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Abstract: Some examples of quantum groups in literature arise as deformations of
a locally compact group by a "dual" 2-cocycle. We make this construction in the
framework of Kac algebras; we show that these deformations are still Kac algebras;
using this construction, we give new quantizations of the Heisenberg group. From
this point of view, we analyse the dimension 8 non-trivial example of Kac and
Paljutkin, and give a new example of non-trivial dimension 12 semi-simple *-Hopf
algebras (a dimension 12 Kac algebra).

1. Introduction

1.1. The first attempts to define group-like structures (what is now called "quan-
tum groups") with the help of operator algebras were made to clarify the duality
of locally compact (non-abelian) groups, this group-like structure then to be put
on the "dual" of the locally compact group. At the algebraic level, the notion of
Hopf algebras is commonly used to deal with discrete groups and their dual ob-
jects at the same time, and therefore, to reach the same aim for* general locally
compact groups, because of the analysis of infinite dimensional unitary represen-
tations, it was more or less natural to mix up operator algebras and the algebraic
framework of Hopf algebras. This was made in the 60's by G.I. Kac, who con-
structed the "ring-groups," a category which contained both unimodular groups and
their duals; the non-unimodular case, i.e. to construct a wider category which con-
tains both locally compact groups and their duals, was done in the 70's, after the
works of M. Takesaki, independently by G.I. Kac and the second author, and by
J.-M. Schwartz and the first author, who named "Kac algebras" this wider category,
in order to emphasize Kac's 1961 basic work. On that theory, we refer to [ES2].

1.2. Unfortunately, this theory suffered for a long time from a serious lack of
non-trivial examples (see [KP1] and [KP2] for the first non-trivial examples); on
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the contrary, from the study of the quantum inverse scattering method, a "quan-
tization" procedure was made by V.G. Drinfeld [D] and others in order to obtain
non-commutative and non-co-commutative Hopf algebras by deformations of the
enveloping algebras of semi-simple Lie algebras. Independently, S.L. Woronowicz
[Wl] constructed a C*-Hopf-algebra which was a deformation of the algebra of
continuous functions on the compact Lie group SU(2); this last object, which was
essentially the same as Drinfeld's construction, satisfied weaker properties than the
axioms of Kac algebras, and was the first example of what is now called a "compact
quantum group." A satisfactory theory of compact quantum groups is now available
([W2]), and, by duality, the discrete case has been studied also ([PW,ER]).

1.3. Unless no precise definition of a "locally compact quantum group" is still given
(see [MN] on that subject), many mathematicians are now involved in searching
(and finding) concrete examples; historically, the first known examples were given in
[KP1] and [KP2]. Many works appeared recently ([L,LR,R1,R2, V]); in particular,
in ([L], Sects. 1 and 2), Landstad made a general construction of quantum groups,
taking the von Neumann algebra J^(G) generated by the left regular representation
XQ of a locally compact group G, and deforming the canonical coproduct Γf of

which is defined, for all g in G, by:

= λG(g) ® λG(g)

in order to obtain a new coproduct which can be written, for all x in if(G):

ΓΩ(x) = ΩΓf(x)Ω* ,

where Ω is a "dual" 2-cocycle lifted from an abelian subgroup H of G. The notion
of triangular QUE-algebra described in ([D] Sect. 10) is very similar.

This procedure, deforming the coproduct of J^(G), gives, on the predual A(G)
of if(G), a deformation of the product; it is the point of view developed by Rieffel
in ([Rl], Sect. 1) or ([R2], Sect. 2). This leads to the dual situation, where one
takes an algebra of functions on G, deform the product on this algebra, and leaves
untouched the canonical coproduct on this algebra. These two procedures are dual
to each other, and therefore equivalent. For a generalisation of RieffeΓs point of
view, see [Wa].

1.4. The aim of this paper is to show that, on certain conditions, Landstad's defor-
mations of an ordinary locally compact group are Kac algebras, to get generaliza-
tions of this construction for Kac algebras, and to show that the result of such a
deformation is again a Kac algebra. One should notice that another construction of
a deformation of a coproduct (or a multiplicative unitary), using a 2-cocycle, is to
be found in ([BS], 8.24, 8.26).

7.5. The paper is organized as follows: in the second section, we define 2-cocycles
and 2-pseudo-cocycles for a von Neumann algebra M equipped with a coassociative
coproduct Γ (Hopf-von Neumann algebra), and, for any such object Ω the defor-
mation ΓQ of the coproduct associated; if, more precisely, there is a co-involution
/c, we give the definition of a 2-cocycle and a 2-pseudo-cocycle with respect to
(M,Γ,/c), and, for such an Ω, we get then that (M,ΓΩ,κ) remains a co-involutive
Hopf-von Neumann algebra.

In the third section, we start with a Woronowicz algebra; it is a class of objects
introduced in [MN], which contains Kac algebras, compact and discrete quantum
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groups. Then, the. constructions obtained in Sect. 2 with 2-cocycles allows us to
define a multiplicative unitary, which is the deformation of the multiplicative unitary
associated to the Woronowicz algebra.

In Sect. 4, following Landstad, we consider 2-cocycles on Kac algebras given
by lifting special 2-cocycles associated to an abelian group.

In Sect. 5 the main result of this paper is given: in the case of Kac algebras,
when the 2-cocycle is of the type described in Sect. 4, and lies in the centralizer
of the Haar weight, then the coinvolutive Hopf-von Neumann algebra obtained
in Sect. 2 is another Kac algebra, whose multiplicative unitary is the deformed
multiplicative unitary obtained in Sect. 3.

In Sect. 6, we give some examples; more precisely, we show that Landstad's
construction of the deformation of a locally compact group arising from an abelian
subgroup, is, by our result, a Kac algebra; this allows us to give new quantizations
of the Heisenberg group. Moreover, we show that the dimension 8 example of
the non-trivial Kac algebra given in the 60's by Kac and Paljutkin [KP2] is a
deformation given by a pseudo-2-cocycle of a symmetric Kac algebra. Using the
same techniques, we construct a new example of a dimension 12 non trivial Kac
algebra.

1.6. As a final remark, we must notice that, in our construction, the co-involution
remains undeformed. So, the examples [KP1] and [V] cannot be described in that
way.

1.7. We are thankful to Eduard Vaysleb for references to the papers on finite di-
mensional Hopf algebras, and to Masaki Izumi for pointing out a mistake in a
preliminary version of this work.

2. Cocycles of Hopf-von Neumann Algebras

2.1. Definition. A Hopf-von Neumann algebra is a von Neumann algebra M with
an infective morphism Γ from M to the von Neumann tensor product M 0 M such
as:

(Γ 0 i)Γ = (/ 0 Γ)Γ ,

where ί means the identity of M (cf. [ES2], 1.2.1).

2.2. Definition. Let (M,Γ) be a Hopf-von Neumann algebra as defined in 2.1; for
all unitary u in M, we define d\u in M 0 M by

dw = (u*®u*)Γ(u)

and, for all unitary Ω in M 0 M, we define d2Ω in M 0 M 0 M by

d2Ω = (i (8) Γ)(Ω*)(1 0 Ω* )(Ω 0 1 )(Γ 0 0(Ω)

2.3. Definition. Let (M,Γ) be a Hopf-von Neumann algebra as defined in 2.1; we
shall call a 2-cocycle of (M,Γ) a unitary Ω in M ®M such that d2Ω = 1, or,
equίvalently:

(Ω 0 1)(Γ 0 0(Ω) = (10 Ω)(z 0 Γ)(Ω).
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We shall call a 2-pseudo-cocycle of (M,Γ) a unitary Ω in M ® M such that d2Ω
belongs to (Γ 0 i)Γ(M)'.

2.4. Examples. Let G be a locally compact group, and let L°°(G) be the abelian von
Neumann algebra of the (classes of) essentially bounded measurable (with respect
to the left Haar measure ds) complex-valued functions on G. Then, it is well
known that the von Neumann tensor product L°°(G) 0 L°°(G) can be identified
with L°°(G x G); for every / in L°°(G), let us define a two variable function

Y> f o r a 1 1 s> * i n G :

Then (L°°(G),Γ%) is a Hopf-von Neumann algebra ([ES2], 1.2.9), and a 2-cocycle
of (L°°(G),Γ^) is a (class of) measurable function ω from G x G to TΓ, such that,
for almost all si, 5*2, S3 in G:

ω C ϊ i ^ M S i ^ , ^ ) = ω(s2,S3)ω(sUS2S3)

Such a function will be called a 2-cocycle on G.
As L°°(G) is abelian, it is clear that any measurable function ω from G x G to

T is a 2-pseudo-cocycle of ( L ^

2.5. Proposition. Lei (M,Γ) be a Hopf-von Neumann algebra, and Ω a 2-pseudo-
cocycle of (M, Γ); then, let us put, for all x in M:

Γφ) = ΩΓ(x)Ω* .

Then, (M,ΓΩ) is a Hopf-von Neumann algebra, and we shall say that (M,ΓQ) (or
ΓQ) is deformed from (M,Γ) (or from Γ) by Ω.

Proof This is clear by the following calculation:

(ΓΩ 0 i)ΓΩ(x) = ( β Θ 1)(Γ <g> i)(ΩΓ(x)Ω*)(Ω* 0 1)

= (Ω 0 1 )(Γ 0 i)(Ω)(Γ 0 i)(Γ(x))(Γ 0 i)(β* )(Ω* 0 1)

= (10 Ω)(i 0 Γ)(Ω)S2Ω(/ (8) Γ)(Γ(x))(δ2Ω)*(/ 0 Γ)(Ω*)(1 0 Ω*)

= (10 Ω)(/ 0 Γ)(Γ0(JC))(1 (8) Ω*)

= (i ® ΓΩ)(ΓΩ(x)). D

2.(5. Remark, (i) For any unitary w of M, it is easy to check that d\u is a 2-cocycle
for (M,Γ).

(ii) Let ς be the flip of M 0 M ; it is clear that (M,ςΓ) is another Hopf-
von Neumann algebra; if Ω is a 2-(pseudo-)cocycle for (M,Γ), then ςΩ is a
2-(pseudo-)cocycle for (M,ςΓ).

(iii) If Ω is a 2-(pseudo-)cocycle for (M,Γ), then Ω* is a 2-(pseudo-)cocycle
for(M,Γ f l).

(iv) Let V be a multiplicative unitary in the sense of [BS], i.e. a unitary on the
Hubert tensor product § ( g ) § , such that V satisfies the pentagonal equation:

Vl2Vl3V23 = V23Vn ,

then, if M is the von Neumann algebra generated by all the operators (i 0 ω)(V),
where ω belongs to the predual J^(ir))*, the application x —•» F(x 0 1)V* defines a
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coproduct Γ on M, and a 2-cocycle for (M,Γ) is a unitary Ω in M ®M satisfying:

A pseudo-2-cocycle is a unitary Ω in M ®M such that
belongs to the commutant of V\2VuM\V*3V*2l using the pentagonal equation, we
get that, equivalently, Ω must be such that V^Ω^V^Ω^ΩnVnΩ^Vu belongs to
Z(M) 0 i ? ( § ® § ) , where Z(M) is the center of M.

(v) Let (M\,Γ\) and (M2,Γ2) be two Hopf-von Neumann algebras; let α be
a *-homomorphism from M\ to M2 such that α(l) = 1 and Γ2 o α = (α 0 α) o Γ\\
then, if Ώ is a 2-cocycle for (Mi,i~i), then (α 0 α)(Ώ) is a 2-cocycle for (M2,Γ2).

2.7. Definition. ([ES2], 1.2.5) A triple (M,Γ,κ) is called a co-involutive Hopf-von
Neumann algebra if: •

(i) (M,Γ) is a Hopf-von Neumann algebra as defined in 2.1,
(ii) K is an involutive anti-automorphism of M, i.e. a linear mapping from M

to M such that, for every x9 y of M:

κ{xy) = κ(y)φ),

κ(x*) = κ(x)*,

κ(κ(x)) = x ,

such that we have

2.8. Definition. Let (M,Γ,κ) be a co-involutive Hopf-von Neumann algebra, Ω
be a 2-pseudo-cocycle for (M, Γ). We shall say that Ω is a 2-pseudo-cocycle for
(M, Γ,κ) if we have:

(K 0 κ)(Ω) = Ω = ςΩ* .

We define the same way the 2-cocycles for (M,Γ,κ).

2.9. Remark, (i) Let G be a locally compact group, and let us define, for all / in
L°°(G), κa(f) by the equality, for all s in G:

Then, (L°°(G%Γ^κ^) is a co-involutive Hopf-von Neumann algebra ([ES2] 1.2.9);
let ω be a 2-cocycle on G, as defined in 2.4; it is a 2-cocycle for (L°°(G\ Γ%\ K^)
if we have the equalities, for almost all s, t in G:

ω(s~λ,t~ι) — ω(t,s) = ω(s,t).

We shall say then that ω is an involutive cocycle on G.
(ii) let (M, Γ9 K) be a co-involutive Hopf-von Neumann algebra, and Ω be a

2-(pseudo-)cocycle for (M,Γ); then it is straightforward to check that (K (g) κ)(Ω*)
is a 2-(pseudo-)cocycle for (M,ςΓ), and, therefore, using 2.6, that ς(κ 0 κ)(Ω*) is
a 2-(pseudo-)cocycle for (M,Γ).

(iii) let (M\,Γι,κ\) and (M2,Γ2,κ2) be two co-involutive Hopf-von Neumann
algebras and let α be a moφhism of co-involutive Hopf-von Neumann algebras, i.e.
α is a *-homomoφhism from M\ to M2 such that α(l) = 1, Γ2 o α = (α ® α) o Γj
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and κ2 o α = α o κ\; then, if Ω is a 2-cocycle for {M\,Γ\,κ\), then α(Ω) is a 2-
cocycle for (M2,Γ2,κ2).

2.10. Proposition. Le/ (M,Γ, K) be a co-inυolutive Hopf-von Neumann algebra,
Ω be a 2-pseudo-cocycle of (M,Γ,κ); then (M,ΓQ,K) is a co-ίnυolutive Hopf-von
Neumann algebra.

Proof. Let x be in M; we have, using 2.8:

ς(κ 0 k)ΓΩ(x) = ς(κ 0 κ)(ΩΓ(x)Ω*)

= ς(κ 0 κ)(Ω*)ς(κ: 0 /c)(Γ(x))ς(κ; 0 κ)(Ω*)

= ΩΓo K:(JC)Ω* = ΓΩ o κ(x) . D

3. Cocycles of Kac Algebras and Woronowicz Algebras

3.1. Definition. A Kac algebra ([ES2] 2.2.5) is a quadruple IK = (M9Γ9κ9φ) such
that:

(i) (M,Γ,κ) is a co-involutiυe Hopf-von Neumann algebra;
(ii) φ is a semi-finite faithful normal weight on M satisfying, for all x in M + ,

y, z in the left ideal Wlφ, t in R:

(i ® φ)Γ(x) = φ(x)l ,

(/ 0 φ)((l 0 /)Γ(z)) = κ((i 0 φ)(Γ(/)(l 0 z))) ,

κo σj = σ_t o K .

There is an equivalent (C* -version of this theory [EV]; more precisely, it is possible
to define <£*-Kac algebras and to prove:

-that any (£*-Kac algebra can be imbedded canonically in a unique Kac
algebra

-that for any Kac algebra (M,Γ,κ,φ), there is a unique (D*-subalgebra A of
M such that A, equipped with the restrictions of Γ, K and φ is a <£*-Kac algebra.

3.2. Examples, (i) Let G be a locally compact group; the left Haar measure ds
defines a semi-finite faithful normal weight φ^ on the abelian von Neumann algebra
L°°(G); it is then straightforward to verify ([ES2] 2.2.2) that, with the notations of
2.9, (L°°(G),r^,Ka,(pa) is a Kac algebra. Any Kac algebra whose underlying von
Neumann algebra is abelian is of that type ([ES2] 4.2.5). The associated C*-Kac
algebra is the (C*-algebra Co(G) of all continuous functions on G going to 0 at the
infinity, equipped with the restrictions of these coproduct, coinvolution and weight.

(ii) Let λβ be the left regular representation of G on the Hubert space L2(G),
defined for all s, t in G, / in L2(G) by

Let J&f(G) be the von Neumann algebra generated by this representation; it is possi-
ble to define on &(G) a structure of Kac algebra ([ES2], 3.7.5) («Sf(G), Γf, κf9 φf),
such that, for any s in G, any / continuous function on G with compact support,



Deformation of Kac Algebra by Abelian Subgroup 577

we have, where e is the unit of G:

<P?(W)) = fie) .
The modular group of φf is given, for all s in G, t in R, by:

σf(λG(s)) = ΔG(sfλG(s),

where ΔQ is the modulus of G. Any Kac algebra whose coproduct is symmetric (i.e.
such that Γ = ςo Γ where ς is the flip) is of that type ([ES2], 4.2.4). The associated
(C*-Kac algebra is the C*-algebra (C*(G) generated by the left regular representation
of L !(G), equipped with the restrictions of these coproduct, coinvolution and weight.

3.3. Remark. Let K = (M,Γ, K, φ) be a Kac algebra; then, it is possible to define
a unitary (the fundamental unitary of the Kac algebra) W on the Hubert space
Hφ (g) Hφ, such that, for all x, y in the left ideal 9lφ:

W(ΛJx) ® ΛJy)) = ΛφΘφ(Γ(y)(x Θ 1)).

The adjoint W* is a multiplicative unitary in the sense of [BS]; the von Neumann
algebra M is equal to the von Neumann algebra generated by all (i®ω)(W\ for
all ω in the predual ££(Hφ), and we get, for all x in M:

Γ(x)= W(l®x)W* .

Moreover, we have W* = (J ®J)W(J <8>J), where J is the canonical involutive
isometry Jφ constructed by the Tomita-Takesaki theory, and J is the canonical
implementation on Hφ of the anti-automorphism K.

It is possible to associate another Kac algebra (M,Γ,κ9φ) (the dual Kac alge-
bra), whose fundamental unitary is equal to σW*σ. The bidual Kac algebra is equal
to the initial one, and the two examples above (3.2) are dual to each other. ([ES2],
2.4.2, 2.4.4, 2.6.2, 2.6.3, 2.7.6, 3.7.3, 3.7.5 and 4.1.1.)

3.4. Definition. A Woronowicz algebra ([MN]) is a family W = (M,Γ, κ:,τ, φ)
such that:

(i) (M,Γ,κ) is a co-involutive Hopf-υon Neumann algebra;
(ii) τt is a one parameter group of ^-automorphisms of M, such that, for all

t in R, we have:
Γ o τt = (τt 0 τt) o Γ

K o τt = τt o K

(iii) φ is a semi-finite faithful normal weight on M satisfying, for all x in M + ,
y, z in the left ideal yiφ, ω in M* analytic with respect to the action of τt on M*,
s, t in JR.:

(i ® φ)Γ(x) = φ(x)l ,

(ω 0 φ)((l 0 y*)Γ(z)) = ωo τ _ / / 2 o κ((i 0 φ)(Γ(y*)(l 0 z))) ,

σf o σfoκ = σfoκ o σf .
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As for Kac algebras, it is possible, with the same definition as in 3.3, to de-
fine a unitary W {the Kac-Takesaki operator) which fulfills the same properties
([MN], 2.4 (i), (ii), (iii), 2.1.6 (i), (iii), 3.8 (i), 4.2).

There is a duality within this class of objects ([MN], Sect. 3), which generalizes
the duality of Kac algebras, the dual Kac-Takesaki operator being equal to σW*σ
([MN], 3.8).

3.5. Examples, (i) It is clear that any Kac algebra is a Woronowicz algebra.
(ii) Let (A,d) be a compact quantum group, i.e. ([W2]) A is a (C*-algebra

with unit, and d is a unital *-homomorphism from A to A® A such that (d ® ϊ)d
= (z 0 d)d, such that the set of all (a ® \)db, for all a, b in A, is total in A ®A,
and such that the set of all ( 1 0 a)db, for all a, b in A, is total in A ®A.

Then ([W2], 1.3), there exists a unique left-invariant state φ on A, and, if we
denote (Hφ,πψ, ξφ) the G.N.S. construction, we may put on M = πφ(A)n a structure
of Woronowicz algebra (let us note that the vector state induced by ξφ on πφ(A)
is faithful). It is explicitly done in ([MN], Sect. 5) in a particular case, but it can
be done in whole generality by using ([W2] 1.5 and [BS] 1.2.4).

(iii) In [ER] a notion of discrete quantum group has been defined, which appears
([ER],10) to be the dual notion of a compact quantum group; therefore, it is possible
also to associate to each discrete quantum group a Woronowicz algebra.

3.6. Proposition. Let K = (M,Γ,κ,φ) be a Kac algebra (or W = (M,Γ,κ,τ,φ)
a Woronowicz algebra), W its fundamental unitary, Ω a 2-pseudo-cocycle with
respect to (M,Γ). With the notations of 33, let us put

Ω = (J®J)Ω*(J®J)

and WQ = ΩWΩ. Then, for all x in M, we have:

ΓΩ(x)=WΩ(l®x)W£.

Proof By definition of J, we get that Ω belongs to M ®M'\ therefore, the result
is trivial. D

3.7. Lemma. With the hypothesis of 3.6, let us suppose that Ω is a 2-cocycle for
(M, Γ,κ); we have then:

(Γ 0 /)(Ω)(Ω* ®l) = (σ® 0(1 0 W*)(σ ® 0(1 0 Ω)(σ 0 0

x (1 0 W){\ 0 Ω ) ( σ 0 θ ,

where σ means the flip on Hφ 0 Hφ.

Proof Let us write j(x) = Jx*J; we define this way an anti-isomorphism from M

to M', or from M' to M. We have then Ω = (K 0y)(Ω), and, therefore

(Γ 0 0(Ω) = (Γ® i)(κ®j)(Ω) = (ς(κ 0 K) ®j)(Γ 0 i)(Ω).

Using 2.8, we then get:

(Γ 0 0(Ω)(Ω* ® 1) = (ς(κ ®κ)® j)((Ω ® 1 )(Γ <8> 0(Ω))

= (ς(κ 0 K) 0y)(O ® Ω)(i ® Γ)(Ω))

= (ς(κ ® K) ®j)(i ® Γ)(Ω)(ς ® /)(1 0 Ω)
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which is equal, using the implementations of j and K, to

(σ 0 1)(J 0 7 0/) ( l 0 JF)(σ 0 1)(1 (8) Ω*)

x (σ 0 1)(1 0 r * ) ( J 0 / 0 J)(l 0 Ω)(σ 0 1)

and, using the property linking W, W* and J and J, is equal to

( σ 0 1)(1 0 W*)(J®J®J)(σ® 1)(1 ®Ω*)

x (σ 0 1)(J 0 / 0 J){\ 0 JF)(1 0 Ω)(σ 0 1),

which gives the result. D

3.8. Proposition. With the hypothesis and notations of 3.7, we have:

Proof Using the definition, we get:

(ΓΩ 0 i)(WΩ) = (Ω Θ 1)(Γ 0 ί)(Ω)(Γ 0 i)(W)(Γ 0 ι)(Ω)(Ω* 0 1)

= ( 1 0 Ω)(/ 0 Γ)(Ω)(Γ 0 0 ( ^ ) ( ^ 0 /)(Ω)(Ω* 0 1).

Using then the fact that (Γ 0 i)(W) = (1 0 JΓ)(σ 0 1)(1 0 FΓ)(σ 0 1), we get, us-
ing 3.7 that (Γ 0 i)(W)(Γ 0 /)(Ω)(Ω* 0 1) is equal to

(1 0 W){\ 0 Ω)(σ 0 0(1 0 ^)(1 0 Ω)(σ 0 0

As (/ 0 Γ)(Ω) = (1 0 FΓ)(σ 0 1)(1 0 Ω)(σ 0 1)(1 0 W*), we then get that

(z 0 Γ)(Ω)(Γ 0 0(JF)(Γ 0 0(Ω)(Ω* 0 1)(1 0 W*)

is equal to

(1 0 JF)(σ0 l)(l 0 Ω ) ( σ 0 l)(l 0Ω)(σ0/)(l 0 W){\ 0 Ω)(σ 0 i)

and, as (σ 0 1)(1 0 Ω ) ( σ 0 1) and (1 0 Ω) commute, we finally get:

(Γ o 0 0(^fl) = (1 ® l̂ bXo- 0 l)(l 0 FΓfl)(σ 0 1),

which is the result. D

3.9. Theorem. Let K = (M9Γ,κ,φ) be a Kac algebra {or W = (M9Γ,κ,τ,φ) a
Woronowicz algebra), W its fundamental unitary, Ω a 2-cocycle with respect to
(M,Γ,κ). Let us put Ω = {J 0 j r )Ω*(J 0 / ) , where J is the canonical involutive
isometry Jφ constructed by the Tomita-Takesaki theory, and J is the canonical
implementation on Hφ of the anti-automorphism K, and WΩ = ΩWΩ; then we get.

(i) WQ is a multiplicative unitary ,

(ii) W% =(
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Proof By 3.6 and 3.8, we get (i); by 3.3 and the definition of Ω, (ii) is
trivial. D

4. Abelian Cocycles

4.1. Proposition. Let K be an abelian locally compact group (with an additive

notation), K its Pontrjagin dual, and let π be a continuous homomorphism from

K to K such that, for all s in K, we have:

(π(s),s) = 1 .

Then the function ω(s,t) = (π(s),t) is an involutive cocycle on K; moreover, it
satisfies, for all s, t in K, ω(s,st) = ω(s,t).

Proof Starting from (π(st),st) = 1 for all s, t in K, we get:

{π(t),s) = (π(st),s) = (π(st),ή = (π(s),ή .

The rest is just straightforward calculations. D

4.2. Example. Let K\, K2 be two abelian locally compact groups, K\, K2 their

Pontjagin's duals; let π\ be a continuous homomorphism from K\ to K2 and πi the

dual homomorphism from K2 to K\. Then the homomorphism π from K = K\ x K2

to K = K\ x K2 defined, for all s in K\, t in K2 by:

π(s,t) = (πι(t),-πι(s))

satisfies the conditions of 4.1.

4.3. Lemma. Let (M, Γ,κ,φ) be a Kac algebra (or W = (M, Γ,κ,τ,φ) a Worono-
wίcz algebra), W its fundamental unitary, K an abelian locally compact group, a
a co-involutive Hopf-von Neumann morphism from (L°°(K),Γ^,κ^) to (M,Γ,κ),
ω an involutive cocycle on K as in 4.1, and let Ω = (α 0 α)(ω). Let a^, bt in
L°°(K) such that Σj(ai 0 Z?7 ) —^ ω strongly, and of norm less or equal to 1;
then:

(i) Σi(μi 0 \)Γa(bi) is weakly converging to ω.

(ii) £/(α(β/)* ^Ja(bi)J) is weakly converging to Ω.

Proof The finite sums Σx(ai 0 l)Γa(bι) are converging to the function (s,t) ^
ω(s,st), i.e. to ω, which is (i).

We can remark, also, because of the particular form of ω, that (κa 0 i)(co) = ω*.
The application x —> Ja(x*) J from L°°(K) to M is a homomorphism, and, therefore,
all the finite sums Σ/(α(α/)* 0Joc(bi) J) are of norm less or equal to 1. Let ξ, ξ',
η, ηf in Hφ; we then get:

ξ)\η 0 ηf) = Σ^atf
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which is converging to:

(Ω(η®Jξ')\ξ®Jη') = (Ω*(ξ®Jη')\η®Jξ') = ((ωLη ® i)(Ω*)Jη'\Jξ)

and, using the remark above, we get that it is equal to:

α <g> oc)(κa 0 ί){ω)Jη'\Jξr) = (ωξ,η o/c0 ί)(Ω)Jη'\Jξ')

W ) = (Ω(Jη®Jη')\Jξ®Jξ')

and, by linearity and continuity, we get (ii). D

4.4. Remark. As ω is multiplicative in the first variable, we get:

(Γξ ® i)(ω) = ωl3ω2,3

and, therefore:

(Γ<g>/)(Ω) = Ωi,3Ω2,3

and, by the same arguments with respect to the second variable, we get:

4.5. Remark. ([L]) For θ in K, t in K, the function (θ,t) -» (θ9t) is an element
of L°°(K) (Si L00^); via the Fourier-Plancherel isomorphism, we know that S£{JC)
is isomorphic to L°°(K) (and ££(K) to L°°(K)); via this isomorphism, it may be
written ([ES2], 4.4.3) as Jκλχ(s)* (3 dPs, where Ps is a spectral measure on K

with values in £?(K). Therefore, the function ω defined in 4.1, considered, via the
Fourier-Plancherel isomorphism, as an element of &(K) 0 J£(K), may be written
as Jκ λg(π(s))* (8) dPs, and the lifted 2-cocycle Ω eM ®M is equal to:

4.6. Definition. ([L]) With the hypothesis of A3, we shall say that Ω is an abelian
cocycle of (M, Γ, κ\ constructed with (K, π, α).

If P is the support of α, then, as, by ([ES2] 1.2.7, 2.2.6 and 4.3.6(iii)), there

exists an open subgroup K' of K such that L°°(K)P is isomorphic to L°°{K')\ let

a! be then the canonical the homomorphism from L°°(Kf) to M. As K = K/K ±,

we can then construct a continuous homomorphism π' from Kf to K such that Ω
is constructed with (K\π\af).

Let us take now K" = K/π/(Kf)±. We have then K = π'{K'\ and, therefore,

the co-involutive Hopf-von Neumann algebra (L°°(K"\Γ% ,κ% ), which is iso-

morphic to («£?(£" ), Γf , ftf ), is a sub co-involutive Hopf-von Neumann algebra

of (&(κ'),Γf'9κ£')9 which is isomorphic to {L°°(K'\Γξ\κξ'); therefore, if Ω is
an abelian cocycle of (M, Γ, κ\ constructed with {K, π, α), we can always suppose
that α is injective, and that π(K) = K (or, equivalently, that π is injective).
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4.7. Remark, (i) If W = (M,Γ, K, τ, φ) a Woronowicz algebra, with φ finite (it
comes then, using ([BS], Sect. 4), from a compact quantum group), and if Ω is an
abelian cocycle of (M, Γ, K), then Ω is constructed from (K, π, α), with α injective,
and n(K) = K; then, as φ o α is a bounded left Haar measure on K, we get that K
is compact, therefore K = π(K) = π(K) also, and so K is finite.

(ii) If W = (M,Γ,κ,τ,φ) a Woronowicz algebra, such that the predual M* has
a unit ε (it comes then from a discrete quantum group), and if Ω is an abelian
cocycle of (M,Γ,κ), then Ω is constructed from (K,π,oc), with α injective, and
π(AΓ) = K; then, as ε o α is a unit of Lλ(K), we get that AT is discrete, therefore

7? = n(K) = n(K) also, and so K is finite.

5. Abelian Cocycles of Kac Algebras

5.1. Proposition. Let (M,Γ,κ,φ) be a Kac algebra, W its fundamental unitary, K
an abelian locally compact group, a a co-involutive Hopf-von Neumann morphism
from (L°°(K)9Γ%,κK;) to (M9Γ,κ) such that a(L°°(K)) is included in M* {where
Mφ = {x e M,σf(x) = x,\ft e R}), ω an involutive cocycle on K as in 4.1, and
Ω = (α (8) α)(ω). Then φ is left-invariant with respect to ΓQ, i.e. we have, for all
z in M+:

Proof. Let αz , Z?/ in L°°(K) such that Σ/(αz 0 &/) —>/ ω, and all finite sums of norm
less or equal to 1. Let x, y in 9lφ Π $1*, and ^ , f/r right bounded vectors with respect

to φ; using 4.3(ii), we get that Σ z (α(^)* <8>Jcc(bi)J) is weakly converging to Ω,
and, therefore, using that a(L°°(K)) lies in Mφ, we get that WΩ(Λφ(x) 0 y
is the weak limit of

O J)(Λφ(x) 0 Λφ(y)) =

x 0 1)),

and therefore we get that (n'(ξ') 0 π'{η'))WΩ(Λφ{x) 0 Λφ(y)) is the weak limit
of

' f ' / 0 α)(^Γα(Z7*)(α* 0 1))(* 0 1))

= Γ(y)(oc 0 α X ^ Γ ^ ή Π W ^ 0 ) ^ ® l)(ξ' 0 ι?7)

and is, using 4.3(i), equal to Γ(j^)ί2*(x 0 l)(<f 0 ^ ) . We then deduce that
Γ(y)Ω*(x 0 1) belongs to 9tφ®φ and that

Λφ®φ(Γ(y)Ω*(x 0 1)) - ^ O ( ^ Φ ( J C ) 0 Λφ(y))

from which we get

Λφ®φ(ΓΩ(y)(x 0 1 ) ) = FFΩ(ylφ(x) 0 ylφ(j))

and, then

{ωΛφ{x\ΛΨ{χ) ® ψ)ΓΩ(y*y) = (φ® φ)((x* 0 l)ΓΩ(y*y)(x 0 1)) = φ(x*x)φ(j;*.y

As Ω belongs to M^ ®Mφ, we have, for all x in M, thanks to ([ES2], 2.5.6):

ΓΩ(σf(x)) = ΩΓ(σf(x))Ω* = Ω(i 0 σf)(Γ(x))Ω* = (/ 0 σf )(ΓΩ(x))
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and, therefore, the weight (ωΛψ{x\Λφ{x) ® φ)ΓΏ is invariant by σf, from which, by
density, we get, for any z in M + :

φφ = φ(x*x)φ(z)

from which, by density, we deduce easily:

(i®φ)ΓΩ(z) = φ(z)l . D

5.2. Theorem. Let (M,Γ,κ,φ) be a Kac algebra, W its fundamental unitary, K
an abelian locally compact group, α a co-involutive Hopf-von Neumann morphism
from (L°°(K),Γ^,κξ) to (M,Γ,κ) such that OL(L°°(K)) C AP, ω an ίnvolutive
cocycle on K as in 4.1, and Ω = (α ® α)(ω). 77ze?z Kβ = (M,ΓΩ,κ,φ) is a Kac
algebra whose fundamental unitary is WΩ.

Proof By 5.1, the triple (M,ΓΩ,φ) satisfies the hypothesis of ([ES2], 2.4), WΩ is
its fundamental operator, and, using ([ES2], 2.4.6), we can define, for all ω in M*,
λΩ(ω) = (ω o K ® I){WQ) such that, for all x in 9lφ:

x) = /tφ((ω o K: Θ i)ΓΩ(x))

from which we get, for all ω in M*:

Sφλaico) C λQ(ω)Sφ .

As, for all ί in R, zl^ belongs to the center of M ([ES2], 4.1.3 (i)), and Ω (and
Ω) commutes with 1 0 Διt

φ, we get that WΩ commutes with 1 0 Aιt

φ, and, therefore,
that λΩ{ω) commutes with Διt

φ, for all ω in M* and all t in R, from which we
deduce that JφλΩ(ω)Jφ = λΩ(Έ5).

We then get, using 3.9(ii):

λΩ(ωf =(ωoκ®i)(W£) = (ωoκ® i)((J 0 JΨ)WΩ(J 0 Jφ))

= Jφ(ω 0 i\WΩ)Jψ = JφλΩ(ω o κ)Jψ = AΩ(ω°)

and, as λΩ is involutive, we get the result, by ([ES2], 2.4.6 (iv)). D

5.3. Corollary. With the hypothesis of 52, let A be the canonical sub-<£*-algebra
of M, which is, with the restrictions of Γ, κ,φ, a (D*-Kac algebra; then, A,
with the restrictions of ΓΩ,κ,φ, is the (E*-Kac algebra canonίcally associated
to (M,ΓΩ,κ,φ).

Proof By 4.4 and ([ES2], 1.5.2, 2.6.5), we get that Ω is the generator of a non-
degenerate representation of the involutive Banach algebra M* in M; therefore, by
([EV], 5.1.5), Ω belongs to the multipliers of B®A9 where B is the (C*-algebra
generated by this representation; applying the same argument to σ£2*σ = Ω, we get
that this algebra B is a subalgebra of A; therefore, Ω belongs to the multipliers
M(A <®A) of A ®A; more precisely, by ([BS], A.3d), we get that Ω belongs to the
subalgebra denoted Mι(A 0 A) in ([EV], 2.1.3). So, for any x on A, we get that
ΩΓ(x)Ω* belongs to Mι(A ®A); so, A, with the restrictions of ΓΩ, K, φ, is a (C*-
Kac algebra, which is, by ([EV], 4.3.4), the C*-Kac algebra canonically associated
to (M,ΓΩ,κ,φ). D

5.4. Proposition. With the hypothesis of 5.2, let ωt be a left approximate unit
{if it existsl) of the predual M*, which is an algebra whose product is given by:

co\ * CL>2 = ( ω i (8) CO2) o Γ ,
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then ωt is still a left approximate unit for the deformed product on M*, given by:

&>i *Ω ω 2 = (ωi ® ω2) o ΓΩ .

Proof Thanks to ([ESI], 2.4), we know that there exists ξt in Hφ such that ωz = ω^.
and:

\\W(ξi®η)-ξi®η\\->iO

for all η in //φ. As, by 4.4, we have (Γ ® z)(Ω) = Ω U Ω 2 , 3 which, by ([ES2], 1.5.1),
means that ω-^ (ω <g> ί)(Ω) is multiplicative, we deduce that (ωz ® z)(Ω) —»z 1,
from which we infer that, for all η in Hφ, we have:

(Ω(ξi®η)\ξi®η)^i\\η\\2

and

By definition of Ω, we get, for all ω in M*:

(ω (8) /)(Ω) = J ( ω o κ ® 0(Ω>/ ,

and, therefore, the application ω —> (ω 0 z)(Ω) is anti-multiplicative, and, with the
same arguments, we get that:

\\Ω(ξi®η)-ξi®η\\->iO,

from which we deduce that:

\\WΩ(ξi®η)-ξi®η\\-+iO9

and, using ([ESI], 2.4) again, we get the result. D

5.5. Corollary. With the hypothesis of 5.2, if the Kac algebra DC is amenable in

the sense o/([ESl], 2.5), so is K^.

Proof Clear, using ([ESI], 2.5) and 5.4. D

5.6. Remark. It is possible to prove in the context of Woronowicz algebras a similar
result to 5.2, if, in addition, θί(L°°(K)) c Mτ = {x e M,τt(x) = x, Vί G R}.

6. Examples

(5.7. Deformations of a Locally Compact Group Lifted by an Abelian Subgroup
([LR], [L]). Let G be a locally compact group; in [L] are studied the deformations
of the coproduct Γf on JSf(G) given by a 2-cocycle for ( i f (G),Γf) (in Land-
stad's terminology, a "dual cocycle on G") or by a 2-cocycle for (J£(G\Γf,κf)
(in Landstad's terminology, a "normalized dual cocycle on G"). The only known
method of obtaining these objects is by lifting an ordinary cocycle on H, where H
is a closed abelian subgroup of G, and 7/ its Pontrjagin dual.

In that situation, it is well known that there exists an injective morphism α from
the von Neumann algebra JS?(i/) generated by the left regular representation λπ of
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H to the von Neumann algebra J^(G), such that, for every s in //, we have

ac(λH(s)) = λG(s)

(see, for example, ([ES2], 5.2.6) and [TT]). It is then clear that α is a co-involutive
Hopf-von Neumann algebra morphism from («£?(#), Γ f , κ f ) to (JSf(G),Γf ,/cf);
let H be the Pontrjagin dual of H; then, using the Fourier-Plancherel isomor-
phism, we know ([ES2], 4.3.7) that the co-involutive Hopf-von Neumann algebras

(J2?(//),Γf,κ;f) and (L°°(H\Γ%,κξ) are isomorphic; we may then consider that

α is a co-involutive Hopf-von Neumann algebra morphism from (L°°(H)9Γ%9κ%)
to (<?(G),Γf9κf).

Let us suppose now that AG(s) = 1, for all s in H, where ΔG is the modulus of

G; using 3.2(ii), we get that oc(L°°(H)) is included in 5£{G)^. We are therefore
in the conditions of 5.2, and, if π is a continuous homomorphism from H to H,
the function ω(s, t) — (π(s),t) is an involutive cocycle on H, Ω = (α® α)(ω) is a
2-cocycle for (JSf(G),Γf,κ:f), and (&(G),(Γf)Ω,κf,φf) is a Kac algebra.

Using 4.5, we see that Ω can be written as:

Ω = f λG(π(s)T ® d(a(Ps)),
H

where Ps is the spectral measure on //, with values in ^(H) such that the operator

fj}λfi(s)* ®dPs is the function (t,s) —> (ί,s) on H x //, viewed, via the Fourier-

Plancherel isomorphism, as an element of ^(H) ® J£(H).
So, using Landstad's terminology and notations, when the normalized dual co-

cycle ω on G is lifted from an abelian subgroup H on which the modulus function
of G is equal to 1, the algebra A(G,δω)) is the predual of a Kac algebra; in that
situation, we can answer positively to one open problem of [L]; more precisely,
by ([ES2], 3.1.4), every representation of this algebra A(G,δω) has a generator (in
Landstad's terminology, is given by slicing a <5ω-corepresentation).

6.2. Deformations of a Semi-Direct Product of Abelian Groups. As a particular
case of the preceding example, we consider A and H locally compact groups and
α a continuous action of H on A9 i.e. a homomorphism H —> Aut4, such that the
mapping (a9s) —• as(a) is continuous from A x H to A; the semi-direct product
G — A x α H is the set A x H, equipped with the product

It is a locally compact group, whose right Haar measure is the product of right
Haar measures on A and H; the modulus function AAX^H is given by:

AAxaH(a,s) = δ(s)AA(a)AH(s) ,

where δ(s) is the modulus of the automorphism as.
We can consider A as a closed subgroup of G, and, if A is abelian, the pair

(G,A) satisfies then the conditions of 6.1. If, moreover, H is amenable (for instance
if H is abelian), then it is known that the semi-direct product is amenable.

We can also consider H as a closed subgroup of G. If H is abelian, and if the
modulus δ is equal to 1, i.e. if the action of H leaves invariant the Haar measure on
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A, we are again in the conditions of 6.1. If, moreover, A is amenable (for instance
if A is abelian), the semi-direct product is again amenable.

6.3. Quantizations of the Heisenberg Group. As a specific example, we can take
the usual Heisenberg group //^(R), which can be considered as the semi-direct
product R π + 1 x α R", where the action α of R" on R"+ 1 is given, for a, b in R",
t in R, by:

Therefore, the product rule in Hn(K) is given by (a, af, b, b' in Rw, t, t' in R ) :

(b,t,a)(b\tf,af) = (b + b',t + t' + (a\b'),a + d),

and, as the action α leaves the Lebesgue measure of R" invariant, we are in both
situations described in 6.2. The group Hn(JR) is unimodular, and the Hubert space
Z,2(//Λ(R)) can be identified with Z,2(Rn) Θ L 2 ( R ) (g)Z2(Rw). So, we get that the
left regular representation λ(b,t,a) of Hn(K) is defined by

λ(b, t9a)f(v, u, w) = f(v — b,u — t — (a\v — b),w — a),

where u belongs to R, υ, w to R\ / to I 2 (R") 0L 2 (R) 0L 2 (R n ). Let us define
a unitary (/ on that Hubert space by

Uf(v,u,w) = (\u\/2)ι/2 J f(v,u,u-w)elW)ueluududv,
R"xIR

where u, u belong to R,ϋ, w, ϋ to Rw, / to L2(RW) ®L2(R) (g)Z2(R") and we get
that the left regular representation λ(b9t,a) of Hn(K) verifies:

Uλ(b, t, a)U*f(v, u, w) = ei{b\v)ueίtuf(v + a, u, w).

Therefore, this representation is equivalent to the representation π on L 2 (R" + 1 )
defined, for any φ in Z 2 (R W + 1 ) , by:

π(6, t, a)φ(u, v) = e^v)ueιtuφ(u, v + a) .

This representation generates the von Neumann algebra £°°(R) ® JSf(Z2(Rn))5

which is therefore isomorphic to ^f(i/Π(R)); by this isomorphism, there exists a
symmetric Kac algebra (£°°(R) (8) if(L2(Rw)),Γ5,/c5,φ5), such that:

j;(π(6, ί, α)) = π(6, ί, Λ) <8) π(6, t, a),

κ:s(π(i, ί, a)) = π(-b, -t + (a\b), -a).

As we have
π(b,t,0) = ((u,v) -^ e^v)ueitu),

the moφhism ^! from L o o (R' ί + 1 ) into £°°(R) 0 i f (L 2(R")) we get from the inclu-

sion RM + 1 c //Λ(R), sends the function (M,U) -^ e^^^l^ on π(6,ί,0), and, there-

fore, for any / in LO O(R*+1), β\(f) is the function (u,v) -^ f(u,uv).

As π(0,0, β) = 1 0 p(a), where p is the right regular representation of Rw, the
morphism β2 from L°°(R«) into £°°(R) 0 i f(L 2 (R")) we get from the inclusion
R" C Hn(WL)9 is given by:

where F is the Fourier-Plancherel unitary from £ 2 (R«) to
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Using 4.2, we can construct, for all j\k e {1,...,«}, jή=k, and q^ in 1R, a

2-cocycle ω^ on R w + 1 by the formula ωjk(ύ,v,u',υ') = e

ιqjk jVk~VkVj\ where ύ, ur

belong to R, v, v' belong to RM, and vj (resp. I;,') is the zth component of v (resp.

t/). So, % = (βι 0 β\)(ωjk) is a 2-cocycle for (£°°(IR) 0 if(Z 2(Rw)),Γ,,κ,), and

% is the function on R"+ 1 x R*+ 1 given by:

Ωjk(u9v9u'9v') = e^^A-w'j) ?

and we get a deformed coproduct Γjk defined by:

Γjh{π{b9 ί, fl)) = β/*(π(i, ί, a)

and we obtain:

Γjk(π(b,t,a))f(u,v,uf,v') = e-*s^ a&)-

where w, w' belong to R, t;, f7 to R", α̂  is the ith component of α, and / belongs
to Z 2(RW + 1 x R Π + 1 ) . These coproducts are clearly non symmetric. This construc-
tion gives new Kac algebras (£°°(R) (8) £^{L2{Win)\Γβ,κs,φs\ whose duals are
amenable. In fact, taking into account the parameter qtj we obtain a one-parameter
quantization of the Heisenberg group (if n ^ 2; for n = 1, the cocycle is trivial, and
there is no deformation). Of course, for n ^ 3, it is possible to deal with a cocycle
which is the product of such cocycles, in order to get multiparameter quantizations
of the Heisenberg group. For instance, if n = 3, we can construct a 3-parameter
(with parameters qn^23,^3\) quantization, and, for any n, we get a quantization
parametrized by the vector space of n by n antisymmetric matrices over R, i.e. by
jgn(«-l)/2e

Using 4.2 again], we can construct, for all j\k G {l,...,n}9j + k, and qβ in

R, a 2-cocycle α>>* on R^ by the formula ωJk(v,vf) = e

iqjk{v^~vlv'j\ where v, vr

belong to R", and ιi} (resp. v[) is the ith component of v (resp. v'); let us put
QJk = (β2 0 β2)(co>k); so Ω^ is a 2-cocycle for (£°°(R) (g) ̂ (Z 2(Rw)),Γ,,/c 5), and
this leads to a deformed coproduct Γjk such as:

ΓJk(π(b, t, a)) = ΩJk(π(b, t, a) 0 π(6, ί

We get that:

for any 0 in L 2 (R x R"), from which we get that:

(1 0 F 0 1 0 F)ΓJk(π(b,t,a))φ(u,v,u'\vf) = e^e^'

for any φ in Z 2 (R x Rw x R x R"), and, using Fourier transform again, we get:

ΓJk(π(b9t9a))f(u9v9i/9v
f) = ei{v\b)u ei{v''^ eίtu eίtu>

f(u, v + u'qjk(bk8j - bjSk) + a,u', vf - uqjk(bkεj - bjSk) + a) ,



588 M. Enock, L. Vaϊnerman

where u, u' belong to IR, υ, υr to Rw, bj is the ith component of b, (ε/)z

the canonical basis of R", and / belongs to L2(WLn+ι x R Λ + 1 ) . This coprod-
uct is clearly non-symmetric, and this construction gives again Kac algebras
(£°°(R) <8> ^ ( Z 2 ( R * ) ) , Π'k, κs, φs).

In fact, we shall see that these Kac algebras are isomorphic to the previous
ones: let us consider now the involutive automorphism γ of //Π(R) given by:

Using ([ES2], 5.1.4 and 5.3.3), we can construct an involutive automoφhism Ks(y)
of £°°(R) <g> i?(L 2(R r t)) such that:

κs o Ks(y) = Ks(y) o κs,

φs°κs(y) = φs

Moreover, as y(0,0, a) = (α, 0,0), we get that, for any / in L°°(RW), we have

where / is the element of L00(1R'I+1) such that f(u,ΰ) = f(v), for any u in R, v

in WC". From which we infer that, for all j , k, ΩJk = (Ks(γ)®Ks(γ))(Ωjk), and

Γjk o Ks(y) = (Ks(γ) Θ Ks(y)) o Γ* ,

and, therefore, we get that Ks(γ) is an isomorphism between the Kac algebras
{L™(β.)® g{L\W)),ΓJk,κs,φs) and {L00^)® 2>{L2{W>)),Γjk,κs,φs).

We can consider the Lie algebra L of the Heisenberg group //W(R), and define,
where u belongs to R, ϋ to R", Vk is the kth component of v, and φ is in the
Schwartz algebra ^ ( R " + 1 ) , its generators Pk, R, Qk (k G {1,...,«}) by

Pkφ(u,υ) = -^-[π(bj9a)φ(u9υ)]\a=oib=oit=o = J^(u>v) >

Rφ(u,υ) = -^-[π(b,t9a)φ(u9v)]\a=o3b=oft=o = iuφ(u9v),

Qkφ(u,v) = -zτ-[π(b9t9a)φ(u9v)]\a=otb=ott=o = iuvkφ(u,v),

which are the infinitesimal operators of the representation π. These operators are
linked by the commutations relations [Pk,R] = [Qk,R] = 0 and [Pk,Qj] = δjkR.

The symmetric coproduct Γs of the envelopping algebra U(L) satisfies

the antipode κs and the involution * verify

κ,(Pk) = Pt = -Pk,κs(R) = R* = -R,κs(Qk) = Q*k = -Qk .
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The first quantization leads, for /Φ£ and /φy, and m G {1,..,n}, to:

ΓJk(Pj) = Py <g> 1 + 1 <8>Py - qJk(Qk <8> ίR - iR <g> Qk) ,

= Pk <8> 1 + 1 ® Pk + ?y*(βy ® « - /Λ ® βy) ,

The second quantization leads, for /φ& and /φy, and m e {1,...,«}, to:

ΓJ\Qk) = β* ® 1 + 1 Θ β* - ?y*(Py (8) /Λ - iΛ ΘPy),

Ά β y ) = βy ® 1 + 1 ® βy + qjk(Pk ® « - « ® P*) .

We obtain here two "quantum groups" in the sense of [D], which are clearly iso-
morphic.

6.4. Kac-Paljutkin 's Dimension 8 example [KP2]. This "historic" example of non-
trivial (i.e. non commutative and non-symmetric) finite dimensional Kac algebra
(i.e. finite dimensional semi-simple *-Hopf algebra) is due to Kac and Paljutkin,
published in Russian in 1965. A description of this example is done in ([BS],
8.26.1); another description, using our constructions, is the following: let us start
with the group G equal to the semi-direct product (Z2)2 XQL ^2? where the action
α of Z2 is just the permutation of the generators a and b of (2£2)

2. So, the group
G has eight elements

G = {l,a,b,ab = ba,s,as = sb,bs = sa,abs = sab}

and the subgroup {l,a,b,ab} is isomoφhic to (Z 2 ) 2 . On the group algebra &(G)
(3.2(ii)) a structure of Kac algebra can be put; moreover, as it is dimension 8, and
as there is a projection of dimension 1 in the center of Z£(G) ([ES2], 6.3.5), and
as it is not abelian (because G is not abelian) we get that £?(G) is isomorphic to
C θ C θ C θ C θ M 2 ( ( C ) ; let e\, e2, e$, e4, en, en, e2u e22 be the matrix units
of this algebra; therefore, up to an isomorphism, we can write the left regular
representation λ of G as the following:

= e\ + e2 + e3 + e4 + eu + e22 ,

λ(a) = e\ - e2 + e3 - e4 - eu + e22 ,

λ(b) = eγ -e2 + e3-e4 + eu - e22 ,

λ{ab) = e\ + e2 + e3 + e4 — e\\ — e22 ,

λ(s) = e\ + e2 - e3 - e4 + eX2 + e2λ ,

λ(as) = e\ - e2 - e3 + eA - eX2 + e2X ,

λ(bs) = e\ - e2 - e3 + e4 + eX2 - e2\ ,

λ(abs) = e\ + e2 - e3 - e4 - e\2 - e2χ ,
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from which we can get formulas for the symmetric coproduct Γs on

Γs{e\) = ei 0 ei + e2 0 e2 + e3 0 e3 + e4 0 e4

+ l/2(en 0 e\\ + <?22 0 e22 + ej2 0 eγι + e2i

^(^2) = £1 0 ei 4- e2 0 ei + e3 0 e4 + £4 0 e3

+ l/2(βn 0 e2a + 2̂2 0 βn + 1̂2 0 e2\ + e21

e\ ® e3 + e2 ® e4 + e3 ® e\ + e4 ® e2

+ l/2(en 0 en + e22 ® £22 - en 0 eX2 - e2X

= β\ 0 £4 + ^2 ^ ^3 + ^3 ^ e2 + £4 0 βl

+ l/2On 0 β22 + e22 0 en - ei2 0 *?2i - 2̂1 0 en),

) = βi 0 en + β2 0 2̂2 + ^3 0 βn + ^4 0 2̂2 + en 0 βi + 2̂2

12) = ei 0 en + e2 0 β2i - £3 0 1̂2 - e4 0 e2i + 1̂2 0 e\ + e2i 0 £2

— en 0 £3 — e2i 0 £4 ,

Γ
s
(e

2
\) = ei 0 e2i 4- e

2
 0 ei2 - e

3
 0 β

2
i - e

4
 0 ei2 + £21 0 e\ + ei2 0 £2

- e2i 0 e
3
 - ei2 0 £4 ,

Γs(e22) = ei 0 β22 -h β2 0 en + e3 0 e22 + e4 0 en + e22 0 ei -h en 0 e2

H-e22 0 e 3 + en 0 e4 ,

and for the involution * and the co-involution κs:

^n =e*\, κs(e22) = e22 = e j 2 ,

e2ι = e\2, κs(e2l) = eX2 = e2l ,

and we see, therefore, that e\ is the projection given by the co-unit of 5£{G) ([ES2],
6.3.5).

The subalgebra i?((Z 2 ) 2 ) generated by (A(l), λ(a\ λ(b\λ(ab)\ is generated
also by (e\ +e^e2 +e4,en,e22); by the Fourier transform, it is isomorphic to the

algebra of functions on (%2)
2, and this isomorphism sends e\ + e3 on δ\, e2 + e4

on δab, e\\ on δa and e22 on δb (where δx means the Dirac function on x9 for any

x in (Z2O2).

Let ω be the function on (2£2)
2 x ( Z 2 ) 2 defined by ω(a,b) = ω(b,ab) = ω(ab,a)

= eίπ/4, ω(l,u) = ω(u,u) = 1, ω(u,t) = ω(t9u) for all u, t in (Z 2 ) 2 , and let Ω be
the unitary element of £^{{Έ2)

2) 0 J^f((Z2)2) obtained by Fourier tranform. We get

Ω = (ei + e3) 0 / + en 0 (ei + e3 + en + e / π / 4e2 2 + e" / π / 4(e 2 + e4))

+ e2 2 0 (ei + e3 + e~/π/4en + e2 2 + e/ π / 4(e2 + e4))

+ (e2 + e4) 0 (ei -f e3 + e2 + e4 + em / 4en + e" / π / 4e 2 2)
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If we consider the function (s\,s2is3) —• ω(s29S3)ω(s\,s2S3)ω(s\,s2)ω(s\s2,S3)9 it
takes value 1 except if s\ = S3 = a (resp. b, ab), and s2ή=s\9 S2ΦI, for which it
takes value —1; therefore we get

I - 2 e n ®e22®en -2e22®en 0 2̂2 ~

(e2 + e4) 0 e2 2 - 2(β2 + e4) 0 *?i 1 0 (β2 + e4)

- 2(e2 + β4) 0 β22 0 (e2 + e4) ,

from which we can easily verify that d2Ω commutes with λ(s) 0 λ(s) 0 /L(s), and
is, therefore, a pseudo-2 cocycle for (J£(G),ΓS). So, (j£f(G), CG)β) is a Hopf-von
Neumann algebra; as the function ω verifies ω(u9t) = ω(u~λ

9t~
ι) = ω(t,u) for all

u, t in (ΊL2)2> we get that (JSf(G), (/i)β, ft?) is a co-involutive Hopf-von Neumann
algebra. Moreover, we easily get that Ω(e\ 0JC) = (βi 0x)ί2 = ̂ 1 0 x , for all x in
JSf(G); from which we infer that ei still gives a co-unit for the new structure, and,
as we have (Γs)Ω(e\) = Γs(e\), we get, by ([ES2], 6.3.5), that it is a Kac algebra.

We obtain then also (Γs)Ω(e3) = Γs(ei), (Γs)Ω(eu) = Γs(en), (Γ s ) β (e 2 2 ) =
^(£22), and, for the other generators:

(Γs)Ω(e2) = e\ ® e2 + e2 ® e\ + e3 ® e4 + e4 ® e3

0 £?22 + 2̂2 0 en + ieu 0 )

2̂2 + 2̂2 0 βn - /en 0 e2\ + z'̂ 21

- ie2 0 2̂1 - ^3 0 1̂2 + ̂ 4 0 e2λ

+ e 1 2 0 ^i + /e2i 0 e2 — e\2 0 £3 — ^21 0 ^4 ,

= ^1 0 e2\ + /β2 0 ei2 - ^3 0 2̂1 - ^4 0 e\2

— ^12 0 ^2 — 2̂1 0 ^3 + ^12 0 ^4

It is therefore the example of Kac and Paljutkin described in ([KP3],8.19), i.e.
the *-algebra C θ C θ C θ C θ M 2 ( C ) (with the multiplication and * operation
given by the matrix decomposition), the coproduct (ΓS)Ω, the co-unit given by the
evaluation in e\, and the antipode κs.

Since, by construction, the coproducts (Γs) and (ΓS)Ω are equal on the subalgebra
generated by (λ(l),λ(a),λ(b)9λ(ab))9 it is clear that λ{\\ λ(a\ λ(b), λ(ab) are in
the intrinsic group of this Kac algebra ([ES2], 1.2.2) (i.e. are group-like elements).
Therefore, the dual Kac algebra has at least 4 one-dimensional representations; as it
is not abelian (because the Kac algebra we constructed is non-symmetric), it must
be equal to ( C θ C θ C θ C θ M 2 ( < £ ) . This Kac algebra is not symmetric (because
the initial Kac algebra is not abelian); it is known that the Kac-Paljutkin example
is the only possible non-trivial *-Hopf algebra structure on that algebra ([Wi]), and,
therefore, the dual Kac algebra is isomorphic to the initial one.

One can easily verify that, if we had taken any 2-cocycle for the function ω,
then the deformed coproduct would still had been symmetric, and therefore, it would
have been just an isomorphic structure to the initial one.

Of course, it is possible to apply the same ideas to the situation of the group
Z3 x α Z2 (where the action of the non trivial element of Z2 is just the permutation
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of the non trivial elements of Έ3). Then, one can verify that there is no way to obtain
a non-symmetric coproduct using the same techniques. In fact, such a Kac algebra,
with the same arguments as above, should have at least 3 group-like elements,
and, the dual Kac algebra should have C θ C θ C as a summand, which, as it is
dimension 6, implies that it should be abelian; so the initial Kac algebra is necessary
symmetric. Anyway, it is known ([Wi]) that there is no non-trivial *-Hopf algebra
of dimension 6.

6.5. A Non-Trivial Kac Algebra of Dimension 12. We shall apply now the ideas
of 6.4 to construct a non-trivial example of a Kac algebra of dimension 12.

Let us start with the group G — TL3 x α (Z 2) 2, where α is the action of (Z2)
2 =

{l,s,t,st} on 7L3 = {l,α,a2} defined by:

(xs(a) = oίt(a) = a2, ccs(a2) = at(a2) = a .

So, the group G has twelve elements:

G = {1, a, a2, s, as = sa2, a2s = sa, t, at = ta2,a2t = ta, ts = st, ast = sta9 tsa2 = a2st} .

Let us take now χ a character of G; as as = so2, we get χ(a) — 1; therefore, the set
of characters of G is, by restriction to (Z 2) 2, in bijection with the set of characters
on (Z2)2; so there are 4 different characters on G, and as these characters are the
dimension 1 subrepresentations of the left regular representation λ of G, we get,
because the group algebra J2?(G) is of dimension 12, that J£?(G) is isomorphic to
C θ C θ C θ C θ M2(<£) θ M2(C). Let eu e2, e3i e4i eu, eX2, e2u 2̂2, /11, /12,
fn> fn be the matrix units of this algebra; using the above remarks, we can now
write the left regular representation λ of G as the following:

eι+e2 + e3+e4 + en + e22 + /11 + fn

λ(a)

λ(a2)

λ(s)

λ(as)

λ{a2s)

λ{t)

λ{at)

λ(ta)

λ(sί)

= er+e2

= e\ + e2

= ex-e2

= eλ+pλ

= eλ-e2

= ex-e2

= ex-e2

— ex -h px

= ex — e2

= ex-e2

= ex+e2

= ex+ px

+ 3̂ +

+ e3 +

+ e 3 -

- e 2 -

+ e 3 -

+ e 3 -

-e3 +

- e 2 -

- β 3 +

- β 3 +

- e 3 -

+ e2 +

e4 -\- jexx

e4+j2ev

e4 + eX2 -

p2 + e3-

e4 +jeX2

e4+j2ex:

e4 + eX2 -

P2~e3-

e,+jeX2

e4

Jrj2ex:

e4 + exx -

p2-e3-

+ fen
i +je22

Ve2X +

f qx — ί

+ fe2\

ι+je2\

\-e2X-,

- q\ + '

+ Mι
ι+je2ι

Ye12-

+ jfn +rfτ2 ,

+f

fπ-

2 /π +7/22 ,

f/21

?2 ,

+ 7/l2+//21 ,

+ /

/l2-

?4 +

-f

/ii

-qι-e4-

2/l2+7/21,

-/21

? 2 ,

/Ί2-//21,

- hi

12,
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λ(ast) = e{ + e2 - e3 - e4 +jen + j2e22 -jfn -ff22 ,

λ(a2st) = eι+e2-e3-e4 +feu + je22 -j2fu -jfn ,

where j = e2m^, and p\, p2, q\, q2 are the orthogonal projectors defined by:

p\ = l/2(en + en + e2\ + e22) ,

p2 = l/2(en - en - e2X + e22) ,

There exists a standard structure of a symmetric Kac algebra on S£(G) with a
symmetric coproduct Γs, involution * and a co-involution κs defined, for all g in G
by

λ(g), κs(λ(g)) = λ(g), (λs(g))* = λ(g~ι).

One can see that e\ is the projection given by the co-unit of JSf(G) ([ES2], 6.3.5).
The abelian subalgebra generated by λ(l), λ(s), λ(t), λ(ts), is generated also by
e\ + pi, e2 + /?2, ei-\-q\, β4 + q2; it is isomorphic to ^f((Z 2 ) 2 ), and, therefore, by
the Fourier transform, to the algebra of functions on (Z 2 ) 2 , and this isomorphism
sends e\ + p\ on δ\, e2-\- p2 on δst, e3 H- ̂ 1 on ^̂  and 4̂ + ^2 on δs (where δx

means the Dirac function on JC, for any x in (Z2)2).

Let us consider now the function ω on ( Z 2 ) 2 x ( ^ ) 2 such that, for all u, h in

) — ω(u,u) = l,ω(h,u) = ω(u,h)

and ωfof) = ω(t,st) = ω(st,s) = i. One can verify that this function is a 2-cocycle

on ( ί θ 2 x (Z2I2. Let Ω be the unitary element of J^((Z 2 ) 2 ) Θ i f ( (Z 2 ) 2 ) obtained
by the Fourier transform. We get

+ (β2 + Pi) Θ [̂ 1 + /7i + <?2 + J92 + i(e4

 Jrq2-e3-qi)]

+ (̂ 4 + qi) <8> [e\ -i- p\+e4 + q2 + i(e3 + q\ - e2 - p2)]

We can write Ω = Ω\ + /Ω2j where

+ ^2) 0 (̂ 1 + P\ + 2̂ + ^2) + (̂ 4 + ^2) 0 Ol + /?l + 4̂ + qi) ,

P2 ~ e4 - q2) + (e2 + p2) 0 (e4 + ^ 2 - <?3 - ^1)

O3 + ^1 - β2 - ^2)

As ω is a 2-cocycle on (^2)2> then Ω is a 2-cocycle for («Sf(G),/^). So,
(if(G),(Γ 5)Ω) is a Hopf-von Neumann algebra; as ω is involutive, we get that
(L(G)9(ΓS)Q9KS) is a co-involutive Hopf-von Neumann algebra.
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Moreover, we easily get that Ω(e\ ® x) = (e\ ® x)Ω = e\ 0 JC, for all x in
from which we infer that e\ still gives a co-unit for the new structure; we easily
get:

= β\ 0 6\ ~h ̂ 2 0 ^2 ~K ̂ 3 0 ^3 H~ ^4 0 ^4

(8) £22 + 2̂2 0 βn + έ?

<g> /22 + /22 ® /l l +

from which we infer that (Γs)Ω(e\) = Γs(e\), and, by ([ES2], 6.3.5), we get that
this new structure is a Kac algebra.

To prove that this new Kac algebra is non symmetric, it is enough to prove that
ς(Γs)Ω(λ(a)) + (Γs)Ω(λ(a)), which is:

ς(Ωi + iΩ2)(λ(a) ® λ(ά))(Ωλ + iΩ2)* Φ(Ωi + /Ω2)(λ(α) 0 λ(a))(Ωx + zΏ2)* .

Let us remark now that ςΩ\ = Ωi* = Ωi, ςΩ2 = —Ω2* = — Ω2. Using these relations,
we see that this inequality is equivalent to:

Ωx(λ(ά) (8) λ{a))Ω2 + Ω2(λ(a) 0 λ(a))Ωλ ,

and it is even enough to prove that:

O 0 q)Ωι(λ(a) 0 λ(a))Ω2+(p 0 g)Ω2(A(fl) 0 λ(a))Ωx ,

where p = p\ -{- p2, q = q\ + q2 are in the center of ^((7); this last inequality
is easily obtained, using the above expressions for Ωi,Ω2 and λ(a), by direct cal-
culations. Therefore, the Kac algebra in consideration is non-symmetric and we
obtain a non-trivial Kac algebra of dimension 12 (i.e. a semi-simple *-Hopf algebra
of dimension 12 ([ES2], 6.6.9)) which is the *-algebra CωCθCθCθ M2(€) Θ
M2((C) (with the multiplication and * operation given by the matrix decomposition),
the coproduct (ΓS)Q, the co-unit given by the evaluation in e\9 and the antipode κs.

Since, by construction, the coproducts (Γs) and (ΓS)Ω are equal on the subalgebra
generated by (λ(l),λ(s),λ(t\λ(ts)), it is clear that λ(l), λ(s), λ(t), λ(ts) are in the
intrinsic group of this Kac algebra ([ES2], 1.2.2) (i.e. are group-like elements).
Therefore, the dual Kac algebra has at least 4 one-dimensional representations.

More precisely, as the number of one-dimensional representations has to divide
the dimension of the algebra ([L'R']5 1.6.c), it is easy to see that there are exactly
4 one-dimensional representations, and that the dual Kac algebra must be also equal
to ( C 0 ( C e c e C 0 M 2 ( C ) 0 M 2 ( ( C ) .
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