©.i/), then for each ε > 0, and δN\Q with δN ^ %r£2

NN = o(l),

limsupε^log^+(^2(^;ε)C) < 0.

In case εN = ~, we may take δN ^ ^ ^ απJ replace B2(ψυ;ε) by Bp(ψv;ε) for

2 ^ p < 2d/(d - 2).

/ For F(t,x) = f(t)x, φ G K(v,F) solves -zl^^ = cΌf(t), that is
{ψv = Cy © y i / } with cυ = ϋ / ( / , © y i / ) . In view of the preceding proof, all we have
to show is

lknmf ε'NlogP°N(AN(v, f,δN)ΠΩ+) ^ ~ 2 ζ = - / ( ^ ) . (3.7)

By the FKG property of P°N, cf. [13],

P°N(AN(υ,f,δN) Π Ω+) ^P%{(XN,f) > v - δN)P°N(Ω^) - P°N((^N,f) ^υ

Next, let σ%(f) = E%[(XN,f)2], then since (XN,f) is gaussian,

V2π4(!>-5tf) V 2o^(/)
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for ^ ^ 2, cf. Sect. 1.3 of [15], and

Also

lim 4 -

cf. (2.11). Thus for ^ \ 0, ^ ^ κ"^ξ^ e

2

NN = g-ejfN, (3.7) follows from

(1.2). D

In [7], one shows the existence of a constant 0 < Kj < oo, such that for all
ηN \0, ηN ^ 2/N,

liminf 2 ^ logP°(i3+(^)) 2: - £ 2 > -oo, J = 2 ,
ΛΓ-oo log ( J V )

Using precisely the same technique as above, we get from (3.8),

Proposition 3.9. Consider the slow regime (2.2), then for each ε > 0 and ηN, δN \ 0

| ^ l o g W ) for d = 2, and δN > ^ i ^ M l f o r d > 3;

lim sup ε'N

Before concluding this section, let us state a few important remarks:

Remark 3.10. It is interesting to compare our results with [5] in case d ^ 3. Let
Jί\(Λ x R ) be the set of probability measures on A x IR, equipped with the weak
topology. In [5], one shows a large deviation result for the empirical measure

ΫN(dt,dz) Ξ ^ j Σ hiN{dt)δx{k){dz) eJiχ{Ax IR)
ΓΛΠ kevN

at speed Nd~2 with rate function J : J i ( / l x R ) ̂  [0,oo],

J ( v ) [ ( / ) ( 9 )

\ oo otherwise,

where γψ^ is the gaussian distribution on IR with mean φ(t) and variance G(0,0).
Let

^ ( Λ ) = Jz ΫN(dt9dz) =τ^~Σ X(i)δi/N(dt),
IR ΓΛT i€fy

viewed as a signed measure on yl. Set hN(t) = \VN\h(Nt), then

/ hN{t - x)XN(dx) = Σ KNt - i)X(i) = XN(t\ t e A .
A ievN
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Thus, XM corresponds to the constant scaling s^ = 1 which is beyond the techniques
of Theorem 2.5 and yields different results. For example, consider a non-linear
conditioning M^{v,F,δ) of the form

MN(υ,F,δ)={XeΩN:
1

Σ F(k/N,X(k)) - v
k£VN

JfF(t,z)ΫN(dt,dz)-υ
A R

< δ

where F e C\(Λ x R) . Next let K(v,F) be the set of signed measures on A of the
form μ(dt) = φ(t)dt, where φ solves

inf \l-\\\Vψ\A\\2

L2 :
AIR.

= υ) = λ(υ).
)

(3.11)

For F e Cι(Λ x R), ψ solves the Euler equation

-AAψ(t) = lfFx(t,z + ψ(t))γo(dz)9 for some / = l(υ) G 1R ,

with Dirichlet boundary conditions. Assuming λ(υ) < oo, for any open neighbor-
hood % of K(v,F) with respect to the weak topology, we have

<5\,0
0.

For non-linear F, the solutions to (3.11) are quite different from the solutions of
(3.2). Thus, the scaling εN = o(l) improves the topology in Theorem 2.5, but trivi-
alizes the variational problem. In some sense we could speak of moderate deviations
in this setting.

Remark 3 12. In dimensions d ^ 3, one could remove the 0-boundary condition
and consider the infinite Gibbs state as a priori model, i.e. replace P^ with the

centered Gaussian field P° on Ω = IRZ with covariance G,

n=0

the Green function of the random walk {ξn, n e N} on the whole Έd. Then, the
large deviation result Theorem 2.1 holds with rate function

Γ{φ) = inf j ^ \ ,= φ a.e. on Λ

and the convergence result of Proposition 3.6 holds in the weaker slow regime
(2.2), since

4
where ceφ(Λ) = / /(l yi) is the Newtonian capacity of A, cf. [6]. In particular the
limiting hypersurface is simply t —> φv(t) = cv(δf(t) = cv fA§(s,t)f(s)ds, where
q(s,t) = Q(S — t) is the Green function of the Laplacian — ΛA on R J , cf. [5].
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Remark 3.14. We have chosen the unit cube (0, \)d as a basis for our droplet. This
is unnecessarily restrictive and, with some additional work, one could as well con-
sider any open domain A G IRJ with piecewise smooth boundary. In this context, the
convergence of the covariance functional in Lemma 2.10 follows from the invariance
principle. The next step, in the proof of the exponential tightness (Lemmas 2.14
and 2.23), would be to estimate the growth of the eigenvalues of discrete Laplacian
with Dirichlet boundary conditions on Vfi. Finally, the corresponding estimate for
the repulsion, cf. (1.2) and (3.8), are derived in [7], Remarks 2.4 and 4.16.

4. Fluctuations of the Exact Microcanonical Distribution

Let / G C£(Λ) be fixed. Although P^ is gaussian, 0*^ is not gaussian. This comes
from the positivity condition Ω^ and the approximation A^(v,/,δ^) with <5# > 0.
If one drops the condition Ω^ and sets δN = 0, then the exact microcanonical
distribution

&N=P°N(.\{XN,f) = v)oX~λ e Jtx(L2

is Gaussian:

Lemma 4.1. 0*^ is gaussian with mean

E«N[XN{t)(XNJ)}
^iv(O — E^N\Xf^{t^\ = v

and covariance

cov?N(XN(t)9XN(s)) = E$[XN(t)XN(s)] - rnNyίJ^NK*JE°N[(XN,f)2l s9t G A .

Proof. Let

then one verifies easily that {XN(s) — θίN(s)(XN,f), seA} is independent of
{XΛK0> t £ A}. This implies the result by standard gaussian calculus. D

Note that, in view of Lemma 2.10, for all φ G Cb(Λ),

Thus, mN converges weakly to φv = cv0ΰΛf.

Proposition 4.3. Let φ G Cb(A\ then the law of

ZN(φ) =-i={χN- mN,φ) = Nd/2~ι (xN - —mN9φ
/ n' \ PUTεN

under £PN converges weakly to a centered gaussίan distribution on IR with variance
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Proof Since &N is gaussian, all we have to verify is the convergence of the variance
by (2.11):

lim var^v(Zjv(φ))= lim —£VJ(X/v — m^.ό)2']

— lim —i
N-+00 ε'N

This result is, of course, of little use, since one would rather have a conver-
gence result for the fluctuation around ψΌ, that is, for (XN — ψυ9 Φ)/Λ/S^. However
it seems quite difficult to estimate the convergence rate in (4.2), see Remark 4.7
below. In order to circumvent this difficulty we introduce a new continuous inter-
polation {Xχ(t),t G A} of X. For simplicity, we restrict ourselves to the nearest
neighbor interaction Qά. Let {en, n e Ίtid} C Cb(Λ) and {/„, n G N^} C R + be
the eigenfunctions and eigenvalues of the (continuous) Laplacian — ΔA — — ̂ A with
Dirichlet boundary conditions on dΛ, cf. (2.19), and define the new continuous
interpolation X£ of X by

X W ) = Σ fre?)yN e n { t ) = Σ ΞN

nen{t\ t e Λ 9 (4.4)
n£VN neVN

where, under P°N, {Ξξ = (X9e*)VN = N-dΣkevN

x(k)en(k/NX n e VN} are cen-

tered gaussian with variance E^[(Ξ^)2] = ^ - , cf Sect. 2. As above, we set

X*N(t) = εNXt(t) = J2 SN{X,e?)vNen(t), t e Λ ,
nevN

and write 3P*N = P°N( • \(X*N,f) = v) o (X*N)~] e Mλ{L\A)\

Next, for θ G IR+, let us introduce the Hilbertian norm

\\Φ\\li= Σ \ln\
θ(Φ,en)\ φ e C

d

and let 2Q(Λ) be the closure of Cg°(Λ) with respect to || \\θi2. @'Θ(Λ) = @-Θ(Λ),
the adjoint of @Θ(Λ), is the set of distributions on A. Note that @\(Λ) =

\ 2 .with ||0||1 > 2 = ||V0||L2(/1), and ( φ ( 5 ^ ) = \\φ\\

Proposition 4.5. Let d = 2,3 αwd assume that ε^1 = o(N3~d/2). Set
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then with respect to the weak convergence on d(\(β\(Λ)\

0>*Ή o Z ^ " 1 =*&, as N -> oo ,

where & e Jί\(@ι[(Λ)) is the law of the centered generalized gaussian field Z
with covariance operator

coy

Proof First note that (φ9dδ^φ) ^ 2{φ,($>Λφ) = 2 | | 0 | | | _ 1 . Also, in dimensions d =
2,3, the injection @\(Λ) —> 2-\(Λ) is of Hilbert-Schmidt type. This implies that
& can be constructed on &λ(Λ\ cf. Theorem 3.1 of [12]. In order to prove the
weak convergence, it suffices to show that

lim^E^xipiiZ iφ))] = ^[exp(ίZ(φ))] = exp f - I ( φ , < 5 ^ Λ , φ e @

where / = \/—T Since ^ is Gaussian,

^ * [exp(/Z (̂(/>))] = exp i—==(m*N - φv,φ) - -— var^* ((X*N,φ)) ,

where

N N NK ' E°N[{xN,f)2l

and

)) E%[{rΦγ]

,/)] Λ

)2l

The main advantage of working with XN instead of X^ is the following estimate:

2

L2 , (4.6)
bN n<EVN ^ v L

n

cf. Proposition 9.5.5 of [11]. This implies

-2

= (Φ,ψv) + O(N-2)\\φ\\L2(Λ),

thus, for d = 2,3, l i m ^ ^ -j== {m*N - \j/v,φ) = l im^oo tL~-{m*N - φv,φ) = 0.

Also, again by (4.6),

lim —

cf. proof of Proposition 4.3. D
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Remark 4.7. We believe that (2.11) can be improved to

^-Ξ°N[{1^ φ}2] = (φ, ®Λφ} + O(N~ι) , (4.8)
εN

where O(N ) depends on φ e Q,(Λ). Actually, this is the case when φ is suffi-
d_
2ciently smooth, e.g. φ e 9Θ{A) for θ > f + 1. This implies

(Φ,mN) = (φ,ψo) + O(N~ι)9 φ ^

Using the same argument as above, one deduces from (4.8), for d = 2,3 and

ε" 1 =o(N2-dl2\ the weak convergence of &>N o ( ( ^ - i / O / v ^ Γ 1 to ^ in

Remark 4.9. Let J° be the centered generalized gaussian field on @[(Λ) with
covariauce

cov(Z(φ),Z(ψ)) = (φ9(δΛψ), Φ,ψ£ ®ι(Λ).

Then we can identify 1^ as the law of i2°, conditioned upon {Z(f) = 0}, that is
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Note added in the proof Recently, Dima Ioffe told us that he had been working on a similar
problem In some sense our results are complementary: his paper deals with a gas of many droplets
with random basis, whereas we work with a single droplet with fixed basis However the repulsion
problem is not addressed in his work
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