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Abstract: For a particular class of integral operators K we show that the quantity

φ := log det (I + K)- log det (/ - K)

satisfies both the integrated mKdV hierarchy and the Sinh-Gordon hierarchy. This
proves a conjecture of Zamolodchikov.

I. Introduction

In recent years it has become apparent that there is a fundamental connection be-
tween certain Fredholm determinants and total systems of differential equations.
This connection first appeared in work on the scaling limit of the 2-point correla-
tion function in the 2D Ising model [7, 15] and the subsequent generalization to
«-point correlations and holonomic quantum fields [12]. In applications the Fred-
holm determinants are either correlation functions or closely related to correlation
functions in various statistical mechanical or quantum field-theoretic models. In the
simplest of cases the differential equations are one of the Painleve equations. Some,
but by no means a complete set of, references to these further developments are
[2-5, 13, 14,16] The review paper [6] can be consulted for more examples of this
connection.

In recent work by the present authors on random matrices, techniques were de-
veloped that gave simple proofs of the connection between a large class of Fredholm
determinants and differential equations [13, 14]. In this paper we show how the phi-
losophy of [3, 5, 13, 14] can be applied to study Fredholm determinants which are
associated with operators K having kernel of the form

K(x vΛ -
x + y

where
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The (finite) sum is taken over odd positive and negative integers k. The domain of
integration for the operator is (0, oo), and the function e(x) can be very general.
All that is required is that the operator be trace class for a range of values of the
tk so the Fredholm determinants are defined. The quantity of interest is

A:) . (1)

We shall show that φ satisfies the equations of the integrated mKdV hierarchy
if t\ is the space variable and t^, t5,... the time variables, and that it satisfies the
Sinh-Gordon hierarchy when t-\, £-3,... are the time variables.

To state the results precisely, the first assertion is that for n ^ 1,

dt2n+i

where D denotes d/dt\ and D~ι denotes the antiderivative which vanishes at
tx = — 00. (Observe that φ and all its derivatives vanish at t\ = —00.) This is the
integrated mKdV hierarchy of equations,

= ±_2(
dt3 dt\ \dtj '

dφ d5φ mfd2Φ\2dφ m{dΦ\2d'φ fdφ
= l 0 { ) ί 0 { ) + 6 {

etc. (In general there are constant factors on the left sides which can be removed
by changes of scale in the time variables; e.g. [1].)

To go in the other direction we introduce the inverse of the operator appearing
in (2), which is given by

dAD-ιdAD\ =l(D-ιe

2*D-ιe-2*+D-ιe-2*D-ιe2*). (3)
\ dt\ dt\ ) 2

(Precisely, this is the inverse in a suitable space of functions. See Lemma 4 below.)
We shall show that for « ^ 1 we have the Sinh-Gordon hierarchy of equations

d φ = 2-n(D~ι e2*D-χ e-2φ+D~x e~2φD~ι e2φf ^ (4)

The case n — 1 of this is equivalent to the Sinh-Gordon equation

-—%— = - sinh 26 . (5)
ot-\dt\ 2

Observe that (2) and (4) can be combined into the single statement that either
of them holds for all values of the integer n. Further observe that these results hold
independently of the function e(x) appearing in the kernel K(x,y). The function
e(x) affects the boundary conditions for (2) and (4) at tk = —oo.

That φ satisfies the integrated mKdV hierarchy was conjectured in [16], and that
it satisfies the Sinh-Gordon equation (5) was conjectured in [16] and proved in [2].
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A related identity,

p)2 O2φ i

(6)

was also conjectured in [16] and proved in [2], and will be rederived here.
We prove our results by expressing all relevant quantities in terms of inner

products

uUj := «I-K2yιEi9 Ej), Vij := {{I-K2)~lKEu Ej), (7)

where Ef(x) := x* E(x), and showing that these quantities satisfy nice differentiation
and recursion formulas. Observe that both Uij and υifj are symmetric in the indices,
since the operator K is symmetric. That these inner products are basic is expected
from earlier investigations; e.g. [3, 5, 13, 14].

II. Recursion and Differentiation Formulas

If we denote by M multiplication by the independent variable, then the form of the
kernel of K shows that

MK + KM = E®E, (8)

where in general we denote by X <g) Y the operator with kernel X(x)Y(y). Applying
this twice we see that, with brackets denoting the commutator as usual,

[M, K2] = E <g> KE - KE <g> E .

It follows immediately that if Qt := (/ - K2)~ιEi and P, := (/ - K2γxKEu then

[M, (/ - i ^ 2 ) " 1 ] = Qo ®PO-Po ® βo

Applying these operators to the function Ej gives the recursion formula

xQj(x) ~ Qj+i(x) = Qo(x)Vj-Po(x)uj , (9)

where we write Uj for Ujβ and Vj for Vj$. Taking inner products with Et gives

Ui+\j - uUj+\ = Ui Vj - Vi Uj . (10)

To obtain the analogous relations for the v^j we temporarily define

wi:=((I-K2rιKE9KEi)9

and take inner products with KEj in (9), obtaining

{MKEU Qj) - Vij+i = Vi Vj - Wj Uj .

The identity (/ - K2)~ιK2 = (I - K2)~ι -1 gives

Wi = Ui - (E, Ei)9

and by (8)

(MKEU Qj) = -(KEί+u Qj) + (E9 EΪ){E9 Qj) = -υMJ + (E9 E^uj.
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Thus we obtain
ty+l, j + Vity+i = Mf Uj -ViVj . (11)

For the differentiation formulas we use the fact

^ Uxk + yk)E(x)E(y)
2

and elementary algebra

dK 1

dtk 2 i+j=k-\

to deduce

j

that for £

dK

dt-k

>

1

2
v—\

i+j=-k-\

(12)

In the first sum we take z, j ^ 0 and in the second /, j ^ — 1. This will be our
convention throughout. (Here we use the fact that k is odd; the reader will find
other such places later.) Since, with t — tk or t-k,

we find that

dφ
— = = y_ι (~~ i ) î /
5 4 ί+7=A:-1

Notice especially the important fact

To obtain differentiation formulas for the Uij and Vij themselves we use

dtk dtk

and, by (12),

dK2 dK dK 1 „ .

to deduce

ϋΐk z i+j=k-\

From this and the fact dEi/dtk = \Ei+k we deduce from the definition (7) that

duPiq _ 1 ^ 1

dtk 2 i+j=k-\ ' 2

If we introduce Ri := (I — K2)~ιK2Ei = β — £",•, then we find similarly first

-l-(i-κ2rικ =1 Σ (-iy({

= J Σ (-lyίβ Θβy
^ /-μ/=A:—1
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and then

Otk I i+j=k-\ λ

In a completely analogous fashion, using the second part of (12), we obtain
formulas for differentiation with respect to the ί_#:

ηϊf11 = \ Σ ("1)/+1 {upjHi + vPjuq,i)+\(up-κq + uP,q-k) > 0?)
Ot-k I i+j=-k-\ I

-^r1 = ό Σ ( - 1 ) / + 1 (uP,jUq,i + υPJΌqtl)+ - (υp.Kq + υp,q-k). (18)

III. The mKdV Hierarchy

We begin by showing how to derive the first of the integrated mKdV equations,

dt3 dt\ \dtιj

This will illustrate the procedure. By (14) dφ/δt\ = wo, and we differentiate twice
more with respect to t\, using (15) and (16). We find that the quantities w0, u\, u\t\, VQ
and v\ arise. But the recursion formulas (10) and (11) allow us to express two of
these in terms of the others:

V\ = (UQ - VQ)/2, Mi i = U
2
 + Wo Ό\ - U\ Vo = U

2
 + - Wo (UQ - VQ) - U\ Vo .

2

In the end the formula becomes

$Φ _ 3 , 1 .,_ , _ , ,.

Now from (13), dφ/dt^ = 2u2 — u\t\ and by the above representation of u\t\ this
may be written

SΦ 1 3 ̂  1 2 ̂
•5— — — U Q H—wo ^o "I" w i ^0 + u2 .^^3 2 2

This gives

which is the desired equation.
The proof of the general formula (2) follows from a series of three lemmas.

Lemma 1. We have

dun d
Σ (-D'uiUj. (19)

i+j=k-\
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Proof. We begin by noting that from (15)

and, from (15), (16), (10) and (11),

dup dvp

— =uovp + up+u —=uoup. (20)

We find that the right side of (19) equals

Σ ( - 1 )l [Ui (Mo ϋ; + Wy+1) + Uj (UO Vj + W/+1)]
i+j=k-\

= 2u0 Σ (-ιyUiVj + 2 £ (-iyMl.Wy-+1.
/+y=it-i i+y=it-i

The last sum equals

W0 «jt - U\ Uk-l + W2 Uk-2 Uk-2 ^2 + Uk-\ U\ =U0Uk .

It follows that the right side of (19) equals the left side of (19).

Lemma 2. We have

2vk= Σ i-iyiUiUj-ViVj). (21)
i+j=k-\

Proof. By the recursion formulas (11),

Vk-2,2) =

V\,k-l + «O,Jt = «ifc-l WO - ϋjfc-1 t?0

Adding gives (21).

Lemma 3. We have for k ^ 1,

1

r

<22)

Proof By Lemma 1 and the differentiation formula (15) the right side of (22)
equals

i{ Σ
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and by (20) this equals

Σ (~ 1 )ι («i wo uj + w0 Vi Vj 4- «, +i fly) + «o t jt 4- w*+i - 2 w0
i+j=k-\

/+y=A:-l

This is the right side of (22). By (13) the left side equals

and by (10) this equals

(Mi t>*-l - Uk-χ Ό\) + ( M 3 ϋjt-3 - W^_3 ̂ ) + )r (uk VQ - U0 Vk)

j j
i+j=k i+j=k-\

Thus the difference between the right and left sides of (22) equals

i+y=it-i

and by Lemma 2 this equals 0.
The proof of (2) is now immediate. In fact (22) may be rewritten

(23)

and this together with (14) gives (2).

IV. The Sinh-Gordon Hierarchy

We begin by deriving (3).

Lemma 4. The operator D2 — 4 UQ D~ X UQ D is invertible in the space of smooth
functions all of whose derivatives are rapidly decreasing as t\ —> — oo, and its
inverse is given by (3).

Remark. The function φ and all the Uij and vuj belong to the space of functions
in the statement of the lemma.

Proof We have

D2 -4u0D-1 u0D = (I -4u0D~ι uoD~ι)D2 .

Both factors on the right are invertible (the Neumann series inverts the first factor)
so the operator on the left is also, and its inverse is equal to

Since (D + p)~ι = e~D~lpD~x eD~lp and D~x u0 = φ, the above is equal to

(D e D e + D e~2φD~x e2φ) .
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Lemma 5. Relation (23) holds for k ^ - 1 .

The proof of this is almost exactly the same as for k ^ 1 and so is omitted.
Lemma 5 is equivalent to the statement that for £ = 1, 3, 5,...,

or by (3),

dt-k 2

V
t-k+2

This establishes (4) by induction.
The case n = 1 of (4) is

(£>-' ^ D - 1 e-2* +D~ι e~
oί_i 2 i

which gives (keep in mind that D~ι is the antiderivative which vanishes at — oo)

(Jl—\(Jl\ VI—\ Vl\

= e2φ (1 - e~2φ) + e~2φ (e2φ - 1) = 2 sinh 2φ .

This is (5).
Finally we derive (6). By (17) we have

d2φ duo

and so we know that
1

U-\ (1 + v-i) = - sinh 2φ .
2

Now we use a special case of (11), 2ϋ_i = M^J — ι;̂ _l5 which has the more useful
form

These equations can be solved for u-\ and f_i, giving

w_i = sinh φ, v-\ = cosh φ — 1 . (24)

Now we use the fact (/ - K)~ι = (I - K2)~ι + (/ - K2)~ιK and (12) to obtain

- 2 — logdetf/ - AT) = ((/ - K)~ιE, E) = u0 + ι>0 .

Therefore by (17) and (18),

. 32

Using (24) we find that the right side equals (e2φ — l)/2, which gives (6).
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Note added in proof. After this work was completed, the authors became aware of the work
[8-11]) which also considers integral equations, similar to the ones considered here, which yield
solutions of a broad class of nonlinear evolution equations. In these papers one finds methods for
deriving differentiation formulas for quantities similar to our Uij and Vij.

Using the Miura transformation,
2 , dwo«^u0 + —

we can show that ~2 ^
- 2 logdet(7 - K) = — (u0 + υ0)

satisfies the KdV hierarchy.
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