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Abstract: We obtain the optimal time decay of the solutions of the coupled
Maxwell-Klein-Gordon equations in four dimensional spacetime, provided the initial
data are what we define as Coulomb. In other words, the initial data are such that
the Klein-Gordon field is smooth and compactly supported and the Maxwell field is
electrostatic outside this support. The problem involves charge, therefore, the initial
data do not satisfy either fast decay or any smallness condition. In spite of that, we
are able to obtain our result using the inversion map of the lightcone of a carefully
selected origin. We thus, avoided the blow-up that takes place when using the usual
conformal transformation to the Einstein spacetime.

1. Introduction

The presence of charge imposes precise conditions on the decay of the initial elec-
tromagnetic field preventing it from being placed in a weighted Sobolev space.
Therefore, the usual techniques of conformal transformation or smallness of initial
data to prove decay do not work.

The condition that initially the electromagnetic field outside the (compact)
support of the Klein-Gordon field is static, permits us to use the inversion map
at the lightcone of a carefully selected origin. The conformal covariance of the
equations involved and the global existence theorem (Theorem 1) allow us to ob-
tain the optimal time decay for the solutions. This method can not be used with a
non-Abelian gauge group because the commutation relation would prevent the fields
from being static (the commutators would behave like a source with non-compact
support).

In the usual conformal compactification of Penrose-Christodoulou, the generator
of the transformation is a conformal Killing field of the Minkowski metric in the
whole of spacetime. In contrast, the generator of the inversion is a conformal Killing
field in the interior of the lightcone at the point on which the inversion is made.
Thus, while with the Penrose-Christodoulou method we have to take into account
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Fig. 1. The inversion map as seen from the Einstein Universe. Observe that the singular point
lies in the region complimentary to the one we are working with. The initial data, close to the
backwards cone from /+ inside the region of interest, is always regular

global behavior of the fields, the space infinity, i, the point where the conformal
data blow up, is discarded in the inversion map. (see Fig. 1).

Some previous results for similar problems are the global existence for the Yang-
Mills field (see [1,2]), the optimal time decay for the Yang-Mills field with small
data (see [5]) and the optimal time decay for the coupled Yang-Mills-Higgs-Spinor
fields with small data, where the positivity of the Energy is not necessary (see [4]).

This work is divided as follows, in the next section we explain what is meant by
a Coulomb initial data. We show what these data imply in terms of solution. Next,
using a global existence theorem, we prepare the grounds for the Cauchy problem
in the target space. In Sect. 3 we study the inversion map in detail and discuss some
properties of our set of equation vis-a-vis conformal transformations. In Sect. 4 we
establish the regularity of the Cauchy data in the target space allowing us to use
the global existence theorem. In the last section, we obtain the optimal time decay
of the solution.

2. The Cauchy Problem

Maxwell equations give rise to a gauge field, the coupling with a scalar field is
through the covariant derivative of the scalar field in the principal bundle (minimal
coupling). The Lagrangian for this problem is

$£ = η"PηVFaμ Fβv - Dβφ . DPφ , (1)

where ημv = diag(—, + , + , + ) and Dv = dv + iAV9 φ is a complex function, is
a gauge invariant scalar product given by A B = Re(AB), where A and B are
complex functions and the bar denotes the usual complex conjugation.
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The equations of motion are the Maxwell-Klein-Gordon equations. They are

daFμv + SμFm + dvFaμ = 0 , (2)

dvF
vμ = lm(φDvφ), (3)

DvDvφ = 0 , (4)

or using a different notation

dF = 0, (5)

δ¥ = J , (6)

Uφ = -ί(2Avdvφ + φdvA
v) + AvA

vφj , (7)

where F is the 2-form electromagnetic tensor, A, the 1-form electromagnetic poten-
tial F = dA and J = Im(φDμφ) is the 1-form, 4-charge-density. The gauge group
is U(l). D is the wave operator (D'Alembertian), d is the exterior differential op-
erator, δ = *~*d* is the degree —1 differential operator and * is the Hodge dual.
The time component of Eq. (3) is known as Coulomb's law

VE = Im(φδ^φ), (8)

an elliptic equation which imposes a time independent constraint on the electric
field. In the region outside the support of φ the electromagnetic field satisfies

dF = 0 , (9)

<5F = 0 . (10)

We say that an initial data set (Ai(tθ9x), Et(t^x) = Fi0(t0,x), φ(jto,x)9 doφ(to,x))
for the Maxwell-Klein-Gordon equations (2-4) is a Coulomb initial data iff

• (hi) A is given in the temporal gauge, i.e., A0(t) — 0.
• (h2) The scalar (charge-density) field φ(to,x) is smooth, supported in a ball

of radius r0 around the origin, i.e., φ(to,x) G Co°(Bro).
• (h3) For any r = |x| > r0, the electric and the electromagnetic potential field

are given by

— x

where the electric field given by Eq. (11) is the field produced outside the support
of a charge distribution with charge-density p(x) = lm(φ(x)doφ(x)). The potential
given by Eq. (12) is unique up to an additive constant.

One writes the radial and angular components of the electrostatic field around
the origin as

^ V , (13)
X — X

Eω(x) = Vω/ jϊ^Ld'x1, (14)
ψ- x-x'



14 D.M. Petrescu

ω denotes angular coordinates, r = |x|, y is the volume enclosed by the ball of

radius r, keeping in mind that p(x) = Im(φ(x)doφ(x)).

Lemma 1. The field given by Eqs. (13,14) satisfies (9,10). In other words, Eqs.
(13,14) represent the solution of Maxwell-Klein-Gordon system given by Eqs. ( 5 -
7) outside B(t_to)+r0? f

or a^ times.

Proof. Outside the support, Eqs. (5-7) reduce to Eqs. (9-10). These, are written as

V E = 0, (15)

V x E = 0 . (16)

Equation (15) follows from the analyticity of l/|x —x'| in Eqs. (13,14) for
|x| > |x'|. Equation (16) follows from a well known vector identity. The finite
speed of propagation of the wave, assures us of the global result. D

We are in position to use the following global existence theorem (see [1,2])

Theorem 1. Ifuo = (Ai9Ei9φ9doφ) is initial data lying in (H2+k x H\+kΫ for k ̂  3
and satisfying the initial value constraint,

dtEi = lm(φdoφ) ,

then there is a unique solution u(t) £ (H2+k x H\+k)2 of the temporal gauge
Maxwell-Klein-Gordon equations defined for all ί £ (—oo, oo) and having
M(0) = Mo The corresponding fields (Aμ(x),Fμv(x),φ(x),DOίφ(x)) are globally de-
fined in Minkowskί space, lie in (Ck x Ck~ι x Ck x Ck~x) and satisfy Eqs. (5-7)
in the classical sense.

We use the previous theorem as follows, let us assume that the initial data are
given at a time to > 2ro + 1, then the support of φ is contained in the interior of
the future directed light cone of the origin. Since it has been established that the
solution exists for all times, one can speak of the solution at a later time t\, say.
Inside the outward future directed lighteone of the origin the solution between to and
t\ is finite and regular. In this region we make the following gauge transformation
U : A —> A, A satisfying Ao Λ-Ar — 0 with the angular components unchanged. We
show that the above transformation is a bonafide gauge transformation. We have

Aμ=Aμ + iU .dμU-\ (17)

U(r,t^to)eU(l). (18)

Since A was initially in the temporal gauge we have

-Ar = iU - drU~x + iU d0U~l , (19)

= iU dsU~ι , (20)

U(O) = Uθ9 (21)

where U = U(s) and s is a parameter along lines t + r = constant and Uo is such
that at t = to the gauge condition is satisfied.
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Ar is smooth and real, by taking its conjugate value in Eq. (19) and using the
property of the scalar product, it follows that

dsUU = 0 (22)

or, the length of U is a constant of motion. The standard existence theorems for the
linear ordinary differential equation tells us that there exists a unique and smooth
solution U(s) defined throughout the region UjU Bt(t). Furthermore, since initially

( / e U ( l ) , then, ί / e U ( l ) for all points of U ' U 0 ^ ( O A satisfies the gauge con-

dition.
The need for the existence of a solution up to a time t\ > to and the change of

gauge will be clarified in the next section. There, we show that inversion maps a
hypersurface t = constant onto a hyperboloid to the past of the space origin of the
hypersurface — -t = constant in the target space. If we want to know the Cauchy
data on a hypersurface in the target space t_ = constant (underline denotes functions
in the target space) we must know the values of the solution to the future of to.
The gauge selected above is such that A is mapped smoothly onto such hyperspace.

3. The Inversion Map

Before we discuss the inversion map we prove the following proposition concerning
conformal transformations

Proposition 1. Let M,η be a four dimensional manifold where η is Lorentzian
metric, then for h : (M,η) —• (M,g), g = Ω2η (Ω > 0) a conformal automorphism,
together with the transformation h : φ —> Φ = Ω~ιφ the set of Eqs. (2-4) and
(9-10) are conformally covariant.

Proof Invariance of Eq. (2) follows since it is independent of the metric. To prove
the covariance of Eq. (3) one uses well known relations for conformal transforma-
tions (see [4]) to obtain

VyvlβμFvμ = ίT 4 V α F^ , (23)

for the field. Using that J_a — Im(ΦDaΦ), since Φ and not φ is defined in the target
space, one has for the current

g*βja = Q~2β = Ω-2Ω~2lm(φDβφ) = Ω'4Jβ . (24)

This establishes the desired result. The covariance of Eqs. (9,10) follows, since in
this case φ = 0.

To prove that the coupled Klein-Gordon equation is conformally covariant, one
uses the well known covariance of the operator D— ^p-3% applied to a function
to get in the four dimensional case

= Ω3gvμ[AμAvΦ - i(2AμdvΦ + ΦdμAv] ,

= gvμ[AμAvΦ - i(2AμdvΦ + ΦdμAv)] . (25)
6

D/ is the covariant D'Alembertian and & the scalar curvature in the image space.
We obtained the desired covariance. D
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Denote by CQ the interior of the future directed lightcone of the origin, i.e.,
r2 — t2 < 0, t > 0 and by CQ the interior of the past directed lightcone at the
origin, i.e., r2 — t2 < 0, t < 0. Let # be the mantle of a cone and let Sφ^ be the
support of φ at time t. We shall consider in this section the following conformal
automorphism of CQ U CQ onto itself

/ : Co

+ U CQ - Co

+ U Co"

where coordinates of the image space are underlined. Since g = f * η(f(x)) = Ω2η,
where Ω~ι(x) — — x x = ί2 — r2 — —s2(x), f is said to be a conformal map from
CQ" U CQ onto itself1. / is called inversion map. The map / preserves the null
structure (i.e., maps null surfaces into null surfaces). Since Ω2 > 0, / maps future
directed timelike vectors into future directed timelike vectors.

The line element in M + , the region t ^ 0 in the Minkowski spacetime, is
given by

ds2 = -dt2 + dr2 + r2dω2 , (27)

ω being angular coordinates. The transformation of coordinates for t and r are

V ) 2 ί
2

L ( 2 9 )
uv

with the same angular coordinates. Then

If one uses null coordinates u = r — t, v — t + r and notices that s2 — uv, then

^ ~ u2 v2 ' (2vu)2 " "
or

du=^^u=^, (31)

dv = % -> v = — . (32)
V2 ~ V

Thus along the t axis, the points a and b such that ία < tb are transformed to
points such that t^ < t_b (but \t^\ > \t_b\). So, future directed nullcones in CQ are
mapped onto future directed bounded nullcones in CQ .

Because Ω(x) = —sΓ2(x) = — s2(x), we see that f2 = id. Then, / maps ^Q

onto %>*_ and vice versa. *^~ in the image spacetime bounds M + . ^Q is the image

of <g~+ ofM+ (see Fig. 1).

1 / is not conformal if we consider the whole of Minkowski space
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The map / does not deal with the region outside C o , the closure of CQ. It
is precisely in this region that the energy blows up. By assumption, the solution

at any point outside Co is explicitly obtained using Lemma 1. This is why we
use the inversion map. The map to Einstein space is a compactification of the
whole Minkowski space, it takes into account the global behavior of the initial
data, including i, the point at space infinity.

If we prove that the solution up to the time t\ in Co can be mapped to a regular

"initial" data on a spacelike hypersurface t = constant in Co , then, using the global
existence theorem for Maxwell-Klein-Gordon equations we establish existence of
solutions up to the origin in the target space.

We have to study what happens to the image of the hypersurface t — constant
of the original spacetime. Thus, we look at

to = — 7z to constant.
r2 — tι

Working it out, we get

that is, points of the plane t = constant are mapped into the hyperboloid (33), and
for r = 0 this hyperi
show that choosing

for r = 0 this hyperboloid crosses the t axis at t_ — — j - . Some simple computations

the image of the support of φ at t — t\ crosses the image of the lightcone of its
support at t0 = — l/fo. The hypersurface t0 = constant is used to place our initial

data. For any point in M~ = Co U \t_ ^ ί0}, the solution of the original problem
is regular. Blow up, if there is any, should happen on <^~. Fig. 2 should help one
visualize all the actions of the inversion map.

4. Regularity of the Initial Data in the Target Space

To prove regularity of the solution at t0 = constant in M~9 we notice that φ is
mapped smoothly onto this hypersurface, since it is the composition of two smooth
functions. To show the regularity of the electromagnetic tensor we will use its null
decomposition, since it is more convenient than the usual electric and magnetic
decomposition. Let us introduce the null tetrad in M + ,

1 = ~Jidu' ζ = rdθ> ( 3 5 )

m = -η=dυ, χ — r sin θdφ , (36)

where u and υ were defined earlier.
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THE INVERSION MAP

future directed hghtcone

t = constant
1
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0
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the null infinity

past directed
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These points do not

ί_0= constant belong to Minkowski
space.

t = constant
0

Fig. 2. The inversion map as seen from Minkowski space

In this basis we write F as

ί Λ χ . (37)

The correspondence of this decomposition with the usual electric and magnetic
one is

E r = Flm , (38)

E{ + B, = Flζ, (39)

Eξ - Bχ = Fmξ, (40)

Eχ +Bξ = F/χ , (41)

Eχ-Bξ=Fmχ, (42)

B r = Fiχ . (43)

For any point p e 5ψ(,) the electric and magnetic fields are non-vanishing. By
Lemma 1, the static solution outside Sφ^t) is such that the magnetic component is
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zero. In other words, outside Sφ(t) only the first 5 equations survive. Fξχ is zero
there.

It is seen from Eqs. (13,14) and Lemma 1, that if (JΓZ , t) are the coordinates of
a point on a sphere of radius |x| > ru where rt is the radius of Sφ(ty Then, for
all t,

| X | J V + o(\x\~ ) , (44)
|x-x'

where E means the function and not the vector (or form). Ψ~Q is the volume of the
support of φ. It follows that

\Er{x)\ ̂  i L +o( |x |- 3 ) |x| -> oo (46)

|£ω(x)| ^ ^ + o(|x|~4) |x| -f oo . (47)
ιxl

Q and βi are integrals that bound the charge and dipole moment respectively,

)(^)|rfV, (48)

Qx = J \Im(φd^φ)(x')x'\d3x'. (49)

n
To study what happens to the two-form F, we need to study the map of the six

functions Fιm,Fiξ,Fmξ,Fιχ,Fmχ, Fξχ and the pullback of the forms l,m,χ and ξ. We
find the relation between null forms in M~ and the pullback of null forms of M+

using that f2 — id. First we define a set of null forms in M~. These forms are (an
underline denotes forms and functions in M~)

Lτ=7ld-' ί = ι:dθ, (50)

m= —τ=dv, χ = usinθdφ. (51)
V2 ~ ~

The relations between null forms are

/ = -M2/*/, ξ = uvf*ξ, (52)

m = -v2f*m, χ = uvf*X- (53)

The transformed form in the target space time is given by

F = / * F

f*Flx f*m Λ f*χ + f*Fmχ f*m Λ f*χ + f*Fξχ f*ξ Λ f*χ , (54)
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but we also have

+ FιιmΛχ + FkmΛχ + FξΛξΛχ. (55)

We are now in position to establish the following.

Proposition 2. The map of the solution of Eqs. (5-7) in Co between to, the initial

data hyperplane and t\, given by Eq. (34), with the Coulomb initial data, is regular

on the hypersurface {/0 = constant} Π Co .

Proof The regularity in the region l0 Π CQ~ follows since the solution and the map
are regular. One expects a problem only on the lightcone, i.e., in <^~. Using the
first term in the r.h.s. of Eq. (54), Eqs. (38) and (46) we have

f*Flmf*lΛf*m - ΓEr^lA^m (56)

It follows that

1 \ 1

r2) (uv)2

2 1

(uof

Coming from the second term we have

then

£,ίSβ,/ ι i λ '
uv\3 I

Using Eq. (46) and Eq. (55) we define

(58)

ΓFιξfΊΛΓξ = f*Eω-^lΛ—ξ (60)

Again using Eq. (47) and Eq. (55)

Z7 — f*J7 (62Λ

( 6 3 )
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Proceeding in this fashion we obtain all the other bounds. Finally

l£g | , |£/* l^f i i=j , (64)

IE/J ^ Qyi ' (65)

\F^,\Fm\^Qx^, (66)

and F_^t = 0. One of the advantages of the null decomposition is that conformal

diffeomorphisms map null components into the same null components.
On ΉQ, V = 0 and both u and r are finite and bounded away from zero for

t = l0. Equation (54) and the bounds above imply that the form F is well defined
on the lί^htcone.

The field is real analytic in the region outside Sφ(ty The multipole expansion
of the field is pulled back in a polynomial in uvjr_ (r) of order no lower than
two. Taking into account the bounds obtained earlier and the fact that the func-
tions F_ιm,F_iξ,Fmξ,F_ιχ9Fmχ and F_ξχ, defined by Eq. (55), are polynomials in v, the

extension to the boundary is made smoothly2.

Next, we prove that the gauge field A is regularly mapped onto {l0 = constant} Π

Co . Similarly to what was done with the tensor field F, we write the null decom-

position of A as

A = Ail + Amm + Aξξ + Aχχ . (67)

The gauge is such that Am = 0. Outside Sφ(t) the other components of Am have decay
no worse than \/r because the field decays no worse than 1/r2 (see Eq. (12)). Using
the relationship between the null components in the two spaces (Eqs. (52), (53)) and
that / maps null components in null components we get

/*A - f*Aιf*l + f*Aξf*ξ + / * i χ / * χ , (68)

because Am = 0. Since /*( l/r) = uv/r and the pullback of all the forms used in
Eq. (68) have at most v in the denominator, it follows that the pullback of A is
smooth. The only component that could have caused a headache was eliminated in
our selection of the gauge. The pullback of m explodes as v~2, much faster than
decay of Am, v.

Proving the smoothness of the scalar field is immediate, since it is supported in
{to = constant} Π CQ in M~. D

As a corollary, we can speak of an initial value problem in M " , with smooth
initial data given on the hypersurface t0 —constant. Changing back to the temporal
gauge in the target space is of no difficulty. Using Theorem 1, one establishes the
global existence of the solution for the Cauchy problem in M~.

2 the boundary lies outside the original space, the function is extended to take smooth values
there
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5. Time Decay of the Solution

We have established Z,°°(IR3) bounds for Maxwell and scalar fields. These bounds
are established for a compact in time interval, therefore, we have a L°°{M~) bound.
To see what kind of time decay these bounds imply, we send all the forms and the
scalar function from the target to the original space. First, we deal with the scalar
field. The uniform bounds obtained in M~ imply that Φ is uniformly bounded.
Using φ = ΩΦ and Ω = —s~2, it follows that

\Φ\ = \uv\\φ\ ^ c (69)

or,

I * ^ W D t>r-
All points inside the outward future directed lightcone of Sφ(t) have both u and v
strictly greater than zero and t — r > ΓQ + 1.

To obtain the time decay of the null components of the Maxwell field, we use
that all null components of the Maxwell field in M " are bounded by a constant
(they are uniformly bounded). This means that we can write a two-form Q in M~
that bounds the Maxwell fields. The pullback of the form Q bounds the Maxwell
field in M+. This form is

Λ | + m Λ χ + m Λ χ + £ Λ χ ) . (71)

Pulling back Q, using that it bounds the Maxwell fields and

l = -u2Π ξ = uυf*ξ, (72)

m = -v2f*m, χ = uvf*χ , (73)

one obtains the following time decay for null components of tensor fields in terms
of t and r, with t — r > ΓQ + 1,

(76)

Adding everything up, we have achieved proving the following theorem.

Main Theorem The Cauchy problem for the Maxwell-Klein-Gordon conformally
covarίant system (5,7) with Coulomb initial data, {conditions hl,h2 and h3)
has a unique solution, defined globally in Minkowski space time by Theorem 1.
Furthermore, using Proposition 2 and Theorem 1 we show that the solution has
the decay given by Eqs. (70), (74-76).
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