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Abstract: The partition function Zy, for Hermitian-complex matrix models can be
expressed as an explicit integral over RY, where N is a positive integer. Such an
integral also occurs in connexion with random surfaces and models of two dimen-
sional quantum gravity. We show that Zy can be expressed as the product of two
partition functions, evaluated at translated arguments, for another model, giving an
explicit connexion between the two models. We also give an alternative computa-
tion of the partition function for the ¢*-model. The approach is an algebraic one
and holds for the functions regarded as formal power series in the appropriate ring.
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1. Introduction

In this section we describe briefly the background to matrix models and give the
statements of the two principal results, together with the supporting results that are
also of interest. Background material on graph embeddings is also provided, with
the notational apparatus for symmetric functions.

1.1. Background. The partition function is defined explicitly by

ZN(u25u3a"';ﬁ) = f e_ﬂtrace U(M)dMs (1)
N

where M € ¥}, the set of N x N Hermitian complex matrices, U(¢) = up&? +
w3 + - -, and the weights uy, us3,... are real.

In a seminal paper ’t Hooft [18] studied an approach to quantum chromodynam-
ics with N species of quarks that paved the way to a partial understanding of quark
confinement. He showed, by using physical arguments, that the partition function for
the theory was, in a particular limit, given by counting the number of ribbon graphs
(or fat graphs). These come about by supposing that quark-antiquark pairs are per-
manently attached to each other, so that the pair sweeps out a two-dimensional
surface in space-time. The two edges of this surface are the quark and antiquark,
and the surface itself is imagined to be the result of the complicated interaction of
the gluons. In some sense, the surface can be regarded as a meson, and so gives a
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physical picture as to why hadronic string theory should have some form of suc-
cess. In his model, interactions of mesons come about where these two-dimensional
surfaces interact. Suppose that £ such surfaces meet to form a k-point vertex with
coupling constant u;k!, then he showed that the resultant partition function was
given by simply summing all possible graphs weighted by the appropriate coupling
constants. Subsequently, it was shown by Bessis, Itzykson and Zuber [3] that the
generating series for this combinatorial model was given precisely by the N x N
Hermitian matrix model devised somewhat earlier by Wigner [33] and Dyson [9].

1.1.1. Principal Results. This paper gives a self-contained account of some new
and surprising relations between Zy found in different matrix models. The principal
results are Theorem A and Theorem E. The first result, Theorem A, relates the par-
tition function for the Penner model [28] to that of the ¢*-model. The factorisation
is stated conveniently in terms of

QFN(U, B) — f e—%trace M2+/3traceU(M)dM f e—%trace MZdM ,
N YN

where U() = 3,5, Ly/Z 5. It states that

~ 1 ~ 1
QOZN(U4,1):Q(’N (U,N-f— §> - Xy (U,N— 5) y

where Uy(¢) = 1z2&* and U(&) = log(1 — y/z&)~!. The proof is an algebraic and
combinatorial one. No analytic proof is available.

This result shows that the partition function for the ¢*-model is completely
determined by the partition function for the Penner model. Note that this result
determines %,y(Us, 1) for an arbitrary value of the coupling constant z. Although
we have found the ¢*-partition function only for even-dimensional matrices, it is
plausible that the result is generally true because Z,y5(Us, 1) has coefficients, as a
series in z, that are polynomial in N.

Theorem E moves the computation of the partition function for the ¢*-model
to a new context, namely the determination of the constant term in a multivariate
formal Laurent series.

1.1.2. Organisation of the Paper. Section 1 contains a brief account of background
material on matrix models and 2-d quantum gravity, embeddings, maps and the
generating series associated with them. Statements of the six main theorems and
their purpose are also given. A madp is a ribbon graph re-interpreted as a graph
proper embedding in a two-dimensional surface.

In Sect. 2, the theory of symmetric functions is used, without reference to maps,
to express the integral representation of Zy(U) as a character sum (9). A fac-
torisation is given for characters of irreducible representations of the symmetric
group at certain group elements, and this is then used to complete the factorisation
(Theorem A) of Zy(U). The factorisation for characters is also used to obtain
a comparable result for hypermaps in Sect. 5, which is related to the two-matrix
model.

The remaining sections make extensive use of maps, the terminology of which
is explained during the course of the paper.
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Section 3 contains a brief account of the combinatorial operations that are needed
for this study of maps.

e A connexion (Theorem B) between Zy(U) and the generating series for the
number of distinct maps embedded in a surface of prescribed genus, that is, the
genus series, is then established.

e A relationship (Theorem C) is obtained between the genus series, My, for maps
with vertices of degree four alone, and the genus series, M 4, for all maps.

e Combinatorial constructions are used for suppressing the occurrence of mono-
valent (of degree one) and bivalent (of degree two) vertices in embeddings of
graphs. This leads to the relationship (Theorem D) between M, (the ¢*-model,
vide inf.) and the genus series, My, for maps with no vertices of degrees one
or two (the Penner model, vide inf.). We refer to maps with no monovalent or
bivalent vertices as Feynman maps. This result provides us with another way of
getting new information about ¢*-theory from the types of matrix models.

Section 4 gives a formulation (Theorem E) for the genus series for vertex-regular
maps. A vertex-regular map is a map, all of whose vertices have the same degree,
so a k-regular map has only vertices of degree k. This then gives a reformulation
of the problem for determining Mj.

Section 5 extends the theory to 2-face-colourable maps, a class of maps that
may be associated with the 2-matrix model, to obtain a relationship (Theorem F)
between the genus series for a class of face 2-coloured maps (hypermaps). This
question is not explored further in this paper.

1.2. Matrix Models, the ¢*-Model and the Penner Model. Random surfaces occur
in the study of matter coupled to 2-dimensional gravity where variation in geometry
is an essential feature. The latter furnishes a toy model for string theory [4, 8, 12,
13]. It is well known that log Zy(U) has an interpretation as the sum over all two
dimensional surfaces of genus g. For Hermitian-complex models, the case that is
considered here, the surfaces are orientable and log Zy(U) corresponds to a combi-
natorial sum over all connected graphs G embedded in such surfaces. The graphs
can be regarded as Feynman graphs. A more general case is the real symmetric
matrix model in which the corresponding surfaces are locally orientable (the union
of the orientable and non-orientable cases). We will not consider these here.

If such a graph has v(G) vertices, e(G) edges (links) and f(G) faces then
2 —2g(G) = v(G) — e(G) + f(G), by the Euler—Poincaré Theorem. In physics ter-
minology, f(G) is the number of loops in a Feynman graph. However, the combi-
natorial usage is somewhat different, and this latter usage will be maintained in the
remainder of the paper. To make contact with string theory, the double scaling limit
is taken, which amounts to sending N to infinity at the same time as the “area”
of a surface is kept constant. The definition of area that is needed for this purpose
is a(G) = %ZU (dg(v) — 2), where dg(v) is the degree of the vertex v in G (the
number of edges in G incident with v) and the sum is over the vertex-set of G.

Under rescaling of the quadratic term %Mz in BUM) to %N M2, the weights

u; transform to ujN\/N/Bj_Z, for j = 3. The expansion of log Zy(U) in powers
of N~! then has the form [12]
'flj(G)

N a
log Zy(U) =t + N2(1'9)<—> G), where G)=[] —2———,
ogZu(U) =t + % g) wu(@. where wu(Q) = 11 Gy
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and where also ¢ has emerged as a collection of ignorable terms of the form ¢o +
ci log B, and m;(G) is the number of vertices of degree j in G. The sum of Feynman
graphs, generated by a suitable U, restricted to genus g and areas a, is a discrete
approximation to the sum over random surfaces of genus g and area g, and it is
believed that this should reduce to the continuum definition in the double scaling.
Since j = 3, vertices of degree one and two are excluded from the sum. The genus
is invariant under deletion of vertices of degree one and subdivision of edges (by
vertices), and the presence of such vertices obstructs passage to the limit. In this
terminology, the ¢*-model corresponds to the case in which only vertices of degree
four are permitted, while the Penner model corresponds to the case in which there
are no vertex restrictions, except for the suppression of vertices of degree one
and two.

Random matrix models are useful in the study of random surfaces [27] and
physical processes acting on them. Such surfaces occur in statistical mechanics
where the underlying geometry may change. The critical behaviour of statistical
mechanical models of unitary matrices as N — oo and /N — A, has been studied
by Periwal and Shevitz [29], and critical phenomena have been studied by Distler
and Vafa [7]. For details about these topics the reader is referred to Itzykson and
Drouffe [19], Mehta [26] and Ginsparg [10].

1.3. The Main Integral R(x,N,z). The objects of study of this paper are the se-
ries R4(x, y,z) and Ry5(x, y,z), and their relationship to graphs in surfaces. These
completely determine the partition function Zy(U) for Hermitian-complex random
matrix models, and also their relationship to graphs in surfaces. The series have
been studied extensively, and are defined in terms of the main integral by
Ry(x,y,2) =R(X,y,z) at X=(0,0,0,x,0,~--)} @)
Ris(x,»,2) =R(X,y,z) atx=(0,0,x,x,x,...)

where the main integral is

R(x,N,z) = o [ V2(eskzt BVEspeTdng) € Qx,N[IZ]] (3)

in which A = (A,...,4n), px = /1’1‘ 4+ -+ /1’1‘\,, k is a positive integer, y,z,x1,xp,...
are indeterminates, X = (x,x2,...), and V(1) is the Vandermonde determinant. The
ring of formal power series in the indeterminate z with coefficients that are poly-
nomials, with rational coefficients, in the indeterminates x and N is denoted by
Q[x,N]1[[z]]- R(x,N,z) is a power series in z with coefficients which are polyno-
mial in N and in x1,x2,..., so R(X,y,z) is defined by replacing formally N by
y. Let Ry(x,y,z) = R(X, y,z) at X = (x,x,...). It is well known that the integral
(1) can be transformed into one of the form (3). The usual observation [26,32]
is that the integrand is invariant under the adjoint action of the unitary group so,
by unitary diagonalisation, the integral is replaced by one over the spectrum, which
is real, and an integration over the unitary group, which is straightforward either
by constructing Haar measure or by indirect computation. Zy(U), Zn(U, ), and
R(x,N,z) are simply rewritings of essentially the same function. From this point
onwards it will be convenient to refer exclusively to R(x,N,z).

Of parallel importance to matrix models are embeddings of graphs on surfaces.
We therefore define these now, although they are not used until Sect. 3.
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1.4. Combinatorial Terminology. For consistency, throughout we have adopted
combinatorial terminology for graphs and graph embeddings.

1.4.1. Graphs. An edge is an unordered pair of vertices of a graph as an incidence
relation and also the line between the vertices in an embedding of the graph in the
surface (the distinction is always clear from the context); a loop is an edge with
end vertices identified; a multiple-edge is a collection of edges with initial vertices
identified and terminal vertices identified; a surface is a two dimensional manifold.
The number of edges incident with a vertex is called the degree of a vertex.

1.4.2. Embeddings. Let G be a connected (unlabelled) graph, with » edges, in
which loops and multiple edges are allowed. Each edge is assigned a direction
and a unique integer label between 1 and n. The set of origins et and termini
e~ of edges e in the edge-set E(G) = {1,...,n} of G is called the directed edge
set of G. Let X be a closed oriented surface without boundary. An embedding
of G in X is a continuous injective function ¢ % — X. Two embeddings ¢, &
are equivalent if there is an orientation preserving homeomorphism y: X — X such
that ye = ¢, Ye(e) = €'(e), and Ye(et) = €'(et), for all e € {1,...,n}; that is,
respects labelling and directing of edges. A map with associated graph G is an
embedding of G in ~. A map is a 2-cell embedding of a graph on a surface, in the
sense that deletion of the graph separates the surface into regions homeomorphic to
discs, called faces. The number of edges bounding a face is called the degree of
a face. The map is rooted by distinguishing a mutually incident vertex, edge and
face or, equivalently, by selecting an edge and assigning a direction to it. Rooting
is a combinatorial artifice for accounting for the automorphisms of the embedding.
Indeed, the number of inequivalent rootings divides twice the number of edges.

1.4.3. The Genus Series. Let M(X,y,z) = 3, mijsx) X3 -~ y{' y5* - - - 2*, where
m;j,x is the number of rooted maps with i; vertices of degree 1, i, vertices of degree
2,..., j1 faces of degree 1, j, faces of degree 2,..., and k edges, and i = (i1,...),
i=(Jj1,...). We say that x; marks vertices of degree j. From this information, the
genus of the map, and therefore the genus of the surface is derivable by the Euler—
Poincaré formula. Therefore, M(X,y,z) is called the genus series for rooted maps (in
orientable surfaces). Notice that monovalent and bivalent vertices are allowed in this
formulation. Let M (x, y,z) = M(X,y,z), where x = (x,x,...), and y = (3, ,...),
where A" = {1,2,...}. This lists the set of permissible vertex degrees.

It may appear more natural to regard I" as the genus series, where

I"(uz,x,y,z) = uzM(u_lx,u’ly, uz),

by the Euler-Poincaré formula, and where u is an indeterminate marking genus. In
practice, this is less convenient. However, it raises the point that, although it is clear
combinatorially that I'(#?,X,y,z) € Q[u,X,y][[z]], this is evident neither from the
integral representation (3), nor from the character representation (10) of the genus
series.

1.5. The Approach. Apart from the assertion of the existence of [pe” %"zdx, the
results are established by an algebraic argument in an appropriate ring of formal
power series that is clear from the context and will not be stated explicitly, to avoid
cluttering the discussion with unnecessary detail. On occasion it will be necessary to
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establish that a coefficient ring is a polynomial ring, invariably to permit extension
of a result from one over the integers to one in an indeterminate. Typically, the
polynomiality devolves from local finiteness of combinatorial structures. Extensive
use is made of the ring of symmetric functions, properties of the characters of ir-
reducible representations of the symmetric group, and combinatorial constructions.
The algebraic arguments rest on the combinatorial nature of these topics. Neverthe-
less, the formal power series can be examined for a domain of convergence, and
the corresponding function can then be treated by analysis.

The integral representations rest on the work of ’t Hooft [18] and Bessis, Itzyk-
son and Zuber [3], although they arise here in an entirely different way. The in-
terconnexion of combinatorial, algebraic and analytic material rests on the work
of Jackson [20,21], and Jackson and Visentin [22-24] on embeddings in ori-
entable surfaces. Such connexions have also been explored in a different context
by Di Francesco and Itzykson [6].

1.6. The Main Theorems. Below are the statements of the main results and the
supporting notation. The remainder of the paper is concerned with their proof.

1.6.1. Factorisation of the Partition Function for Matrix Models.

Theorem A.

1 1 11
R4(x,y,2) =Ry <§x,§(x+l),4zzy) - Ry (Ex,i(x—l)Azzy) , @

1 1
R4(1,2N,z) =Ry <N+ 5,N,422> - Ry ( — 5,]\7,422> . (5)

Equation (4) of Theorem A gives a strikingly simple relationship between R4(x, y,z)
and R (x,y,z), and therefore between two matrix models. In view of the close
relation with Zy(U), we call Eq. (5) of Theorem A a factorisation associated with
the partition function.

1.6.2. Combinatorial Maps. Let a; = ap = --- = 0 be integers which sum to k.
Then o = (ay,d,...) is called a partition of k, and we write o - k. The number of
positive parts of a is its length and is denoted by /(o). The number of parts of o that
are equal to j is denoted by m;(«). When this frequency information is available,
we write o = [1™M©® 2m@) 1 If ok k, let h* = k!/HjZIj’"f(“)mj(oc)! = k!g(a).
We denote Xy X,, - by x5, and k by |af. Let x¢ denote the character y? of the
irreducible ordinary representation of the symmetric group, indexed by the partition
0, evaluated at the conjugacy class for which the partition o is a natural index.
The size of this class is 4*. Let f¥ = x?lz,,], the degree of the ordinary irreducible

representation indexed by 6 - 2n. Let Hy(y) be the polynomial in y of degree |6|
defined by

1(0)
Hy(y) = Hl (y—Jj+1)%, (6)
=

where (y)®) = y(y +1)---(y + k — 1), the rising factorial function.
Theorem B gives the genus series for combinatorial maps. The series R(X,y,z)
defined in the theorem specialises to R 4-(x, y,z), and this accounts for the choice of
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notation for this series. It may be thought of as giving an algebraic representation
of the genus series, as opposed to the analytic one provided by (3) in conjunction
with (8). Recall that M(x,y,z) is the genus series for maps described earlier.

Theorem B. Let

z" 1
Rxy,2) =Y —o— Y Whbx, o - 7
Y= T g, i, R @
Then
0 1
M(x,y,z) =2z—logR | X,y,=z | , (®)
0z 2
R(x, y,z VX f 0 mH, R 9
( y ) Z '(2}1)");2:" egnx X[Z] 6(}’) ( )
0
R./V(xay9z) Z n|(2n)| Z f X[Z"]HG(X)HG(}}) (10)

Note that (3) agrees with (9) at the positive integers.

1.6.3. Maps and Vertex 4-Reqular Maps. The next theorem gives a simple re-
lationship between the genus series M, for all maps and the genus series My
for maps with vertices of degree four only. Such maps are called vertex 4-
regular. Although it is a direct consequence of Theorems A and B, it is stated
separately.

Theorem C. 1My(x,y,z) = My (3x,5(x + 1),22%y) + My (3x, 3(x — 1),22%y).

1.6.4. A Relationship between the ¢*- and Penner-Models. Theorem D gives
an explicit relation between the genus series for two important classes of maps.
Let M;5 be the genus series for maps with no vertices of degree one or two.

Theorem D. Let s = /1 — 4xyz2. Then
1+s x x+1 4y x x—1 4y
s (22 T Y s (2 T
2 { 12(2’ 2 ’s(1+s)>+ ‘2<2’ 2 s(l+s)

2xyz2 1+ x2
= Mu(x, y,z) — —2= < T 2 —|—2x2>.

s(1+s) s l+s

In view of the discussion of Sect. 1.2, the relation given in Theorem D implies a
connexion between a pair of matrix models and, equivalently, a connexion between
the ¢*-model (corresponding to M) and the Penner model (corresponding to Mj5),
at least at the combinatorial level of graphs embedded on surfaces, before the double
scaling limit has been taken. In this limit, it is the terms that are universal that are
of interest, since these are believed to convey physical information.

It is a consequence of Theorem B that

0 1 0 1
M;i5(X, y,2) = 2za log R35 <x, ¥, 52) , Mi(x,y,z)= 226—2 log R4 (x, b 52) .

(1)
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Thus, Theorem D can also be interpreted strictly as a result about the two integrals
R;5 and Ry, rather than a result about genus series.

1.6.5. A Reformulation for the ¢*-Model. Theorem E concerns vertex-regular maps.
A map is said to be vertex k-regular if every vertex has degree k, and regular if
it is vertex k-regular for some integer k, regardless of the value of £.

The set of nonnegative integers is denoted by IN, and X = (Xi,...,X;) and
u = (uy,...,u;) are vectors of indeterminates. For convenience, we set Xy = 1. For
a vector ¢ = (0y,...,0%), of positive integers, m;(c) is the number of occurrences
of jin . For « € N, let * = uf' -+ u*, and ! = oy 0!, and w = (uy, ..., ux).
Let

1 +Xk pz(u) 1 & X, Uy Us
X, D¢ '

1 ,
Yi(X,u) = ex + + X —
WXw) = T p{u4}4 1—&§§gk ‘%) 2
(12)
Let [X? - X2 ,1f(X,u) denote the constant term of f in Xj,..., X;—;, namely, the
subseries of f of terms independent of Xj,...,X;_1.

Theorem E. Let o € N* and let P,(N), a polynomial in N, be such that

u* v k X; -1
> RN ‘=[XP--~X£_1]Wk<xu)q<1—)Tl) .13)
a€ENF N 21 : i= i—

Let n be a positive integer or a half-integer. Then the genus series for 2n-regular
maps on k vertices and nk edges, with respect to faces (marked by y), is

lﬁm()wm”ru—z“wwll S Ponowy(y) . (14)
@y T E ) amlgs, Y

In fact, as will be seen, P,(N) and F, x(N) are polynomials in N, so P,(y) and
F, 1(y) are defined by formally replacing N by y.

Theorem E expresses the genus series for regular maps as the constant term in
a multivariate series. These maps are of interest since their genus series contains
the genus series 4kF, () for 4-regular maps and these, as has been observed, are
associated with the ¢*-model.

Although we have not succeeded in deriving an explicit expression for the genus
series itself, the form obtained is a remarkably elementary one which fully cap-
tures information about genus. We observe that the expression presented here does
not require further integration, and so in some sense represents a solution of the
¢*-model.

1.6.6. A Factorisation for Hypermaps. A p-face-colourable map is a map whose
faces may be assigned one of p colours such that no edge separates faces of the
same colour. The colour assigned to the root face is called the root colour. The
root face is the face on the (conventionally) left-hand side of the edge selected to
determine the root, given that one is looking in the direction of the orientation. For
a 2-face-coloured map, the other colour is the non-root colour, and interchange of
the root-face-colour corresponds to the reversal of the direction of the root edge. A
2-face-coloured map is also called a hypermap.
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Let My (x,y,z) be the genus series for maps with no vertex of degree not in
the subset o/ of the positive integers. Let Cy, «,(X, ¥1, 2, z) be the genus series
for rooted 2-face-coloured maps with no root-coloured faces of degree not in </,
no non-root-coloured faces of degree not in &/, and in which x, yj, y,,z mark,
respectively, the numbers of vertices, faces of the root colour, faces of the nonroot
colour, and edges.

Theorem F.
1 1 1 1 1 1 1
EM{Zr}(x’ »z)=Cuyn E(x + 1), 7Y 5% 2z ) +Cpyn E(x -1), 7Y EX,ZZ .

Theorem F therefore states a relationship between the 1-matrix model and other
matrix models.

2. Factorisation of the Integral

The purpose of this section is to prove the factorisation theorem entirely indepen-
dently of the idea of a surface. The proof is essentially an algebraic one. The reader
is referred to Macdonald [25] for the details and proofs of classical results about
symmetric functions, and to Serre [30]. If f is a formal power series in x, let [x"] f
denote the coeflicient of x” in f, whenever n is a non-negative integer.

For O+ n, let ¥ be the character of the ordinary irreducible representation of
the symmetric group S,, indexed by 0, and let x? denote the value of this function
at an arbitrary element in the conjugacy class indexed (naturally) by o - n. The
size of the conjugacy class indexed by o is denoted by A* and is equal to n!g(a),

where
1

Hjmjmj(a)mj(“)! ’

g(a) =
where a = (a1, a,...).

2.1. The Character Formulation of the Integral. The first step of the proof of
Theorem A is to transform the integral representation of R into a sum over characters
of irreducible representations of the symmetric group. Let p, denote py, po, ...,
where the power sum symmetric function py, for a nonnegative integer &, has been
defined in Sect. 1.3. By expanding exp(} ;> %\/Ekxk pr) in (3), R can be rewritten
in the form -

2k k .
R(x,N,z) = ng:O (2k)! agz:kh Au(N)xy (15)
1
Ay(N) = V3 (A)pae”1P2d.. (16)
\/_ HJ I] IRJI;/

The Schur function sy is given in terms of the power sums by

=Y apy, (17)
yn
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a result due to Frobenius. We therefore begin by considering the integral
1
var NIg

since, through the orthogonality »_,, , o4 xg =g (2)d,, g of the characters, and (16)
and (17), 4, has a simple expression in terms of #y, namely

Fy(N) = f V2(A)sge”2P2d ) (18)

Ay(N) =

- PRCO (19)

The integral for % can be determined as follows. Let ay = det[xfj Ivxns,
so the Vandermonde determinant in this notation is V(A1) = as, where 6 = (N — 1,
N —2,...,1,0). But sy = agis/as, a quotient of alternants, so V2(1)sg = apisas,
where N = I(0). The determinants can now be expanded to give

V= % Sgn(ap)HfN“”a(z) o(i)=p(0)

a,pESy i=1
The product can be reordered by setting j = a(7), so from (18),
1 1 WN+HO—j—pa () ) _1
sgn(op) | [14 - / e 2P2d)
/3 Ngn o pcey ( 'G)

Jo(N) =

1 =l 12
=— ¥ sgn(ap)H ( PPN+ =j=pe (D=2 gt
V21 R

N' a,pECy

on rearranging the order of the integration. Let ¢ = po—!. Since sgn is a character
of Sy, then sgn(¢) = sgn(ap), so

AN = N2 sgn(¢)n ( FR’W 18 ems dt) ORR P10

U,pE@N

po~1=¢
But, given ¢, the equation po~! = ¢ has a unique solution p for each o, so the
combinatorial sum in (20) over o, p is easily determined to be N!, independent of
¢. Let

1 L2
)= —= [te " at, 21
() 7 n{ @1

where j is a nonnegative integer. Then (2k) = B2 if ks a nonnegative integer,
and (k) = 0 if k is an odd or negative integer. Thus, from (20),

Fo(N) = g@ Sgn(¢)H(2N+9 —J = @()) =det([2N + 0; — i = j)Inxw) -
N Jj=1
(22)

The evaluation of £y(N) is completed by expanding and identifying this de-
terminant in terms of characters of Sy. Let ¢ be a nonnegative integer and n
a positive integer. Under the identification n =N — j and ¢ =0, +j we have
(q+2n—2k) = (2N +0; —i — (j + 2k)), the (i,j + 2k)" element of the matrix
whose determinant is to be determined. We seek to simplify the determinant by
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using a series of column operations. From (21), a recurrence equation for (g)
is (g+2) =(g+1)(q), so {(g+2n)/{q) is a polynomial of degree n in g, and
(g+1)g+2) --(g+n) is therefore a unique linear combination of (g + 2j)/{(g)
for 0 <j < |n/2]. The linear combination is obtained by observing that
[tq](z + t)q+n — [t2q+”](1 + t)2q+2n(1 _ (1 4 t)—Z)q+n SO

2n<q+n)=E(~1)k<q-llc-n)(2(q+n—k))‘ 23)

n k=0 2q+n

But from the recurrence equation for (g),

1 q' 29+ 2n-2k)!
2q +2n — 2k) =
R+ 2n =2 = 5% g (g rnbl D

so (23) becomes (2g)(2q+ 1)(2g+2)---(2q +n) = "¢, 1 (2q + 2n — 2k),
where ¢, x = (—1)F(2k)(,,)- But (g) and (g + 2n — 2k) are 0 when g is odd, so

Ln/2]

(g +1)g+2)---(g+n)= l;)cn,k(q+2n—2k>~ (24)

Now consider the matrix [(2N + 0; — i — j)]yxn- Its determinant is unchanged
by the addition of a multiple of column j+ 2k to column j, for £ =1,...,
L(N —j)/2]. The multiple that is selected is cy_js. Let 0;; = 0; — i+ j. Then,
from (22),

LN=)/2)
fg(N) = det z cN——j,k<0i,j + 2(N -]) - 2k> ,
NxN

k=0

having noted that cy_jo = 1. Then from (24),

Fo(N) = det([(0;/)(0;,; + DV yxn) = Hy(N) - det ([fw,)] ) , (25)
Lj* INxN
where Hyp(y) is the polynomial in y of degree |0| defined in (6).

The remaining determinant can be evaluated in terms of certain characters
of the symmetric group. Let w = (w,w,...), where wi,w,,... are indetermi-
nates. The complete symmetric functions hx(w) are defined by >, . A(w)tf =
[Tis,(1— wit)~!, and are extended multiplicatively by hy = hg, ho, - - -. The hg(w)
are algebraically independent. Similarly, the py are algebraically independent. But
ho(w) = 3,0, g() pa(w). Moreover, 21 = (2r)1g([27]). If f is a symmetric func-
tion, let [p,]f denote the coefficient of p, in f. Since the power sums afford a
basis of the ring of symmetric functions, this operation is well defined. Thus

det <[<Zi’7.> } ) = det([[py" "2 (w)] hois;00)])
L7t JNXN

= [p3(w)] (det[hg, ,(W)lio)x1(6)) »
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since the p;(w) are algebraically independent, and 6 | 2n. By the Jacobi-Trudi
theorem

so(w) = det([ho,—i+;(W)lioyx10)) » (26)

SO

(0:,5) _ L
det (I:'e—l’j—' - = WX[Z;:] . 27)

It follows from (25) that Hg(N)szn] = 2"n!fg(N)/HjY=_] lj!, so, from (19), A4(N)
is exhibited as an explicit polynomial in N, which may then be replaced throughout
by y to obtain

2]

A(y) = > Ho(»)1i gy -

(2k)! g2k

Combining this with (3) and (15) gives the explicit expression (9) of Theorem B
for R. In this representation of the series R, the integration has been fully carried
out and has been replaced by a sum of characters. Moreover, in this formulation the
original definition of R(x, V,z) extends to a natural definition of R(X, y,z). Properties
of characters of irreducible representations can be used to obtain further properties
of R, and this is done next.

2.2. Factorisation of Characters. Two preliminary results are needed. The first
result simplifies (9) for the particular instance R 4(x, y,z) that concerns us here. It
states that

> ko™ = fOHy(x) (28)

aFN

where f° 0 — X[012n] is the degree result of the ordinary irreducible representation
indexed by 8 - N. In view of (2), an immediate consequence of (28) is a simpli-
fication of the expression for R(X, y,z) given in (9) to obtain R -(x,y,z) in the
form (10) of Theorem B. It is this form of R 4(x, y,z) that will be used to obtain
its factorisation.

The second result is a factorisation of X[a(ab),,]. First we derive a bijection between
two combinatorial sets. Let k,n be positive integers. For o = (o),0,...) - kn we
define o = (oD, ..., a®) by

D {nj..onjm} ={itoy —i=—j mod k} < forj=1,....k,
2) a =, af)) for j=1,....k, (29)
3) ai(f):%(cxnj,l—11]7,~+j)+i——1fori=1,...,mj.

If mj = [({(a) —j+ 1)/k] for all j=1,...,k then « is said to be k-balanced.
Let %y, » be the set of all k-balanced partitions of 4n and let Il , be the set of all
sequences (01, ...,0%)) of partitions whose weights sum to n. Clearly, for o with
I(a) = gk + r, where q,r are integers and 0 < r < k, « is k-balanced if m; = --- =
m,=q+1 and m,;1 =--- =my; = q. It can be shown by a case analysis that the
mapping

Akigk,n —>Hk,n19i—->9/\ (30)
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is a bijection. We call 4,(0) the (ordered) k-factorisation of 0 € %y ,. Let 6 be
k-balanced and (01, ...,0%®)) be its k-factorisation. Then

k divides 0],
HIx) = B o - 1) H -k + 1), 31)

H(x)= T[] (—ki+k)*,
1<ig10)

The associated permutations of o’ are w,, ), € S defined b
o (o) Yy

Ty = ,
i, o0 Himy 12,1 o Nigmy
) (1 2 3 l(oc))
Ty = >
1 k+1 2k+1 -+ 2 k42 ---

where 7, and m, are given in (1) of (29).

With these preliminary results we may now give a factorisation of xf( abyr- Let 0
abn. The mapping Ei: A — Q[[¢]]: p. — 7 84,4 extended linearly to A, is a ring
homomorphism, since the p,’s are algebraically independent. Thus, from (17) and
(26) we have xfium =9 ([(ab)']) [P0 = (ab) n! ["°] || Eavho;—itj llioyxi0)-

r -1
But Egpph, = t"(ab)@(75)!  tap(r), where 7;(r) = 1 if » = 0 mod j and is 0 other-
wise. Since 0 + abn,

(32)

Ky = n! M, where M = [ea(®: — i+ ) /(%)

! .
Hl(a)xl(&)

Whether or not § is a-balanced, we can still define 6" = (61, ..., 0®) by setting
k = a in (29). Thus m, and #; are determined. The permutation p = 7j, acting on
the rows of this matrix and ¢ = my acting on its columns rearrange the matrix as a
direct sum while preserving the determinant, of course, up to sign. Thus xf(ab)n] =

sgn(op)n! |M; @ - - - ® M|, where
. . 0,iy—pUi j
M) &+ @ M = tan(0p) — (i) + () / (L0522

for 1 <i,j < 1(0), and M is mg x [(I(6) — s + 1)/a]. To see this, it is sufficient to
note that 745(0,i) — p(i) + o(j)) = 0 for any (i, j) not corresponding to an element
position in one of the blocks My,...,M, of the direct sum, since 6, — p(i) +
0(j) £0 mod a for such values of (i, ;).

If 0 is a-balanced, then M; is square so X[e(ab)"] = sgn(op)n! []o_;|M;|, where

©_;
ML = w0 i +8) [ (451

Since M has the same form as M, we can evaluate |M| by trying to find a b-
factorisation of 6¢) and then using its associated permutations to rearrange M;. If
ng & A, then from (31), 6 is not b-balanced. Then using the same argument
that was used to show that [M| = 0 when 6 is not a-balanced, we have |M;| =0.
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If ny € A, then M| = ng! ™! X[b,,s] from (32). We have therefore proved that, for
0+ abn,

0 if 6 is not a-balanced ,

o) . (33)

0 —
Xigaby) sgn(mymy) n! H sy Otherwise

where 4,(0) = (61,...,0@) with associated permutations 7y, 7, and n, = |6|/b
for s = 1,...,a, with the convention that xf);f,z] =0if n, ¢ N

2.3. The Factorisation of R4(x, y,z). We can now complete the proof of Theorem A.
From (9)
2n

R4(x,y,z) Z z

o (2n)! 4nn' Z oy tan Ho(x)

Let (0(D,0@)) be the 2-factorisation of 0. From (33), the second summation may
be restricted to 2-balanced @ for which |6(V| and |6®| are even, for otherwise
Ay = 0. With |00] = 2k and [6@)| = 2n — 2k, (33) gives

oD )

0 _ / 6 o
X[4"] - SgIl(TCg TEG)( )X[Zk] [zn—k] 5 X[zln] Sgn(nﬂ 77:9) <2k) f

9(2)

f

Moreover, from (31), Hléigl(e)(x —i+ 10 = Hze(l)(x)Hzg(z)(x —1). It is known
from (30) that 45: %, — Il , is a bijection, so the above summation for R4(x, y,z)
can now be transformed into

2y A (n\ (2n 9<1) 9(2) POV ) 9(1) 5
R - o ~-1).
,,Zgzo(zn)mnn! kzzjo(k>(2k> G(UZH Kok Xpn-n /S Ny = =1)
0 -2n—2k
Thus
R4(x,y,2) = G(x,»,2) G(x — 1, ,2) , (34)
where
2101 3,310

Gx,pz)= Y fPH(x).
|6’|506m0d2

3 0D o e,

To identify G(x, y,z), it suffices to note that Hzg (x) can be rewritten in the partic-
ular form Hy(x) = ], <;< 02" (GGx — i + DO (L(x + 1) —i+ 1) so, from (6)
and (10), G(x, y,z) = Ry(3x, 3(x + 1),4z%y). Thus

_ 11 ) 1 1,
Ry(x,y,2) =Ry (zx,z(x+1),4z y) Ry <2(x 1), 2)c,4z y)
from (34). But from (10) Ry-(3(x — 1), 1x,422y) = Ry (3x, 3(x — 1),4z%y) and (4)

of Theorem A now follows.
But from (7) and (28),

2n X"

R4(-xa y’Z) Z

nz0(2n)! 4n ! n! g Z X[4"]X[22n]H0(J’) (35)
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s0 Ra(x,y,2) = Ry (3(y + 1), 33,42%x) - Ry(53(y — 1), 3,42%x), on applying the
above argument. But from (35), R4(x, y,z) = R4(1, y,Vz2x). Thus replacing z%x by
ZZ we have R4(1,y,z) = RJV(%(y + 1)» %)@422) ° R/V(%(y - 1), %)&422), and (5) of
Theorem A follows with y = 2N.

2.4. Permutations and R 4 (x,y,z). We now rephrase R(X, y,z) defined in (9) by
expressing the character sum as a consequence of operations in the group algebra
of the symmetric group. This involves products of permutations, and we then seek
a combinatorial configuration that can be encoded as a permutation, and for which
the appropriate products of permutations have natural combinatorial interpretations.
We begin with a generalisation of R(X,N,z) to R(X,y,z), where y = (y1,)2,...)
are indeterminates, that is suggested indirectly by (9). In view of (9) and (28),
Eq. (7) is a natural definition for R(X,y,z). This is symmetric in X and y, a fact
that will be given a combinatorial explanation. Moreover, R(X, y,z) is recoverable
from R(X,y,z) by setting y; =y, =--- = ).

For o - n, let ¥, be the conjugacy class of all permutations in S, with m(a)
cycles of length 1, my(a) cycles of length 2,... in their cycle decomposition. Let
K, = de%g, ) Ka is in the centre of (EG,,, the group algebra of S,. The set
of all K, with at n is a basis of the centre, so [K,]K,Kp, the coefficient of K,
in K.Kp is well defined. Since €S, is semi-simple, it has a basis {F,:ot n}

of orthogonal idempotents defined by F, = {—ng,_nngg, and, by orthogonality,
K, = %h"‘ze,_nxgl?g. Thus [K,]K.Kz = %h“hﬁzg,_nxgxzxg, so, from (7),

n

z h¢
R(x,y,2) = nZgjO ;v,;ﬁxvmm[K(z»]KvK[zn] :
But [K,]K,Kj is identified combinatorially as the number of ways of expressing an
arbitrary element ¢ € 4, as ¢ = ab with (a,b) € €, x €. Thus

1, 1
€650 6)| = IR S i (36)
whence ' O n

n

z
R(x’yaz) = Z _| Z Xv YV |(gv8n m(g¢| P (37)
n=0 1"y gkon
where ¢, is an arbitrary, but fixed, element of %[2#. This expresses R(X,y,z) as a
combinatorial sum, which will be used later.

3. The 4- and Penner-Models

The remaining part of this paper is concerned with the connexion between Zy(U)
or Zn(U,B) and the genus series for maps. The argument is independent of the
integral representation of the genus series. Extensive use is made of enumerative
properties of combinatorial structures. The main aspects that are used here are given
below. The reader is referred to [11] for further details.

3.1. Enumerative Information. Let @Q[[x]] be the ring of formal power series in
the indeterminate x with coefficients in @. Let @Q[[x]]; be the set of all such se-
ries with nonzero constant term, and let Q[[x]]o be those with constant term O.



Factorisations for Partition Functions of Random Hermitian Matrix Models 41

Let & be a set of combinatorial configurations, and let u be a generic subob-
ject of such configurations. A weight function is a function o: & — {0,1,2,...}
such that a(s) is the number of occurrences of the generic element u in s € &. A
combinatorial problem is (%,c). Let O = (1,x,x%,...), and E = (1,x/1!,x%/2!,...).
These are bases of Q[[x]]. The ordinary and exponential generating series are, re-
spectively, [(&,0)]o = > ;cex”®, and [(£,0)]g = Y ;e x°@/a(s)!, so the enu-
merative information, |{s € &: a(s) = n}|, is recovered by taking [x"][(¥,0)]o, or
["/n!] [(Z, 0]k

3.1.1. Combinatorial Operations on Sets

1) Weight-Preserving Bijections: Let (7 ,1) be a combinatorial problem. If Q: % =
J is a bijection such that ¢ = 10, then Q is said to be weight-preserving. Since,
in this case [(¥,0)]o =[(7,1)]o, and [(L,0)]g = [(J,7)]E, we seek weight-
preserving bijections whose domains and codomains are disjoint unions and products
of sets. Although there is no effective algorithm for determining such bijections, the
deletion of a canonical subconfiguration often leads to a decomposition, and this is
the case for maps.

2) Products: Let (,0), (8,5) and (& X %B,w) be combinatorial problems such
that w((a, b)) = a(a) + P(b), and we write & = o ® f. Then [(f x B,0 D B)lo =
(< @)lo - [(%, B)lo-

Let % be an operation on sets such that [(o/ %%, a® f)]lg = [(,2)]E - [(B, B)]E-
This operation may be realised as follows. Let a € &/, where a has the numbers
1,...,a(a) assigned to its subobjects u. We say that a is a labelled configuration,
and <7 is a set of labelled configurations. Let # be a set of labelled configurations.
Then </ % 4 is a set of labelled configurations obtained from (a,b) € &/ x # by
uniquely relabelling the subobjects of (a,b) with labels 1,...,a(a)+ f(b), in all
possible ways.

Let [u"]¥ denote the set of all elements in & with n subobjects when the
configurations are not labelled. Let [./,] & denote the set of all elements in &
with n subobjects when the configurations are labelled.

If of Sl x -+ x o, or o/ 5oy k- % o, for a set of combinatorial con-
figurations ./, then .o7),...,.o/, are called the sets of primes of this combinatorial
factorisation. Of course, .o/ may admit more that one prime factorisation.

3) Composition of structures: For composition with x, let Op =(1,...,k) and
0 ={¢e0,,0,...}.Let O 0 B =R x --- x B, (k terms), where there is no b € B
such that f(b) =0, and O o B = J;~,(Ur 0 %). Similarly, for composition with
*, let A% ={1,2,...,k}, for k =2 1, and % = {e, N, N2,...}. Let N/}, O =
of K -k o [Sy, (k terms), under the natural action of &, on the component posi-
tions, where there is no a € &/ such that a(a) =0. Let # © o = J; 5 (N7 © ).

Let 4 be the set of all labelled graphs and " the set of all connected la-
belled graphs. Then ¥ = % ® A", since a graph is uniquely decomposable into its
connected components as primes. If v(G) is the number of vertices in G € ¥, and
G(x) = [(%,v)]g and K(x) = [(#,v)]g, then

G(x) =expK(x), and K(x)=logG(x). (38)
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4) The Derivative of a Set: Let the u-derivative (ud/0n)¥ of & denote the set
of all configurations obtained from & by distinguishing a unique subobject in
each s € & in every possible way. Then [(w0<%/0w,0)]g = x0[(¥,0)]o/0x, and
[(w0&/ou, 0)]g = x0[(¥,0)]/0x. Rooting a map involves distinguishing a subob-
ject, in this case an edge.

Let & be the set of all labelled configurations with generic subobject u. Then
0% /0u is the set of all elements obtained by deleting a canonical subobject from
each element of . For example, ud.%/ou —{u} % (0.%/du), since the object which
is deleted is then reintroduced, distinguished, and all subobjects are relabelled in all
possible ways. By adjusting {u} we can therefore distinguish a subobject in more
than one way.

5) Superposition: Let o/, % be sets of combinatorial configurations on the same set
of labelled subobjects. For a € & and b € 4, let w(a),w(b) be the numbers of
subobjects in a and b, respectively. When w(a) = w(b), then ao b denotes the
configuration obtained from a and b by identifying the two subobjects labelled i,
one from each, for i = 1,...,w(a); otherwise, a ¢ b is undefined. This operation is
called superposition of a and b. Let o/ o B = {a o b:(a,b) € o x B,w(a) = w(b)}.
Then [(of © B,w)]g = [(, )] © [(#B,w)]g, where (Zigo ax'[il) o (Zi;O bix'/il)
=0 a;bix'/i!), the Hadamard product of the two series in the basis E of
Q[[x]-

For example, let & be the set of all 1-matchings, labelled graphs whose vertices
have degree one, only. Necessarily, such graphs have an even number of vertices.
Since # 5% ® ({1,2}), the generating series for # is exp(3x?). Then

FoFISUOE, (39)

where & is the set of all cycles of even length with edges of alternating colours.
This is because edges of one colour come from the left % of the superposition and
edges of the other colour come from the right #. Since these cycles are bicoloured,
they are in 1-1 correspondence with even length cycles in permutations.

6) The Laplace Transform: The final operation concerns the attachment of labels
to the subobjects of an unlabelled configuration. Let s € &, and suppose that the
subobjects, u, of s can be canonically labelled from 1 to n. Let f be a bijection on
1,...,n. Let £[¥] denote the set of all such (s, /). Then & is said to be w-uniform
if (s, f) and (s, f') are distinguishable if and only if they are not equal. If & is
u-uniform then [(%, 0)]o = [(Z[¥], 0)]e. This operation corresponds to the formal
Laplace transform.

3.1.2. The Inverse Problem and Refinement

1) The Inverse Problem: For a given series C(x), we seek a set ¥, a weight
function y and a choice O,E of basis for Q[[x]], such that [(%,y)]lo = C(x) or
[(%,7y)]e = C(x) by constructing ¥ from atomic sets under the above operations and
the action of an appropriate weight-preserving bijection Q. If C(x) is constructed
as the solution of a functional equation, or if it is a finitary combination of sums,
products and compositions then the above formalism gives some information about
an elementwise action for €2, and a configuration and a weight function. Since the
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mapping from sets to generating series is not injective, the resulting configuration
is not unique.

2) Refinement of the Weight Function: Let wy,w,,...: ¥ — A and let w1 ® wy ®
ois e (1(8), wa(s), .. ). For By, By,... € {O,E}, let [({s},01 ® 0y ® - - -)]B,.B,,..
=tity -, where ; =x;"") if B, = 0, and 1; = x")/(w;(s))! with w;(s) being
the number of subobjects of s if B; = E. If the indeterminates are not specified,
it is to be assumed that one is assigned to each weight function, and that they
are independent. We define the operation ® on [(o/,w:)]s, and [(/,w;)]s, by
[(,01)]B, ® [(A,02)]B, = [(#, w1 ® w2)]B,,B,- This therefore corresponds to a
refinement of the weight for o/ from w; or w;, to w; and w,, simultane-
ously, and is a tensor product of generating series for a fixed set, with respect
to different weight functions. The product lemma can be generalised as fol-
lows. Let oy, 000/ — N, f1,2: B — N, 01 = 01 ® B1, 0 = 0y D B. Then [(F x
B, 01 @ 02)]B,,B, = [(H, 1 ® %2)],,B,[(-, 1 ® B2)]B,,B,» Where w; @ Wy =0 @
oy @ 1 ® Pr. We may suppress the bases, on the understanding that the same or-
dered list is attached to each quantity, and that for O the product is x and for E the
product is . Letting o = o) ® ay and f = f; ® 5, we have [(F x B,0Q f)] =
[(,0)] (%, B)). The terms ordinary and exponential are confined to the univariate
series of these types in the tensor product.

3) Reduction to the Univariate Case: Let wy,w,,... be weight functions for o,
and let @ = w; + wy +---. A bijection that preserves « may also preserve w; ®
w; ® ---. For example, if the number of vertices in a map is preserved under a
bijection, then the number of vertices of each degree is usually preserved also. There
is a natural isomorphism Q[[x1,...,x,]] = @Q[[x1,...,xj—1,Xj11,...,%,]] [[x;]1]. This
permits attention to be focussed upon a particular indeterminate and the generating
series is then univariate, and so ordinary or exponential, the coefficient ring having
been changed under this isomorphism. It is particularly useful for the genus series,
with constructions affecting edges, where it is clear that vertex degrees and face
degrees are preserved.

3.1.3. Two Examples. A planted plane tree is a tree, embedded in the plane, with
a monovalent root vertex. Let 4 be the set of all planted plane trees. On deletion
of the (unique) vertex adjacent to the root of t € 7, ¢ decomposes into a linearly
ordered set of subtrees of ¢, each in .7, induced by the orientation of the surface.
Thus, 7 5{s} x (0 0 T), where {s} is a generic nonroot vertex. Similarly, let =/
be the set of all labelled rooted trees. Then &/ ={u} % (% ® /), where u is the
generic vertex.

As an example of the combinatorial operations and the checking of weight
preservation we prove Lagrange’s theorem and MacMahon’s theorem. The former
is used here in specialisation of the genus series. Let A, = {1,...,n}, where n is
a positive integer.

1) Lagrange’s Theorem: Lagrange’s implicit function theorem (see, for exam-
ple, [11]), adapted to the ring of formal power series, states that if K is a ring
with unity and ¢ € K[[A]];, then there exists a unique series w € K][[{]]o such
that

w = tp(w) (40)
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and, for F' € KJ[[]],
[("IF(w) = %[l”‘I]F'(/l)W(/{), where n > 0, (41)

. F(w)
ot = Togwy

This can be proved combinatorially by a chain of bijections mapping a rooted
labelled tree into a function. Each bijection can be checked by supplying the
elementwise actions of natural combinatorial mappings, each of which is classical.
We regard the generating series as a univariate exponential generating series in the
indeterminate x marking nonroot vertices of a tree or elements of the domain of
the corresponding function, and use the tensor product construction to record degree
sequence and pre-image size sequence, having checked weight preservation.

Let 2 be the set of all permutations on .4, for all # = 0, and let ¥ C £ be
the set of those with exactly one cycle. Let u denote the subobject consisting of a
generic vertex. Let o/ denote the set of rooted labelled trees, with only the non-root
vertices labelled. Thus o/ = | J, %, where 7 is the set of all rooted trees in which
only the nonroot vertices are labelled, and with root degree k. The label 0 is assigned
to the root of trees in .«7;. Direct all edges of such trees towards the root vertex.

Let ¢ € o4 have n nonroot vertices. Delete the edges of the unique path 7 in ¢
from 0 to n. Under this operation, the in-degree of 0 is k£ — 1, the in-degree of each
interior vertex of 7 is decreased by 1, and the in-degrees of n and the remaining
vertices are unchanged. On deleting , ¢ decor}\lposes into an ordered forest of trees
in o, so [M] e [Nno1]{Ho1 X (P O o) % o}, where o is the set of all
rooted labelled trees. Let ¢ — (a,s,b) under this bijection. The label 0 is assigned
to the root of a, and the label » is assigned to the root of 4. From the above
observations, the in-degree sequence is not preserved by this bijection. Indeed, to
preserve this sequence it is necessary to add one to each of the root-degrees of
trees in 2 © . To doAthis, note that Ey the cycle decomposition for permutations,
POADUOEC)O AU (% O o), since ® is a composition. The elements

of UO(FO o ) are labelled graphs whose components are unicursal (connected
graphs with one cycle). In each component, direct all tree edges towards the cycle,
and direct the cycle. Let s — s’ under this bijection. Then the root vertices of trees
in s are the interior vertices of m, and are also the vertices on cycles in s’. The
in-degrees of such vertices in s’ are one greater than the in-degrees of the vertices
on cycles in s’. The in-degrees of the remaining vertices in s’ are equal to the
in-degrees of the remaining vertices in s. It follows that

where ¢, = [A"]F(A)¢" (1) . 42)

[Nl b= [ No1) (s K AU O (6 © )} Kk oA)

is in-degree preserving. But % © (¥ ¥ ) is the set of all functional digraphs,
since an edge directed from vertex i to vertex j specifies the action i+ j
of a function. Let s denote the generic subobject of the domain of such a

function. Then % © (% © &)U, 5045, Whence [A,] W, where, #; =

{fe{0,1,...,n}%1:|f~10)| =k —1}. Let ¢+ f under this bijection. Then

the in-degree sequence of ¢ is equal to the pre-image size sequence of f. But

/V,,“V"“‘l[/t/,‘,_l]{(ﬂ,, © U}, since each such function is uniquely encoded by an
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ordered partition of .#,_; with n blocks, the j® block being the pre-image of j,
for j = 1,...,n. It follows that %, [Ap_1]{Ni—1 * (O, ® %)}. We conclude that

[Nn) b= [Np—11{Ni—1 * (G, ® U)}. Moreover, if ¢ — g under this bijection, then
the in-degree sequence of ¢ is the block size sequence of the partition ¢, so the bi-
jection is weight-preserving. Now A;_;—d.4;/0s, so, summing over k

[JV](%@&%)—J:JV 1]{—%*(@ @%)} (43)

If ¢t — (0a/0s,b) under this bijection, then the size of a is the root-degree of ¢. This
bijection therefore preserves the degree of the root and the in-degree sequence of ¢.

Let a; be an indeterminate marking nonroot vertices in ¢ with in-degree j and
pre-images under f of size j, for j = 0. Let ¢(x) = ap + ajx + apx?/2! + - - -. Let
b; be an indeterminate marking the root degree in ¢ with in—degree j and the size
j of the preimage of 0 in f. Let F(x) = b;x + byx?/2! + ---. Then, from (43)
[x”]F (T) = l[x" F!(x)¢"(x), where T(x) is the exponentlal generatmg series for
o with respect to nonroot vertices. Finally, ./ —>{u} *(UO o), s0T (x) satisfies
the functional equation T = x¢(T'). In other notation, this establishes (41) and (40).
Finally, (42) can be proved immediately from (41) by differentiating F(w) with
respect to t.

2) MacMahon’s Master Theorem: Let A be an n X n matrix, k,...,k. be nonneg-
ative integers, k = (k1,...,k,), and X = diag(x,...,x,). Then

X[ T(aixn + - + aixn)’ = [x¥] det(I — XA) ™.
i=1

Let f € A", and let w(f) =[], a; ru) Let %, be the set of all bijections
in A%, We count %, with respect to w by encoding the action of an element
of %, in two different ways. First, %,~ [A4;]2. If f+— n under this bijection,
let o(n) =[], Then this bijection is c-preserving. Let € denote the
cyclic group on k symbols. Now {[A;] (O o #)}/€; is the set of all circular
strings on .#; with exactly one occurrence of each of the symbols in A;. If
s =iyiy...7 is in this set, let a(s) = a;,1,a,i; - .- a;,;,- By cycle decomposition
[N ] PSS [N (U o {Uz 1 {51 (G 0 JV)}/(ik}) If 7+ s then w(n) = a(s), so
the bijection is weight-preserving. Second, %,~ [A;](O, o A;), since 0, o A} is
an ordered set of nonempty blocks, encoding the pre-images of a surjection, and
[#7] ensures that the function is injective. This is also weight-preserving. Thus
[A31(Oy 0 Np) S [N(U © {Ukz {[A4%] (Gx 0 A)}/€4}) on equating these. Thus

xI1[T:, " 14X = [x]exp Zk>1 }ctrace (Ak ) = [x]det(I — XA)~!, by a result of
Jacobi. The result follows from this, under the transformation g;; — a; ij“k], for
i,j=1,...,n, where Jy, k; is the k; x k; matrix of ones.

3.2. Rotation Systems. Our purpose now is to obtain the relationship between
R(x,y,z), as a combinatorial sum, and the genus series for rooted maps. The notation
that assists with this is given in Sect. 1.4. Each vertex v of G is represented as a
subset of the directed edge set, so e™ is in the subset if and only if v is the origin
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of e, and e~ is in the subset if and only if v is the terminus of e. These subsets
partition the directed edge set. For each vertex v of G, we specify a cyclic list of
the directed edges encountered in traversing the boundary of a small disc, centred
at v, in the sense specified by the orientation of X. We shall fix this sense to
be anticlockwise. This partition of the directed edge set into cyclic lists is called
a rotation system, and it represents a permutation on the set {1*,17,...,n",n"}
of edge-ends. By a generalisation of a theorem ascribed to Schoenfliess [17] it is
known that, for every embedding of G in X, G is contained in the 1-skeleton of a
triangulation of this surface.

Every rotation system for a connected graph G induces, up to equivalence of em-
beddings, a unique embedding of G in X. However, not every permutation v € S,,
corresponds to a rotation system for an embedding of a graph with n edges. If v and
&, do not generate S,, then the associated graph G is not connected, and we say
that the rotation system is not transitive. Thus every embedding of G in X induces
a unique transitive rotation system. This one-to-one correspondence, called the em-
bedding theorem, was given originally in dual form by Heffter [16] and has been
generalised to graphs with loops and multiple edges by Gross and Alpert [14]. If v
is the rotation system of a graph G on n edges, and ¢, = (1717)(2*27).--(n*n™)
is the fixed permutation describing, in its cycles, the edges of G, then the cycles of
ve, list the directed edges encountered in traversing the boundary of the faces of the
embedding in a direction consistent with the orientation of X. It follows from (37),
with edges as labelled subobjects, that R(x,y,z) is the generating series for rotation
systems, with x; marking cycles of length i in v and y; marking cycles of length j
in ve,. Each permutation in S,, is a rotation system for an unordered collection of
graph embeddings, and the cycles of ve, describe the faces of the embeddings of
the unordered collection.

Let £ be the set of all rotation systems and let  be the subset of these which
are transitive. Then

UT SR . (44)

Let .# be the set of all rooted maps. Then .# is e-uniform, where e denotes the
generic edge as a subobject, since there is a unique root-preserving automorphism of
the map. Now .# o {+,—} is the set of all rooted maps with a “direction,” specified
by + or —, assigned to each edge, independent of the rooting. Then L[.# o {+,—}]
is the set of all edge labelled rooted maps with directed edges.

On the other hand, rooting a map corresponds to picking one of the edge-end
symbols. Since J is the set of all transitive rotation systems, the generic subob-
jects s are canonically paired edge-end symbols, as specified by &,. Thus {4, —}%
aai: is the set of all configurations obtained by distinguishing an edge-end, so by
the embedding theorem,

LM o {+,-}>{+,—} * 0T Jos . (45)

Since the cycle-types of v and ve, are preserved, then from (44), R(X,y,z) =
exp[(J,w)]g, where w(t) is the number of subobjects s in ¢t € J, marked by
z. Then from (45), [(L[M o {+,—}],)]e = 2z0[(7 , w)]g/0z, where A(m) is the
number of edges in m € . But M(x,y,z) = [(#, A)]o, the genus series for rooted
maps. Then, using the Laplace transform,

226% log R(X,Y,z) = [(M o {+, -}, w)]o = M(X,y,22),



Factorisations for Partition Functions of Random Hermitian Matrix Models 47

since (45) also preserves vertex- and face-degree, so (8) of Theorem B follows
with z — %Z.

The symmetry of R(x, Y, z), which has been observed earlier, appears in M(X,y,z)
as a consequence of duality.

With the aid of (8), the relationship of Theorem A can be translated into a
relationship between species of maps. Then from (8), My(x, y,z) = 2z£ log R4(x, v,
%z), and M (x,y,z) = 220—‘32 log R 4(x, y, %z). Now z0/0z = 2(22%y)3/0(2z%y), so
Theorem C follows from Theorem A.

Theorem C expresses the number of vertex 4-regular maps of given genus ¢ in
terms of maps (with no conditions on vertex degree) on surfaces of genus g and
lower.

The genus series enables us, at least in principle, to investigate classes of maps
which can be defined by restrictions applied to vertex degrees and face degrees.
Equations (3) and (7) give two ways of determining the genus series, one through
integration, and the other through the determination of character sums.

3.3. A Combinatorial Construction for Feynman Maps. It has been observed in
Sect. 1.2 that it is essential in applications to physics to consider maps with no
vertices of degree one or two. A smooth map is a map with no monovalent ver-
tices. A homeomorphically irreducible map is a map with no bivalent vertices. Let
M;(x, y,2), M5(x, y,z), Mij;5(x, y,z), be the genus series for smooth maps, homeo-
morphically irreducible maps, and homeomorphically irreducible smooth maps, re-
spectively. The relationship given in Theorem C cannot hold in such a simple form
for smooth maps, but it is expected that a relationship of some sort remains. It
is stated in Theorem D, and is now derived combinatorially. We do this in two
steps, first by accounting for monovalent vertices and then accounting for bivalent
vertices.

3.3.1. Suppression of Monovalent Vertices. Let m be a rooted map. By recursively
deleting monovalent vertices of m, the latter is associated with a unique rooted
smooth map s. It remains to be shown that m can be reconstructed from s by the
attachment of appropriate trees.

A corner of a map is a mutually incident vertex, pair of edges, and face. Now
assume that m has at least two faces, so the corresponding smooth map s has at
least two corners. Then m is reconstructed from s by associating a planted plane tree
with each corner. The corners are partitioned into ordered pairs as follows. Orient
each face of s in a sense consistent with the orientation of the surface. Assign a
direction arbitrarily to each edge. Each edge separates a pair of faces, which can
be designated L. and R such that L is on the left side of the edge when looking
in the direction of the edge. On the L side of an edge, the symbols TL and HL
are attached at different ends so that the direction from T to H is consistent with
the orientation of the face containing the L. Symbols TR and HR are similarly
attached to the R side of the same edge. Then each edge defines an ordered pair
(HR,HL). The set of all such ordered pairs is a covering of the corners of s.

Now consider an (HR, HL) pair corresponding to a nonroot edge. These corre-
spond to an ordered pair of planted plane trees (¢,%,). These are the trees that were
removed under recursive deletion of monovalent vertices. A planted plane tree is
attached to a corner by deleting the root vertex and incident edge of the tree, and
by identifying the vertex of the tree, that was adjacent to the root, with the vertex
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of the corner so that the edges of the corner do not separate edges of the tree. This
can be done in a unique way. The pair (#;,#;) can be encoded as a single planted
plane tree ¢ as follows. Identify the root vertex of #, with the vertex adjacent to the
root 71 of #;, and the root of #; with the vertex adjacent to the root », of #,. Identify
the root edges of #; and #,, and direct it from #, to #,. Attach an edge f from a new
vertex 7 to 7 so that, in counterclockwise circulation of r,, starting from the edge
f, the edge {r1,r,} is encountered next, and then the edges of #. Root the tree at r
to obtain the planted plane tree £. The edge {ri,r,} of ¢ is the edge of s associated
with a (HR,HL) pair. Let € be the generic nonroot edge as a subobject, and let 2
denote the set of all planted plane trees on at least one nonroot edge (therefore at
least two nonroot vertices). Then the above action constructs Myiy o 2. Now carry
out the same construction for the root edge of s but, in addition, distinguish an edge
of the tree ¢, and direct it away from the root vertex. This is possible since every
edge of a tree is on a path from a monovalent vertex to the root. This is designated
as the root edge of the map m. This action constructs €é0.2/0é. It follows that

A

M- 95 (;—‘Z,@) X (M, 0 2).

If g € 2, the weight of g is w(q) = (i — 2,k), where q has i nonroot vertices
and k& nonroot edges. Then this bijection is weight preserving. Let 7'(x,z) be the
generating series for the set J of planted plane trees with respect to nonroot ver-

tices and nonroot edges. Let s denote the generic nonroot vertex. Then 7 ={s} x

(Oo0J). Then T =x/(1 —zT). Let Q(x,z) be the generating series for 2 with
respect to w. Let ¢ be the tree in J with one edge. Then 257 — {t}, so

QO = (T —x)/x* and Q satisfies the functional equation
0 =z(1 +xQ)*.

The generating series for .4 — 2 is M(x, y,z) — x*yQ, since trees have only one
face and two nonroot vertices have not been counted. The genus series for smooth
maps with respect to nonroot vertices is z~'Mj(x, y,z). Thus,
00 Mi(x%,0)
0z 0
so (vz=10z/0v)M;(x, y,z) + x> yz = M (x, y,v) follows on replacing z by v and Q

by z, and, under these substitutions, the above functional equation for Q becomes
v =z/(1 + xz)?. The explicit expression for Mi(x, y,z) in terms of M (x, y,z) is

1 —xz z 2
M;i(x, y,z) = 1o (MJV (x,y, m) —X yz) . (46)

A form of this construction has been observed earlier by Bender and Canfield [2].

:M(xayﬁz)—XZJ’Q,

3.3.2. Suppression of Bivalent Vertices. Every smooth map with the exception of a
rooted cycle can be constructed uniquely from a Feynman map by edge subdivision
(by vertices) as follows. Subdivide each nonroot edge. Let & denote the set of all
subdivisions of an edge. Then the corresponding set of maps under edge subdivision
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is ;5 o &. Subdivide the root edge and then distinguish an edge of the subdivi-
sion. This corresponds to €0&/0€. But a cycle can be constructed uniquely by edge
subdivision of a loop /, and the resulting map has a unique rooting. Thus

((—eag(g’> X(ﬂiioéa)lﬂi —{I}Oéa.

This is weight-preserving. The subdivision is accomplished by the substitution z —
z(1 —xz)~". Then, since the generating series for {/} is x)°z,

J z Mi5(x, ,2)
21 —xz z

The compositional inverse of z +— z(1 —xz)~! is z+ z(1 +xz)~!. Applying the
latter transformation with (z%l_z—ﬂ)lz.—»z/(lﬂz) = z(1 +xz), we have

) = M;(x, ,2) — (xyZZIZHz/(l—xz))'

z—z/(1—xz)

(1 +xZ)MI§(x»J’,Z) = MI(X, y9z)|z.__>z/(1+xz) _xyZZ "
Then from this and from (46),

Xz 2 Xy 2xy MJV(xa Vs W)
Mon __* (_ _ 47
13(X, ¥,2) 1+xz< Yo+ 1+ xz 1+2xz> (1 +x2)(1 +2xz)° “47)
since
1
w = v o (48)

) = ()

This is an explicit expression for Mjs(x, y,z) in terms of My (x, y,z).

From Lagrange’s theorem (41) it follows that (48) has a unique solution in
z € Q[x][[w]]. Since the equation is quadratic in z, the latter can be determined
explicitly as

z =2w/(1 — 4xw + V1 — 4xw),

and uniquely since the other solution is not in Q[x][[w]]. Thus, 14 2xz = W™,
1 +xz=3(W+ W), z=2w/W(1 + W), where W = /1 — 4xw. With the aid of
these, z can be eliminated from (47) to express Mi5(x, y,z) in terms of M - (x, y,w),
and x, y,w. In the resulting equation, w can be replaced by z to give

1+4¢ 2z 2z (y* 2xy
M (3 ) = My p2) -
22 12 <x’y t(l—i—t)) w2 =05 ( r 141

where ¢t = /1 — 4xz. Theorem D follows from Theorem C, giving an explicit ex-
pression relating My to Mjs.

It should be noted that Theorem D could also be obtained by transforming the
integral in (3).

4. Reformulation of the Partition Function for the “-Model
In this approach to the ¢*-model we consider the set of all maps on k vertices,

each having the same degree. The set of all such maps for £ = 1,2,... is the set of
all vertex regular maps. We begin by deriving the genus series for 1-vertex maps,
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for which it is convenient to obtain the number of planted plane trees first. Note
that 1-vertex maps on the sphere are duals of trees.

4.1. Specialisation to Trees and 1-Vertex Maps. We use the character formulation
of the genus series for this purpose, although the integral representation would have
served as well.

We rederive the result for trees from the genus series for maps as rooted maps
with one face in the sphere. The correspondence is obtained by placing a vertex in
the single face and joining it to the root vertex of the map so that, in anticlock-
wise circulation of this vertex, the root edge is encountered immediately after the
new edge. The resulting tree is rooted at the new vertex, and is therefore a planted
plane tree. Again certain results about the irreducible characters of the symmetric
group are used, and are stated without proof. From Theorem B, the number of
such trees on n edges is [x"*!yz"] M 4 (x,y,z). But if 6 - m, then one can show
that [y] Ho(y) = (—1) (m — 1)!50,[m_k,1k]/f9, where 0 < k£ < m — 1. Furthermore,
if 0 = [m — k, 1¥], then Hy(x) = (—1)"(—x + k). In view of the coefficient opera-
tor, let y*> = 0, so we are now working in the quotient ring with this relation. Thus
log(1 + cy) = cy, so from (10),

[yz" 1R (x, y,2) = Z( D (= + k) 251,

But if o =[1%2%.. ]+ m, then E,OW’”W’(1+0‘H,&1 —r)i}ai,
Thus

D2 My, y,2) = 21 Z( e J( i

2"n! 3

) [W2n] (1 + w)—x-l-k

)L " (1+ W) 4 (1 4 w)+!
= 7l ]Z(U< ) (1+w)*

2
— (__l)n-H (znn)' [ n+1] (2 4 W)n (1 4 W)—x
Let cpp1 = W2 +w)' (1 +w) ™%, and let C(¢) = > _nz0Cnt". Then by Lagrange’s
implicit function theorem (42) C(¢t) = (2+w)~' (1 — £)~}(1 + w)™*, where w(¢)
satisfies w = #(2 + w). Thus w = 2¢/(1 — ¢) so C(t) = %(1 —tY(1 +¢t)™*, whence

2 AN
2" IMy(x, y,2) = (*1)n+1(2nn)t Cni1 = (= 1)n+12('l+’? [ (1_"';) .

But log(1 — ¢)/(1 + ¢t) = —2t &(¢t), where £(¢) € Q[[¢]] and &(0) = 1. Thus, replac-
ing t by —t,

D) = ey (1) (49)

so the number of planted plane trees on n + 1 edges is

n+l__n (2n)! P 1+¢ = ! 2n
[x +yZ]M./V(xy’Z) m[ +]< —t) _n-l—l(n).
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The number of 1-vertex maps can be obtained easily now. These have also
been considered by Harer and Zagier [15]. The number m,(g) of 1-vertex maps of
genus g on n edges is my(g) = [xy"' 22" | My (x, y,2) = X" 2 y2" I My (x, 3, 2),
by duality so, from (49),

X
(@) = D R .2) = e e (PR o)
4.2. The Genus Series for Regular Maps. To prove Theorem E, it is first necessary
to confirm that P,(N) and F, (N ) are polynomials in N. This may be done with-
out employing explicit expansions. Let Q(X7,...,X;—1) denote the ring of Laurent
polynomials in Xj,...,X;_; with coefficients in @. It is evident from (12) that
Y. (X, u) € R[[u]], where

R=QX,....%1) [X (1 - X)7'],

k

[T - X/X-)™" € Q... K1) [IX]] -

i=1
Let ok k Then, from (13), Yy BV ™' € Q[(1 — X)) ' [[Xi]). If s is a
positive integer, [w"](1 —w)™* = ("1*7') € Q[N]. Thus P,(N) € Q[N] so, from
(14), F, +(N) € Q[N]. Thus P,(») and F, x(y) are defined by formally replacing N
by y. This argument is implicit in the statement of Theorem E.

4.2.1. Hermite Polynomials. If o € IN¥ then with the convention that iy, = i;, we

assert that
LA |

BN) = 0= JZ<N l]Hl 2’1 |¢’! ’J+1(af) D
k
where, for nonnegative integers n,7,s,
1 _2
Us(n) = NG [ x"H,(x)Hy(x)e " dx , (52)
R

and the Hermite polynomials H,(x) are defined by H, = 2xH,_; — 2(n — 1)H,_, for
n = 2, Hy = 1, H; = 2x. Their standardisation is 2", and their orthogonality relation
is

Vr. (53)

The proof involves showing that P,(N), defined by (13), and Q,(N), defined by the
right-hand side of (51), have the same generating series, and are therefore equal.
Now

1.2 n!
R{Hr(x)Hs(x)e ¥ dx = ]

k
Ox(N) = ol [w*] [(x1 - -x)" '] 4’k(%X,u)l:[l (1—x)™",

where
’1 "
<lsk(x’u) = Z H lp’j l}+1( ]) ]‘n ! ’

i1y i 20 j=1
nypng 20
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4.2.2. An Inverse Problem and Superposition of Matchings. We therefore proceed
by considering the inverse problem of determining an explicit expression for @,
by constructing the superposition of an appropriate set of combinatorial structures.

. . . L 2
The generating function for Hermite polynomials is ), goH,,()c)% = e~ 50, by
completing the square in 2xt — #2, it follows from (52) that

I‘ S n 1.2
Z l//r S( ) Y L1 +uy+uz+fyz ,
r,5,n=0 ’ sl n!
where a = % and § = 2. This is rewritten as
’Jx’“un‘ Lo oottt ,
Z Wz,, J+1( J) g +1' j‘ e2auj+ujxj+ujxj+1+/3xjxj+1 , (54)
zj,xj_H,nj_ l l+1 nj

where « and f are now to be indeterminates, so y4.s(n) is a polynomial in « and
f. We now reconstruct a combinatorial configuration with this as its exponential
generating series. The set of primes of the configuration has %ocujz- +uix; +uixjp +
Pxjx;;1 as its (exponential) generating series. These primes are constructed on three
disjoint sets %,%;, %1 of subobjects, the numbers of which in each prime are
marked by the indeterminates u;,x;,x;,; respectively. These sets may be realised as
sets of labelled vertices and, in terms of this realisation: %aujz- is the generating series
for two vertices in % connected by an edge marked by «; u;x; is the generating
series for a vertex in % and a vertex in % connected by an edge; u;x;y; is the
generating series for a vertex in % and a vertex in % connected by an edge;
Bx;xjy1 is the generating series for a vertex in % and a vertex in % joined by
an edge marked with f.

Let % be the set of graphs enumerated by (54). Then %; is a set of 1-matchings
on %, %;, %11, satisfying the above four conditions, and with edges having “colour”
J. Thus ¥ ((n) is the number of graphs of % of a particular weight specified
by (#,s,n). Then, by superposition, @, is the generating series for the num-
ber H’;l Wi, (n;) of graphs in % o -0 % with a certain weight. It follows
from (38) that e’ is the generating series for % o ---0 %, so & = e/, where
H is the generating series for the set # of components of % ¢ -0 %. An ex-
plicit expression for H is obtained by characterizing these components as cycles
and paths with coloured edges occurring in prescribed order. The detailed case
analysis of J# is an extension of the combinatorial observations in (39). We con-
clude that dik(%x,u): Y (X,u), from (12), so (51) follows by replacing x; by
Xj/Xj—1

4.2.3. The Genus Series for Regular Maps. If M is a square matrix whose ele-
ments are formal power series in x with zero as their constant terms, then det M,
det(I + M), and log(I + M) are defined. It follows from Jacobi’s theorem for the
ring of such matrices (see, for example, [11], para. 1.1.10.5) that if dy = dp,dp, ...
and ¢;; is a function defined on the nonnegative integers, then

log{l + 3" dpSy xw'} =3 (~1)O-1 deRoxw' (55)
9 9 1(0)



Factorisations for Partition Functions of Random Hermitian Matrix Models 53

where both sums are over partitions, and

1 19)
Sp = —— S O') ¢tr Ig(r (0 ’
’ m(a)' 0’6%(0) gn( 0= 11%) sN-1 rl:[ « )

1 Z Z H ¢lr et 1 (ga(r) )

Ry= ——
m(e)' 0'661(9)0§i1,...,i1(9)<1\/ 1r=1

In view of (3) and (8), properties of FM)(f) = [rv F(A)V?(L)e™P2d ] are re-
quired, where f € C[[A]]. Let n,k,ky,...,k; be positive integers. Then

f(N)(l)z\/%N“N.N'/\/EN(N—I) 6
j(N)(P],;)_ZB' (9)'( )j(N)(/anI ) 2?91), (57)

f(N)(}fl‘l .../1’1‘1) - FACY) ™ T sga(x )H Wﬁ,,ﬂn(,)( k;) '

(58)
(N)i 0<p,, f<N—11€8, j=1 C2hig iB;!

Equation (56) is well known, and is related to the volume of the unitary group. It
is an immediate consequence of the orthogonality relation (53) for Hermite poly-
nomials, and the invariance of the determinant of the Vandermonde matrix under
replacement of its (i, j)-element x/ ! by a monic polynomial of degree j — 1 in x;.

With these preliminaries, we may now prove Theorem E by establishing (14).
From the integral representatlon (3) and (8) for the genus series for maps, the genus
series for regular maps is W(z, y), where W(z,N) =2zZ 5 2onz14np2 and

1 1 1Ln
=logd ——— [ V3 (A)e 22t m? X P )
Nor ]_[j.vzlj! RV

But [ V2(A)e"272d2 = v/21 [T\, j!, from (56). Then

A,,=10g{1—|— LA 1( ny) njxl} (59)

= 21 'n]2"]
where

1 1
G(m,N) = ————— [ V3(L)e 2P2pkd].
ol Hj.vzlj! RV
Then, from (57) and (58),

0 1

GumN) =23~z 32 sen(B) X TT oWy, (200))

o m(0)!0! BES 4 0S i) miyggy SN—1 j= 1290
Thus, from (59) and (55),

1 1
An — ;( )1(0) 1

1(0) 01m(0)!

and the result follows. Thus the proof of Theorem E is complete.

101
(21‘};(22)'1) UO)!Pauo(N) ,
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4.3. Basis Polynomials for the Genus Series. Theorem E expresses the genus series
for regular maps as a linear combination of the F,(»), and they therefore form a
basis set of polynomials of the genus series for the special cases of regular maps.
We now consider the consequences of the presentation of the genus series for
1-vertex maps and 2-vertex maps with respect to this basis. It is known from the
Euler-Poincaré formula that, when the number of edges is fixed, the genus series
for regular maps with k vertices has a prescribed parity in y. There are two possible
difficulties.

4.3.1. Parity-Respecting Forms. The first is that the presentation of P,(y) obtained
from Theorem E does not clearly exhibit this parity. The genus series for 1-vertex
maps is an example of this. From Theorem E, the genus series for 1-vertex maps on
n edges is 2"Ppy,(y). There is a minor abuse of terminology in the case of regular
maps in referring to this series as genus series since the indeterminate y marks faces,
not genus. However, for graphs on # edges and one vertex, the genus is immediately
determined by the Euler-Poincaré formula. The number m,(n) of 1-vertex maps of
genus g on n edges is (2n)!/2"n! times the coefficient of y"+1=% in

H0)( )

since such maps have n + 1 — 2g faces. This agrees with (50). Although from topo-
logical considerations, the series has parity » + 1 mod 2, and this is not evident
from its presentation. When n = 2m we transform this polynomial into

m _ \@2j+1D)
o, m)(y N 60
P (,- @+ 1) (60)

a parity-respecting form of the genus series for 1-vertex maps, since each polynomial
in the basis B = {(y —j)**1:j = 0} has odd parity. This basis is well adapted
to hypergeometric analysis. The odd case can be treated in a similar way.

The same difficulty is exhibited by the genus series for regular maps with &k ver-
tices since the P,(y) individually do not have the correct parity for a genus series.
The genus series for 2-vertex maps, maps with precisely two vertices, these being
of the same degree, is an example of this. The genus series for 2-vertex maps on
2n edges is %{PW]( ¥) — Prany( »)}. It can be checked that neither Ppy)(y) nor
Piany21(¥) have a parity. Since their difference is the genus series (up to a factor) for
2-vertex maps, terms of the opposite parity cancel when the series is reexpressed
with respect to the basis {1,,?,...} of monomials in y. We conclude that, in
general, the P,(y) do not serve as a parity-respecting basis for the genus series for
regular maps.

However, as with 1-vertex maps, there is a parity-respecting presentation of this
series. With the use of properties of symmetric functions, if follows that the number
of 2-vertex maps d,(n) of genus g with n edges is (n — 1)! times the coefficient of
yn—2g in

l%("i”l Y\ (=21 (v L%("‘sz"”li 2K\ [ n
j=0 _] r=0 r n k=0 4k k 2k ’
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since such maps have n — 2g faces. This presentation of this series does not exhibit
the parity that the series possesses. However, this can be resolved by expressing
the series with respect to the basis B. With the use of hypergeometric analysis it
can be shown [1] that the number of 2-vertex maps of genus g on 2m edges is
(2m)!(>") times the coefficient of y?"~2¢~! in

m=l 4i=m(y — )AHD gy — P\ o (=1 (m—i— 1\ [2m—k —1
g(zi+1)!(i+1)< i )kZ:% 2k+1( k )( m ) (61)

This form is parity-respecting. The odd case can be treated in a similar way.
A symmetric function argument cannot be used to determine the genus series for
regular maps with £ = 2 vertices since the analogous series are no longer symmetric.

4.3.2. Degree-Respecting Forms. The second difficulty concerns the degree of the
genus series for regular maps with k vertices. From Theorem E, the degree of P,(»)
as a polynomial in y is %[a|, and the degree of the genus series for regular maps
with & vertices is at most the maximum of the degrees of the polynomials F,(y) in
its support. However, the degree of the genus series may not attain the maximum
because of the existence of identities among the family of basis polynomials F,.
Although this does not arise in the case of 1-vertex maps, for 2-vertex maps both
Pun)(y) and Py,2(») have degree n as polynomials in y. However, the terms of
top degree cancel in their difference, and the degree of the 2-vertex map series
is not the degree of the highest degree polynomial in the support of the series.
The basis F,(y) does not afford a degree-respecting basis for the genus series for
2-vertex maps.

Both (60) and (61) are degree-respecting presentations of the genus series for
1-vertex maps and 2-vertex maps, so these are both parity- and degree-respecting
presentations of the two series. In view of this, it is reasonable to ask whether it
is possible to construct a basis which is parity-respecting and degree-respecting for
all vertex regular maps, rather than for just 1-vertex maps and 2-vertex maps, as
part of an attack on the ¢*-model.

4.3.3. Topologically Good Forms. 1t is advantageous to have the genus series in a
form that facilitates specialisation to particular surfaces. We call such bases topo-
logically good. It may be possible to construct topologically good bases from linear
combinations of the P,, although it is unclear how this can be done. For example, for
the genus series for 1-vertex maps and 2-vertex maps, specialisation to the sphere
is immediate. This is because this case corresponds to the coefficient of the term in
y of highest degree. It is readily seen that my(n) = n'?c(n), dy(2m) = c(m)?, and
do(2m + 1) = c(m)?, where c(n) = (2n)!/n!?. Specialisation to the torus is possible,
since this involves the term of next highest degree in y, the basis B being graded
by degree.

5. Hypermaps

5.1. The Embedding Theorem for Hypermaps. Let p be a positive integer. Then
0=(9g1,....9p) € & is a permutation system for n € &, of type (t,...,t,) and
order p if m=g;---gp. A permutation system (p,o) on a finite set &, such that
the group generated by o and p is transitive on &, is called a hypermap [5].
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A hypermap is therefore a generalisation of a rotation system since the condition
that one of the permutations be a fixed point free involution no longer applies.
Let G be a rooted 2-face-colourable map, with edge set £(G) = {l,...,n}, em-
bedded in an orientable surface X. Directions are assigned to the edges of G so
that the edges of the boundary of each face are directed consistently with the root
edge. Together, the cyclic lists of origins of edges encountered in traversing the
boundary of a small disc, centred at each v, in a sense specified by the orientation
of X, partitions {1,...,n} and represents a permutation v € S,. The edge labels
encountered in traversing the boundary of each root-coloured face in a sense con-
sistent with the orientation of X partitions {1,...,n} and represents a permutation
¢ € S,. The corresponding permutation for non-root-coloured faces of G is de-
noted by ¢. Then G corresponds uniquely to the hypermap (v,¢) and conversely,
each hypermap (v,¢) corresponds to a unique 2-face-coloured map, up to a per-
mutation of the colours. Moreover, ¢ = ve. This bijection is the dual of Walsh’s
[31] that exhibited a bijection between hypermaps and edge-labelled bipartite
maps.

Let oy, oty C N Let Py, o (X, 1, y2,2) be the generating series for permutation
systems (v,¢), of order 2, in which ve has no cycles of length not in 2/}, ¢ has no
cycles of length not in 2%, and in which x, y;, y», and z are indeterminates marking,
respectively, the numbers of cycles in v, ve, ¢ € S, and n.

The genus series for maps is recoverable from the genus series for 2-face-
coloured maps since, given a rooted map, each edge can be replaced by a digon.
This operation is reversible, and does not affect the genus, so

My (x, 1,22 32) = Cay,o0 (X%, Y1, ¥2,2) (62)

where it is recalled that My (x, y,z) is the genus series for rooted maps having no
faces of degree not in /.

Not every (v,¢) € S, corresponds to a hypermap, since v and ¢ may not gener-
ate S,. However, each such element is a permutation system for an unordered
collection of hypermaps, and the cycles of ve describe the root-coloured faces
of the embeddings of the unordered collection. Thus log Py, ., is the generat-
ing series for edge-labelled 2-face-coloured maps with the face restrictions specified
by o, o,. Thus, from the bijection, the genus series Cy, o (X, y1, ¥2,2) for rooted
2-face-coloured maps is

0
Cat, (% Y1, ¥2,2) = 25-108 Py oy (X, Y1, 12,2) » (63)

where the derivative accounts for the fact that each rooted map on n edges corre-
sponds to (n — 1)! edge-labelled maps. From the definition of Py .,

n

z K¢y 1
P yy2)= ¥ =5 5 2 HOP)06,6.06,,
nz0 " vn ¢GHM«1 e€1 o,

so, from (36) and from (28),

Zn

Pty (% 01, y2,2) = > hyPnt OZ 2518 Hy(x) .
n

nz0 (n!)? $€ll g,
SGH‘R[Z
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The following symmetries are evident.

1) Cy,.(x, y1, ¥2,2) is a symmetric function in x, yi, y2,
2) Coyy, /(x,y1,¥2,2) is a symmetric function in x, y», (64)

3) Cﬂl,dz(%)’l, )’Z,Z) = Cdz,.ﬁ] (xa Y2, yl,Z) .

5.2. The Factorisation. Certain Py ., admit a factorisation into generating series
for other permutation systems. The specialisations that are sufficient for present
purposes state that

zPn

o (pn)! p n'

Pioy, (X, y1, y2,2) = Z 1y Ho(x)Ho(32) , (65)

_ Py 00
Ppyipry Xy, ¥2,2) = 20 — =i 30 (e XipmHe(x) -

nzo P (rn)l(rpY'n! o=

By applying the bijection 4, defined in (30) and by rearranging the sum we have,
from (33)

prn (,rn
Yy n rn
P X, Y1, y2) =Y, —1 2
{phpry (5 71, 72,7) Eo p”’(rn)!(rp)”n! Sl,,ggo (sl,...,sp> (rsl,...,rsp>

Syt tsp=n
(/)

(1) (/) .
anej OSJ]HGJ( _]+1)a

where the third summation is over all (6(),...,0?)) such that 6) | rs; for
j=1,..., p, and where Hg(x) is defined in (31). Thus
P61, 32.2) = A(x, y1,y2.2) - A(x — p+ Ly, y2,2),  (66)
where
Z Zplﬂlyw'y
o1mdmssr PG p) 7 01!

Then, by rearrangement of the series, we obtain the desired factorisation

/I(x’ yl,J’Z,Z) - fGX[erlol/r]Hg(x) .

_ (P2 yly)"
A »Z2) =
O S Yy oy

x+1 x+p—1
O-rn p p p

We now derive a relationship between 2r-regular maps and a class of 2-face-
coloured maps (those whose root-coloured faces have degree r). From (65) with
p= 27 we have, A(x, y1’y29z) = P{r},%(%xo %y23 %('x + 1)9 222)’1 )9 so from (66)

Py 2 (6 ¥1,¥2,2) = Ux) U(x — 1), (67)
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where U(x) = P{,},M(%x, %yz, %(x +1),2z%y;). Then, from (63)

C2y,02n (X% 15 2,2)

0 x y2 x+1 —1 »mx
za—logP{,}/V(z T »22 Y1>P{r}m< R 2222y1

from (67). But (z/2z%y;)0(2z%y,)/0z = 2, so from (63) and (62),

M (x, 31, 322°)

x y3 x+1 x—1 y
C{M(z Sy J’1)+C{r},/v( — 2,52 yl)

x+1 »2 x -1 y x
C{r}/V( T 222 y1>+C{r}m< > 22 2222)’1)

from (64). Now replace i, y; by y, and then replace z?y by z, to obtain Theorem F.
This establishes the relationship between the two classes of maps.

The relationship given in Theorem C associated with rooted quadrangulations

of arbitrary genus is recovered by setting » = 2 in Theorem F and using (62). By
putting p =3 in (65) and repeating the above arguments, one can obtain a rela-
tionship between 2-face-coloured triangulations on 37 edges and all 2-face-coloured
maps on n edges.

Acknowledgements. One of us (DMJ) thanks G.E. Andrews, P. Ginsparg, C. Itzykson, and C. Vafa
for useful discussions. This research was supported by grants, individually to DMJ and TIV, from
the Natural Sciences and Engineering Research Council of Canada.

References

1.

10.

11.

Andrews, G.E., Jackson, D.M., Visentin, T.I.: A hypergeometric analysis of the genus series
for a class of 2-cell embeddings in orientable surfaces. SIAM J. Mathematical Analysis, 285,
243-255 (1994)

. Bender, E.A., Canfield, E.R.: The asymptotic number of rooted maps on a surface. J. Combi-

natorial Theory A 43, 244-257 (1986)

. Bessis, D., Itzykson, C., Zuber, J.B.: Quantum field theory techniques in graphical enumeration.

Adv. Applied Math. 1, 109-157 (1980)

. Brézin, E., Kazakov, V.A.: Exactly solved field theories and closed strings. Phys. Lett. B 236,

144-150 (1990)

. Cori, R.: Un code pour les graphes plainaires et ses applications. Thése de Doctorat, Paris,

1973

. Di Francesco, P., Itzykson, C.: A generating function for fatgraphs. Preprint
. Distler, J., Vafa, C.. A critical matrix model at ¢ = 1. Mod. Phys. Lett. A 6, 259-270 (1991)
. Douglas, M.R., Shenker, S.H.: Strings in less that one dimension. Nucl. Phys. 335, 635-654

(1990)

. Dyson, F.J.. Statistical theory of energy levels of complex systems, I, II and III. J. Math.

Phys. 3, 140-156, 157-165, 166—175 (1962)

Ginsparg, P.: Matrix models for 2d gravity. Lectures given at the Trieste Summer School,
July 22-25, 1991, LA-UR-91-40101 & hepth@xxx/9112013, Los Alamos National Laboratory
Report, Los Alamos NM 87545

Goulden, L.P., Jackson, D.M.: Combinatorial Enumeration. New York: Wiley Interscience, 1983



Factorisations for Partition Functions of Random Hermitian Matrix Models 59

12.
13.
14.
15.

16.
17.

18.
19.
20.

21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31

32.
33.

Gross, D.J., Migdal, A.A.: A nonperturbative treatment of two dimensional quantum gravity.
Nucl. Phys. B 340, 333-365 (1990)

Gross, DJ., Migdal, A.A.: A nonperturbative two dimensional quantum gravity. Phys. Rev.
Lett. 64, 127-130 (1990)

Gross, J.L., Alpert, S.R.: The topological theory of current graphs. J. Combinatorial Theory B
17, 218-233 (1974)

Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math.
85, 457485 (1986)

Heffter, L.: Ueber das Problem der Nachbargebicte. Math. Ann. 38, 477-508 (1891)
Hoffman, P., Richter, B.: Embedding graphs in surfaces. J. Combinatorial Theory B 36, 65—84
(1984)

Hooft, G.’T.: A planar diagram theory for string interactions. Nucl. Phys. B 72, 461-473
(1974)

Itzykson, C., Drouffe, J-M.: Statistical Field Theory. Vol. 2, Cambridge: Cambridge University
Press, 1990

Jackson, D.M.: On an integral representation for the genus series for 2-cell embeddings. Trans.
Am. Math. Soc., 344, 755-772 (1994)

Jackson, D.M.: The genus series for maps. J. Pure and Applied Algebra 105, 293-297 (1995)
Jackson, D.M., Visentin, T.I.: A character theoretic approach to embeddings of rooted maps
in an orientable surface of given genus. Trans. Am. Math. Soc. 322, 343-363 (1990)
Jackson, D.M., Visentin, T.I.: Character theory and rooted maps in an orientable surface of
given genus: Face-coloured maps. Trans. Am. Math. Soc. 322, 365-376 (1990)

Jackson, D.M., Visentin, T.I.: A formulation for the genus series for regular maps. J. Combi-
natorial Theory A (to appear)

Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press, 1979
Mehta, M.L.: Random Matrices. London: Academic Press, 1991

Nelson, D., Piran, T., Weinberg, S. (eds.): Statistical Mechanics of Membranes and Surfaces.
Singapore: World Scientific, 1989

Penner, R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom.
27, 35-53 (1988)

Periwal, V., Shevitz, D.: Exactly solvable unitary matrix models: Multicritical potentials and
correlates. Nucl. Phys. B 344, 731-746 (1990)

Serre, J-P.: Linear Representations of Finite Groups. Berlin, Heidelberg, New York: Springer,
1977

Walsh, T.R.S.: Hypermaps versus bipartite maps. J. Combinatorial Theory B 18, 155-163
(1975)

Weyl, H.: The Classical Groups. Princeton, NJ: Princeton University Press, 2nd. ed. 1946
Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions, I and II.
Ann. Math. 62, 548-564 (1955) and 65, 203-207 (1957)

Communicated by R.H. Dijkgraaf








