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Abstract: This paper relates two mathematical concepts of long-range order of a
set of atoms A, each of which is based on restrictions on the set of interatomic
distances A — A. A set A in Rw is a Meyer set if A is a Delone set and there is
a finite set F such that A — A C A + F. Y. Meyer proposed that such sets include
the possible structures of quasicrystals. He obtained a structure theory for such
sets, which reformulates results that he obtained in harmonic analysis around 1970,
and which relates these sets to cut-and-project sets. In geometric crystallography
V.I. Galiulin introduced the concept of quasiregular set, which is a set A such that
both A and A — A are Delone sets. This paper shows that these two concepts are
identical.

1. Introduction

In 1984 Schechtman et al. [40] discovered materials whose X-ray diffraction spectra
had sharp spots indicative of long range order, which exhibited non-crystallographic
symmetries. Such materials cannot have a periodic arrangement of atoms; they are
now called quasicrystals, cf. [27]. In the last ten years there has been an immense
amount of theoretical and experimental research effort to determine the atomic struc-
ture of such materials and to find mechanisms that explain how they form and
remain energetically stable, cf. [19].

On the theoretical side, a large class of structures have been constructed
which exhibit sharp spots in their X-ray diffraction spectra and which have non-
crystallographic symmetries. These sets consist of cut-and-project sets of points
([1], [9], [10], [23], [26], [27]). Alternate descriptions of possible quasicrystalline
structures were also given in terms of quasiperiodic tilings using a finite set
of prototiles ([13], [22], [29]). Many of these tiling constructions trace back to
work of de Bruijn on Penrose tilings [2]. Another direction of work concerns
"local rules" as analogues of short-range interactions that might explain the
formation of such structures ([20], [24], [25], [28], [34], [41]). It appears that
there are some quasicrystalline tilings not describable by "local rules" of particular
types [4].
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This paper studies two mathematical characterizations of structures with long
range order which are sufficiently broad to include the possible structures of quasi-
crystalline materials. Mathematical idealizations of quasicrystals model them as dis-
crete sets of points ("atoms") and consider infinitely large structures in arbitrary
dimensions. The basic assumption of "condensed matter" is embodied in the fol-
lowing definition.

Definition 1.1. A set A in Rw is a Delone set, (or Delaunay set or (r,R)-set) //
it has the two properties:

(i) Uniformly Discrete. There is a distance r > 0 such that the ball of radius
r centered about any x G 1RW contains at most one point of A.

(ii) Relatively Dense. There is a distance R>0 such that the ball of radius R
centered about any x G 1R" contains at least one point of A.

This concept is named after B.N. Delone [6,7] (alternative spelling: B.N. Delaunay),
see also [14,15].

The concept of a crystal is that of a discrete point set having a full lattice of
translation symmetries.

Definition 1.2. An ideal crystal A in W1 is a point set of the form

L + F := {x + f: x G L and f G F}

in which L is a (full rank) lattice in Rw and F is a finite set.

There has been a search for suitable generalizations of "ideal crystal" that
still prescribe long-range order but include the possible atomic structures of quasi-
crystalline materials. Among these, two generalizations have been proposed which
are based on restrictions on the set of "interatomic distances"

A - A := {x - x' : x, x' G Λ} .

The set A — A is relevant to atomic structure because the far-field X-ray diffraction
pattern of A is the Fourier transform of the points of A — A taken in a suitable
limiting sense, i.e. it is the Fourier transform of the two-point correlation function
(autocorrelation function) of A, cf. Hof [16,17] and Senechal [39].

The first generalization of ideal crystal is a weakening of the notion of reg-
ular point system, on which geometric crystallography is based, see Sect. 2. This
generalization was proposed by Galiulin [15] in 1989.

Definition 1.3. A quasiregular set is a Delone set A such that A — A is also a
Delone set.

This definition can also be viewed as a relaxation of the concept of a set pre-
scribed by "local rules," as explained in Sect. 2.

A second generalization of ideal crystal is due to Y. Meyer [30], who proposed
it in connection with questions in harmonic analysis ([30,31]). Meyer [32] terms
these sets "quasicrystals," while Moody [33] calls them "Meyer sets."

Definition 1.4. A Meyer set A is a Delone set such that A — AC. A -\-F for some
finite set F.

Meyer gave several equivalent definitions of this class of sets, which we summa-
rize in Sect. 2. Meyer sets are a generalization of "cut-and-project" sets, and have a
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harmonic-analytic characterization which is analogous to an X-ray diffraction pattern
having a series of bright spots.

The main result of this paper is:

Theorem 1.1. The following properties of a set A in R n are equivalent.

(i) A is a Meyer set.
(ii) A is a quasiregular set.

Meyer [32] observed that A is a Meyer set if and only if A and A — A — A axe
both Delone sets, and this shows that (i) =>• (ii). The new result is (ii) => (i). For
completeness we include an easy proof that (i) =>• (ii).

For general background we give in Sect. 2 a discussion of quasiregular sets and
Meyer sets and their relation to other concepts of "crystal" and "quasicrystal". The
proof of Theorem 1.1 follows in Sect. 3, and does not depend on any result of
Sect. 2.

In Sect. 4 we use Theorem 1.1 to derive an improved harmonic-analytic criterion
for a set A to be a Meyer set (Theorem 4.1). This result is due to Robert Moody.

The notion of Meyer set provides a mathematical framework that seems to
be sufficient to include most reasonable quasicrystalline structures. In Sect. 5 we
indicate how tiling models of quasicrystals fit into this framework. We also observe
in Sect. 5 that there exist Meyer sets that are not quasicrystalline in any reasonable
sense, because they have no well-defined autocorrelation function (X-ray diffraction
pattern). Extra conditions might be imposed on Meyer sets to obtain a narrower
concept of "quasicrystal" and we indicate some possibilities.

2. Quasiregular Sets and Meyer Sets

The notion of quasiregular set derives from geometric crystallography, which
according to Engel [11,12] is the study of regular point systems.

Definition 2.1. A set A in WJ1 is α regular point system // it is α Delone set and
if it "looks the same'''' from every point x 6 A in the sense that for any Xi,X2 € A
the sets A — X\ and A — x2 are congruent to each other by an isometry of W1

that fixes 0. {An isometry that fixes 0 is either a rotation or a reflection followed
by a rotation.)

This definition was given in 1874 by Sohncke [42], who classified the regular
point systems in two dimensions. It is known that in each dimension n ^ 1, every
regular point system in W1 is an ideal crystal. In 1976 Delone et al. [7] showed
that regularity can be specified by "local rules."

Definition 2.2. A set of local rules, J£f, is a set of finite point configurations, each
of which is contained in the ball B(0,Rf) of radius R' around 0. A Delaunay set
A satisfies the local rules i f under translations if for every x e A,

(A - x ) ΠB(0,R') e£C.

More generally A satisfies the local rules i f under isometries if for every x in A,
the set {A — x)Γ\B(0,R') is congruent to some element of ££ under an isometry
that fixes 0. We call R1 the range of the set of local rules.
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To state the result of Delone et al. [7], let B(x,R) = {y : ||y - x| | ^ R} denote
the closed ball of Euclidean radius R around x.

Theorem 2.1. Let A be an (r,R)-set in W1. There is a constant c depending on
the ratio R/r and on n such that if all the neighborhoods {A — x) ΠB(0,cR) for
x G A are congruent under ίsometries of W1 that fix 0, then A is a regular point
system.

In this case the set J£? of local rules under isometries consists of a single con-
figuration. Engel [11] gives examples of (r,R) sets A which are not regular point
systems but which have the property that all sets (A — x) ΠB(0,4R) for x G A are
isometric. Engel [11, Theorem 9.9] claims a stronger form of Theorem 1.1 that takes
c = 6 independent of both R/r and «, but his proof is incomplete, and depends on
his Conjecture 9.7.

Not every ideal crystal is a regular point system. However it is fairly easy to
extend Theorem 2.1 to show that any ideal crystal A = L +F is determined by a
finite set of "local rules" under isometries or under translations, cf. [8].

To allow nonperiodic structures Galiulin [14] suggested relaxing the concept of
a regular point system to that of a quasiregular set given in Sect. 1, i.e. to require
only that A and A — A both be Delone sets. Quasiregular sets retain a weak vestige
of "local rules" in that they possess the locally finite atlas property, for each R > 0
there are only finitely many distinct sets among all sets ( y l - x ) n 5 ( 0 , ^ ) , with
xeΛ. (The collection of all sets (A-x)Π B(0,R) for x G A is called the R-atlas
of A.)

The concept of Meyer set was originally defined in terms of a notion of duality
in harmonic analysis which is related to almost-periodicity.

Definition 2.3. Given a Delone set A C R w ,/#r any ε > 0 its ε-dual Aε is given by

Aε := { / ( G r : |exp(2πι(/ι,x» - 1| ^ ε for all x G A} , (2.1)

where (μ9x) := Σ L i ^ ^

This concept generalizes duality of lattices, for in the case that I is a full rank
lattice in Rw, the set Lε is equal to the dual lattice Z* := {μ G R w : (μ,x) G Z for
all x G L} for 0 ^ ε < y/3. However for most Delone sets A the ε-dual Aε — {0}
for 0 < ε < 2. We are concerned with those A such that Aε is "large."

Definition 2.4. A discrete set A is ε-harmonious if its ε-dual Aε is relatively dense.
It is harmonious if A is ε-harmonious for all ε > 0.

Meyer's original concept was of a relatively dense harmonious set, cf.
Theorem 2.2 below. These sets are closely related to cut-and-project sets, which
Meyer introduced in 1972 under the name "model set," see [31], p. 48.

Definition 2.5. The cut-and-project set A(L,Ω) in Rw is associated to data (L,Ω),
in which L is a full rank lattice in W — W1 x R^ with k ^ 0, which satisfies

(i) No two elements of L have the same image under orthogonal projection
τr|| onto IR",

(ii) The image of L under orthogonal projection π± onto W^ is dense in IR*,
and Ω is a "window" in R* which is a nonempty bounded open set. Then A(L,Ω)
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is given by

Λ(L,Ω) := {p\\(x) :xeL and p±(x) e Ω} .

Meyer showed that the Fourier transform of a sum of delta functions at points
of a cut-and-project set Λ(L, Ω) is a weighted sum of delta functions on a countable
set, and if in addition the window Ω is convex and symmetric around 0 then the
largest weights are at points of its ε-dual Λε for small ε, cf. [32], Theorem 7. The
X-ray diffraction spectrum of cut-and-project sets is also supported on a countable
set, cf. Elser [10].

Meyer [31] proved the following relations among these concepts.

Theorem 2.2 (Meyer). The following properties of a set A in ΈJ1 are equivalent.

(1) A is a Meyer set.
(2) A is a Delone set and there exists a cut-and-project set A(L,Ω) and a

finite set F such that
A C Λ(L, Ω) + F .

(3) A is a relatively dense harmonious set. That is, A is a relatively dense set
such that for each ε > 0 its ε-dual Aε is relatively dense.

Note that criterion (2) implies that all cut-and-project sets are Meyer sets. How-
ever there apparently are Meyer sets that do not contain any cut-and-project set.
The criterion (3) is related to X-ray diffraction in that for directions μ £ Aε the
phases of the points of A approximately line up so that the X-ray diffraction pattern
of A (if it exists) will have high intensity at such points. We show in Sect. 4 that
criterion (3) can be weakened.

Meyer's proof of Theorem 2.2 is quite intricate: see [31], Theorem I, p. 43
and Theorem IV, p. 48 for (2) <̂> (3), and Theorem X, p. 71 for (1) <̂> (3). More
results on Meyer sets appear in [32,34].

Recently Moody, Patera and others have found local growth mechanisms to
describe the formation of certain Meyer sets, see [5,24,34].

3. Equivalence of Meyer Sets and Quasiregular Sets

We prove Theorem 1.1. Let | |x| | = (Σ"=ιxf)y2 denote the Euclidean norm on IRΛ

Proof of (i)=>(ίi). We suppose that A is a Delone set with A — A C A + F,
and we are to show that A — A is a Delone set. Now A — A contains a translate
of A9 say A — {λ}, so it inherits the relative denseness property from A.

It remains to show that A — A is uniformly discrete, which we do by showing
that A -f F is uniformly discrete. (This is not true for general Delone sets A, e.g.
take A = {n + τ4-^ : n e Z} and F = {0,1}.) We argue by contradiction. A set S
is discrete if #{s e S : \\s\\ < T} is finite for all T > 0. Certainly A + F is discrete
because A is discrete and F is finite. If A + F were not uniformly discrete, then
we can find a sequence of vectors of differences of elements of A + F, say

which are all distinct and become arbitrarily small as k —>• oo. Extract a subsequence
X/ on which the pair (JkΛk) *s constant. Then

y7 := λij - λjΊ ^i'k-ik ,
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and the yι assume infinitely many distinct values. Thus the sequence {yz} has a
finite limit point, which shows that A — A is not discrete. But A + F contains
A — A, hence A + F is not discrete, which is a contradiction. D

Proof of (ii) =$>(i). We suppose that A is an (r,7?)-set and that A — A is an (r',R')-
set, and we are to find a finite set F such that A — A C A+F. Without loss of
generality we may suppose that 0 G Λ, by translating A to A — x, which leaves
A — A unchanged, and simultaneously replacing F by F + x.

We first assume only that A — A is discrete, and show that this implies that the
additive group Z[A — A] generated by the elements of A — A is finitely generated.
The discreteness of A — A implies that the set

Sf :={xeΛ-Λ: \\x\\ < 3R} ,

is finite. Indeed the open balls of radius j around each w G ^ are all disjoint and
lie inside the ball of radius 3R + y , which gives obtain the volume bound

(3-D

The vectors in Sf generate a finite-dimensional vector space over the rationals Q,
denoted

V := Q[x : x G Sf] .

Let [yί,... ,y£] be a subset of Sf forming a basis of this vector space.1 Every vector
x, G y7 can be expressed as

s
χi '= Σ njy'p with nj G Q.

7 = 1

it-
Let £) be the lowest common denominator of all the rtj, i.e. r^ = ̂  with kij G Z

and choose the new basis [y1,...,yiS] given by

y - - y '

If y = ΣH^iΎi £ aC[y ls...,yj C Rw, then we call n = (nu...,ns) G Z 5 the address
of y, and each y G ̂ [ y j , . . . ^ ] has a unique address. Every vector xz G 5^ is an
integer linear combination of the yz, namely

k=\

hence £f C Zfy^. .jyJ, and for future reference we set

C i : =max{ |%|} + 1. (3.2)

We proceed to show that
Λ-ΛCZ[yλ,...,ys]. (3.3)

1 It may be of much higher dimension than n.
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Let v E A — A, and write v = w — w with W , W G A Set

v
ir = w 4- kR^—. for 0 < k < kn —

The (r,7?)-set property of A guarantees that there exists w# E Λ with
||wfc — z*|| ^ /? for 0 ^ k ^ &o -f- 1, and we choose Wo := w and w^+i =: w.
The triangle inequality gives

zk\\ ^ 3R (3.4)

for 0 ^ k S ko. Thus Wjt+i - w* E ^ C Z[y 1 ? . . . , y j for 0 ^ A: ^ k0, hence

A:=0

which proves (3.3).
Now we use the fact that A — A is an (r^i^-set to show that

A — A C A + F, where F is the finite set

F := {z = /tf! + + ίsϊs : each /y E Z with |/y | ^ C2} ,

with C2 = 2C\(ψ + l) w To show this, let \ e A - A, and write v = w - w for
w,w E A. Since v E Zfyj^.^y^], it has a unique address

v = ί > , yy (3.5)

with all «y = πj(\) E Z. Since A is an (r,7?)-set there is a vector w0 E A with
I |wo — v| I ^ 7?. We call w0 the reference vector for v. We will prove that

v = wo + f, some f E F . (3.6)

Since 0 E A, we have Λ C yl — yl C Z[y 1 ? . . . ,y j , hence

7=1

ήwith all ήj E Έ. Thus (3.6) is equivalent to

\nj - «~(0)| ^ 2Ci Γ ^ + l V for 1 g y ^ ί . (3.7)

We deform the reference vector Wo = w0 — 0 to the vector v = w — w by a series
of steps drawn from £f — £f. Introduce the vectors

Zfc = kRγ.—-, for 0 ^ k ^ &o =

k := zk -f- v, for 0 ^ k ^ ko ,
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By the Delaunay property of A there exist vectors w^w* G A with

\y/k - z*| ύ R, I Wit - z*| ^ ^> for 1 ^ A: ^ ^o •

The vectors w0 = 0 and the reference vector wo satisfy this property for k = 0, and
so do the vectors

w^+i : = w, w^0+i : = w ,

for k = ko + 1. Now define

v# : = Wjt — w*, for 0 ^ A: ^ &o + 1 .

so that Vo = Wo and \ko+\ = v. Since v* G A — A, we have

v* = ί > f y , (3-8)
7=1

for some «f} G Z. We next show that \k - v^-i G ^ - ^ . Now

Vŷ  - Vjt-l = (Wit - W^_i ) - (Wit - W t - i ) , (3 .9)

and a triangle inequality argument as in (3.4) gives

hence w^ — w^_i G 5^ and w^ — w^-i G 5^. Thus v̂  — v^_i G 5^ — Sf, and the
bound (3.2) applied to \k — \k-ι gives

|/if} - /if ~ υ | ύ 2CU I ύ j u s . (3.10)

Now we show that all \j are close to v. Using \ = zj — zy and the triangle
inequality gives

Thus all the points vy lie in the ball B(\,2R) of radius 2i? around v, and this ball

contains at most (7? + l ) n elements of yl — A by the same argument as (3.1).
To complete the proof, we suppose that the bound (3.7) does not hold and argue

by contradiction. The sequence of vectors v̂  starts from the reference vector vo = Wo
and ends with v^0+i = v, and takes steps that are bounded in the sense (3.10). If
(3.7) does not hold, then there must be among 1 ^ j 5Ξ s some coordinate position
jo such that

The bound (3.10) implies that over 0 ^ k g ko + 1 the coefficient nfj must take

on at least ( ^ + l)W + l distinct values, so that at least this many points v̂  are

distinct. This contradicts the upper bound (ψ + l)n for the number of points in

A- A in the ball B(γ,2R), proved similarly to (3.1). D
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4. Harmonious Set Criterion to be a Meyer Set

We deduce from Theorem 1.1 an improvement of the harmonic-analytic criterion
(3) of Theorem 2.1 for a set A to be a Meyer set. This result and its proof are due
to Robert Moody.

Theorem 4.1. The following properties of a set A in W1 are equivalent.

(1) A is a Meyer set.
(2) A is relatively dense and there is some ε with 0 < ε < j such that Aε is

relatively dense, i.e. such that A is ε-harmonious.

To prove this result we begin with the following lemma.

Lemma 4.1. If a set A in IRW is relatively dense, then for 0 < ε < 1 its ε-dual Aε

is uniformly discrete.

Proof. The relative denseness of A means that A + B(0,R) = IR/2 for some
finite R. We argue by contradiction. Suppose that 0 < ε < 1 and that Aε is not
uniformly discrete. We can then find two sequences of points μ) , μ\ G Aε, with

μ\ι)+μ\2) and \\μ\l) - μ\2)\\ -> 0 as i -> oo, such that

| | exp(2π/(/ιp),x) - 1|| < e, for all x G A, j = 1,2 . (4.1)

This yields

|| exp(2π/(,ι<1) - A

( 2 ) ,x» - 1|| = || exp(2π/(/ίί

0),x)) - exp(2πi^ 2 ) ,x» | |

^ Σy=i 11 exp(2πi{μf\ x)) - 111 < 2ε, for all x e A . (4.2)

Since ε < 1, we have \\μγ^ — μf ^\\ < η^ for all sufficiently large /, which yields

πi ,Λ
exp I — ( 1 — y < 2 - 2 ε , all X G B(0,R). (4.3)

4

It follows from (4.2) and (4.3) that

|| exp(2π/(/ι|1) - μf\x)) - 1|| < 2, all x G Rw ,

which implies that μ\ = μ\ , a contradiction that proves the lemma. D

Lemma 4.1 is sharp in the sense that for any given ε > 1 there exists a Delone
set A such that its ε-dual Aε is not uniformly discrete.

Proof of Theorem 4.1 The implication (1) => (2) follows from Theorem 2.1.
To prove (2) => (1), suppose that A is relatively dense and that Aε is relatively

dense for some fixed ε with 0 < ε < ^. Now (4.2) shows that Aε — Aε C A2ε. Next,
since 2ε < 1, Lemma 4.1 shows that A2ε is uniformly discrete. Since a translate
Aε — {μ} C Aε — Aε C A2ε, it follows that Aε is uniformly discrete, hence Aε is a
Delone set. In addition Aε — Aε is relatively dense because it contains Aε — {μ} for
some i, hence Aε — Aε is also a Delone set. Theorem 1.1 now applies to show that
Aε is a Meyer set.
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Next, we study Aεε = (Aε)ε. Certainly A C Aεε, hence Λεε is relatively dense.
Thus Λε and (Λε)ε are both relatively dense, so the argument above applies to
Λε to show that Λεε is a Meyer set. Now A inherits uniform discreteness from Aεε

because A C Aεε

9 hence A is a Delone set. In addition A — A C Aε — Aε <Z (Aε)2ε is
uniformly discrete by Lemma 4.1, hence /I — /I is a Delone set. Now Theorem 1.1
implies that A is a Meyer set. D

This proof also establishes the following result.

Corollary 4.1. If A is a Meyer set, then Aε is a Meyer set for 0 < ε < ^.

Robert Moody has shown that the conclusion of Corollary 4.1 is actually true
for the range 0 < ε < 2, by another method.

5. Tilings and Meyer Sets

Various tiling models for quasicrystals can be incorporated into the framework of
quasiregular sets. We consider tilings using copies of a finite set & of prototiles,
each of which is a simply connected bounded polytope.2 A tiling of WJ1 by 0* is
a covering of Rw with copies of the prototiles moved by isometries, in which the
interiors of all copies are disjoint. A translation tiling by 0 is the same except that
only translations of prototiles are allowed. We can associate a Delone set A to a
tiling by putting a fixed mark in the interior of each prototile, with A representing
the locations of the marks in the tiling using these prototiles. Different prototiles
are assigned different colored marks to distinguish them. Let Aj be the locations of
the marks of color / in a tiling and let A = (J A{ be the locations of all marks.

Tilings are typically prescribed by a finite set of local rules for allowable neigh-
borhoods (A — x) ΠB(0,R) for x G Λi9 for each color class /. Such local rules may
prescribe decorations or matching rules added to the tiles. A legal tiling is one that
satisfies the local rules. Now consider local rules under translations. Legal tilings
for local rules under translations always have the locally finite atlas property. For
any tiling having the locally finite atlas property, it can be shown that any associ-
ated set A of marked points has A C Z[\\9\2, , Yy] for some finite set of vectors
{v; : 1 ^ i ^ s}. We do not know what extra assumptions, if any, are needed on
such tilings to make A a quasiregular set. However "cut-and-project" constructions
of quasiperiodic tilings (as in [29]) have the property that any set of marks A as
well as each A\ separately will be quasiregular sets. (We note that tilings given by
local rules under isometries need not have the locally finite atlas property, e.g. the
pinwheel tilings of Radin [36].)

In the converse direction, a Delone set A gives rise to a partition 9~ of Rw into
polytopes {V(x): x G A} in which V(x) is the Voronoi cell (or Dirichlet domain)
of x G A, namely

V(x) := {y G R" : ||y - x| | g ||y - x' | | for all x' G A} .

If A has the locally finite atlas property, then the Voronoi cells V(x) will have
a finite number of distinct shapes (up to isometries), and thus 2Γ is a translation
tiling of Rw using a finite set of prototiles. In particular, a quasiregular set A gives
rise to a tiling with a finite set of prototiles.

2 More generally, each prototile is a simply connected compact set which is the closure of its
interior and has a boundary of measure zero.
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Meyer sets include many reasonable quasicrystal structures. However there are

Meyer sets that do not correspond to any quasicrystal structure in the sense that

they do not have a well-defined autocorrelation function or limiting X-ray diffraction

pattern, as defined in Hof [17]. Take a lattice L and a finite set F containing at least

two elements and with LΠF — 0. Then any A with L C / l C Z + F i s a Meyer set.

The local density of L is IdetZ^ 1, and that of L + F is | F | IdetZl"1. Clearly we

can choose A to have a density in AΓ\B(0,R) that oscillates between these two

limits as R —> oo. Thus A has no limiting density, and we can further arrange that

A has no limiting autocorrelation function in the sense of Hof [16,18]. It follows

that Meyer sets are more general than a concept of "quasicrystal" which requires a

nice X-ray diffraction pattern.

One may seek a narrower concept of "ideal quasicrystal" that consists of a

subclass of Meyer sets satisfying additional conditions. Three possibilities for such

additional conditions include restricting to Meyer sets that are self-dual in the sense

Aεε = A as discussed in [33], or restricting to Meyer sets that have an autocorrelation

function which is a countable sum of weighted delta-functions, or restricting to

Meyer sets which satisfy a set of local rules under translation. This last notion

appears to contain the "tiling dynamical systems" of Robinson [38] and Solomyak

[43], and is also closely related to viewpoints of Radin [35,37] using "shifts of

finite type."
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