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Abstract: The aim of this note is to study the asymptotic behavior of a gaussian
random field, under the condition that the variables are positive and the total vol-
ume under the variables converges to some fixed number » > 0. In the context of
Statistical Mechanics, this corresponds to the problem of constructing a droplet on
a hard wall with a given volume. We show that, properly rescaled, the profile of a
gaussian configuration converges to a smooth hypersurface, which solves a quadratic
variational problem. Our main tool is a scaling dependent large deviation principle
for random hypersurfaces.

1. Introduction

What is the most probable shape for a random interface on a wall under the
constraint that this interface stays above the wall, is pinned down at its bound-
ary, and moreover that the volume between the wall and the interface is fixed?
This question about the shape of a droplet has been treated in one dimension
when the random interface (i.e., here a random curve) is a classical random walk,
see [3,4]. Dynamics of such droplets are also of interest and are studied in [1],
see also [9] for questions dealing with the fluctuations around this most probable
shape.

In dimension larger than one, the problem is much harder; we treat here a simple
model: the case of a gaussian interface. We show that, under appropriate scaling, a
large deviation principle holds which enables us to find this limiting shape as the
solution of an elliptic PDE. One of the major difficulties is to control the positivity
condition at the boundary of the droplet. We present a scaling-dependent result
which relies essentially upon the “entropic repulsion” phenomenon as exhibited
in [6,7].

More precisely, let 4 = (0,1)? be the unit cube in R?, Vy = NANZ?, d = 2,
be the (discrete) box of side (N — 1) and set Qy = R"¥. Our a priori distribution
is the centered gaussian field P} on Qy, with density with respect to the Lebesgue



468 G. Ben Arous, J.-D Deuschel

measure Ay(dX) = [],.,., dX(i), of the form

i€Vy

P(dX) = Z—lNeXp (—l > Qalh, )X(G) —X(J'))Z) An(dX),

2{i,j}ﬁVN4=0

where Zy is a normalizing constant, Q4(i, j) = ﬁlli— jl=1 is the transition matrix of
the simple random walk on Z¢, and we set X(j) = 0 for j ¢ Vy. Thus the spins are
“tied down” at the boundary of Vy. PY, sometimes called the Euclidean massless
free field, can be viewed as the Gibbs distribution to the nearest neighbor quadratic
interaction ¢ = {J{; 4(X) = Qa(i, )X (D) — X (j))*, {i,j} € Z?} with 0-boundary
conditions.

For a given configuration X € Qy, we introduce the continuous profile £ : 4 —
Xnv(t) € R:

Xy(t) = > h(Nt —i)X(i), where h(t) = ﬁ (I = 1tDhy <1 -
i€Vy i=1

Xy is the linear interpolation of X along the bonds of %Zd ; in particular Xy (i/N) =

X(i), i € Vy. We will use different scalings ey \, 0 and set Xy = eyXy.

In constructing our droplet, we need two kinds of conditions. First we assume
that the droplet lies on a hard wall, that is, the variables are restricted to the positive
configurations:

Qb ={XecQy:X({)20,icVy}={Ky:Xn(t)20, teA}.

Moreover, the total volume under the variables converges as N — oo to a given

v>0:
-_<—5N}

={Xy: |(A_’N,1,1)—vl < oy}, for some oy \, 0,

where (f,g) = [, f(t)g(t)dt denotes the scalar product in L*(A).
Our purpose is to show that 25,

NS X(k) — o

An(v,0y) =X € Qy : | —
~n(v, 0N { N N2

Py ) =Py~ |9 0 An(v,0n)) 0 Xy

the law of the profile conditioned on Qf N Ayn(v,dx), concentrates to a limiting
hypersurface Y, solution of the variational problem

it { L IVWy s vEH ¥ 20 i =of. (D)

where Hj(A) denotes the usual Sobolev space, i.. the closure of C§°(A) with
respect to || V| 124y In Sect. 3 below, we give the following explicit expression
for y,: let ®, be the Green function of the Laplacian with Dirichlet boundary
conditions on 04, then

Y(t) = ¢y O 414(¢) = ¢, [ ga(t,s)ds, te A,
4
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with ¢, = v/(14,®41,4). That is, ¥, solves the Poisson equation

—AY, =c,14 with 15? U(t)=0 for se€da.

teq

Our main tool will be a large deviation principle for {P o X ,;l,N € N} derived in
Sect. 2. This large deviation principle has the particularity that its topology improves
with ¢y converging faster to 0, cf. Theorem 2.5. The main problem, due to the 0
boundary condition, is the positivity condition Qi at the boundary of Vy. The
convergence, based on the a priori estimate

. 1 0
Nh—r»noo NTl_ IOgPN(Q;) = —Kgq >—00, (12)
derived in [7], depends critically on the rate at which ey \, 0. For fast scaling
ey =o(N~12) and dy \, 0 with y = O(e}N), our main result, Proposition 3.6,
states
Nlim P (Bo(Y;€)) =1, foralle >0, (1.3)
—00

where By(Y; €) = {¢ € L2 (A) : ||y, — ®llr24y < &} is the open ball in L*(A).

On the other hand, for slow scaling of the form ¢y = o(1/logN) for d = 2 and
ey =o(1/ log"*(N )) for d = 3, the positivity condition €3, has to be approximated
by

Qi) ={X € Qu : X(i) 2 0, i € Vy, dist(;, V) = Nyn}, for some 7y \, 0.
More precisely, let
. -1
Py = PY( - | Q5 (w) N An(v,6x)) 0 Xy

be the corresponding conditional distribution, then using the large deviation prin-
ciple and some estimates for PY(2;(nv)) of [7], we show in Proposition 3.9 the
convergence

Jlim 2y (B 0)) = 1, (14)
for each ¢ > 0 and 5y, 0y \, 0 with

O(&3 og* (Nyy)/ny)  d =2
on =
O(e% log(Nyw)/ny)  d = 3.

This type of results has been proved for the one-dimensional droplet using local
central limit theorem techniques, in the gaussian setting in [3], and in [4], for
general interactions. The one-dimensional case is very special, since the spins can
be represented as sums of independent variables. In particular, this allows to improve
the convergence in (1.3) to the supremum norm.

The difference between the two regimes in (1.4) and (1.3) can be intuitively
explained in the following way: choosing a volume v/ey large enough in (1.3)
pushes the interface far away from the wall, so that the variables remain positive
up to the boundary. For very slow scalings ¢y = O(1/logN) d =2, and ¢y =
O(1/1og"*(N)) d = 3, we expect that the positivity condition Q;, rather than the
volume condition 4y(v, dy), characterizes the limiting hypersurface.
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Our method, based on the random walk representation of PY, cf. [5], allows
us to treat slightly more general finite range quadratic interaction potentials ¢ and
non-linear conditions of the type

<o)

{XN :

for some F € C(A x R). However a generalization to non-quadratic interactions,
i.e. to non-gaussian models, cf. [2], remains open.

JF(@t,Xn(t))dt —v
A

In Sect.2 we derive the large deviation principle for {P% o X ;1, N e N} In
Sect. 3 we give a proof of (1.3) and (1.8) and present some further convergence re-
sults of the approximate microcanonical distribution. Finally Sect. 4 contains a fluc-
tuation result for the exact microcanonical distribution, which is the d-dimensional
pendant of [9].

2. The Large Deviation Principle
Let {Q(i, ), i,j € Z°} be the stationary, symmetric, irreducible transition matrix

of a random walk {&,, n € N} on Z? We will assume that Q is of finite range
R >0.Let iy =inf{n = 0:¢&, ¢ Vy} be the first exit time of ¥y and Gy,

N
Gy(, j)=E; [E lj(fn)} s LjEVN,
n=0
be the corresponding Green function. Here and below IP; and [E; denote the proba-

bility and expectation with respect to the random walk starting at i € Z¢. Next let
PX, be the centered Gaussian field on Qyn with covariances

covpo (i, /) = ENIX (DX (/)] = Gy (L. /) 4. € Vi -

We give a Gibbsian representation of PY: consider the interaction potential ¢ =
{JF F C Zd},

.. N N2 o f:
o) = {Q(I,J)(X(t) X F = (i)}
0 otherwise ,
and let
M= S EK =3 T 06HXE-XGY,
F:FNVy +0 {i,j}nVy +0

(we set X(j) =0 for j & Vy) be the Hamiltonian of the box Vy. Then P is the
corresponding 0-boundary Gibbs distribution on Vy, i.e.,

PY(dX) = %eXP(—W?v(X))lN(dX) :

with Zy = fQN exp(—%?v(X NAn(dX), cf. [5]. Let 4 be the symmetric d x d matrix
associated with the covariances of Q:

Yi=y-Ay= % (v - k)0(k0), yeR?,
kezd



Construction of d+1-Dimensional Gaussian Droplet 471

and define the good rate function / : L*(A) — [0, 00]:

%|||v¢|14||22(/1)’ ¢ € HOI(A)
o0 otherwise .

H@={

Next, let & :[—1,1]9 —[0,1] be a piecewise continuous function with compact
support in [—1,1]¢ such that A(0) = 1, f[—l,l]d h(t)dt = 1, and set

Xn(t)=en 3 (Nt —k)X(k), teA,
k€VN
where {ex} is a positive sequence converging to 0 as N — oco. The aim of this

section is to derive a large deviation principle for {P% o X ,\_,1, N € N}. The quality
of the result depends critically upon the rate at which &y converges to 0. More
precisely, we consider 4 regimes:

o(1/log"*(N)) d =2 .
ey = very slow regime , (2.1)
o(1) d = 3,
o(1/1logN) d=2
ey = ) slow regime , (22)
o(1/log"*(N)) d 2z 3,
ey =0o(N"Y?) d =2 fast regime, (23)
en=N"1 d=2, very fast regime . (24)

In case (2.4), we assume that the function /% is of the form A(¢) = ]_[;1:1 o(t;), where
p is piecewise differentiable on [—1, 1] with p(0) =1, p(1) =0, and

p(ti)=p(—t;)=1—p(1 —t), & €[0,1].

Finally for a Borel measurable set I € #(LP(A)), p € [2, ], we denote by I'*?
and T, the interior, respectively the closure, of I" in LP(A). Also B,(;¢) is the
open ball in LP(A).

The main result of this section is the following large deviation principle:

Theorem 2.5. Set ¢y, = e4N>~¢ and let T € B(L*(A)). Then in the very slow
regime (2.1), we have a full large deviation principle in the L*>-norm:

— inf I < lim inf ey log Py (Xy €T)
ro, — 00

< limsupey logPy(Xy € I') < —inf 7. (2.6)
T

N—oo
Next, in the slow regime (2.2), we get a lower bound in L°°-norm:
liminf &), log PY(Xy € T') = — inf I. (2.7)
N—oo Ire.ee
Finally, in the very fast regime (2.4), for each 2 < p < 2d/(d — 2), we get an
upper bound in LP-norm:

limsup ey log Py (Xy € T') < — inf 7 . (2.8)
N—oco r
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Note that (2.8) is optimal, since, by Sobolev’s embedding theorem, / has com-
pact level sets in LP(A) for 2 < p < 2d/(d — 2). The proof of Theorem 2.5 is
given in several lemmas, following the usual pattern of large deviations. We first
give a Legrendre transform representation of our rate function I: let {W;:s = 0}
be the diffusion process on IR generated by

4 ; >
= dijm——>
4 i,le:l »J 8x,- Oox j
and let ®, be the Green operator corresponding to Dirichlet boundary conditions:

(W)

Gaf(t) = [ats)f(s)ds=E, | [ f(Wy)ds| teA feCyA),
A 0

where ©(W) = inf{s = 0: W, ¢ A} is the first exit time of A.
Lemma 2.9. [ is the Legendre transformation of %03 Al

6= s {(16)- 30640} derw).

SECK(A)

Proof. Let {I, :n € N} C (0,00) and {e, : n € N’} € C°(A) be the eigenvalues
and eigenfunctions of the self-adjoint extension of —A4, corresponding to Dirichlet
boundary conditions:

—Aye, = l,e, and lim e,(x)=0 foraecid,
x—a,x€A

cf. Sect. 8.1 of [15]. Then
(fL®af) = 2

neNd

S
and therefore
s {7.0)- 30600} =1 £ niref =10, O

FECp(4) neNd

Lemma 2.10. Let ¢ € Cp(A), then
.1 -
Jim S Ey[(%x, 9)°] = (4, Ga) - (2.11)
—00 gN

Proof. Note that (Xy,¢) =exN =4, ., dy(k)X(k), where

by(k) = N[ W(Nt —k)p(t)dt = [ h(t)p(t/N +k/N)dt, ke Vy.
A [—1,134

Thus
1 - - -
TEN(Xn, )1 = N1 5 (k)G (k, )bw(1)
N kjEVN

=N Y dy(k)Es [%ézv(én)] :

keVy
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Let {¢V, s = 0} be the rescaled random walk given by &Y = é% and set ©(&V) =
inf{&V :5 = 0, &V ¢ A}, then

N2 ¢y(k)E; [%%(én)]

keVy

= 3 ¢ntk) [ h(t)Eyy

keVy [— l,l]d
= NE,, [F(&")],

(&)
[ oo +t/N)ds] dt
0

N
where F(EV) = fOT « )qﬁ(éﬁv )ds and py is the distribution on A given by

/{f(t)uzv(dt) =N"" [ h@t) ¥ SN +KN)y(k)dt .

[-1,11¢ keVn

We may assume that ¢ = 0 and uy(A) =1 (otherwise write ¢ = ¢, — ¢_ and
rescale). Then, with respect to the weak convergence on A,

uv(dt) = u(dt) = ¢(t)dt . (2.12)

By the invariance principle, we know that, with respect to the weak convergence
on the Skorohod space Dpya[0,00),

Po{e, s 20} = Po{W, sz0}", (2.13)

cf. Theorem 1.2, p. 278 of [10]. We would like to apply (2.12) and (2.13) in order
to prove the convergence

ww)

Jim By [P = BF (V)] = [ | [ ¢(Ws)dsJ () dt = (.6.40) .

However, F ¢ Cp(Dgal0,00)), since 7 is neither bounded, nor continuous. The un-

boundedness is easily taken care of with Fr(W) = OI(W)AT ¢(W)ds and letting

T — oo. Next, due to the regularity of 04, we have
Wl’iElW (W')y=vW) for P, aa W.
This implies
Jim B,y [Fr(&V)] = E,[Fr(W)]
for each T = 0, cf. Exercise 8.2.38 of [15], and concludes the proof. [J

The crucial step in our proof of Theorem 2.5 will be the exponential tight-
ness. We first deal with the simpler case (2.4). Note that, by Sobolev’s embedding
Theorem, for each L > 0, the ball {¢ € Hy(A): [Vl 24y < L} is compact in
LP(A), 2 < p < 2d/(d - 2).

Lemma 2.14. Assume (2.4). There exists o > 0, such that

lim N~ log EY[exp(aN¥ ||VXN”§2(A))] < 00. (2.15)
N—oo
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In particular

hm llmsupN dlogPN(HVXNHLz(A) >L)=-x. (2.16)

L—oo
Proof. Let us first verify, that, for some constant ¢; < oo,

NUIVE N2y S o }Z , Qali- DX () - X)), (2.17)
LYV +

where we set X(j)=0 for j & Vy. Write hd_l(t)zl_[?zzp(ti) and e(1) =
(1,0,...,0), then

ai;lXN(r)— b ai (Nt = DX = 3 p/(Nty — iy gt (NE = DX (D)

i€eVy
= Y PNt =iy = Dhg (Nt — )X (i + e(1))
ieVy—e(l)
=— > PNy —iha (Nt — )X (i + e(1)),
i€V —e(1)

since p’(s) = —p’(s — 1) under (2.4). Thus adding the two last lines yields

a‘f TR0 £ D S hya(Ve— )X+ (1)~ X))
i€Vy 41
2SS Ry aNE— )X+ e(1) — X))
IGVXI+1
Z hg—1(Nt — i) |X(i+e(1))—X(i)| R
’EV1€/+1

for some ¢, < oo, where Vg, respectively Vy ., denote the odd and even points
of Vy41. Note that the supports of A(N -+ —i) and A(N - — j) are disjoints for
i+j with i,j € Vg, or i, j€ Vy,,. This yields

2
dt <cb O (X(+e(1)) — X (D))

i€VN 41

for some constant ¢, < oco. Of course the same type of equality holds for ¢;, j =
.,d. This shows (2.17). Next, as a consequence of the irreducibility of the
transition matrix Q, we can find a constant ¢; < oo, such that

S QG NXGO)-XDP S Y 06 HNX3E) X))

{L/}nVy +0 {6737y +0
=203 #%(X), (2.18)
cf. P5, p.70 of [14]. Flnally, let us view #?% as a quadratic form on Qy with

positive eigenvalues {I%, n € Vy}, then

12
Zv(B) = [ exp(—BAY(x)) An(dx) = ] (2_n) ., B>0.

N
Qn nEvy ﬁln
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Thus, for each o' < 1,

Zn(1 — o
lim sup N~ log Ey [exp(o/ #'%(X))] = lim sup N~%log v —a)
N—oo N—oo ZN(I)

1
= —Elog(l —d) < o0,

which, in view of (2.17) and (2.18) shows (2.15). Equation (2.16) follows imme-
diately. O

We now turn to the proof of the exponential tightness under (2.1). For simplicity,
we restrict ourselves to the nearest neighbor interaction Q4 and denote by —A44 the
discrete Laplacian

—dad(k) = 3 Qalk, j)P(k) — ¢(j)) = _ > (oK)~ (), keZ?.

jezd 2d ;-1

In this case we can give explicitly the eigenvectors {e, n € Vy} C Qy and eigen-
values {I¥, n € Vy} C R* of —44 with Dirichlet boundary conditions on dVy: Let
{en, n € N9} C Cy(A) and {I,, n € N?} C R* be the eigenfunctions and eigenval-

ues of the (continuous) Laplacian —A4, = —%A with Dirichlet boundary conditions
on 0A:
d 21,12 2 d
en(t) = 2921 sin(mmity), te€ A,  Iy= - nf® _ = S, (2.19)
i=1 d d i3
then

k 4 4 ;
e,,N(k) =e, (]V) , keVy, = p Zl sin’ (-27—6%) s
=

cf. Proposition 9.5.3 of [11]. In particular {e}, n € Vy} forms an orthonormal basis
of Qy equipped with the scalar product (x, y)y, = N4 EkeVN x(K)y(k).

Next, let Ly ={¢ € L*(A): ¢(t) = X4y, (Nt — k)P(k/N), t € A}, be the
set of “interpolated” functions. For given {a(n), n € N?} C R* with lim,_, , ai(n)

= 00, we define an Hilbertian norm || « ||,» on ZLy:
Ioliy = > amy;,
nely

where y = {y,, n € N} is such that
Gk/N)= 3 yueak/N), k€ Vy. (2:20)

nely
Lemma 2.21. For each L,8 > 0, there exist ¢',...,¢M € L*(A), such that
M .
Koy = {6 € Zx: [9ln <L} C UBA:5) for large enough N |
i=1

Proof. First note that {eV, n € Vy} is an orthonormal basis, thus if ¢ is given by

(2.20), we have
Ny kNP = 3 y7.
keVy nevy
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Also, there exists a constant ¢ > 0, such that

[6l324y S N~ GUKINY ¢ € L. (2.22)
kEVN

Next, K, = {y € 2(Z%) : Y, cna ((n)y2 < L} is a compact subset of /2(N).
Thus, for each &, L > 0, there exists »',..., ¥, such that

K, C L_J{y ly—»y ||12(1Nd) < Vo'}.

Without loss of generality, we may assume that max;—;, |y =0, if |#| = no,
for some ny = ng(d’,L) > 0. Set

t:A—¢()= 3 yeat),  t: A= Py(O)= 3 hNt—k)¢'(k/N) € Ly .
neNd keVn

Then, for N = ny, by (2.22),

i= nely

M .
%/N,L(—:U{d’egN: > |yn—J’L|2§5'}

M
= U {¢ €Ly :N’dk;; |(k/N) — ¢'(K/N)* < 5'}

E

; {¢ € gN ||¢ ¢N”L2(A) = 05,}

Now the result follows, since

. i i _
i 2o, W = ¢l =0 O

Lemma 2.23. Assume (2.1). Let {a(n) : n € N} satisfy a(n) < O(|n|*) and
limsupey 3 a(n)|n|™ < oo, (2.24)

N—oo nevy

then, limsupy _, . &y log E [exp(%ll)? V23] < oo, for some B > 0. In particular

hm lim sup &), log Py, (Xy € Kz n) = —

L—oo N oo
Proof. We know that X € Qy satisfies
Xk)y= 3 X&)y, eNk) = ENe,(k/N), keVy,
n€Vy neVy

where, under Py, {EY —(
—d

variance EY[(EN)?] =
of. (9.5.14) [11]. Thus

e))yy, n € Vy} are independent centered gaussian with

K. Also, infy>o N1 = c|nf?, for some constant ¢ > 0,
n

IXnlEN =& > an)EN),

n€Vy
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and, for 0 < B < sup,cne 2L(;|1)’ using the independence of {ZV},

exp (ﬁNH > (&Y )2>J
neVy

B 1 2Bo(n) 1 20(n)
-3, (- szy)é 2o ( PR

nely n€Vy

log Ey[exp(Bey >N 72| X w2 )] = log Ey

which implies the result by (2.24). O
Proof of Theorem 2.5

The upper bound under (2.1). Note that Lemma 2.10 yields
.y 0 1, 1
lim &y logEy |exp | 5 (Xn, ) || = 5(6,049), ¢ € Cp(A).
N—oo &y 2

Since Cy(A) is dense in L2(A), we get by Lemma 2.9 and standard large deviation
results the following weak upper bound:

lim sup &) log PY, (X y € By(¢;0)) < — mf 1 ¢ eL*(A), 6>0,
B

N—o00

cf. Sect. 5.1 of [8]. The strong upper bound follows from the exponential tightness
Lemma 2.23.

The upper bound under (2.4). The only change is the exponential tightness (2.16)
which holds in the stronger L?(A)-topology, 2 < p < 2d/(d —2).

The lower bound under (2.1). Tt suffices to show that, for each ¢ > 0 and ¢ €
Co(A),
l}\l{n inf &y, log PY (X € Ba(;¢)) = —I(9) .
—00
Let Q% be the gaussian measure on Qy with covariances Gy and mean EQ?V [X(K)] =

ex ¢(k/N), k € V. Then

-2
HOMP) =5 5 QU )IN) ~ IV = Ao - V).

4 {i,j}NVy =0

0
where H(Q% |PY) = EY, [ZIQJQ’ log ZIQJQ’ ] denotes the relative entropy, and therefore
N

. 1
Jim eV H(OIPY) = 111V @lal 2 a) = 1(4) (2.25)

cf. [7]. On the other hand, let ¢: A — ¢y(t) = EiEVN h(Nt — k)p(k/N), then
limy oo [|#n — Pll;24) = 0, and, for each 6 > 0,

Jim Oy (Xy € Ba(¢n;9)) = lim PY(Xy € Ba(0;0)) =1, (2:26)
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since, by (2.22),

EQ[IXN|72)] o cahmaxeeyy GY(kK)
—— = lim =

. O > .
Jim Py([ X2y 2 0) = Jim Jim 52 =0,
with
o(1) d=3

max GV (k,k) = max EY[|X (k)| ={
max G (k) = ax EMXGOPI = o)

cf. [7]. Now the lower bound follows from (2.25) and (2.26) by the usual change
of measure argument, cf. Lemma 5.4.21 of [8].

The lower bound under (2.2). The only difference is the last step in the L*°(A)-
topology:

Jim O} (Xy € Boo(¢n39)) = lim Py(Xy € Boo(0;0)) =1,
with

PR(I®lloo Z 8) < Py (,gg% X (k)| 2 58,;1) < N max PR(X (k)| 2 dey ")

B 8%ey?
2 maxgepy GV (k k)

§2Ndexp( >—>O as N — oo. O

Remark 2.27. The large deviation principle allows us to change the a priori measure
P,?, via Varadhan’s lemma, cf. 2.1.24 of [8]. More precisely, let

F € Cp(A x R)={F € C(AxR) with |F(t,x)| £ 4 + B|x|?, for some 4,B < oo},
and set IF(¢) = [, F(t,¢(¢))dt. Next, for | < p < 2 and B € R, define

1
Zy(BIF)

where Zy(BIF) = ER,[exp(—;fLIF(X_'N))]. For example, for A(t) = 1y ya(¢) and F(t,x)
: \
= F(x), the new measure is of the form

Pyl(ax) = exp (—gmm) PR(dX),
'N

PSP ax) = L ¥ F(aNX(k))) PY(dX).

B
exp | —5—
Zn(BTF) P ( e N2 &7,
Varadhan’s lemma implies

Jim &), log Zy(AF) = — inf {I($)+ PIF($)} = —A(BF),
— peL2(A)

and {P,?,’ﬁ oX ;1, N € N} satisfies a large deviation principle with rate function

1°(¢) = I($) + BIF(¢p) — A(BFF).

In particular, if K(BF) = {y € H}(A): I(Y) + BIF(Y) = A(BF)}, then for each
e >0,
lim sup &) log PY*(Xy ¢ By(K(BIF);€)) < 0. (2.28)

N—oo
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Consider the special case of a linear functional IF(¢) = (¢, f), for some f € Cp(A).
0.8 51 . . .
Then Py” o Xy is gaussian with mean

mh(0) = B LRn(] = S ES RN, 1)), te A,
'N

and unchanged covariance cov 0, (XN (1), Xn(s)) = COVpo Xn(),Xn(s)). If we
N

choose f = p(v) =c, =v/{f,®,f), such that limy_, E]?,’ﬁ[(XN,f)] =, then

K(PF)={y,} and limsup, _, . &y log P,?,’B(X'N &B>(y; €)) <0, (see also Lemma 4.1,
below).

3. The Convergence of the Approximate Microcanonical Distribution
As an immediate consequence of Theorem 2.5, we have the following convergence
result for approximate microcanonical distributions.

Corollary 3.1. Consider the slow regime (2.2). Let I' be a closed subset of L*(A),
such that infro,co I =infrI < oo, and let K(I')={¢ € I' : I(¢) = infr I}, then
for all ¢ > 0,

lim sup ) log Py (X y ¢ B2(K(I');¢) [ Xy €T) <0 .
N—oo

We want to specialize this result to the following situation: for v € IR,6 = 0
and F € Cp(A x R) set F(¢p) = [, F(z, $(2)) dt,

M(,F,8) = {¢ € L*(A): [F(¢) —v| <}, My(v,F,0)={Xy € M(v,F,0)} .
Note that M(v,F,d) is a closed set of L>(A) for 1 £ p < 2. Next recall
Q) ={PpelP(N): (1) 20, t€ Ay}, Qi) ={Xy € Q" ()},

where A, = (7,1 —n)?. In case = 0, we write 2+ = Q7(0) and Qf, = Q7(0).
Next, let K(v,F) and K (v, F) C HO1 (A), be the set of solutions to the variational
problem

inf{l(¢): ¢ € M(v,F,0)} = A(v) ,
inf{I(¢): ¢ € M(v,F,0)NQ"} = it (v). (3.2)

In case F € C}(A x R) with Fy( + ,¢) € L*(A) for ¢ € Hy(A), Y € K(v,F) solves
the Euler equation

—A40 = [F(t,y), for some [=1(v) e R,

with Dirichlet boundary conditions lim, ;e Y(¢) =0 for a € 04. In non-
degenerate situations, that is Fy( - ,) =0, there exists f = pf(v) € R, such that
Y € K(PIF), cf. Remark 2.27.

Corollary 3.3. Assume (2.2) and take F € Cp(A X R) with p < 2. Let v € R be
such that A(v) < oo, then for each ¢ > 0,

;i\rg lim sup &, log PY(Xy ¢ Bo(K (v, F); €) | My(v,F,8)) < 0.

N—o00
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Next, if AT(v) < oo, then for each ¢ > 0,

m{‘] lim sup &)y log PYy(Xy ¢ Bo(K (v, F);8) | My(v, F,8) N Q3(n)) < 0.

N—oo

Example 3.4. Consider the quadratic case F(t,x) = x%. In this case M(v,F,d) is
closed in L?(A) and we can apply the above corollary. For each v > 0, € K(v,F)
solves —A4¥ = 11y, where [; is the first eigenvalue associated with —A4,. Thus
K(v,F) = {\/vef,\/ve] } and K*(v,F) = {\/ve] }, where e] is the positive L*(A)-
normalized eigenfunction and e = —ej. In particular, with respect to the weak
convergence on ./#(L*(A)), letting first N — oo and then 1,6\, 0,

( IMN(UF(S))OXN = 5\/—e++ 5\/521_

and
PY(- [My(v,F,8) N Qi) o Xy =6 st - O

We would like to introduce the exact positivity condition
Qb ={Xn:Xn(t) 20, te A}

in our conditioning. The major difficulty is that our large deviation principle
is too rough for an accurate estimation of PY%(2\). In fact, one has infg+/ =
0 inf ot )0.00 I = 00, but

lim N~ 1og PY(Q) = x4, (1.2)
N—o0

cf. [7]. We will work with monotonicity arguments. More precisely, let ClT,(A x R)
be the set of F' € C,(A x R) such that x — F(¢,x) is strictly monotone increasing,
for a.a. t € A. We will assume that F is “normalized,” i.e. IF(0) = [ 4 F(@,0)dt =0

Proposition 3.5. Consider the fast regime ey = o(N~'/?). Take F € C}(A x R)
with p < 2 and v > 0 such that AT(v) < oo. Then, for each ¢ > 0,

h\r‘n lim sup ey log PY (X w & Bo(K+(v,F); ) | My(v,F,6) N Q) < 0.

N—oo

In the very fast regime ey = ﬁ, we may choose F € CT(A xR) for 2 < p<
2d/(d — 2) and replace By(K(v,F);e) by B,(K(v,F);¢).

Proof. In view of the upper bound in Theorem 2.5 and lsc property of the rate
function /, we have

11{11 lim sup ey log P%(X v € Bo(KH (v, F); £)C N My(v,F,6) N Q%)

N—oo
—inf{I(¢): ¢ € Bo(KF(v,F); ) "M(v,F,0)NQT} < —A*(v).

Let M(s,F)={¢ € LX(A) : [, F(t, ¢(t))dt = s} and set My(s,F)={Xy € M(s,F)},
}:(s) = inf{I(y) : l//GM(s,F)}, s€R. Then, by the FKG property of P, cf. [13],

PY(My(0,F,8) N Q%) = PY(Mn(v— 8,F)N Q%) — Py(My(v+ 8,F)NQ3)

= PR(My(v— 0, F))PY(2) — PY(My(v + 6,F)) .
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Now, by the upper bound

lim sup &y, log P%(Xy € My(v+ 6,F)) < —A(v+d),

N—oo

and, by the lower bound,

lim inf & log PY(Xy € My(v—8,F)) = —i(v) = —At(v).

Since ¢y = ¢4 N>~9 = o(N'~9) by assumption, the result follows from (1.2) as soon
as we verify that
Mv+96) > Av), 6>0.

By assumption 0 < i(v) < AT(v) < oo, thus we may suppose that ):(v+ 0) <
0. Take ¢ € M(v+ 6,F), such that I(¢) = A(v + &). Then |¢| € M(v + 6,F) and,
since F € CJ(A x R), there is f € (0,1) such that [, F(z, f|$(¢)|)dt = v. That is,
Blo| € M(v,F,0), and therefore

M) £ 2v) £ P(P]) < B(P) = PPAv +0) < Av+0). O

In case of a linear conditioning of the form
AN(Uaf’é) = {XN . |</\7N’f> - Ul é 6} 5

where 8,0 > 0 and f € CJ(A), we can let 6 = oy \, 0 with N — oco. Recall the
definition L
Py =Py(- | An(, f.o0) N Q) o Xy

Proposition 3.6. Take ey = o(N~'2). Let , : A — R* (1) = ¢, G 4 f(t), with
co = V/{f,®Af), then for each ¢ > 0, and Sy \, 0 with dy = %sﬁ,N =o(1),

lim sup &), log 27(B2 (Y3 €)€) < 0.

N—o0

In case ey = ]iv, we may take oy = %% and replace B>(Y;¢) by Bp(Yn;¢€) for

2 < p<2d/(d—-2) B
Proof. For F(t,x) = f(t)x, Yy € K(v,F) solves —A4 = ¢, f(¢), that is K(v,F) =
{¥y =, ®4f} with ¢, = v/(f,®,f). In view of the preceding proof, all we have
to show is
2
lim inf &, log P (A (v, £,08) N Q2E) = ————— — _I(y) . 37

By the FKG property of PY, cf. [13],
PR(An(v, £,08) N Q%) 2 PR((Xn, f) Z v — S3)PR(Q%) = PR((Kw, f) Z v+ 6y) .
Next, let 03,(f) = Ey[(Xw, f)?], then since (X, f) is gaussian,

3ox(f) . (_(u - 6N)2>

0
Py({(Xn,f) Zv—0dn) = \/ﬁ4(v—51v)e p 22(f)
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for ;;—(‘Sf”) > 2, cf. Sect. 1.3 of [15], and

. v+ oy )
A 2 vva0 s ZESen (- )
N
Also |
Jim -0} (f) = (f.64f)

— 00 SN
cf. (2.11). Thus for &y \, 0, oy = 541%4/”—)812\,N = 5LeyN, (3.7) follows from
(12). O

In [7], one shows the existence of a constant 0 < K; < oo, such that for all
v N\ 0, ny = 2/N,

NN
liminf — log P4(Q -K; > —00, d=2,
N—»oo log2( ) g N( N(”N)) 2
liminf ———% —log PY(25(nv)) = —Kg > —00, d =3. (3.8)

N—oco N=2log(nyN)
Using precisely the same technique as above, we get from (3.8),

Proposition 3.9. Consider the slow regime (2.2), then for each ¢ > 0 and ny, oy \, 0

such that oy = ﬁwzwf, d=2, and Sy = 2CV82 v log(nyN) ford =3,

lim sup &)y log @’N(Bz(l//v; &)%)

N—oo

= lim sup &)y log PY(Xy ¢ Ba(Yus €) [An (v, £,n) N Q(nn)) <O .

N—o00

Before concluding this section, let us state a few important remarks:

Remark 3.10. It is interesting to compare our results with [S] in case d = 3. Let
M1(A x R) be the set of probability measures on A x IR, equipped with the weak
topology. In [5], one shows a large deviation result for the empirical measure

Yn(dt,dz) = Tl szj 3w (dt)Sxwy(dz) € My(A x R)
€y

at speed N9~2 with rate function J : .#;(A4 x R) — [0, 00],
JO) = {I(¢)’ Wdt,dz) = yy(dz) dt
0 otherwise ,

where Y41 is the gaussian distribution on R with mean ¢(¢) and variance G(0,0).
Let

£u(dt) = [2Py(dtdz) = — ¥ X(O)on(dr),
R i€Vy

L

|VN|1€

viewed as a signed measure on A. Set Ay(¢) = |Vy|h(Nt), then
th(t—x)XN(dx) = Y h(Nt —i)X(i)=Xy(t), t€A.

i€Vy



Construction of d+1-Dimensional Gaussian Droplet 483

Thus, X corresponds to the constant scaling ey = 1 which is beyond the techniques
of Theorem 2.5 and yields different results. For example, consider a non-linear

conditioning My (v, F, ) of the form
My(v,F,d) = {X €EQy: < 5}
= {YN = 5} ,

where F € Ci(A x R). Next let K(v,F) be the set of signed measures on A of the
form pu(dt) = Y(t)dt, where ¥ solves

> F(k/N.X(k))—v
|VN|k€VN

[ [F(t,z) Yn(dt,dz) — v
AR

inf {%|||W/|A||§2(A) y e H{’(A),/{H{F(t,z +Y())yo(dz) dt = v} = J(v). (3.11)

For F € C'(A x R),  solves the Euler equation
—A(t) =1 [ Fe(t,z + Y(1))yo(dz), for some [ =I(v) e R,
R

with Dirichlet boundary conditions. Assuming /T(v) < oo, for any open neighbor-
hood % of K(v,F) with respect to the weak topology, we have

ll{‘r(l)hmsupN 2 1og PO (Xy ¢ U | My(v,F,56)) < 0.
N—oo

For non-linear F, the solutions to (3.11) are quite different from the solutions of
(3.2). Thus, the scaling ey = o(1) improves the topology in Theorem 2.5, but trivi-
alizes the variational problem. In some sense we could speak of moderate deviations
in this setting.

Remark 3 12. In dimensions d = 3, one could remove the 0-boundary condition
and consider the infinite Gibbs state as a priori model, i.e. replace Py with the

centered Gaussian field P on Q = RZ’ with covariance G,
- d
n=0

the Green function of the random walk {&,, n € N} on the whole Z¢. Then, the
large deviation result Theorem 2.1 holds with rate function

. 1
I'(¢) = inf {§|||Vh|A||§2(Rd) ch€ H{(R?), h=¢ ae. on A} ,
and the convergence result of Proposition 3.6 holds in the weaker slow regime

(2.2), since

1
Nh—>oo N”’T log P(Q};) = —2G(0,0) cap(A),
where cap(A) = I'(1,) is the Newtonian capacity of A, cf. [6]. In particular the
limiting hypersurface is simply ¢ — Yy(¢) = c,® f(t) = ¢, [, 8(s,2) f(s) ds, where
(s, ) = g(s — t) is the Green function of the Laplacian —4, on RR?, cf. [5].



484 G Ben Arous, J-D. Deuschel

Remark 3.14. We have chosen the unit cube (0,1)7 as a basis for our droplet. This
is unnecessarily restrictive and, with some additional work, one could as well con-
sider any open domain A4 € R? with piecewise smooth boundary. In this context, the
convergence of the covariance functional in Lemma 2.10 follows from the invariance
principle. The next step, in the proof of the exponential tightness (Lemmas 2.14
and 2.23), would be to estimate the growth of the eigenvalues of discrete Laplacian
with Dirichlet boundary conditions on Vﬁ. Finally, the corresponding estimate for
the repulsion, cf. (1.2) and (3.8), are derived in [7], Remarks 2.4 and 4.16.

4. Fluctuations of the Exact Microcanonical Distribution

Let f € C;}(A) be fixed. Although P is gaussian, 2} is not gaussian. This comes
from the positivity condition 23, and the approximation Ay (v, f,dy) with dy > 0.
If one drops the condition Q;\L, and sets oy = 0, then the exact microcanonical
distribution _ .

Py =Py(-|(Xn, f) = v) o Xy € M(LX(A))
is Gaussian:

Lemma 4.1. 2y is gaussian with mean

v EQ[Xn(){Xn, /)]
my(t) = Egy[Xn(t)] =v NE,(\),E\/(XN,;;z] , teAa,
and covariance
covay (Xn(1,X () = By [Xn(DXn ()] - Mb‘%[m,ﬁzl, sted,
Proof. Let ) ]
a(t) = ™ _ EXNOEn, /)]
v Exl(Xw, )21

then one verifies easily that {Xw(s) — an(s)(Xn,f), s€A} is independent of
{Xn(2), t € A}. This implies the result by standard gaussian calculus. O

Note that, in view of Lemma 2.10, for all ¢ € Cyp(A),

. e ENEN, XN, )] (,64f)
Nh_{féo<¢am1v> = ]}l{nwv Bl v F.Gaf) (b)) . (42)

Thus, my converges weakly to ¥, = ¢,®,f.

Proposition 4.3. Let ¢ € Cy(A), then the law of

_ 1
Xy — my, ¢) = N> <XN - amN,¢>

1
Zn(P) = —=
Vén
under Py converges weakly to a centered gaussian distribution on R with variance

2
(6. 6%8) = (6,6 4¢) - % .
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Proof. Since 2y is gaussian, all we have to verify is the convergence of the variance
by (2.11):

. ) 1 -
lim varg, (Zy(¢)) = lim —Ep\,[(Xy — my, (,15)2]
N—oo N—oo SN

2
- Jim iEﬁ&[@?N, o)1 - <—””j);—"’>$E?v[<XN,f>2J
~ (0640 - L1 6,1)
_ _ <¢’ ®Af>2 - f
= (¢, G ,0) AN (¢,67¢). O

This result is, of course, of little use, since one would rather have a conver-
gence result for the fluctuation around v, that is, for (X — iy, @)/ &y. However
it seems quite difficult to estimate the convergence rate in (4.2), see Remark 4.7
below. In order to circumvent this difficulty we introduce a new continuous inter-
polation {Xy(¢),t € A} of X. For simplicity, we restrict ourselves to the nearest
neighbor interaction Q4. Let {e,, n € N} C Cp(A) and {l,, n € N?} C R* be
the eigenfunctions and eigenvalues of the (continuous) Laplacian —4, = —}jA with
Dirichlet boundary conditions on 04, cf. (2.19), and define the new continuous
interpolation Xy of X by

NWO= 3 Xe e = 3 Elet), teA, (44)

n€Vy neVy
where, under Py, {EN = (X,e})y, = N_deeVN X(k)en(k/N), n € Vy} are cen-
. . . . —d
tered gaussian with variance EJ[(E})’] = Yz, cf. Sect. 2. As above, we set

Xy =enXp()= Y en{Xel)pyent), ted,

nely

and write 2% = PY(+|(Xy, f) = v) o (Xy)~' € M1 (L*(A)).
Next, for § € IR™, let us introduce the Hilbertian norm

Iolf2 = 2 1Ll {de)’, ¢ €Ce(A),

neNd

and let Z¢(A) be the closure of C5°(A) with respect to || « [|g2. Zy(A) = D_g(A),
the adjoint of Dy(A), is the set of distributions on A. Note that 2;(A) = Ho A1)
= [IVllz2a), and (¢, G40) = [[$]2 -

Proposition 4.5. Let d = 2,3 and assume that ey' = o(N*>~9?). Set

. A
ZX}:E(XN—%)=NW2 1<XN_al//v) ,
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then with respect to the weak convergence on M1(21(A)),
ﬂﬁoZﬁ_léﬂf, as N — oo,

where 2/ € M 1(D7(A)) is the law of the centered generalized gaussian field Z
with covariance operator

cova(Z(9).Z(W)) = (6. 64y)  $.¥ € D1(4).
Proof. First note that (¢, Qﬁﬁqb) < 2(¢,6,4¢) =2||$]l3,_,. Also, in dimensions d =
2,3, the injection Z1(A) — 2P_1(A) is of Hilbert-Schmidt type. This implies that

2/ can be constructed on 21(A), cf. Theorem 3.1 of [12]. In order to prove the
weak convergence, it suffices to show that

1
i Ege [exp(iZy(9))] = Eor [exp(iZ(¢))] = exp (—5@5, (5%)) s P eD(A),

where i = v/—1. Since 25 is Gaussian,

Egg [exp(iZ3(#)] = exp <,- o b ) — 5 v (O ¢>)) ,

where oo .
ey — B 5 ] — o ENENOE Y, )]
mN(t)_E.@N[XN(t)]_v E]%[(X’;,,f)Z] ’ teA’
and
1 . 1 — L)1 —
var (i ) = S ESRN 971~ T B Lpris, ey,
N N N

The main advantage of working with X ;} instead of Xy is the following estimate:

FEMT 0= 5 (b = (8,.6,0) 0N Dol (46)

?]\: nevy
cf. Proposition 9.5.5 of [11]. This implies

o BN X ] (9,64f)
<¢,mN> =0V Eg}[</?;[’f>2] =0 (f, (5Af>

= (¢, ) + O(N*2)||¢“L2(A) )

+ O(N_2)||¢||L2(A)

Nd/2—1
N

thus, for d =2,3, limy_oo ﬁ(m}’(, — U, @) = limy_, o0 (m3 — Y, @) = 0.

Also, again by (4.6),
.1 x
Jlim —varg (065, 8)) = (9. 679)

cf. proof of Proposition 4.3. [J
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Remark 4.7. We believe that (2.11) can be improved to

%EI?/KXN» &) = (¢, Ga$) + OV, (4.8)

where O(N~!) depends on ¢ € Cy(A). Actually, this is the case when ¢ is suffi-
ciently smooth, ¢.g. ¢ € Dy(A) for 6 > + 1. This implies

(bomy) = (§, ) +ONY), ¢ € Dy(A), 0 2 d+1

Using the same argument as above, one deduces from (4.8), for d = 2,3 and
ey = o(N*~92), the weak convergence of Py o ((Xy —)/1/ey)~" to 2/ in
// 1(Z5(4)).

Remark 4.9. Let 2° be the centered generalized gaussian field on 2}(A) with

covariance
COV(Z(¢),Z(¢)) = <¢’ ®AW>9 d)’w € @1(/1) .
Then we can identify 2/ as the law of 2°, conditioned upon {Z(f) = 0}, that is

2(-)y=2C-12(/)=0).
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Note added in the proof Recently, Dima Ioffe told us that he had been working on a similar
problem In some sense our results are complementary: his paper deals with a gas of many droplets
with random basis, whereas we work with a single droplet with fixed basis However the repulsion
problem is not addressed in his work
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