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Abstract: We investigate the dynamics of a 2-level atom (or spin ^) coupled to a
mass-less bosonic field at positive temperature. We prove that, at small coupling, the
combined quantum system approaches thermal equilibrium. Moreover we establish
that this approach is exponentially fast in time. We first reduce the question to a
spectral problem for the Liouvillean, a self-adjoint operator naturally associated with
the system. To compute this operator, we invoke Tomita-Takesaki theory. Once this is
done we use complex deformation techniques to study its spectrum. The corresponding
zero temperature model is also reviewed and compared. From a more philosophical
point of view our results show that, contrary to the conventional wisdom, quantum
dynamics can be simpler at positive than at zero temperature.

1. Introduction

In this paper we consider the dissipative dynamics of a quantum mechanical 2-level
system - the spin - characterized by its two eigenstates of energy e± = ± 1 . More
specifically we investigate the long time behavior of the dynamics of a spin ^ allowed
to interact with a large reservoir. The reservoir is an infinitely extended gas of free,
mass-less bosons at positive temperature without Bose-Einstein condensate. We prove
that, for sufficiently small coupling, the interacting spin-boson system has strong
ergodic properties. In particular it approaches thermal equilibrium exponentially fast.
Moreover, the equilibrium state is the unique KMS state of the joint system at the
temperature of the heat bath.

The spin-boson system is a simple, yet physically acceptable model for a variety
of phenomena related to dissipative quantum tunneling. The literature on the subject is
enormous. Let us only mention the review article [LCD] as an excellent introduction
to the physical aspects of the model. Also [Al, A2, AM, FNV1, FNV2, FNV3, Dl,
D2, HS1, HS2, MA, PU, SD, SDLL, RO1, RO2] is a non-exhaustive list of related
mathematical investigations.
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The present work is largely based on results previously obtained by the authors in
[JP1]. There we have developed perturbative tools suitable for the study of quantum
systems with a discrete, possibly infinite, set of energy levels {e^}, linearly coupled to
a free heat bath at positive temperature. Unfortunately, the general discussion of such
systems tends to be technical. For this reason we prefer to restrict ourselves here to
a simple model, allowing us to give a more transparent exposition of the underlying
ideas. The adaptation of these ideas to more general situations will be presented in
a subsequent paper [JP2]. For the interested reader, we also compare the spin-boson
model at positive temperature with its zero temperature counterpart. We emphasize
that most of the questions answered in this paper are still open problems at zero
temperature.

Our argument splits in three conceptually distinct parts: First we formulate an
appropriate generalization of Koopman's Lemma to dynamical systems arising from
quantum mechanics. This allows us to reduce ergodic properties of the system to
spectral problems for a distinguished self-adjoint operator: The Liouvillean. This op-
erator is defined in abstract terms, and we must invoke Tomita-Takesaki's theory to
actually compute it. Once the Liouvillean is known, we apply complex deformation
techniques to obtain the relevant spectral information. On the technical level, one of
the main difficulties is the identification of the Liouvillean. The required results of
Tomita-Takesaki theory are readily available in the literature. The final step of the
proof boils down to an application of the results in [JP1]. An analysis of resonances
reveals the basic mechanism of thermal relaxation. In particular, Einstein's A-B law
emerges as Fermi's Golden Rule for the resonances of the Liouvillean.

Acknowledgments. This paper is part of a program suggested to us by I.M. Sigal,
to whom we are grateful. We also thank V. Bach, H. Spohn and Ph.A. Martin for
useful discussions. V.J. is grateful to J.-P. Eckmann for hospitality at the University
of Geneva, where part of this work was done, and Fonds National Suisse for financial
support. At an early stage of this work, C.-A.P. was visiting the Institute for Math-
ematics and its Applications at the University of Minnesota. Its research was also
supported by the Fonds National Suisse.

2. The Model

In this section we define the spin-boson model. We first introduce the isolated spin
and the free reservoir, and discuss their thermal equilibrium states. Recall that a state
of a quantum system is a normalized positive linear functional 3? on its algebra of
observables. A vector state is a state of the form *9^(A) = (Ψ, AΨ), for some unit
vector Ψ. More generally, a state S? is called normal if there exists a density matrix
Q, a positive trace class operator of unit trace, such that S^(A) = Ύr(ρA).

The Hubert space of the isolated spin is $)s ~ C 2. Denoting by σx, σy and
σz the usual Pauli matrices, we may choose its Hamiltonian to be Hs = σz. The
eigenenergies of the spin are e± = =b 1, and we denote the corresponding eigenstates
by χ±. Finally, observables of the spin are elements of M2, the algebra of all complex
2 x 2 matrices. At inverse temperature β, the equilibrium state of the spin is the normal
state defined by the Gibbs Ansatz,

= - L T r (exp(-/?ffs) A), (2.1)
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where Zf is a normalization factor. The zero-temperature equilibrium state is obtained
in the limit β | oo: It is the vector state corresponding to the ground state of Hs,

Jζ<*>(A) = (χ-,Aχ-). (2.2)

At vanishing density, the Hubert space of the free reservoir is the symmetric Fock
space constructed over L2(R3), which we denote by S)b (we work in the momentum
representation, thus elements of L2(R3) are always functions of the momentum k of an
individual boson). Since the bosons are non-interacting, the dynamics of the reservoir
is completely determined by the energy ω(k) of a single boson with momentum k.
This dynamics is implemented by the strongly continuous unitary group

exp (iHbt) = Γ (exp(iu t)),

which, by definition, acts on the TV-particle subspace of S)b as the TV-fold tensor
product of the one-boson propagator exp(iα t). In terms of the usual creation and
annihilation operators α*(k), α(k), the Hamiltonian Hi is given by the familiar formula

Hh = dΓ(ω) ΞΞ L ( k ) α*(k) α(k) d\.

In the sequel we restrict ourselves to the physically important case

ω(k) = |k|.

However, our method easily accommodates other dispersion laws, as long as the
bosons remain mass-less. In this case H^ has a simple eigenvalue 0 corresponding to
the Fock vacuum 4?̂ , the remaining part of its spectrum is absolutely continuous and
fills the positive real axis. The observables of the reservoir are the field operators

φ(f) = -L ί(a(k) + α*(k)) /(k) d\

π(/) = ~ ί(a(k) - α*(k)) f{k)d\
zγ2 J

which satisfy the canonical commutation relations (CCR). A mathematically more
convenient set of observables is provided by the Weyl system

where φ(f) is the self-adjoint (Segal) field operator defined by

φ(f) = -^y"(o(k)7(iθ + α*(k)/(k)) d\

for / G L2(R3). The operators W(f) are unitary on S)b^ and satisfy a disguised form
of CCR: The Weyl relation

H ) W(fγ + /2). (2.3)

The dynamics of the reservoir induces a Bogoliubov transformation

exp(iHbt) W(J) exp(-iHbt) = W(exp(-iωt)f),
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of the Weyl system.
It is a well known fact that thermal equilibrium states of extended systems arise

in the thermodynamic limit, starting with a system restricted to a finite box i c R 3 .
For such a confined system, the grand canonical ensemble yields a well defined state.
Equilibrium states of the extended system are constructed as weak-* limits of these
states as A | R3 At positive temperature, the equilibrium states obtained in this
way have a positive density i.e., an infinite number of particles: They do not fit in
the original Fock space (in more technical terms they are not normal). For practical
purposes however, it is convenient to restore the familiar Hubert space framework.
This can be achieved by an appropriate choice of the representation of CCR. Let us
briefly review some facts about such representations.

Let Σ) C L2(R3) be a dense subspace. WeyΓs algebra over Σ) is the C*- algebra
generated by the set {W(f) : / G £)}. A representation (3@,π) of this algebra is
called regular if the functions

are strongly continuous for each / G Σ). By Stone's theorem, regularity is equivalent
to the existence of a self-adjoint operator φπ(f) such that

One then refers to the φπ(f) as the field operators of the representation. A represen-
tation is called cyclic if for some Ω G 3& the set {π (W{f)) Ω : / G 2)} is total in
3^6. To each cyclic representation (3@, π, Ω) of WeyΓs algebra, we can associate a
generating functional defined by

Generating functionals of regular, cyclic representations have been characterized by
Araki and Segal:

Theorem 2.1. A map s: V —> C is the generating functional of a regular, cyclic
representation of WeyΓs algebra over Σ) if and only if the following conditions are
satisfied:
1. 3(0) = 1.
2. For each / G D the mapping λ \—» s(\f) is continuous.
3. For each finite subset {/i, /2 , . . . , fn} C Σ), and any z\,..., zn G C one has

n

Σ>(/; - ΛOexp (-ilm(fτJj)/2) ziZj > 0.

Furthermore, this representation is unique, up to unitary equivalence.

At zero chemical potential (which is appropriate for mass-less particles), and in the
absence of condensate, the thermodynamic limit leads to the following generating
functional for the infinite free Bose gas (see for example [BR2, LP or CA])

sβtf) = exp (-1- ί(l + 2p(k)) |/(k) | 2 d 3 k) , (2.4)

for / in the dense subspace Σ)/Oc C L2(R3) of functions with compactly supported
Fourier transform (i.e., localized in the position representation). In Eq. (2.4), the
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function p(k) is the equilibrium momentum distribution of the bosons, and is related
to their energy according to Planck's radiation law

xp(/J(k,)-Γ ' ">
The energy density of the boson gas is strictly positive, and satisfies the Stefan-
Boltzmann relation

ω(k)p(k)d3k(xβ~4. (2.6)
/ •

Let us denote by <y&ιoc the Weyl algebra over Dj o c . Since our system has positive
density, this is a natural minimal set of observables. By Theorem 2.1, the above func-
tional (2.4) corresponds to a regular, cyclic representation (,9^t,πAW,Ψt) of ^ιoc-
This representation has been explicitly constructed by Araki and Woods (see [AW1,
BR2, CH or LP]), and can described as follows: J ^ , is the space of all Hilbert-
Schmidt operators on S)b equipped with the inner product

). (2.7)

The representant of W(f) acts according to

πAW(W(f)):X -+ W ((1 + p)ι/2 f) XW [p1'1 f) ,

for any X e 3@h* Finally the cyclic vector is the projection on the Fock vacuum

Ψb = Ωb(Ωbr).

One easily verifies that the state

reproduces the functional (2.4), and that the free dynamics has a unitary implemen-
tation in the space S@h

πAW (exp(iHbt)A cxp(-iHbt)) = exp(iHBt)πAW(A) exp(-iHBt). (2.8)

The generator of this group can be explicitly written as

]. (2.9)

In the sequel, we will always work in the Araki-Woods representation. Consequently
we shall give to the representants πAW(A) the status of observables of the boson gas
at positive temperature. For reasons which will soon become clear, it is convenient
to consider also the von Neumann algebra generated by these representants. Recall
that a C*- algebra of operators on a Hubert space S) is a von Neumann algebra if
it is closed in the weak operator topology. Let ,ί& be a set of bounded operators on
$). We denote by 33' its commutant i.e., the set of bounded operators commuting
with all elements of 3Θ. If & is closed under hermitian conjugation, M' is a von
Neumann algebra. Moreover the double commutant J^n is the smallest von Neumann
algebra containing .M (see [BR1] or [SA]). We define the algebra of observables of
the reservoir at positive temperature by

mb = πAW LAloc)" . (2.10)
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Remark 1. The map Φ ® Ψ ι—> Φ(Ψ, •) provides an isomorphism between fib <& fib
and S@b- In the sequel we shall identify these two spaces without further mention.
For example, the formulae

HB = Hb®I-I®Hb,

*AW<WU)) = W ((1+ p)1'1 f) ® W (p1/2 /) ,

directly follow from Eq. (2.9) under this identification.
In Eq. (2.4), the limit β ] oc yields the generating functional

5°°(/) Ξ exp ̂ - i ί\f(k)\2d3k) = (Ωb,W(f)Ωb),

which extends to arbitrary / G L2(R3). Thus, as expected, we recover the original
Fock space representation and, here again, the zero-temperature equilibrium state is
the vector state associated with the ground state of the system. In this limiting case
the density of the gas vanishes (see (2.5) and (2.6)), and a natural set of observables
is the full Weyl algebra *J& over L2(R3). Note that this C*- algebra is irreducible i.e.,
κ&" - 56Xfib) the space of all bounded linear operators on $)b.

We are now ready to define the spin-boson model. At zero temperature, the Hubert
space of the joint system is

fi=fis

and its free Hamiltonian is

The coupling of the two subsystems is achieved by addition of an interaction term,
namely

Hx = HQ + \Q®φ{a), (2.11)

where λ is a real constant, Q = σx, and a G L2(R3). If

( l + t j - 1 / 2 ) α e L 2 ( R 3 ) , (2.12)

then, by standard estimates (see [GJ], Sect. 1.2), the interaction term Q 0 φ(ά) is

infinitesimally small with respect to Ho. Thus the operator defined by Eq. (2.11) is

essentially self-adjoint on fis <g) D(Hb). For simplicity we will also denote by H\ its

self-adjoint extension. The dynamics of the model is given by

fχi A ι-+ Qxp(iHχt)A exp(-iHχt).

Generally, the algebra M 2 0 ^ is not invariant under fλ. From the analytical point of
view, the situation is even worse since fλ is not continuous in the natural topology of
this algebra. To obtain a decent dynamics we must extend the set of observables to the
enveloping von Neumann algebra which, by the last remark of the previous paragraph,
is S£{fi). Since the function 11-> f{(A) is continuous in the weak operator topology,
Hypothesis (2.12) ensures that the spin-boson model defines a W*- dynamical system
J λ) for any λ G R. Under the stronger condition

(l+ω~ι)aeL2(R3), (2.13)
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the spectrum of the spin-boson Hamiltonian (2.11) is given by

and e_(λ) is a simple eigenvalue (see e.g. [SP]). We denote the associated normalized
eigenvector by Ψχ The equilibrium state of the spin-boson system at zero temperature
is, by definition, the vector-state defined by

S%°°(A) = (Ψχ,AΦχ). (2.14)

Although very natural, this definition is ultimately justified by the fact that, on M2 0
^SιOc, the state S^°° is the weak*-limit as β | oo, of the thermal equilibrium states
&f to be defined below (see [SP]).

At positive temperature, the Hubert space of the joint system is 9)s 0 J^>, and
its free dynamics is generated by the Hamiltonian

Denoting by φAW (/) the field operators of the Araki-Woods representation, we define
the Hamiltonian of the interacting system by

Hx = H* + \Q®φAW(a). (2.15)

From the physical point of view, this is just a rephrasing of Definition (2.11) in a
different representation. However, in a more mathematical perspective, the existence
of an intertwining relation of the type (2.8) between (2.11) and (2.15) is a difficult
question which, in our opinion, requires more information on the thermodynamic
limit A T R3 (see for example the discussion in Sect. 5.2.5 of [BR2] or Sect. V.1.4
of [HA]). Since this problem is of little physical relevance we will not pay more
attention to it and accept (2.15) as a definition of the model at positive temperature.

In [JP1] we proved that H\ is essentially self-adjoint on $)s ® D(Hb) ® D(Hb)
for any λ G R, provided

ι 2 3

Again we shall use the same symbol to denote its self-adjoint extension. Note that in
this case the interaction Q<8>φAW(a) is not i70-bounded. Under the above assumption,
it is well known that

exp(-iHχt),

maps the von Neumann algebra

aπ = M 2 ® m h = (M2 ® πAW (Λ1OC))" ,

into itself (see [FNV1] or [SP] for example, but also Sect. 6). Since on the other hand
the function 1ι-» Tχ(A) is weakly continuous (in fact it is continuous in the σ-strong *
topology), the spin-boson model at positive temperature also defines a W*- dynamical
system (9)t, τ\). Thermal equilibrium states of such systems are characterized by the
KMS condition.

Definition 2.2. Let (tft, r) be aW*- dynamical system, and β > 0. A state 3? on VI
is a (r, β)-KMS state if it satisfies:
1. S^ is normal
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2. For any A, B G UT there exists a function FA,B(Z)> analytic in the strip

{z :0<Im(X) < β],

continuous on its closure, and satisfying the KMS boundary conditions

for t G R.

The following well known fact, first proved in [FNV1], will naturally follow from
our discussion in Sect. 6 (see Theorem 6.1).

Proposition 2.3. For any λ G R and β > 0, there exists a unique (τ\, β)-KMS state

Sβ

x on m.

Remark 2. In the sequel we refer to λ as the friction constant, and to a as the form
factor.

3. Results

According to the previous section we shall, from now on, assume that

(HI) The form factor a in Eq. (2.11) and (2.15) satisfies

ι)a G L2(R3).

For technical reasons related to the use of complex deformation techniques in [JPl],
we also need a regularity assumption on the form factor a. To state this hypothesis
we need some additional notation. If f) is a Hubert space, we denote by H2(δ, \j) the
Hardy class of rj-valued functions on the strip

= {z: \lm(z)\ <δ}.

The Hubert space H2(δ, \)) consists of all analytic functions /: &(δ) —> f) satisfying

/•OO

WfWHHδw Ξ S UP / \\f{x + ia)\\\dx < oo.
|α|<<5 J — oo

Let S2 denote the unit sphere in R3. Given a function / on R3, we define a new

function / on R x S2 by the formula

-\iϊ](ψ ^<0 (3.1)
s[/zf(sk) if s > 0.

Our central technical hypothesis is:

(H2) There exists 0 < δ < 2π/β such that

ά£H2(δ,L2(S2)).



Ergodic Properties of the Spin-Boson System 635

Finally we must assume that the spin effectively couples to the reservoir at Bohr's
frequency Δω = \e+ — e_ | =2,

(H3) / \a(2k)\2 dσ(k) > 0,

where dσ is the surface measure on S2.
The most severe restriction on the infrared behavior of a is Condition (HI) which

requires α(k) = 0 ( 1 ^ ) as k —> 0 with η > —1/2. Conditions (H1)-(H3) are satis-
fied, for example, by the function α(k) = yφkfexp(—|k|2). More general conditions
will be discussed in [JP2]. We are now ready to formulate the problem of return to
equilibrium. Our discussion is motivated by the work of Robinson ([R01, RO2]).

Definition 3.1. The spin-boson system at zero temperature has the property of return
to equilibrium if

\\m^(f{{A))=^x^(A), (3.2)

for any normal state 5^ and any A e Mi <g> *y&\oc.

Definition 3.2. The spin-boson system at positive temperature has the property of
return to equilibrium if

lim ^{τ{(A))=^χ

β{A\ (3.3)
|t|->oo

for any normal state 5^ and i e l .

We remark that, whenever Relation (3.2) or (3.3) holds, one would also like to know
the rate at which the limit is achieved.

In the zero-temperature case, the question of return to equilibrium is still an open
and, we believe, an outstanding problem of mathematical physics. We will briefly
discuss this problem and related difficulties below. For additional information we
refer the reader to [HE, SC and HS1].

Let us now state the main results of this paper which, in view of the difficulties
encountered in the zero-temperature case, come perhaps as a surprise.

Theorem 3.3. Suppose that Hypotheses (H1)-(H3) hold. Then, for β > 0, there
exists a constant £(β) > 0, depending only on the form factor a, and such that the
spin-boson system has the property of return to equilibrium for any real λ satisfying
0 < |λ| < ί(β).

Remark 1. An immediate consequence of this theorem is that, for any density matrix
p on the space S)s <S> 3@b and any I G M2, we have

)} Ίr(exp(-βHs))

For a related discussion in the framework of master equations, see [Dl and D3], Eq.
5.13.

Remark 2. We can recover the zero-temperature model in the limit β | oo. Indeed,

the partial trace of any normal state 3? of the positive temperature model over the

third space in i^ s (g) iθ50^ f e i sa normal state S? of the zero temperature model. In
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fact any such state can be obtained in this way. Moreover one can show that for any
normal state S?,

lim Sf (X ® τrAW(W(f))) = Si°° (X ® W(J)),
βίoo

lim S? {τi(X ® πAW(W(f)))) = ̂ {f\{X <g> W(f))),
Pΐoo

hold for arbitrary X G Mi and / G Ί)ιoc. However this limit is quite singular and, by
the best estimate we have, the constant of Theorem 3.3 vanishes like £{β) = O(β~ι)
as β t oo. Thus, our result does not yield any new information concerning the zero-
temperature spin-boson system.

Theorem 3.4. Suppose that Hypotheses (H1)-(H3) hold and let ί(β) be as in Theorem
3.3. There exist a norm dense set of normal states J^and a strongly dense ̂ -algebra
9Ko C ΐΰl, both independent of β, and such that for |λ| < l(β\ 3? G Aζand A G DJlo,
one has

({) f\ (λ)|ί| (3.4)

for some C(S^,A) independent of λ and β. The function η{X) is strictly positive for
0 < |λ| < £(β), and satisfies

7(λ) = λ2 — / \a(2k)\2 dσ(k) + O(λ4),
ύiβ JS2

as λ -> 0.

Remark 3. 7(λ) is the negative imaginary part of the complex resonance of the
Liouvillean which is closest to the real axis (see Sect. 6 for details).

Remark 4. For any I E M 2 ) we have X ® / G SDίo

The proofs will be presented in Sect. 6. We now turn to the promised discussion
of the mechanisms behind thermal relaxation. To emphasize the physical content of
the model, we shall use its atom-photon interpretation (see e.g., [CDG]). We discuss
first the zero-temperature case. The relevant physical process is radiative decay via
spontaneous emission. The atom "radiates" its energy into the vacuum. As the emitted
photons propagate towards infinity, the interacting system dissipates to its lowest
energy state: The ground state. We discuss the spectral consequences of this process
in some detail in the sequel.

The spectrum of the uncoupled Hamiltonian Ho is given by

σsc(Ho) = 0,

σpp(H0) = {- l ,+l} .

As the coupling is "switched on," the lowest eigenvalue moves along the real axis
to a new location e_(λ). It remains simple, merely experiencing what is called the
Lamb shift. The fate of the other eigenvalue is different: Since it is embedded in
the continuous spectrum we expect it to turn into a resonance, in some appropriate
sense. This scenario is still a conjecture, nevertheless there exists a well developed
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formal method, going under the name time-dependent perturbation theory, which has
been used since the 20's to compute the coefficients in the formal Taylor expansion
of e+(λ) (see [DI, HE and SC]). The imaginary part of the first non-trivial term in
this expansion is generally known as Fermi's Golden Rule. For the model (2.11), this
method yields

Im (e+(λ)) = -Λ24τr / \a(2k)\2 dσ(k) + <9(λ4).
Js*

To second order, this quantity is the probability per unit time for the atom to sponta-
neously emit a photon while making a transition χ+ —» χ— (see [WW and HE] for
more details).

If the above picture is not qualitatively altered by re-absorption and other higher
order processes, we expect the following spectrum

= [e_(λ),oo[,

σsc(Hx) = 0, (3.5)

σPP(H\) = {e_(λ)},

the eigenvalue e_(λ) being simple. From this and the fact that

(i(Hλ - e_(λ))ί)

an elementary property of absolutely continuous spectrum ([RS], Sect. 3, Lemma 2),
would imply the mixing property of the spin-boson system at zero-temperature:

lim S^T {Aτl(B)) = S^(A\9^{B\ (3.6)
|ί|-κx>

for any observables A,BE M2 ® *.s&ιOc One easily shows that (3.2) implies (3.6),
but the opposite is not true: At zero-temperature, mixing is strictly weaker than re-
turn to equilibrium. We shall see in Sect. 4 that the situation is different at positive
temperature.

In our opinion, the first step towards a proof of return to equilibrium at zero
temperature should be a derivation of (3.5), or at least of the mixing property (3.6).
However, in view of the previous discussion, we believe that there is no natural way
to map this question into a purely spectral problem, and that a new idea is needed.

Important advances in this direction have been recently made in [HS1, HS2]. In the
first paper, Hiibner and Spohn develop a scattering theory for the model. In particular,
they show that return to equilibrium is a consequence of asymptotic completeness.
The second paper presents an adaptation of Mourre theory to the massive spin-boson
model at zero temperature. It would be very interesting to extend these results to the
mass-less model discussed here.

When this work was finished, we learned that Bach, Frolich and Sigal announced
a result which, specialized to the model (2.11), yields (3.5) under some technical
assumptions on a, e.g. dilation analyticity ([BFS]). In addition, their results in essence
justify the resonance picture sketched above.

In the remaining part of this section we briefly discuss the situation at positive
temperature. Here two elementary processes are responsible for thermal relaxation:
Absorption and induced emission. The atom continuously exchanges energy with the
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radiation field. The resulting thermal fluctuations drive the system towards equilib-
rium. The operator Ho has the following spectrum:

σac(H0) = R,

σsc(H0) = 0,

Unlike in the zero-temperature case, we expect here both eigenvalues to turn into
resonances as a result of the coupling. This was rigorously established by the authors
in [JP1], where Theorem 2.2 translates into the following statement.

Theorem 3.5. Suppose that Hypotheses (H1)-(H3) hold. Then there exists a dense
subspace W C S)s ® 3@b and, for 0 < η < δ, a constant Λ(η) > 0 such that if
|λ| < Λ(η) and Φ, Φ e &, the functions

z^{Φ,{Hx-zTιΨ), (3.7)

have a meromorphic continuation from the upper half-plane onto the region

@' ΞΞ {z : ImO) > -η}.

On &, the functions (3.7) are analytic except for two simple poles located at E±(λ).
The functions E±(λ) are analytic for |λ| < (̂77). Furthermore the first coefficient in
the Taylor expansion

is given by

^ @ ί \a(2k)\2dσφ),ί
Js2

/RxS2

where PV stands for Cauchy 's principal value.

As an immediate consequence we obtain that, for small non-zero λ,

σac(Hχ) = R,

σsc(Hχ) = 0,

σpp(Hλ) = 0.

Moreover we remark that the imaginary part of E±(λ) is related to the radiative
lifetime of the corresponding atomic state χ±. In second order perturbation theory,
only processes in which a single photon is either emitted or absorbed are taken into
account. In this framework, the coefficients Γ± are related to Einstein's A-B law ([E],
see also [PA and P]). We refer to [JP1] for a detailed discussion.

The spectral analysis of Hx is only a first step toward the understanding of the
long time behavior of the spin-boson model, and the proof of (3.3) requires a new
ingredient. In the next section, we show how to exploit the rich algebraic structure of
the positive temperature model to reformulate the question of return to equilibrium
as a spectral problem.
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4. Quantum Koopmanism

The spectral approach to classical dynamics is based on Koopman's lemma: Let
(M, μ, φ) be a classical dynamical system i.e., M a measure space, μ a probability
measure on M and 11—• <p* a measurable group of measure preserving transformations
of M. If L2(M, dμ) is separable, then / H^ /O<^* defines a strongly continuous unitary
group with generator L. The ergodic properties of the system can be characterized by
the spectrum of L (see [CFS] for more details). Note that if the system is Hamiltonian,
L is nothing but the familiar Liouville operator.

Our aim is to extend Koopman's framework to quantum mechanics. Let 97ΐ be a
von Neumann algebra. Recall that a state S? on 971 is faithful if J/%4* A) = 0 implies
A = 0. We shall call (971, S?, r) a quantum dynamical system if t ι-> τι is a weakly
continuous group of automorphisms of 971, and Sf a faithful normal τ-invariant state.
We further denote by (3@, π, Ω) the canonical cyclic representation of 971 (see [BR1],
Sect. 2.3.3) associated to S?. The two conditions

π(r\A)) = exp(iLt) π(A) exp(-iLt),

0

uniquely determine a self-adjoint operator L on 3@. In analogy with the classical case,
we call L the Liouvillean of the system (see [RO1], where L is called equilibrium
Hamiltonian). Note that the second condition in (4.1) is crucial: Many operators satisfy
the first condition. In fact if Lo is such an operator, so is Lo + V for any self-adjoint

v e πoπy.
It is a simple exercise to show that if (971,^, r) is the W*-dynamical system

naturally associated to (M, μ, φ), the Liouvillean reduces to the familiar Koopman
operator. We will show that the spectral characterizations of ergodic properties carry
over to the quantum case. To formulate our result, we need the following definitions.

Definition 4.1. Let (9Jt,J/^,τ) be a quantum dynamical system, and denote by JV"
the set of normal states on 97ΐ.
7. (971, S?, T) is ergodic if, for any A G 971 and S?1 G ./K, one has

T->oo IT J_τ

2. It is weakly mixing if, for any A, B G 971, one has

1 ίτ

τ-^oo 2T J_τ

3. It is mixing if for any A, B G 971,

lim S?(τι

4. It returns to equilibrium if for any A G 97ΐ and 5^' G JV*, one has

lim 5^\
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Theorem 4.2. Let (5H, S^, r) be a quantum dynamical system, (S@, π, i?) /to cyc//c
representation and L its Liouvillean. Denote also by PQ the orthogonal projection of
3$ along the cyclic vector Ω. Then,
1. (9JΪ, 5^, τ) is ergodic if and only ifO is a simple eigenvalue of L.
2. It is weakly mixing if and only if L has purely continuous spectrum, except for the

simple eigenvalue 0.
3. It is mixing if and only if

w - lim exp(-iLt) = PQ. (4.2)

4. It returns to equilibrium if and only if it is mixing.

Proof We start with some basic facts (see [BR1], Sect. 2.3.1, 2.4.4 and 2.5.1). Let
9ΐ be a von Neumann algebra on a Hubert space $). A vector Ψ G S) is called cyclic
for 91 if ?f\Ψ is dense in β. It is called separating for 9ΐ if A e 9ΐ and AΨ = 0
implies A = 0. A vector is separating for 9ΐ if and only if it is cyclic for 9V. A
representation η of 9ΐ is called faithful if it is a *-isomorphism between V\ and 7/(91).
A representation η is faithful if and only if η{A) = 0 implies A = 0. A representation
is faithful if and only if it satisfies ||rK^)|| = ll^ll f° r a n v A e VI. Finally if η is a
faithful representation of 91 in the Hubert space J ^ , then a state S^ on 9ΐ is normal
if and only if there exists a density matrix p on J^ 7 such that <9^(A) - Tr(pη(A)).

The proof of Theorem 4.2 is based on the following argument: The cyclic rep-
resentation π inherits the faithfulness of S^, therefore Ω is not only cyclic but also
separating for π(9K). It follows that both π(ffl)Ω and π(M)Ώ are dense in 3@. Let
us denote by J\^ the set of vector states arising from vectors in π(ΐfft)' Ω. The set
of finite convex linear combinations of elements of Λ^ is norm dense in JV\ thus
we can replace ,/K by Aξ'm Definition 4.1. Now, for 3?1 G Λζ, there exists an
operator C G π(M)' such that

5^\τ\A)) - 3*(A) = (CΩ, π{τ\A))CΩ) - (β, π(A)Ω)

= (β, π(r*(A))σ*Cβ) - (β, τr(A)β)(β, C*Cβ) (4.3)

= (π(A*)β, exp(-iLί)(/ - P ^ ) ^ * ^ ^ ) ,

for any A G 9JI. In the same way we can write

S?{τ\A)E) - ^(A)^(B) = (β, π(τ\A)B)Ω) - (β, π(A)β)(β, π(B)β)

= (π(A*)β, exp(-iLί)(7 - PΩ)π(B)Ω),

for any A,BE 9Jΐ. Von Neumann's ergodic theorem (see [CFS] for example) applied
to (4.3) and the density of π(9Jt)β and π(DJl)Ώ yield a proof of (i). In a completely
similar way, RAGE theorem (see [RS], Theorem XI. 115) applied to (4.4) and the
density of π(DJΐ)Ω prove (ii). By (4.4), assertion (iii) is an immediate consequence
of the density of π(DΆ)Ω. Finally, using (iii), we reduce the proof of assertion (iv) to
the equivalence of return to equilibrium with (4.2). This follows directly from (4.3),
the density of π(9Jl)β and π(ffl)Ή, and the fact that an arbitrary P e τr(9K)' is a
linear combination of positive operators. •

As in the classical case, one has the

Corollary 4.3. If the Liouvillean L of a quantum dynamical system has purely ab-
solutely continuous spectrum, except for the simple eigenvalue 0, then this system is
mixing.
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Remark 1. Let (9Jt, r) be a W*- dynamical system. Any (r, /?)-KMS state S^β is
faithful, normal and r-invariant (see [BR2], Sect. 5.3.1). It follows that (SDt, 5?β, r) is
a quantum dynamical system. This contrasts with the zero temperature case: At zero
temperature an equilibrium state (ground state) generally fails to be faithful. The loss
of faithfulness in the limit β | oo is the source of one of the previously mentioned
difficulties in the zero temperature spin-boson model: There is no Koopman Lemma
at zero temperature, hence no spectral characterization of the dynamics. This is not a
quantum phenomenon, the problem already exists in the classical description.

5. Modular Theory

In this section we restrict ourselves to quantum dynamical systems of the form
(SEttjiS^r), where 3?β is a (τ,/?)-KMS state. We show how Tomita-Takesaki's
theory relates the Liouvillean of the system to its modular structure, and how this
fact naturally leads to multiplicative and additive perturbation theory of the Liouvil-
lean. We start with a brief review of the basic construction leading to modular theory.
For a more detailed exposition from the standpoint of mathematical physics we refer
the reader to [AR1 and BR1,BR2].

Let VI be a von Neumann algebra on a Hubert space jo, and Ψ e S) a separating
cyclic vector. The map

AΦ^A*Ψ for Ae% (5.1)

determines a closed, densely defined, anti-linear operator S on $). Its polar decompo-
sition

S = JΔι/2, (5.2)

defines the modular operator Λ and the modular conjugation J of the pair (ϋΐ, Ψ).
The fundamental theorem of Tomita and Takesaki states that

JΨ = Ψ, JVIJ = Ή', (5.3)

and

ΛιtΨ = Φ, ΔιtmΔ-ιt = % (5.4)

for all t e R.
To make the connection with the quantum dynamical system (9Jt,*5^,τ) note

that, according to the previous section, the canonical cyclic representation {^6\ π, Ω)
associated with S^β is faithful. Thus Ω is a separating cyclic vector for ττ(9Jt), and
we can apply the above construction to the pair (τr(97t), Ω). By a slight abuse of
language, we shall say that the operators J and A obtained in this way are the
modular conjugation and modular operator of the system (971,S^@,T). It follows
from Tomita-Takesaki's theorem that the formula

defines an anti-linear representation of DJft on the commutant π(9K)y'. We shall see
that this dual representation ([AW, HHW]) plays a fundamental role in our problem.
Another immediate consequence of Tomita-Takesaki's theorem and of Takesaki's
characterization of the modular group Λ%t (Theorem 5.3.10 in [BR2]) is
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Proposition 5.1. Let (9#, J/^3, r) be a quantum dynamical system, and (β@, TΓ, Ω) its
cyclic representation. Assume that S^^ is a (r, β)-KMS state. Then the Liouvillean L
of the system is related to its modular operator A by the formula

A = exp(-/3L).

The modular structure enjoys very simple covariance properties under unitary trans-
formation (inner automorphisms). In particular the spectrum of the Liouvillean is
invariant under such a transformation.

Lemma 5.2. Let ( 9 J ί , ^ , r ) be a quantum dynamical system, (J^,τr,i?) its cyclic
representation, L its Liouvillean and J its modular conjugation. Furthermore let V
be a unitary element ofDJl, and denote by 7 the associated inner automorphism ofΐfll,
i.e.,

for any A G 9H. To V we associate the unitary operator

on 3$. Then (9Π, S? o 7 , 7 " 1 o r o 7) is a quantum dynamical system.
1. Its cyclic representation is given by (β@, TΓ, UΩ).
2. Its Liouvillean is ULU*.
3. Its modular conjugation is again J.

This is again a simple consequence of Tomita-Takesaki's theorem, and the proof
will be omitted. We end this section with a powerful result which describes how the
modular structure is altered by a small perturbation of the dynamics. It is an immediate
rephrasing of a well known theorem of Araki [AR2] (see also [BR2], Theorem 5.4.4
and the remarks after it).

Theorem 5.3. Let (9Π, S^^, τ) be a quantum dynamical system, (S@, TΓ, Ω) its cyclic
representation, L its Liouvillean, and J its modular conjugation. Assume that S^^ is
the unique (r, β)-KMS state ofDJl. Then, for any self-adjoint V G SDΐ, the formula

rlr(A) ΞΞ π~ι (exp(i (L + π(V))t)π(A) exp(-z (L + π(V))t)) ,

defines a W*- dynamical system on DJl. Furthermore,

I. Ω G D(txp(—β(L + π(V))/2)), and the vector state 5^ associated with

n _

is the unique (rv, β)-KMS state ofΐffl.

2. The cyclic representation of the perturbed system (9H, S^r\τy) is (*9@, TΓ, Ωy).

3. Its Liouvillean is Ly = L + π(V) - π*(V).
4. Its modular conjugation is again J.

We are now fully equipped to proceed with the proof of our main result.
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6. Proofs of Theorem 3.3 and Theorem 3.4

As a warm up, let us describe in detail the modular structure of the isolated spin at
inverse temperature β. Recall that the observable algebra is $Jls = M2. Since it is
a factor (i.e., its center 9# s Π 3Ά8 is trivial), the Gibbs state 9?$ given in Eq. (2.1)
is the unique KMS state of the system (see [BR2], Theorem 5.3.29). We denote by
(β^s, Ks^s) the corresponding canonical cyclic representation of £Dΐs which, accord-
ing to the GNS construction, can be realized in the following way: The Hubert space
is

&ga = M 2 ,

with the familiar inner product

(X,Y) = Tr(X*Y). (6.1)

The representant πs(A) acts by left multiplication i.e., for any A <E 9Jls and X e <9&s,

πs(A): X ^ AX.

The unit vector

4 exp(-/?ife/2),

is obviously cyclic and separating for τrs(9Ks), and satisfies

Thus there is a unique self-adjoint operator Ls on 3$s such that

πs(txp(itHs)A exp(—itHs)) = exp(itLs)πs(A) exp(—itLs),

for A G 9ΠS, and

LSΨS = 0.

One easily checks that the operator defined by

has the required properties, and therefore is the Liouvillean of the system. It follows
from Proposition 5.1 that the modular operator of the pair (π s(9Jt s), Ωs) is given by

Δs = exp(-βLs):X^ cxp(-βHs)X exp(βHs).

Going back to the definitions (5.1), (5.2), its modular conjugation is immediately
identified as

from which we conclude that

πl(A):X H-+ XA\

Along the same line, we shall now describe the modular structure of the isolated
boson gas at inverse temperature β. Recall that the algebra of observables is 9Jt& =
πAW(<s&ιoc)", where πAW is the Araki-Woods representation corresponding to the
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equilibrium state Sζ^. By construction, the cyclic representation of the reservoir at
thermal equilibrium is G^&,7Γ&,Φ&), where

nb(A) = A.

As in the case of the isolated spin, it is straightforward to identify the Liouvillean as
the operator on S@h defined by

Note that, in this case, the Liouvillean is identical with the original Hamiltonian HB.
Proceeding as before we can write down the modular operator of the pair (πb(9Xlb), $i),

Δb = exp(-βLb):X^ exp(-βHb)X exp(βHb).

Using Definitions (5.1) and (5.2), we see that the modular conjugation Jb is charac-
terized by

Jb txp{-βHb/2)W (y/ΪTpή \Ω)(Ω\w(yϊή txp{βHb/2) =

Since exp(—βH(,/2) - Γ(exp(—βω/2)), a well known property of second quantized
contractions (see [SI], Sect. 1.4) gives

exp(-βHb/2)W(f)Ω = e x p ( - ^ (/, (l - e " ^ ) f)λ W (exp(-βω/2)f) Ω. (6.2)

If / G D(exp(βω/2)), it follows from this formula that W(f) Ω e D(exp(βHb/2)),
and

exp{βHb/2) W(f) Ω - exp Q (/, (tβω - l) f)\ W (exp(βω/2)f) Ω. (6.3)

Inserting (6.2) and (6.3) in the above characterization of Jb leads to

y \Ω)(Ω\w(λfpή\

from which it becomes apparent that

Jb:X ^ X*.

The dual representation is given by

in particular

From this, a simple calculation shows that
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W(f)X,

W XW(f\

and since ΐttlr

b = πfoSttfc), the irreducibility of the Fock representation allows us to
conclude that Mb V 97ζ = SZ{S%ύ Hence we recover the well known facts that DJlb
is a factor and that S^ζ^ is the the unique KMS state of the isolated boson gas at
inverse temperature β.

We can now describe the modular structure of the combined spin-boson system.
In the absence of interaction i.e., when λ = 0, the state

is the unique (τ0, /?)-KMS state on 971 = ΐΰls <8> 97t&. The quantum dynamical system

o) has a canonical cyclic representation (<9$,π,Ψ) defined by

7Γ = 7Γ S (8) TΓfr,

7Γ« = π« (g) πjj,

^ = ̂ s (8) Φ&.

The vector Ψ is cyclic and separating for π(SOt), and the corresponding modular
operator and modular conjugation are given by

J = Js<£) Jb.

Finally the Liouvillean is
Lo = Ls 0 / + / 0 L 6 .

To obtain the modular structure of the coupled system, we would like to follow
the perturbative approach of Theorem 5.3. This is not directly possible, due to the
unboundedness of the coupling term Q®φAW(oί). However, the following twist avoids
this complication: Define

V\ = exp (iλ Q (8) φAW (ia/ω)) .

One easily checks that Hypotheses (H1)-(H2) imply a/ω G D(ω~1/2), from which we
can conclude that V\ G SPt. Let us denote by ηχ the corresponding inner automorphism
of SDΐ. Using WeyΓs relation (2.3), an explicit calculation shows that

where
ξ{(A) = εxp(i(Ho + Tx)t) A exp(

and T\ is the self-adjoint element of 9Jt given by

Tλ = 7λ (σ2 ®I)-σz®I.

Since ξ0 = τo> we know from the previous paragraphs that (9K, ̂ / 3 , ξo) is a quantum
dynamical system, and that 5 ^ is the unique (ξo,/?)-KMS state. One further checks
that
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= exp(i(L0 + π(Tλ))ί) π(A) exp(-i(L0 + τr(Γλ))t)

implements the dynamics in the cyclic representation. At this point we are ready to
apply Theorem 5.3, which shows that ξχ defines a quantum dynamical system with
unique KMS state a inverse temperature β. The Liouvillean of this system is given

Applying now Lemma 5.2, we conclude that τ\ also has a unique KMS state

and that the Liouvillean of (9Jl,^J/3, τ\) is given by

Lχ = π(V)J(V)Lλπ(V*)τr*(V*).

This formula can be explicitly evaluated to obtain

L λ = Lo + λπs(Q) <8> <PAW(OL) - λπJ(Q) <8> φAW(a), (6.4)

where φAW denotes the field operator of the dual Araki-Woods representation ττ{J i.e.,

For calculational puφoses, let us develop a more explicit formula. Using the tensor
product realizations 3@s = S)s 0 S)s and 3@b = S)b Θ î 6» w e c a n write

L λ = L s 0 / + / <g> L 6 + λ(Q Θ /) (g) (^ΛW (α) λ(J (8) Q) 0 φ

with

(α) - λ(J (8) Q) 0 φAW (a)

Lh = Hb®I-I®Hb,

and
\l/2 T

φAW(a) = φ(pl/2a) ® L + L 0 φ{{\ + ρ)l/2ά).

We summarize the above discussion in

Theorem 6.1. Let (3%, π, Ω) be the cyclic representation of the non-interacting spin-

boson system (9K, S% , To) at inverse temperature β < oo. For αnj λ G R ί/î re exists

a cyclic and separating vector Ψχ G S@ such that

is the unique (τ\, β)-KMS state oftyfl. Furthermore the Liouvillean of the interacting
spin-boson system is given by Eq. (6.4).

Theorem 4.2 reformulates the problem of return to equilibrium as a spectral problem
for the operator Lχ. Note that LQ has the following spectrum:

σac(Lθ) = R,

σSc(L0) = 0,

σPP(L0) = {-2,0,2}.
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Clearly, ±2 are simple eigenvalues with eigenvectors χ d= ®χ =f ®Φb, while 0 is a
twofold degenerate eigenvalue with eigenvectors χ ± 0 χ ± 0 ^ . When the interaction
term is "switched on," one naturally expects all these eigenvalues to "turn into res-
onances," except for 0 which must remain an eigenvalue. The precise way in which
the degenerate eigenvalue 0 splits into resonance and eigenvalue is the content of
Einstein's A-B law.

The method developed in [JP1] for the analysis of the spectrum of the operator Hχ
immediately applies to Lχ. The reason is the following: The fundamental tool in [JP1]
is a spectral deformation of Hχ. This deformation is induced by a complex translation
of the variable s in the representation of <9@b as the Fock space over L2(R x S2, ds dσ).
In this representation, the interaction term in Hχ is given by ([JP1], Theorem 3.1 and
Eq. 3.6)

Hj = Q0 φ(aβ),

where φ is the Segal field operator of the corresponding Fock representation of CCR,
and

as a consequence of Hypothesis (H2). A simple calculation shows that the corre-
sponding term in Lχ is

Li = (Q 0 /) 0 φ(aβ) - (/ 0 Q) 0 φ(exp(-βs/2)aβ),

which clearly enjoys similar analyticity properties. One can show that a complex
translation moves the essential spectrum away from the real axis and reveals the
resonances (see Fig. 1). These resonances can be computed by the familiar Rayleigh-
Schrodinger series. The radius of convergence of these perturbative expansions is
essentially determined by the singularities of the function aβ. Hypothesis (H3) further
ensures that, for small λ, the resonances have a positive width.

-2 0 2

o ((§))

2π/β

Fig. 1. The eigenvalues of LQ (white discs) and the resonances of Lχ (black discs). The complex translation
moves the essential spectrum of the Liouvillean into the shaded area. The first singularity of the function
OLβ in the lower half-plane lies on the dotted line
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Recall that Γ± and Π± were defined in Theorem 3.5. We further set

Then a simple adaptation of Theorem 2.2 and Proposition 4.7 in [JP1] gives

Theorem 6.2. Suppose that Hypotheses (H1)-(H2) are satisfied. Then there exists a
dense subspace <§ί C 3@ and, for each η E]0, δ[, a constant Λ(η) > 0 such that for
λ E] - Λ(η), Λ(η)[ and Φ, Ψ e &, the functions

z^(Φ,(Lx-zΓιΨ), (6.6)

have a meromorphic continuation from the upper half plane onto the region

@ = {z:lm(z) > -η}.

The poles of matrix elements (6.6) in & are independent ofΦ and Ψ. They are identical
to the eigenvalues of a quasi-energy operator Σχ on 3¥?s. This operator is analytic
for |λ| < Λ(η), with a power expansion of the form

n=\

The matrix Σ^ can be explicitly computed and, denoting by Pβ the eigenprojections
of Ls, we have

P±iΣ{2)P±2 = (±Πβ - iΓβ), (6.7)

for the simple eigenvalues, and

( 31 *%')
for the degenerate one. Note that the eigenvalues of the matrix (6.8) are 0 and —AiΓ13.

An immediate consequence of the above result and of Proposition 4.1 in [CFKS] is
that there is a constant ί(β) > 0 such that for 0 < |λ| < ί(β) the spectrum of Lχ
is purely absolutely continuous, except for the simple eigenvalue 0. The proof of
Theorem 2.3 is completed by invoking Theorem 4.2 and Corollary 4.3. •

Remark 1. It follows from the the proofs of Theorem 4.6 and Proposition 4.7 in
[JP1] that Λ(η) = O(β~ι) as β | oo, therefore £(β) behaves similarly.

Remark 2. We note that the matrix Σ(2) is intimately related to the generator of
the Markovian dynamics that arises in the van Hove limit λ —• 0, t = λ~2τ. This
generator is usually derived from Pauli's master equation (see for example [Dl, D2,
D3 or M]). It turns out that, in the representation we work in, —iΣ^ is identical to this
generator. The relation between Pauli's master equation and the method developed in
this paper will be discussed in more detail in [JP2].

We now sketch the proof of Theorem 3.4. We will only consider the limit t | +oc,
a similar argument can be used for t j — oo. We invoke the dynamical consequence
of Theorem 6.2 i.e., Theorem 2.5 in [JP1].
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Theorem 6.3. Suppose that Hypotheses (H1)-(H2) are satisfied. Then there exists
a dense sub space <S C 3$ and, for each η G]0, δ[, a constant Λ(η) > 0 with the
following property: For |λ| < (̂77) there are two maps Wχ : <£ —> 3@a such that for
any Φ, Φ G gΓ, one has (WχΦ, W£Ψ) = (Φ, Ψ) and

as t —> +00.

If U(θ) denote the group of translations introduced in Sect. 4 of [JP1], then & can
be chosen to be the set of vectors which are analytic for U(θ) in a strip &(δ). In
particular, we can choose W independently of β.

We define the set of states yl^* and the algebra QJlo as follows. Let

.^0 = {X ® τrAW(W(f)) : / G H\δ, L2(S2))}, (6.9)

denote by ΛQUIQ set of vector states associated with vectors in π»(*Λ>o)\Pχ and set

97to = τr(^o) We define ypfras the set of finite convex linear combinations of states

in ypQ'and 9Jto a s the linear span of QJto Clearly yffi'and ΠJto enjoy the properties

stated in Theorem 3.4. Note also that it is sufficient to prove (3.4) for 3? G *A§ awά

A G SDto Let 7(λ) be the negative imaginary part of the complex eigenvalue of Σ\

closest to the real axis. Then it clearly satisfies the properties stated in the theorem.

By Eq. (4.3) and Theorem 6.3 the proof of Theorem 3.4 reduces to showing that the

vectors π(A)Ψχ and π$(A)Ψχ belong to the set £? for A G ̂ o In the representation

as the Fock space over L2(R x S2, dsdσ) used in [JP1], we have that

π(X®πAW(W(f))) = πs(X)

>πAW(W(f))) = π.

Therefore, from our assumption on / in Definition (6.9), Theorem 3.4 will follow

from Ψχ G &'. Using the notation of [JP1], this can be established as follows. Let

Lχ(-iθ) be the deformed Liouvillean defined as in Sect. 4 of [JP1]. By Theorem 4.6

in [JP1], there is a constant A > 0, so that for ^ < θ < δ and Φ, Φ' G £Γ, one has

(Φ,ψP)(Ψ^Φf) = (U(iθ)Φ,Qχ(-iθ)U(-iθ)Φ'l (6.10)

where Qχ(-iθ) is the spectral projection of the deformed Liouvillean Lχ(-iθ) cor-
responding to the eigenvalue zero. Let now Φ = U(—iθ)Φo and Φf = U(iθ)Φo with Φo

an analytic vector for U{θ) in the strip 6(25). Then Φ,Φf G gΓ, and from Eq. (6.10)
we conclude that

Thus for ψ < θ < 6 we have

«pf € Ό(U(-iθ)) Π Ό(U(iθ)),
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and therefore U(θ)Ψχ is analytic in &(δ). All the necessary estimates follow from
Theorem 4.6 in [JP1]. This completes the proof of Theorem 3.4.

References

[Al] Arai, A.: On a model of a harmonic oscillator coupled to a quantized, mass-less, scalar field, I.
J. Math. Phys. 22, 2539 (1981)

[A2] Arai, A.: On a model of a harmonic oscillator coupled to a quantized, mass-less, scalar field, II.
J. Math. Phys. 22, 2549 (1981)

[AM] Amann, A.: Ground states of a spin-boson model. Ann. Phys. 208, 414 (1991)
[AR1] Araki, H.: Positive cone, Radon-Nikodym theorems, relative Hamiltonian and the Gibbs condition

in statistical mechanics. An application of the Tomita-Takesaki theory. In: C*— Algebras and their
Applications to Statistical Mechanics and Quantum Field Theory. Kastler, D., (ed.) Amsterdam:
North-Holland, 1976

[AR2] Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ.
R.I.M.S. 9, 165 (1973)

[AW1] Araki, H., Woods, E.J.: Representation of the canonical commutation relations describing a non
relativistic infinite free Bose gas. J. Math. Phys. 4, 637 (1963)

[BR1] Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I. Berlin, Hei-
delberg, New York: Springer, 1979

[BR2] Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics II. Berlin,
Heidelberg, New York: Springer, 1981

[BFS] Bach, V., Frδhlich, J., Sigal, I.M.: Mathematical theory of non-relativistic matter and radiation.
Preprint

[CA] Cannon, J.T.: Infinite volume limits of the canonical free Bose gas states on the Weyl algebra.
Commun. Math. Phys. 29, 89 (1973)

[CDG] Cohen-Tannoudji, C, Dupont-Roc, J., Grynberg, G.: Photons and Atoms - Introduction to Quan-
tum Electrodynamics. Berlin, Heidelberg, New York: Springer, 1991

[CFKS] Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrodinger Operators. Berlin, Heidelberg, New
York: Springer, 1987

[CFS] Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Berlin, Heidelberg, New York: Springer,
1982

[CH] Chaiken, J.M.: Number operators for representations of the canonical commutation relations.
Commun. Math. Phys. 8, 164 (1968)

[Dl] Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91 (1974)
[D2] Davies, E.B.: Markovian master equations II. Math. Ann. 219, 147 (1976)
[D3] Davies, E.B.: Quantum Theory of Open Systems. New York: Academic Press, 1976
[DI] Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. Royal Soc.

London, Series A 114, 243 (1927)
[E] Einstein, A.: Zur Quantentheorie der Strahlung. Physik. Zeitschr. 18, 121 (1917)
[FNV1] Fannes, M., Nachtergaele, B., Verbeure, A.: The equilibrium states of the spin-boson model.

Commun. Math. Phys. 114, 537 (1988)
[FNV2] Fannes, M., Nachtergaele, B., Verbeure, A.: Quantum tunneling in the spin-boson model. Euro-

physics Lett. 4, 963 (1987)
[FNV3] Fannes, M., Nachtergaele, B., Verbeure, A.: Tunneling in the equilibrium state of a spin-boson

model. J. Phys. A 21, 1759 (1988)
[GJ] Glimm, J., Jaffe, A.: Quantum field theory models. In: Statistical Mechanics and Quantum Field

Theory. DeWitt, C, Stora, R., (eds.) New York, London, Paris: Gordon and Breach, 1970
[HA] Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer, 1993
[HE] Heitler, W.: The Quantum Theory of Radiation. Oxford: Oxford University Press, 1954
[HHW] Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical

mechanics. Commun. Math. Phys. 5, 215 (1967)
[HS1] Hiibner, M., Spohn, H.: Radiative decay: Non perturbative approaches. Preprint
[HS2] Hiibner, M., Spohn, H.: Spectral properties of the spin-boson Hamiltonian. Preprint
[JP1] Jaksic, V., Pillet, C.-A.: On a model for quantum friction II. Fermi's golden rule and dynamics

at positive temperature. Commun. Math. Phys.



Ergodic Properties of the Spin-Boson System 651

[JP2] Jaksic, V., Pillet, C.-A.: On a model for quantum friction IV. Return to equilibrium, (in prepa-
ration)

[LCD] Legget, A.J. et al.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)
[LP] Lewis, J.T., Pule, J.V.: The equilibrium states of the free boson gas. Commun. Math. Phys. 36,

1 (1974)
[MA] Maassen, H.: Return to thermal equilibrium by the solution of a quantum Langevin equation.

J. Stat. Phys. 34, 239 (1984)
[M] Martin, Ph.A.: Modeles en Mecanique Statistique des Processus Irreversibles (Lectures Notes in

Physics, 103). Berlin, Heidelberg, New York: Springer, 1979
[P] Pauli, W.: Pauli Lectures on Physics: Volume 4. Statistical Mechanics. Edited by C.P. Enz.

Cambridge, MA: The MIT Press, 1973
[PA] Pais, A.: "Subtle is the Lord...", The Science and the Life of Albert Einstein. Oxford, New York:

Oxford University Press, 1982
[PU] Pule, J.V.: The Bloch equations. Commun. Math. Phys. 38, 241 (1974)
[RO1] Robinson, D.W.: C*— algebras and quantum statistical mechanics. In: C*- Algebras and their

Applications to Statistical Mechanics and Quantum Field Theory. Kastler, D., (ed.) Amsterdam:
North-Holland, 1976

[RO2] Robinson, D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171 (1973)
[RS] Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Scattering Theory. London:

Academic Press, 1978
[SA] Sakai, S.: C*~ Algebras and W*- Algebras. Berlin, Heidelberg, New York: Springer, 1971
[SD] Spohn, H., Dumcke, R.: Quantum tunneling with dissipation and the Ising model over R.

J. Stat. Phys. 41, 381 (1985)
[SDLL] Smedt, P., Dϋrr, D., Lebowitz, J.L., Liverani, C : Quantum system in contact with a thermal

environment: Rigorous treatment of a simple model. Commun. Math. Phys. 120, 120 (1988)
[SI] Simon, B.: The P(φh Euclidean (Quantum) Field Theory. Princeton NJ: Princeton University

Press, 1974
[SC] Schwinger, J.: Selected Papers on Quantum Electrodynamics. New York: Dover, 1958
[SP] Spohn, H.: Ground state(s) of the spin-boson Hamiltonian. Commun. Math. Phys. 123, 277 (1989)
[WW] Weisskopf, V., Wigner, E.P.: Berechnung der natϋrlichen Linienbreite auf Grund der Diracschen

Lichtheorie. Z. Phys. 63, 54 (1930)

Communicated by B. Simon

This article was processed by the author
using the Springer-Verlag TgX PJourlg macro package 1991.






