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Abstract: Some examples of quantum groups in literature arise as deformations of
a locally compact group by a “dual” 2-cocycle. We make this construction in the
framework of Kac algebras; we show that these deformations are still Kac algebras;
using this construction, we give new quantizations of the Heisenberg group. From
this point of view, we analyse the dimension 8 non-trivial example of Kac and
Paljutkin, and give a new example of non-trivial dimension 12 semi-simple *-Hopf
algebras (a dimension 12 Kac algebra).

1. Introduction

1.1. The first attempts to define group-like structures (what is now called “quan-
tum groups™) with the help of operator algebras were made to clarify the duality
of locally compact (non-abelian) groups, this group-like structure then to be put
on the “dual” of the locally compact group. At the algebraic level, the notion of
Hopf algebras is commonly used to deal with discrete groups and their dual ob-
jects at the same time, and therefore, to reach the same aim for* general locally
compact groups, because of the analysis of infinite dimensional unitary represen-
tations, it was more or less natural to mix up operator algebras and the algebraic
framework of Hopf algebras. This was made in the 60’s by G.I. Kac, who con-
structed the “ring-groups,” a category which contained both unimodular groups and
their duals; the non-unimodular case, i.e. to construct a wider category which con-
tains both locally compact groups and their duals, was done in the 70’s, after the
works of M. Takesaki, independently by G.I. Kac and the second author, and by
J.-M. Schwartz and the first author, who named “Kac algebras™ this wider category,
in order to emphasize Kac’s 1961 basic work. On that theory, we refer to [ES2].

1.2. Unfortunately, this theory suffered for a long time from a serious lack of
non-trivial examples (see [KP1] and [KP2] for the first non-trivial examples); on
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the contrary, from the study of the quantum inverse scattering method, a “quan-
tization” procedure was made by V.G. Drinfeld [D] and others in order to obtain
non-commutative and non-co-commutative Hopf algebras by deformations of the
enveloping algebras of semi-simple Lie algebras. Independently, S.L. Woronowicz
[W1] constructed a C*-Hopf-algebra which was a deformation of the algebra of
continuous functions on the compact Lie group SU(2); this last object, which was
essentially the same as Drinfeld’s construction, satisfied weaker properties than the
axioms of Kac algebras, and was the first example of what is now called a “compact
quantum group.” A satisfactory theory of compact quantum groups is now available
([W2]), and, by duality, the discrete case has been studied also ([PW, ER]).

1.3. Unless no precise definition of a “locally compact quantum group” is still given
(see [MN] on that subject), many mathematicians are now involved in searching
(and finding) concrete examples; historically, the first known examples were given in
[KP1] and [KP2]. Many works appeared recently ([L, LR,R1,R2,V]); in particular,
in ([L], Sects. 1 and 2), Landstad made a general construction of quantum groups,
taking the von Neumann algebra #(G) generated by the left regular representation
A of a locally compact group G, and deforming the canonical coproduct I'C of
ZL(G), which is defined, for all g in G, by:

I{(26(9)) = 26(9) © 26(9)
in order to obtain a new coproduct which can be written, for all x in £(G):
Fo(x) = QI (x)Q",

where 2 is a “dual” 2-cocycle lifted from an abelian subgroup H of G. The notion
of triangular QUE-algebra described in ([D] Sect. 10) is very similar.

This procedure, deforming the coproduct of #(G), gives, on the predual A(G)
of #(G), a deformation of the product; it is the point of view developed by Rieffel
in ([R1], Sect. 1) or ([R2], Sect.2). This leads to the dual situation, where one
takes an algebra of functions on G, deform the product on this algebra, and leaves
untouched the canonical coproduct on this algebra. These two procedures are dual
to each other, and therefore equivalent. For a generalisation of Rieffel’s point of
view, see [Wa].

1.4. The aim of this paper is to show that, on certain conditions, Landstad’s defor-
mations of an ordinary locally compact group are Kac algebras, to get generaliza-
tions of this construction for Kac algebras, and to show that the result of such a
deformation is again a Kac algebra. One should notice that another construction of
a deformation of a coproduct (or a multiplicative unitary), using a 2-cocycle, is to
be found in ([BS], 8.24, 8.26).

1.5. The paper is organized as follows: in the second section, we define 2-cocycles
and 2-pseudo-cocycles for a von Neumann algebra M equipped with a coassociative
coproduct I' (Hopf-von Neumann algebra), and, for any such object Q the defor-
mation I'g of the coproduct associated; if, more precisely, there is a co-involution
k, we give the definition of a 2-cocycle and a 2-pseudo-cocycle with respect to
(M, T, k), and, for such an 2, we get then that (M, I'g,x) remains a co-involutive
Hopf-von Neumann algebra.

In the third section, we start with a Woronowicz algebra; it is a class of objects
introduced in [MN], which contains Kac algebras, compact and discrete quantum
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groups. Then, the.constructions obtained in Sect.2 with 2-cocycles allows us to
define a multiplicative unitary, which is the deformation of the multiplicative unitary
associated to the Woronowicz algebra.

In Sect. 4, following Landstad, we consider 2-cocycles on Kac algebras given
by lifting special 2-cocycles associated to an abelian group.

In Sect. 5 the main result of this paper is given: in the case of Kac algebras,
when the 2-cocycle is of the type described in Sect. 4, and lies in the centralizer
of the Haar weight, then the coinvolutive Hopf-von Neumann algebra obtained
in Sect. 2 is another Kac algebra, whose multiplicative unitary is the deformed
multiplicative unitary obtained in Sect. 3.

In Sect. 6, we give some examples, more precisely, we show that Landstad’s
construction of the deformation of a locally compact group arising from an abelian
subgroup, is, by our result, a Kac algebra; this allows us to give new quantizations
of the Heisenberg group. Moreover, we show that the dimension 8 example of
the non-trivial Kac algebra given in the 60’s by Kac and Paljutkin [KP2] is a
deformation given by a pseudo-2-cocycle of a symmetric Kac algebra. Using the
same techniques, we construct a new example of a dimension 12 non trivial Kac
algebra.

1.6. As a final remark, we must notice that, in our construction, the co-involution
remains undeformed. So, the examples [KP1] and [V] cannot be described in that
way.

1.7. We are thankful to Eduard Vaysleb for references to the papers on finite di-
mensional Hopf algebras, and to Masaki Izumi for pointing out a mistake in a
preliminary version of this work.

2. Cocycles of Hopf-von Neumann Algebras

2.1. Definition. 4 Hopf-von Neumann algebra is a von Neumann algebra M with
an injective morphism I' from M to the von Neumann tensor product M & M such
as:

ri=1,
(Freilr=3Genr,
where i means the identity of M (cf. [ES2], 1.2.1).

2.2. Definition. Let (M,I") be a Hopf-von Neumann algebra as defined in 2.1, for
all unitary u in M, we define Oyu in M @ M by

O1u = (u* @u* ) (u)
and, for all unitary Q in M @ M, we define 0,Q in M @ M @ M by
Q=01 WL 1) ®i)Q2).

2.3. Definition. Let (M, I') be a Hopf-von Neumann algebra as defined in 2.1; we
shall call a 2-cocycle of (M,I") a unitary Q in M @ M such that 0,Q =1, or,
equivalently:

QRINI'RN)=13D(ERT)Q).
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We shall call a 2-pseudo-cocycle of (M,I') a unitary Q in M @ M such that 0,Q
belongs to (I' ® i)Y[(M)'.

2.4. Examples. Let G be a locally compact group, and let L°°(G) be the abelian von
Neumann algebra of the (classes of) essentially bounded measurable (with respect
to the left Haar measure ds) complex-valued functions on G. Then, it is well
known that the von Neumann tensor product L*°(G)® L*°(G) can be identified
with L°(G x G); for every f in L*°(G), let us define a two variable function
ré(f) vy, for all s, t in G:

Tg(f)st) = f(st).

Then (L*°(G),I'?) is a Hopf-von Neumann algebra ([ES2], 1.2.9), and a 2-cocycle
of (L*°(G),T'Y) is a (class of) measurable function » from G x G to T, such that,
for almost all 51, 55, 53 in G:

(s1,52)(5152,53) = W(82,53)(S1,5253) .

Such a function will be called a 2-cocycle on G.
As L°°(G) is abelian, it is clear that any measurable function w from G x G to

T is a 2-pseudo-cocycle of (L*=(G),I'Y).
2.5. Proposition. Let (M, I") be a Hopf-von Neumann algebra, and Q a 2-pseudo-
cocycle of (M, I'); then, let us put, for all x in M:
TIo(x) = QI(x)Q* .
Then, (M, I) is a Hopf-von Neumann algebra, and we shall say that (M, Ig) (or
I'q) is deformed from (M,I") (or from I') by Q.
Proof. This is clear by the following calculation:
To@ Do) =(@Qe DI @)Qx)R) Q" ®1)
=QNT NI QNI (NI ®iINLNL®1)
=(1®2)(iRI)(2)Q>UER IYI'(x))0:2) (i @ I')(Q")(1® Q%)
=1 @& I'Ta(x)(1® Q%)
=({®Ig)lox). O

2.6. Remark. (i) For any unitary u of M, it is easy to check that d,u is a 2-cocycle
for (M, I').

(ii) Let ¢ be the flip of M ® M; it is clear that (M,¢I") is another Hopf-
von Neumann algebra; if Q is a 2-(pseudo-)cocycle for (M,I'), then ¢Q is a
2-(pseudo-)cocycle for (M,cI).

(iii) If Q is a 2-(pseudo-)cocycle for (M, I"), then Q* is a 2-(pseudo-)cocycle
for (M, Ip).

(iv) Let V' be a multiplicative unitary in the sense of [BS], i.e. a unitary on the
Hilbert tensor product $ ® &, such that V' satisfies the pentagonal equation:

ViaVisVaz = Vs Vo,

then, if M is the von Neumann algebra generated by all the operators (i ® w)(V),
where @ belongs to the predual Z($ )., the application x — V(x ® 1)V* defines a
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coproduct I on M, and a 2-cocycle for (M,I') is a unitary Q in M ® M satisfying:
QuVnQuiV = Q3 ViQnVs; .

A pseudo-2-cocycle is a unitary € in M @ M such that Vp3Q), V55925212 V12Q13 V7,
belongs to the commutant of Vi, Vi3M; V5V };; using the pentagonal equation, we
get that, equivalently, © must be such that V}5Q7,V505.Q,V1,013V13 belongs to
ZM)YR L(H ®9), where Z(M) is the center of M.

(v) Let (M),I1) and (M,,I3) be two Hopf-von Neumann algebras; let o be
a *-homomorphism from M; to M, such that a(1) =1 and [roa=(x®a)o I];
then, if Q is a 2-cocycle for (M, 1), then (x ® a)(£2) is a 2-cocycle for (M, I3).

2.7. Definition. ([ES2], 1.2.5) A4 triple (M, I',x) is called a co-involutive Hopf-von
Neumann algebra if:

(i) (M, T') is a Hopf-von Neumann algebra as defined in 2.1,
(ii) x is an involutive anti-automorphism of M, i.e. a linear mapping from M
to M such that, for every x, y of M:

K(xy) = k(y)e(x) ,
K(x™) = Kk(x)*,

K(k(x)) = x,

such that we have
IF'ok=co(k®kK)ol.

2.8. Definition. Let (M,I',x) be a co-involutive Hopf-von Neumann algebra, Q
be a 2-pseudo-cocycle for (M,I"). We shall say that Q is a 2-pseudo-cocycle for
(M, T, k) if we have:

(kQK)Q)=Q =cQ".

We define the same way the 2-cocycles for (M, I, k).

2.9. Remark. (1) Let G be a locally compact group, and let us define, for all f in
L*=(G), k4(f) by the equality, for all s in G:

KS(f)s) = f(s7).

Then, (L=(G),I'¢,xY) is a co-involutive Hopf-von Neumann algebra ([ES2] 1.2.9);
let w be a 2-cocycle on G, as defined in 2.4; it is a 2-cocycle for (L*°(G), 'S, kS
if we have the equalities, for almost all s, 7 in G:

LY =@(t,s) = w(s, 1) .

(s
We shall say then that @ is an involutive cocycle on G.

(ii) let (M, I',k) be a co-involutive Hopf-von Neumann algebra, and 2 be a
2-(pseudo-)cocycle for (M, I'); then it is straightforward to check that (x ® x)(Q*)
is a 2-(pseudo-)cocycle for (M, cI"), and, therefore, using 2.6, that ¢(k ® x)(Q2*) is
a 2-(pseudo-)cocycle for (M, TI").

(iii) let (M1, 1I'1,x1) and (M>, I, k) be two co-involutive Hopf-von Neumann
algebras and let o be a morphism of co-involutive Hopf-von Neumann algebras, i.e.
o is a *-homomorphism from M; to M, such that o(1) =1, [oa= (a2 ®a)o I}
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and x; oo = a0 Ky; then, if Q is a 2-cocycle for (M, I7,x;1), then a(Q2) is a 2-
cocycle for (My, I3, k).

2.10. Proposition. Let (M,I',x) be a co-involutive Hopf-von Neumann algebra,
Q be a 2-pseudo-cocycle of (M,I',x); then (M,I'q,k) is a co-involutive Hopf-von
Neumann algebra.

Proof. Let x be in M; we have, using 2.8:
sk @ ) o(x) = ¢(k ® K)(QI(x)Q")
= o(x @ K)(Q)o(x @ K)I'(x))s(k @ K)(LQ)
= QI o k(x)Q* = Igox(x). O

3. Cocycles of Kac Algebras and Woronowicz Algebras

3.1. Definition. A Kac algebra ([ES2] 2.2.5) is a quadruple K = (M, T, x, @) such
that:

(1) (M, I',x) is a co-involutive Hopf-von Neumann algebra,
(i1) ¢ is a semi-finite faithful normal weight on M satisfying, for all x in M,
v, z in the left ideal N, t in R:

(@ @)'(x) = p(x)1,

(i@ @)1 ® y)I(2)) =x(( @ e)TI'(y* )1 ®2))),
kool =0%,0K.
There is an equivalent C*-version of this theory [EV]; more precisely, it is possible
to define C*-Kac algebras and to prove:

—that any C*-Kac algebra can be imbedded canonically in a unique Kac
algebra

—that for any Kac algebra (M, Tk, ), there is a unique C*-subalgebra A of
M such that A, equipped with the restrictions of I', x and ¢ is a C*-Kac algebra.

3.2. Examples. (1) Let G be a locally compact group; the left Haar measure ds
defines a semi-finite faithful normal weight ¢ on the abelian von Neumann algebra
L*>°(G); it is then straightforward to verify ([ES2] 2.2.2) that, with the notations of
2.9, (L=(G),T9,k%,¢%) is a Kac algebra. Any Kac algebra whose underlying von
Neumann algebra is abelian is of that type ([ES2] 4.2.5). The associated C*-Kac
algebra is the C*-algebra Cy(G) of all continuous functions on G going to 0 at the
infinity, equipped with the restrictions of these coproduct, coinvolution and weight.

(ii) Let Ag be the left regular representation of G on the Hilbert space L*(G),
defined for all 5, ¢ in G, f in L*(G) by

() ) = f(s7'1).

Let Z(G) be the von Neumann algebra generated by this representation; it is possi-
ble to define on #(G) a structure of Kac algebra ([ES2], 3.7.5) (Z(G),T'%, k¢, ¢Y),
such that, for any s in G, any f continuous function on G with compact support,
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we have, where e is the unit of G:
Ié(Ag(s)) = Ag(s) @ A(s) ,
K (AG(s)) = Ag(s™"),
P(a(f)) = f(e) .

The modular group of @¢ is given, for all s in G, ¢ in R, by:

o _ it
0,° (Ag(s)) = 46(s)" Ag(s) ,

where 4 is the modulus of G. Any Kac algebra whose coproduct is symmetric (i.e.
such that I' = g o I where ¢ is the flip) is of that type ([ES2], 4.2.4). The associated
C*-Kac algebra is the C*-algebra C(G) generated by the left regular representation
of L'(G), equipped with the restrictions of these coproduct, coinvolution and weight.

3.3. Remark. Let K = (M, I',x, @) be a Kac algebra; then, it is possible to define
a unitary (the fundamental unitary of the Kac algebra) W on the Hilbert space
H, ® Hy, such that, for all x, y in the left ideal N,,:

W(Ayp(x) @ Ap()) = Apge(I'(¥)(x @ 1)) .

The adjoint W* is a multiplicative unitary in the sense of [BS]; the von Neumann
algebra M is equal to the von Neumann algebra generated by all (i @ w)(W), for
all w in the predual ¥(H, ), and we get, for all x in M:

I'x)=w(lex)W*.

Moreover, we have W* = (J @ J)W(J ® J), where J is the canonical involutive
isometry J,, constructed by the Tomita—Takesaki theory, and J is the canonical
implementation on /1, of the anti-automorphism x.

It is possible to associate another Kac algebra (M,I',R,®) (the dual Kac alge-
bra), whose fundamental unitary is equal to ¢ *o. The bidual Kac algebra is equal
to the initial one, and the two examples above (3.2) are dual to each other. ([ES2],
242,244,262, 26.3,2.7.6,3.73,3.7.5 and 4.1.1.)

3.4. Definition. A Woronowicz algebra (IMN)) is a family W = (M, T, x,1, )
such that:

(i) (M, T',k) is a co-involutive Hopf-von Neumann algebra,
(ii) t; is a one parameter group of x-automorphisms of M, such that, for all
t in R, we have:
oty =(®7)orl
KOoT, =T,0K

(iii) ¢ is a semi-finite faithful normal weight on M satisfying, for all x in M+,
¥, z in the left ideal Ny, w in M, analytic with respect to the action of 1, on M,,
s, tin R:

I®)(x) = (x)1,

(@ e)(1 @Y )(2)) =wot_por((i®)I'(y N1®z))),

@ POK __ (oK @
o0y = 0y oag; .

Oy
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As for Kac algebras, it is possible, with the same definition as in 3.3, to de-
fine a unitary W (the Kac—Takesaki operator) which fulfills the same properties
(IMN], 2.4 (i), (i), (iii), 2.1.6 (1), (iii), 3.8 (i), 4.2).

There is a duality within this class of objects ([MN], Sect. 3), which generalizes
the duality of Kac algebras, the dual Kac—Takesaki operator being equal to e *a
([MN], 3.8).

3.5. Examples. (i) It is clear that any Kac algebra is a Woronowicz algebra.

(i1) Let (4,d) be a compact quantum group, i.e. ([W2]) 4 is a C*-algebra
with unit, and d is a unital *-homomorphism from 4 to 4 ® 4 such that (d ® i)d
= (i ® d)d, such that the set of all (a ® 1)db, for all a, b in 4, is total in 4 ® 4,
and such that the set of all (1 ® a)db, for all a, b in 4, is total in 4 ® 4.

Then ([W2], 1.3), there exists a unique left-invariant state ¢ on A, and, if we
denote (H,, 7y, &,) the G.N.S. construction, we may put on M = 7,,(4)" a structure
of Woronowicz algebra (let us note that the vector state induced by &, on m,(4)
is faithful). It is explicitly done in ([MN], Sect. 5) in a particular case, but it can
be done in whole generality by using ([W2] 1.5 and [BS] 1.2.4).

(ii1) In [ER] a notion of discrete quantum group has been defined, which appears
([ER],10) to be the dual notion of a compact quantum group; therefore, it is possible
also to associate to each discrete quantum group a Woronowicz algebra.

3.6. Proposition. Let K = (M, I',k,p) be a Kac algebra (or W = (M, T, k,7,®)
a Woronowicz algebra), W its fundamental unitary, Q a 2-pseudo-cocycle with
respect to (M,T"). With the notations of 3.3, let us put

Q=J o J)
and Wo = QW Q. Then, for all x in M, we have:
Ta(x) = Wa(1 ®x)j .

Proof. By definition of J, we get that Q belongs to M ® M’; therefore, the result
is trivial. [

3.7. Lemma. With the hypothesis of 3.6, let us suppose that Q is a 2-cocycle for
(M, I',k); we have then:

TR =i 1QW)Ne®i)l®R)scxi)
x (1@ WY1 Q) o®i),

where ¢ means the flip on H, ® H,.

Proof. Let us write j(x) = Jx*J; we define this way an anti-isomorphism from M
to M’, or from M’ to M. We have then Q = (k ® j)(), and, therefore

(F®i)N(Q) =T ®i) ki) = ((k@K) @ )T @i)Q).
Using 2.8, we then get:
(@)@ @1) = (k@ K)®H(Qe )T ®i)2))
= (k@ x) @)1 ® )i ®I')(L2))
= (s(k ® 1) ® /)i @ I)(Q)(c @ i)(1® Q)
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which is equal, using the implementations of j and x, to
(1)) W)ca 1)1 Q%)
x(e@ (1w )JoJoJ) (1) (e 1)
and, using the property linking W, W* and J and J, is equal to
(cD)A@WHNJJRJ)e® 1) (1 Q%)
x(e@NJJH1IW)1RQ)(e® 1),

which gives the result. [
3.8. Proposition. With the hypothesis and notations of 3.7, we have:

o@D (Wa) = (Wa)3s(Was -
Proof. Using the definition, we get:
(Fe®)(Wa) = (Qe )T @ NN @ iYW)T ®i) QN ® 1)
=1 RNNQYT RINWNT ® i)(Q)(Q* ®1).

Using then the fact that (I' ® i)(I/V) =(1eW) 1) (1 W) o®1), we get, us-
ing 3.7 that (I' @ i)(W)(I' ® i)(2)(2* ® 1) is equal to

QW) 1R (el WY1 Q) o®i).
As (i@I)(Q) =1 W)oc®1)(1®Q)o®1)(1® W*), we then get that
(@ YT @)WY @)L @ 1)1 W)
is equal to
1eW) (e )12} e 1)122)(cxi)1e W) 1 2)sai)
and, as (6 ® 1)(1 ® Q) (e ® 1) and (1 ® @) commute, we finally get:
Fe®@)(Wa)=(1@ W) e @ 1)(1® Wo)o®1),

which is the result. [
3.9. Theorem. Let K = (M, Ik, ) be a Kac algebra (or W = (M, I',k,7,9) a
Woronowicz algebra), W its fundamental unitary, Q a 2-cocycle with respect to

(M, T, x). Let us put @ =(J ®J)Q*(J ®@J), where J is the canonical involutive
isometry J, constructed by the Tomita—Takesaki theory, and J is the canonical

implementation on H, of the anti-automorphism x, and Wo = QW Q; then we get:
(i) Wg is a multiplicative unitary ,
(i) W = @)Wo(J @J).
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Proof. By 3.6 and 3.8, we get (i); by 3.3 and the definition of Q, (ii) is
trivial. O

4. Abelian Cocycles

4.1. Proposition. Let K be an abelian locally compact group (with an additive
notation), K its Pontrjagin dual, and let © be a continuous homomorphism from
K to K such that, for all s in K, we have:

(n(s),s) = 1.

Then the function w(s,t) = (n(s),t) is an involutive cocycle on K; moreover, it
satisfies, for all s, t in K, w(s,st) = w(s,t).

Proof. Starting from (n(st),st) =1 for all s, ¢ in K, we get:

(m(t),5) = (n(st),5) = (n(st), 1) = (m(s),1) -

The rest is just straightforward calculations. [

4.2. Example. Let K;, K, be two abelian locally compact groups, i(\l , I/(; their
Pontjagin’s duals; let m; be a continuous homomorphism from K to K and 7y the
dual homomorphlsm from K, to K1 Then the homomorphism 7 from K = K; x K,
to K = K1 X Kz defined, for all 5 in Ki, ¢t in K; by:

(s, t) = (m(t), —mi(s))
satisfies the conditions of 4.1.

4.3. Lemma. Let (M, T',x, @) be a Kac algebra (or W = (M, T, x,t,9) a Worono-
wicz algebra), W its fundamental unitary, K an abelian locally compact group, o
a co-involutive Hopf-von Neumann morphism from (L°(K), 'S, xX) to (M, T, x),
w an involutive cocycle on K as in 4.1, and let Q = (a @ a)(w). Let a;, b, in
L>(K) such that Xi(a; ® b;) —; w strongly, and of norm less or equal to 1,
then:

(1) 2i(a; ® 1) ,(b;) is weakly converging to w.
(i) Zi(a(a;)* ® Ju(b;)J) is weakly converging to Q.

Proof. The finite sums X,(a; ® 1),(b,) are converging to the function (s,z) —
(s, st), i.e. to w, which is (i).

We can remark, also, because of the particular form of w, that (x, ® i) (w) = w
The application x — Jo(x*) J from L*°(K) to M is a homomorphism, and, therefore,
all the finite sums X;(a(a;)* ® Jo(b;) J) are of norm less or equal to 1. Let &, &,
n, n' in Hy,; we then get:

(Zi(a;)" @ Jabr)I)NE @ ENIn @ n') = Xi(ear)*Elm)(Je(b:)IE ')

= Ciar) © ab) 1 @ TED Iy
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which is converging to:

Qe JIE)E@I) = (Q (@) n®JIE) = (wen @ I)Q )y |JE)
and, using the remark above, we get that it is equal to:
(¢ 0o ® ) (kg ® IN@)'|JE') = (wey 0k @ INQR)N'|IE)

= (@, j: ® QW' |JE') = (QUIn @ Iy T & @ JE)

= (Q¢@ @)
and, by linearity and continuity, we get (ii). O
4.4. Remark. As w is multiplicative in the first variable, we get:

(I'f @ i)w) = o 3023

and, therefore:
(I' ®i)(82) = 2132,3

and, by the same arguments with respect to the second variable, we get:

(RI)Q)= Q1223

4.5. Remark. ([L]) For 6 in K, ¢ in K, the function (0,7) — (0,¢) is an element
of L°°(I? ) ® L>®(K); via the Fourier—Plancherel isomorphism, we know that #(K)
is isomorphic to L°°(I/(\' ) (and 3(1? ) to L*°(K)); via this isomorphism, it may be
written ([ES2], 4.4.3) as fK Ak(s)* ® dPs, where P is a spectral measure on K
with values in 3(1? ). Therefore, the function w defined in 4.1, considered, via the

Fourier—Plancherel isomorphism, as an element of Z(I? ) ® E(IA( ), may be written
as [, x 4p(1(s))" ® dPs, and the lifted 2-cocycle 2 € M ® M is equal to:

Q= I{a(/lg(n(S)))* ® d(a(Ps))

4.6. Definition. ([L]) With the hypothesis of 4.3, we shall say that Q is an abelian
cocycle of (M, T, k), constructed with (K, 7, ).

If P is the support of a, then, as, by ([ES2]1.2.7, 2.2.6 and 4.3.6(iii)), there
exists an open subgroup K’ of K such that L>(K)p is isomorphic to L(K"); let
o be then the canonical the homomorphism from L>°(K’) to M. As K =Rk /K/l,
we can then construct a continuous homomorphism 7’ from K’ to K such that Q@
is constructed with (K’, 7/, o).

Let us take now K" = K/7'(K’ )J'. We have then K = n'(K’), and, therefore,

the co-involutive Hopf-von Neumann algebra (L°°(K”), I'X" kK"), which is iso-

morphic to (L (K H), r fﬂ,xf“ ), is a sub co-involutive Hopf-von Neumann algebra

of (£(B'), X', 1K), which is isomorphic to (L(K"), IX',kK); therefore, if Q is
an abelian cocycle of (M, T, x), constructed with (K, 7, o), we can always suppose
that o is injective, and that m(K') = K (or, equivalently, that 7 is injective).
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4.7. Remark. (i) If W = (M, I',k,7,¢) a Woronowicz algebra, with ¢ finite (it
comes then, using ([BS], Sect. 4), from a compact quantum group), and if Q is an
abelian cocycle of (M, T, k), then Q is constructed from (K, m,«), with « injective,
and ©(K) = K; then, as @ oo is a bounded left Haar measure on K, we get that K
is compact, therefore K =7n(K) = n(K) also, and so K is finite.
(ii) If W =M, I',k,7,¢9) a Woronowicz algebra, such that the predual M, has
a unit ¢ (it comes then from a discrete quantum group), and if Q is an abelian
cocycle of (M, I',x), then € is constructed from (K, 7, ), with o injective, and
(K) = K; then, as ¢oa is a unit of L'(K), we get that K is discrete, therefore
= 7(K) = n(K) also, and so K is finite.

n
K

5. Abelian Cocycles of Kac Algebras

5.1. Proposition. Let (M, I',x, @) be a Kac algebra, W its fundamental unitary, K
an abelian locally compact group, o a co-involutive Hopf-von Neumann morphism
Sfrom (L°(K), T'5,kK) to (M,T',x) such that «(L>(K)) is included in M? (where
M? = {x € M,o{(x) =x,Vt € IR}) w an involutive cocycle on K as in 4.1, and
Q= (a®a)w). Then @ is left-invariant with respect to I, i.e. we have, for all
zin M

(i ®@@)a(z) = ¢(z)] .

Proof. Let a;, b; in L°°(K) such that X;(a; ® b;) —; w, and all finite sums of norm
less or equal to 1. Let x, y in N, N N7, and &', ' right bounded vectors with respect

to ¢; using 4.3(ii), we get that Xi(a(a;)" ® Ju(b;)J) is weakly converging to Q,
and, therefore, using that a(L°°(K)) lies in M?, we get that WQ(A,(x) ® Ax(¥))
is the weak limit of

WZi(u(a;)* ® Jo(b;) J N Ap(x) ® Ay(y)) = WZ(Ap(afa;) x) @ Ap(you(b;)*))
= Apee(I'(y )o@ a)(Zilu(b] Yaf @ ) x @ 1)),
and therefore we get that (n'(&') ® 7'('))W Q(A,(x) ® Ay(¥)) is the weak limit
(&) @ 7' (' NApae(T(y) (o @ a)XZilu(b] Yaf @ 1))(x @ 1))

= I'(y)(o® a)(Z, (5] Naf ® 1)x @ 1) @1n')

and is, using 4.3(i), equal to I'(P)Q*(x® )& ®7n'). We then deduce that
I'(y)2*(x ® 1) belongs to N,g, and that

Apep(T(MQ*(x ® 1)) = W(Ap(x) ® Ay(»))
from which we get
Apgp(Ta(¥)(x @ 1)) = Wa(Ay(x) @ Ap(y))
and, then
(04,000,400 @ @) 2(¥*y) = (0 ® @) (X" @ DIo(y* y)(x @ 1)) = p(x"x)p(y" y) -
As Q belongs to M? © M?, we have, for all x in M, thanks to ([ES2], 2.5.6):
To(of(x)) = QI (o (x)Q" = Q>i ® o/ (I'(x))Q" = (i ® of Y(T'o(x))
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and, therefore, the weight (@4, ()1, ® @) g is invariant by oy, from which, by
density, we get, for any z in M™:

(@45(0).440) @ P 0(2) = 9(x"X)9(2)
from which, by density, we deduce easily:
(® @) =0pE)]. O

5.2. Theorem. Let (M,I',k, ) be a Kac algebra, W its fundamental unitary, K
an abelian locally compact group, o a co-involutive Hopf-von Neumann morphism
Sfrom (L®(K),TX,kKY) to (M,T',x) such that o(L*(K)) C M?, w an involutive
cocycle on K as in 4.1, and Q = (¢ @ a)(w). Then Ko = (M,Tg,k, @) is a Kac
algebra whose fundamental unitary is Wq.

Proof. By 5.1, the triple (M, I'q, @) satisfies the hypothesis of ([ES2], 2.4), Wy is
its fundamental operator, and, using ([ES2], 2.4.6), we can define, for all w in M,,
Ao(w) = (w o k ®i)(Wg) such that, for all x in %R,:

Ao(@)Ay(x) = Ay((w 0o k ® i) o(x))
from which we get, for all w in M,:
S,lo(w) C lo(®)S, .

As, for all £ in R, AZ) belongs to the center of M ([ES2], 4.1.3 (i)), and Q (and

Q) commutes with 1 ® Aﬁf,, we get that W, commutes with 1 ® A¥, and, therefore,
that Ag(w) commutes with Aff,, for all w in M, and all ¢t in IR, from which we
deduce that Jylo(w)J, = Ao(®).

We then get, using 3.9(ii):
do(o) = (@o k@ NWg) = (@ k@ i) ®J)WalJ ®J,))
= Jp(@ @ Y Wa)y = Jpra(w 0 1)y = do(a)
and, as Ag is involutive, we get the result, by ([ES2], 2.4.6 (iv)). O

5.3. Corollary. With the hypothesis of 5.2, let A be the canonical sub-C*-algebra
of M, which is, with the restrictions of I', x,¢p, a C*-Kac algebra; then, A,
with the restrictions of I'q,k, @, is the C*-Kac algebra canonically associated
to (MaFQ,K’QD)'

Proof. By 4.4 and ([ES2], 1.5.2, 2.6.5), we get that Q is the generator of a non-
degenerate representation of the involutive Banach algebra M, in M; therefore, by
([EV], 5.1.5), £ belongs to the multipliers of B ® 4, where B is the C*-algebra
generated by this representation; applying the same argument to 0Q*c = Q, we get
that this algebra B is a subalgebra of 4; therefore, 2 belongs to the multipliers
M(4 ® A4) of A ® A; more precisely, by ([BS], A.3d), we get that Q belongs to the
subalgebra denoted M (4 ® 4) in ([EV], 2.1.3). So, for any x on A, we get that
QI'(x)Q2* belongs to M,(4 ® A); so, A, with the restrictions of I'g, x, ¢, is a C*-
Kac algebra, which is, by ([EV], 4.3.4), the C*-Kac algebra canonically associated
to (M, I'q,x,0). O

5.4. Proposition. With the hypothesis of 5.2, let w; be a left approximate unit
(if it exists!) of the predual M., which is an algebra whose product is given by:

Wy *wy = (w1 @wy)ol,
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then w; is still a left approximate unit for the deformed product on M,, given by:
Wy xg Wy = (01 @ wy)o Iy .

Proof. Thanks to ([ES1], 2.4), we know that there exists ; in H,, such that w; = wy,
and:
(W(Eon—-&@n|—i0

for all # in H,. As, by 4.4, we have (I' ® i)(Q2) = 30, 3 which, by ([ES2], 1.5.1),
means that w — (0 ® i)(2) is multiplicative, we deduce that (w; ® i)(2) —; 1,
from which we infer that, for all # in H,, we have:

Q& @& @) = [Inll?
and

Q& en) —&®n|—i0.
By definition of Q, we get, for all w in M,:

(®i)NQ)=J(wok@i)NQ)M,

and, therefore, the application v — (0w ® i )(Q) is anti-multiplicative, and, with the
same arguments, we get that:

||§~2(5i @n—-&en|—i0,
from which we deduce that:
[Wa(éi@n)—&@n|| —i 0,

and, using ([ES1], 2.4) again, we get the result. [J

5.5. Corollary. With the hypothesis of 5.2, if the Kac algebra K is amenable in
the sense of ([ES1], 2.5), so is K.

Proof. Clear, using ([ES1], 2.5) and 54. O

5.6. Remark. 1t is possible to prove in the context of Woronowicz algebras a similar
result to 5.2, if, in addition, a(L°(K)) C M* = {x € M,1,(x) = x,Vt € R}.

6. Examples

6.1. Deformations of a Locally Compact Group Lifted by an Abelian Subgroup
([LR], [L]). Let G be a locally compact group; in [L] are studied the deformations
of the coproduct I'S on #(G) given by a 2-cocycle for (#(G),I'S) (in Land-
stad’s terminology, a “dual cocycle on G”) or by a 2-cocycle for (£(G),I'?,xk°
(in Landstad’s terminology, a “normalized dual cocycle on G”). The only known
method of obtaining these objects is by lifting an ordinary cocycle on H, where H
is a closed abelian subgroup of G, and H its Pontrjagin dual.

In that situation, it is well known that there exists an injective morphism « from
the von Neumann algebra #(H) generated by the left regular representation Ay of
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H to the von Neumann algebra #(G), such that, for every s in H, we have
(A (s)) = Ag(s)

(see, for example, ([ES2], 5.2.6) and [TT]). It is then clear that « is a co-involutive
Hopf-von Neumann algebra morphism from (Z(H),I'? k) to (£(G),I'% «%),
let H be the Pontrjagin dual of H; then, using the Fourier—Plancherel isomor-
phism, we know ([ES2], 4.3.7) that the co-involutive Hopf-von Neumann algebras
(L(H),TH, k) and (L°(H), F k') are isomorphic; we may then consider that

o is a co-involutive Hopf-von Neumann algebra morphism from (L°°(H ), T 5’ R 5’

to (Z(G), % k%).

Let us suppose now that 4g(s) = 1, for all s in H, where 4¢ is the modulus of
G, using 3.2(ii), we get that oc(L°°(FI )) is included in $(G)‘/’sG . We are therefore
in the conditions of 5.2, and, if 7 is a continuous homomorphism from Hto H R
the function w(s,t) = (n(s),?) is an involutive cocycle on H , Q=(®a)w)is a
2-cocycle for (Z(G),I'%, k%), and (ZL(G),(I'%)q,kC, ) is a Kac algebra.

Using 4.5, we see that € can be written as:

Q= I Ag(n(s))" @ d(uR)),
7

where P is the spectral measure on H, with values in P(H) such that the operator
fﬁ A7(s)* ® dB; is the function (4,5) — (t,s) on H x H, viewed, via the Fourier—
Plancherel isomorphism, as an element of & (I? )@ Z(H).

So, using Landstad’s terminology and notations, when the normalized dual co-
cycle @ on G is lifted from an abelian subgroup A on which the modulus function
of G is equal to 1, the algebra A(G,d)) is the predual of a Kac algebra; in that
situation, we can answer positively to one open problem of [L]; more precisely,
by ([ES2], 3.1.4), every representation of this algebra A(G, d,,) has a generator (in
Landstad’s terminology, is given by slicing a d,-corepresentation).

6.2. Deformations of a Semi-Direct Product of Abelian Groups. As a particular
case of the preceding example, we consider 4 and H locally compact groups and
o a continuous action of H on A, i.e. a homomorphism H — Autd, such that the
mapping (a,s) — ag(a) is continuous from 4 X H to A; the semi-direct product
G =4 >, H is the set A x H, equipped with the product

(a,s)(b,t) = (aas(b),st) .

It is a locally compact group, whose right Haar measure is the product of right
Haar measures on 4 and H; the modulus function 44-.,y is given by:

Aysa,m(a,s) = 6(s)44(a)du(s) ,

where d(s) is the modulus of the automorphism a.

We can consider 4 as a closed subgroup of G, and, if 4 is abelian, the pair
(G, A) satisfies then the conditions of 6.1. If, moreover, H is amenable (for instance
if H is abelian), then it is known that the semi-direct product is amenable.

We can also consider H as a closed subgroup of G. If H is abelian, and if the
modulus J is equal to 1, i.e. if the action of H leaves invariant the Haar measure on
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A, we are again in the conditions of 6.1. If, moreover, 4 is amenable (for instance
if A is abelian), the semi-direct product is again amenable.

6.3. Quantizations of the Heisenberg Group. As a specific example, we can take
the usual Heisenberg group H,(IR), which can be considered as the semi-direct
product R"*! >q, R", where the action « of R” on R"*! is given, for a, b in R”,
t in R, by:

ta(b 1) = (bt + (alb)) .

Therefore, the product rule in H,(R) is given by (a, d’, b, ¥ in R”, ¢, ¢’ in R):
(b, t,a)(b',t',d'y=(b+b,t+t +(a|b)a+d),

and, as the action o leaves the Lebesgue measure of IR" invariant, we are in both
situations described in 6.2. The group H,(R) is unimodular, and the Hilbert space
L*(H,(R)) can be identified with L?(IR") ® L>(R) ® L>(R"). So, we get that the
left regular representation A(b,1,a) of H,(IR) is defined by

Mb,t,a) f(v,u,w) = f(v—byu—t— (alv—>b),w—a),

where u belongs to R, v, w to R", f to L2(R") ® L>(R) ® L*>(IR"). Let us define
a unitary U on that Hilbert space by

Uf(@,d,w) = (|12l/2)1/2 f F(o,u,0— W)el(vlﬁ)ﬂeluﬁdldl) ,
R”xR

where u, i belong to R,v, w, d to R”, f to L>(R") ® L*>(IR) ® L*>(IR") and we get
that the left regular representation A(b,t,a) of H,(IR) verifies:
UMb, t,a)U* f(v,u,w) = P £ (v + a,u,w) .
Therefore, this representation is equivalent to the representation m on L?(IR™*!)
defined, for any ¢ in LZ(R"*!), by:
(b, t,a)p(u,v) = O™ p(u, v + a) .

This representation generates the von Neumann algebra £°(R)® L(L*(R")),
which is therefore isomorphic to #(H,(RR)); by this isomorphism, there exists a
symmetric Kac algebra (Z°°(R) ® ZL(L*(R")), I}, ks, @), such that:

I(n(b,t,a)) = n(b,t,a) ® n(b,t,a) ,
Kks(n(b,t,a)) = n(—b,—1 + (alb), —a) .
As we have ' '
n(b,1,0) = ((u,0) — C1Me™),
the morphism f; from L“(ﬁl) into Z2°(R) ® °§£’(L2'(1R”)) we get from the inclu-
sion R"! ¢ H,(R), sends the function (u,v) — €™ ®®) on n(b,t,0), and, there-
fore, for any f in L°(R"+!), Bi(f) is the function (u,v) — f(u,uv).

As 71(0,0,a) = 1 ® p(a), where p is the right regular representation of R”, the
morphism B, from L°°(IR") into L°(R) ® Z(L*(IR")) we get from the inclusion
R" C H,(R), is given by:

Bo(f)=1®FfF",

where F' is the Fourier—Plancherel unitary from LZ(IT{\") to L2(IR™).
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Using 4.2, we can construct, for all j, k € {1,...,n}, ]=|=k and gix in R, a

1 v,v U U
9% v =tk ) , where 4, '

2-cocycle wj on R+ by the formula w (i, 9, W) =e
belong to ]ﬁ, 6, v belong to R”, and 4 (resp. v:f) is the i component of ¥ (resp.
V). So, Qi = (B1 @ B1)(wp) is a 2-cocycle for LP°(R) ® L(L*(R")), I}, ks), and

Qi is the function on R"™! x R"*! given by:

. 1o ’
/o IN g guu (0, v, —Ug V)
ij(u,vau’v)_eqjk 7o 5

and we get a deformed coproduct Iy defined by:
Ti(n(b,t,a)) = Qu(n(b,t,a) @ n(b,1,a))2, ,
and we obtain:
. ! ! .
T(n(b, 1,@)) f (v, 0') = e a0 glajend e, (v =1)
ei(ulb)uei(vllb)uleimeit"/f(u, v+ a, u/, v+ a),

where u, u’ belong to IR, v, v/ to R”, a, is the i component of a, and f belongs
to L2(R"*! x R™!). These coproducts are clearly non symmetric. This construc-
tion gives new Kac algebras (L°(R)® Z(L*(R")), Ty, 5, @5), whose duals are
amenable. In fact, taking into account the parameter ¢;; we obtain a one-parameter
quantization of the Heisenberg group (if n = 2; for n = 1, the cocycle is trivial, and
there is no deformation). Of course, for n = 3, it is possible to deal with a cocycle
which is the product of such cocycles, in order to get multiparameter quantizations
of the Heisenberg group. For instance, if » = 3, we can construct a 3-parameter

(with parameters ¢z, ¢23,¢31) quantization, and, for any n, we get a quantization

parametrized by the vector space of # by n antisymmetric matrices over R, i.e. by
IRn(n—l)/Z.

Using 4.2 again], we can construct, for all j,k € {1,.. n} ]=|=k and g in

R, a 2-cocycle o/ on R” by the formula w*(6,0) = R~k ), where 8, v/
belong to IT{\”, and U; (resp. vi) is the i™ component of # (resp. v 7); let us put
Q* = (B, @ B )@*); so QF is a 2-cocycle for (L°(R) @ L(L2(R™)), I, k), and
this leads to a deformed coproduct I'* such as:

I*(n(b,t,a)) = P*(n(b,t,a) ® n(b, t,a))Q** .
We get that:
(1® F (b, t,a)(1 @ F)d(u,0) = ™"/ d(u, 5 — bu)
for any ¢ in L*>(IR x IR"), from which we get that:
(1@ F ® 1@ F)Y[*(n(b,t,a))p(u, b,u’,v') = e™e ind gi(al?) gialt”)
i (e by by =i Yd(u, d — bu, !,V — bu)
for any ¢ in L*>(R x R x R x ]f{\”), and, using Fourier transform again, we get:
I (r(b, t,a)) f(u,v,u',0") = @1PVe i by’ gitu it

Su,v+u'qu(bre; — bjex) + a,u',v' — ugu(be; — bie) + a) ,
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where u, u’ belong to R, v, v/ to R”, b; is the i" component of b, (&);
the canonical basis of R”, and f belongs to L?>(R"*! x R"*!). This coprod-
uct is clearly non-symmetric, and this construction gives again Kac algebras
L(R) ® L(LA(R")), I, 15, ).

In fact, we shall see that these Kac algebras are isomorphic to the previous
ones: let us consider now the involutive automorphism y of H,(R) given by:

y(b,t,a) = (a,—t + (alb),b) .

Using ([ES2], 5.1.4 and 5.3.3), we can construct an involutive automorphism K(y)
of L°(R) ® L(L*(R™)) such that:

Ky(y)(n(b,t,a)) = n(y(b,t,a))
Iy o Ks(y) = (Ki(7) @ Ko(7)) o I,
Ks 0 K(y) = Ks(y) o K55
@5 0 Ks(7) = @5 -

Moreover, as $(0,0,a) = (a,0,0), we get that, for any f in L°°(]1/{\”), we have

Ki()o Ba( ) = Bi(]) .
whe/r\e f is the element of L°°(]l{":1) such that f~(12, ) = f(¥), for any 4 in R, ¢
in R”. From which we infer that, for all j, k, Qu = (Ky(y) ® K())(€*), and

Ty 0 Ky(7) = (Ko(y) @ Ko(p)) o T,

and, therefore, we get that K (y) is an isomorphism between the Kac algebras
LX(R) ® LLX(RM), I, ks, ¢,) and (L=(R) © LLAR")), T, Ky, 05)-

We can consider the Lie algebra L of the Heisenberg group H,(IR), and define,
where u belongs to R, v to IR”, v; is the k™ component of v, and ¢ is in the
Schwartz algebra & (IR"™!), its generators Py, R, Oy (k € {1,..,n}) by

0 0
Paus0) = (. 6000 0ot 00 = 5 (10),
R9(u,0) = (5, )0t 1m0 = h(,0),

0
de)(ua U) = a—bk [TC(b, Z a)d)(u’ D)]Ia=0, b=0,t=0 = iuvk¢(us U) P

which are the infinitesimal operators of the representation m. These operators are
linked by the commutations relations [Py, R] =[O, R] = 0 and [Py, O;] = 6xR.
The symmetric coproduct I of the envelopping algebra U(L) satisfies

(P ) =P, Q1 +1Q P,
I(R)=R®1+1QR,

O =0®1+1® 0,

the antipode k; and the involution * verify

Ks(Pr) = Py = =P, ii(R) = R* = =R, ki(Qk) = O = — Ok -
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The first quantization leads, for /=& and !4/, and m € {1,.,n}, to:
Iy(P)=P@1+1QP;,
Tp(P))=P;i®@1+1®P; —qu(Ox ®iR—iR® O),
(P ) =P @1 +1Q P +qu(Q;®IR—IR® Q;),
Tx(RA)=R®1+1Q®R,
T (0n) =0n®@1+1Q00,.
The second quantization leads, for /+k and /=, and m € {1,...,n}, to:
I’'P,) =P, @1+1®P,,
I'RY=R®1+13R,
ron=0e1+100,
Q) =0k ®1+1® 0k — qu(P; ®iR—iRQP;),
M) =0, 1+1® Q)+ quPy @ iR~ iR®Py).
We obtain here two “quantum groups” in the sense of [D], which are clearly iso-

morphic.

6.4. Kac—Paljutkin’s Dimension 8 example [KP2]. This “historic” example of non-
trivial (i.e. non commutative and non-symmetric) finite dimensional Kac algebra
(i.e. finite dimensional semi-simple x-Hopf algebra) is due to Kac and Paljutkin,
published in Russian in 1965. A description of this example is done in ([BS],
8.26.1); another description, using our constructions, is the following: let us start
with the group G equal to the semi-direct product (Z,)* ><, Z,, where the action
o of Z, is just the permutation of the generators a and b of (Z,)*. So, the group
G has eight elements

G = {l,a,b,ab = ba,s,as = sb,bs = sa,abs = sab}

and the subgroup {1,a,b,ab} is isomorphic to (Z,)*. On the group algebra Z(G)
(3.2(i1)) a structure of Kac algebra can be put; moreover, as it is dimension 8, and
as there is a projection of dimension 1 in the center of £(G) ([ES2], 6.3.5), and
as it is not abelian (because G is not abelian) we get that #(G) is isomorphic to
CopCopCo (E@Mz(@), let e1, ey, e3, es, €11, €12, €21, € be the matrix units
of this algebra; therefore, up to an isomorphism, we can write the left regular
representation A of G as the following:

AMl)=e +ey+e3tes+e +en,
Ma)=e —extes—es—ent+en,
Mb)=e—ext+es—est+en—en,
Mab)y=e +ey+es+es—e —en,
Ms)=e +e —e3—est+enten,
Mas)=e —ey—e3+es—ep+en,
Mbs)=e1 —ey —e3+es+epn—en,

Mabs) =e; + e —e3 —eqs —en —ey,
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from which we can get formulas for the symmetric coproduct Iy on £(G):

Ife))=e®e+e, Qe +e3Re; +esQey
+1/2(e11 ®@eir +en®en +en e +e Qer),
Ii(ey)=e1R®er+erPe +e3Qes+esRes
+1/2(e11 ®en +en®er +en®ey +ex Renn),
I(e3)=e1®es+erRes+e3@e +es Qe
+1/2(e11 ®@ej +en ®en —en®en — e ®ea),
I(es) =e1 Qe +erR@e3+e3Qer+es®e
+1/2(e;1 ®en +en®ei —enn ey — e Denn),
Ii(en) =e®en+erx@entes®@e +eg@epn+e e +en®e
+e1®e;t+epnes,
Ien)=e ®en+er ey —es®@en—es@ey+en®e +e Qe
—enp®es —e®ey,
I(e)=e®en+er®@en—e3@ey —es@epn+e Qe +en®er
—e e —en®es,
I(en)=e ®ent+er®e+es@ent+es®@e+en®e +e Qe
+en®e;+e®ey,
and for the involution * and the co-involution x:
Ki(e))=e =¢€/(i=1,...,4),
Ks(err) = en = ey, Ks(en) =exn =e3,,
Ks(ein) = e =€)y, Ks(ea) = e = 6;1 5
and V\)/C see, therefore, that e; is the projection given by the co-unit of Z(G) ([ES2],
6.3.5).

The subalgebra #((Z,)*) generated by (A(1),A(a), A(b), M(ab)), is generated
also by (e; + e3,e3 + es, e11,€22); by the Fourier transform, it is isomorphic to the

algebra of functions on (Z,)?, and this isomorphism sends e; + e; on J;, e; + e4
on d4p, €17 on d, and ey on J§, (where 6, means the Dirac function on x, for any

x in (Zy)?).

Let w be the function on (Z,)? x (Z,)?* defined by w(a,b) = w(b,ab) = w(ab,a)
=™ o(l,u) = w(u,u) =1, o(u,t) = w(t,u) for all u, ¢t in (Z;)2, and let Q be
the unitary element of £((Z,)?) @ L((Z;)?*) obtained by Fourier tranform. We get

Q=(e1+e)®I+ey ®(er+e3+en +e™en+e ™ e +es))
+en® (e +e+e e + e+ ™ ey +es))

+(er+es)® (€1 + e+ ey + g + ey + e ey .
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If we consider the function (si,52,53) — @(s2,53)0(s1,5253)0(S1,52)0(5152,53), it
takes value 1 except if s; =53 = a (resp. b, ab), and s, +s;, sp+1, for which it
takes value —1; therefore we get

0Q=10IR1—2e;;1®en®e —2en Qe Qexn —2e1 Q(e2+es) Ven
—2en @ (er+ey) Qe —2er +es) e @ (e +eq)
—2es+es)Qen ®(ex+es),

from which we can easily verify that 0,2 commutes with A(s) ® A(s) ® A(s), and
is, therefore, a pseudo-2 cocycle for (£(G),Is). So, (Z(G),(I;)q) is a Hopf-von
Neumann algebra; as the function  verifies w(u,t) = w(u™',t~') = w(t,u) for all
u, t in (Zy)?, we get that (ZL(G),(Is)e, ks) is a co-involutive Hopf-von Neumann
algebra. Moreover, we easily get that Q(e; ® x) = (e ®x)Q2 = e¢; ® x, for all x in
Z(G); from which we infer that e; still gives a co-unit for the new structure, and,
as we have (Iy)qg(e1) = Iy(e1), we get, by ([ES2], 6.3.5), that it is a Kac algebra.

We obtain then also (Iy)e(es) =I(es), (I5)elen)=TI(en), (I¥)elen)=
Iy(ex), and, for the other generators:

INo(e) =e1@er+e; Qe +e3 ey +e4 ® es
+1/2(e11 ® ey + e @ e1y +ie; ® ey — iey R e1n),
(Ie(es) =e1@e+er@est+es@er+es®e
+ 1/2(e11 ® exn +exn ® ey —ienn ® ey + iex) @ enn) ,

(Iy)a(enn) =e1 ®@epn —iey @ ey — e3 @ ey +ieg ® e
+en®e +iey Qe —ep Qe —iey Qey,
Io(e)=e1 Qe +iey@epn —e3® ey —ies Qe

+e®e —iep Ve —eyp Ves+ien Vey .

It is therefore the example of Kac and Paljutkin described in ([KP3],8.19), i.e.
the x-algebra CH C d C d C @ Mo(C) (with the multiplication and * operation
given by the matrix decomposition), the coproduct (I)q, the co-unit given by the
evaluation in ej, and the antipode x;.

Since, by construction, the coproducts (I) and (I)q are equal on the subalgebra
generated by (A(1), A(a), A(b), A(ab)), it is clear that A(1), A(a), A(b), A(ab) are in
the intrinsic group of this Kac algebra ([ES2], 1.2.2) (i.e. are group-like elements).
Therefore, the dual Kac algebra has at least 4 one-dimensional representations; as it
is not abelian (because the Kac algebra we constructed is non-symmetric), it must
be equal to CA C D C b C @ M,(C). This Kac algebra is not symmetric (because
the initial Kac algebra is not abelian); it is known that the Kac—Paljutkin example
is the only possible non-trivial *-Hopf algebra structure on that algebra ([Wi]), and,
therefore, the dual Kac algebra is isomorphic to the initial one.

One can easily verify that, if we had taken any 2-cocycle for the function w,
then the deformed coproduct would still had been symmetric, and therefore, it would
have been just an isomorphic structure to the initial one.

Of course, it is possible to apply the same ideas to the situation of the group
Z3 >, Z, (where the action of the non trivial element of Z, is just the permutation
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of the non trivial elements of Z3). Then, one can verify that there is no way to obtain
a non-symmetric coproduct using the same techniques. In fact, such a Kac algebra,
with the same arguments as above, should have at least 3 group-like elements,
and, the dual Kac algebra should have € ® € & € as a summand, which, as it is
dimension 6, implies that it should be abelian; so the initial Kac algebra is necessary
symmetric. Anyway, it is known ([Wi]) that there is no non-trivial x-Hopf algebra
of dimension 6.

6.5. A Non-Trivial Kac Algebra of Dimension 12. We shall apply now the ideas
of 6.4 to construct a non-trivial example of a Kac algebra of dimension 12.

Let us start with the group G = Z3 ><, (Z,)?, where o is the action of (Z,)* =
{1,s,,st} on Z3 = {1,a,a°} defined by:

(@) = wm(a) =a*,  o(@’)=o(d’)=a.

So, the group G has twelve elements:

G={1,aq, a,s,as = sa*,a’s = sa,t,at = ta,a’t = ta,ts = st,ast = sta, tsa> = azst} .

Let us take now y a character of G; as as = sa®, we get y(a) = 1; therefore, the set
of characters of G is, by restriction to (Z,)?, in bijection with the set of characters
on (Zz)z; so there are 4 different characters on G, and as these characters are the
dimension 1 subrepresentations of the left regular representation A of G, we get,
because the group algebra £ (G) is of dimension 12, that #(G) is isomorphic to
CorCopChCHM(TC) D M(CT). Let ey, ey, e3, ea, €11, €12, €1, €2, f11, f125
f21, f2 be the matrix units of this algebra; using the above remarks, we can now
write the left regular representation 4 of G as the following:

Ml)y=er+e+e+es+en+ent+ fir + f2
=et+tptet;pteatqgtetaq,
Ma) = ey + e +es +es + jer + jPen +jfir + 7 fr
Ma*) =e +er+es+ e+ jren + jen + 77 fii + S,
Ms)=e —eyt+es—est+en+en+ fiat fa
=eitp—ea—pptestqi—er—q,
Mas) = e — ey +e3 — ey + jenn + jean + jfia + J far
Ma’s)=e — ey +es —es+ jPenn + jea + 2 fr2 + i for
Mt)=e —e—e3+es+en+en— fia— fu
=ert+tpi—e—pp-e—qte+q,
Mat) =e; — ey — €3 + es + jer + jPear — jifia — j2 far
Mia) =e; —e; — e3 +es + jPenn + jea — j2 fi2 — jfar
Mst)=e +e —e3—esten+en— fii— o
=er+tptetpr—e—qi—es—q,
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Mast) = e; + e, —e3 — es + jei + jen — jfi1 — > fo »
Ma®st) = e + e —e3 — e + jPen + jen — 2 i1 — jf2 s

where j = ¢?"3, and pi, p1, q1, q2 are the orthogonal projectors defined by:

p1=1/2(en1 +en +exn +en),
P2 = 1/2(e;1 —enn —ex1 +en),
q1 = 12(f11 + fiz + fa1 + f22)
2 =1/2(/i1 = fi2 = far + f22) -
There exists a standard structure of a symmetric Kac algebra on #(G) with a

symmetric coproduct I, involution * and a co-involution «; defined, for all g in G
by

L(M9)) = U9 @ Mg),  Kk(M9) = Mg), (As(9))" = Ag™").
One can see that e; is the projection given by the co-unit of £(G) ([ES2], 6.3.5).
The abelian subalgebra generated by A(1), A(s), A(¢), A(ts), is generated also by
e1 + p1, e2 + pa, e3 + qi1, e4 + qo; it is isomorphic to £((Z,)?), and, therefore, by

the Fourier transform, to the algebra of functions on (Z,)?, and this isomorphism
sends e; + p; on 1, e+ p2 on dy, e3 +¢q; on J, and es + g, on J; (where Oy

means the Dirac function on x, for any x in (Z,)?).
Let us consider now the function w on (Z;)? x (Z,)? such that, for all u, 4 in
(Zy)*:
o(lu) = o(u,u) =1, w(h,u) = w(u,h)
and w(s,t) = w(t,st) = w(st,s) = i. One can verify that this function is a 2-cocycle
on (Z,)* x (Zy)*. Let Q be the unitary element of L((Z,)*) ® L((Z,)?*) obtained
by the Fourier transform. We get
CQ=(e+p)®I+(est+q)Q[er+pi+estqi+ilea+ pr—es—q)]
+(@+p)®la+prt+e+prtilea+q—e—q1)l
+(eat+q)®[er+ p1r+es+qrt+iles+q1—er— p2)].

We can write Q = Q; + iQ,, where

Q=(+p)@l+(es+q1)®(e1+ p1+es+qi)
t@+p)@Ee+pteat+p)tatqp)E +p+e+q),
LH=(et+q)®+p—e—q)+(ea+p)@(es+q—e3—q1)
+(ea+g2)®(es+q1 —ex— p2).
As o is a 2-cocycle on (@2, then @ is a 2-cocycle for (¥(G),I;). So,

(Z(G),(I)q) is a Hopf-von Neumann algebra; as o is involutive, we get that
(L(G),(I3)q, Ks) is a co-involutive Hopf-von Neumann algebra.
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Moreover, we easily get that Q(e; @ x) = (e; ® x)Q2 = e; ® x, for all x in L(G);
from which we infer that e; still gives a co-unit for the new structure; we easily
get:

Ij(e))=e Qe +er@ert+e3®es+es RVey

+1/2(e11 @exn +en ®ei +e12 ®ex + e Qenn)
+12(/u® fo + f22 @ fii + f12® far + a1 ® f12),

from which we infer that (Iy)o(e;) = Is(e1), and, by ([ES2], 6.3.5), we get that
this new structure is a Kac algebra.

To prove that this new Kac algebra is non symmetric, it is enough to prove that
s(Iy)a(Ma)) % (Is)a(Aa)), which is:

(21 + i) (Ma) @ @)1 + i) +(Q1 + i )(Ua) ® Ma))(Q) +i2)" .

Let us remark now that ¢cQ; = Q" = Qy, ¢Q, = —Q," = —,. Using these relations,
we see that this inequality is equivalent to:

Q1(AMa) ® X(a))8 +Q(Ma) ® Ha))& ,
and it is even enough to prove that:
(P ® 9)1(Aa) @ Ma))2 +(p @ )2 (Aa) ® A(a)): ,

where p = p1 + p2, ¢ =q1 + g2 are in the center of £(G); this last inequality
is easily obtained, using the above expressions for €;,€2, and A(a), by direct cal-
culations. Therefore, the Kac algebra in consideration is non-symmetric and we
obtain a non-trivial Kac algebra of dimension 12 (i.e. a semi-simple *-Hopf algebra
of dimension 12 ([ES2], 6.6.9)) which is the *-algebra CH Cd Cd C P M(C) &
M,(C) (with the multiplication and * operation given by the matrix decomposition),
the coproduct (I§)g, the co-unit given by the evaluation in e;, and the antipode x;.

Since, by construction, the coproducts (I;) and (I§)q are equal on the subalgebra
generated by (A(1), A(s), A(?), A(ts)), it is clear that A(1), A(s), A(¢), A(ts) are in the
intrinsic group of this Kac algebra ([ES2], 1.2.2) (i.e. are group-like elements).
Therefore, the dual Kac algebra has at least 4 one-dimensional representations.

More precisely, as the number of one-dimensional representations has to divide
the dimension of the algebra ([L’R’], 1.6.c), it is easy to see that there are exactly
4 one-dimensional representations, and that the dual Kac algebra must be also equal
to COCODC DT M(C)DM(T).
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