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Abstract: We consider the equations of a viscous polytropic ideal gas in the domain
exterior to a ball in Rw (n = 2 or 3) and prove the global existence of spherically
symmetric smooth solutions for (large) initial data with spherical symmetry. The
large-time behavior of the solutions is also discussed. To prove the existence we
first study an approximate problem in a bounded annular domain and then obtain
a priori estimates independent of the boundedness of the annular domain. Letting
the diameter of the annular domain tend to infinity, we get a global spherically
symmetric solution as the limit.

1. Introduction

The motion of a viscous polytropic ideal gas in R" (n = 2 or 3) is described by
the following equations in Eulerian coordinates (cf. [4,25])

+ (v V)v - μλv + (λ + μ)V(div v) - RV(pθ) ,

= κnAΘ -Rpθ(div\) + λ(άiv\Y + 2μD D . (1.1)\ί

Here p, θ, and v = (v\9...9vn) are the density, the absolute temperature and the
velocity respectively, R, cγ and KQ are positive constants; λ and μ are the constant

viscosity coefficients, μ > 0, λ + 2μ/n ^ 0; D = D(v) is the deformation tensor,

Dij := - I -̂  + ̂  1 and
Δ
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Let Ω := { c G Rn | |*| > a} (a > 0) denote the domain exterior to a ball in
]RW (n = 2 or 3 ). We shall consider the initial boundary value problem of ( 1 . 1 ) in
the region {t > 0, x G Ω} with the following initial and boundary conditions

p(x,0) = p\x),

= 0 d̂v
t ^ o,

(1-2)

(1.3)

where v denotes the exterior normal vector.
The global existence of smooth solutions to initial boundary value problems and

the Cauchy problem of (1.1) has been investigated by many authors. In one dimen-
sion, it is well known that global smooth solutions exist for smooth (large) initial
data (e.g. see [14,3,20,21,22] for initial boundary value problems, [13,3,11] for the
Cauchy problem; also cf. [12,7-10] for real gases). In more than one dimension the
global existence of smooth solutions has been investigated for general domains only
in the case of sufficiently small initial data (e.g. see [18,19,27] for initial boundary
value problems, [16,17] for the Cauchy problem; also see the survey article [26]).

For large initial data the global existence of solutions to (1.1) has been studied in
the case of a bounded annular domain. Nikolaev [23] in 1983 considered the initial
boundary value problem of (1.1) with vanishing velocity and constant temperature
on the boundary and proved that for (smooth) spherically symmetric initial data a
(smooth) spherically symmetric solution exists globally in time if the initial density
and temperature are strictly positive. Recently, Yashima and Benabidallah [28,29]
dealt with the case of non-negative initial density and temperature. They showed
the global existence of spherically symmetric solutions to (1.1). The boundedness
of the domain is essential in [23,28,29].

In this paper we prove the global existence of smooth spherically symmetric
solutions to (1.1)—(1.3) in the exterior domain Ω and study the large-time behavior
of the solutions.

The paper is organized as follows: In Sect. 2 we derive the spherically symmetric
form of (1.1) and present the main result. In Sect. 3 we consider an approximate
problem and prove uniform a priori estimates. The proof of the main result is
given in Sect. 4. Finally, the large-time behavior of the solutions is investigated in
Sect. 5.

Notation. Let α G (0,1) and b\,b2 G IR with b\ ^ b2. Cα[Z>ι,62] denotes the Banach
space of functions on \b\,b2\ which are uniformly Holder continuous with exponent
α and Cα'α/2(GΓ) for the Banach space of functions on Gτ := [bι,b2] x [0,Γ] which
are uniformly Holder continuous with exponents α in x and α/2 in ί, and || ||cα[Λ1,62]
and || ||cα,α/2((j ) are their norms, respectively. We define (see [6,15])

Cm+Λ[bl9b2]:=<feCm[bl9b2] max \dίf\ + < oo

:= (β
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Denote Qτ := (0, oo) x (0, T) and Q* := (0,k) x (0, Γ) (k G N). We use

C£c

+α[0,oo) := {/ G Cm+«[c,d] V [c,d] C [0,oo)} ,

:= {0 G C"*+α^+α>/2([c, rf] x [0, Γ]) I V [c, rf] c [0, oo)} ,

/w = 0,1,2.

Let ra ^ 0 be an non-negative integer and let 1 ̂  /? ^ oo. By Wm'p(b\9b2) we
denote the usual Sobolev space defined over (61,62) with norm || || »"«,/>(&!, j>2) (

see

[1]); Wm 2(bl9b2) = Hm(bl9b2) with norm Hl//^,^, ^°^(61,62) = ̂ (61?62)
with norm || H/,/^,^). For simplicity we also use the following abbreviations:

o), Hm=Hm(Q,oo); \\ \\LP = \\

( , ) and || || stand for the inner product and the norm in Z,2(0, oo) respec-
tively, and ( , )QT for the inner product in L2(QT). LP(I,B) resp. || H/,/^)
denotes the space of all strongly measurable, pih-power integrable (essentially
bounded if p = oo) from I to B resp. its norm, 7 C R an interval, B a Ba-
nach space. For a vector valued function / = (/i,...,/™) and a normed space
X with the norm ||| |||, / G X means that each component of / is in X\ we put

I l l / I l l :=l l l/ ι I I I + ••• + III/JII.
The same letter C will denote various positive constants which do not depend

on A:, but possibly on T.

2. Spherically Symmetric Form and the Main Result

We first derive the spherically symmetric form of (1.1). Spherically symmetric
solutions to (1.1) have the form

Vi(x9t) = *υ(r9t)9 i = l, . . . ,/ι, p(x9t) = p ( r 9 t ) 9 Θ(x9t) = Θ(r9t) 9 (2.1)

where c = ( c i , . . . 9xn) G Rw, r := |Λ:|. Assuming that P°(JC) = pv(r), \°(x) — xvo(r)/
r, θ°(x) = θQ(r)9 and denoting β:=λ + 2μ, we thus reduce the system (!.!)-(1.3)
to the following equations for p(r9t)9 v ( r 9 t ) and Θ(r9t) of the form:

dtρ -h dr(pv) + ̂ ~ 'pv = 0 ,

p (dtυ + vdrυ) = β { dfv -\ —d rv 3—v } - Rdr(pυ\ r G (α, oo), t > 0,

(n-
cγp(dtθ + vdrθ) = κQd2θ + KQ -drθ - Rpθ I drv + ^

)2+2μ^^^ (2.2)



342 S. Jiang

with the initial and boundary conditions

p(r,0) = po(r), t?(r,0) = ι?0(r), θ(r,0) = Θ0(r), r G [0,00) ,

ι;(α, 0 = 0, 0r(0, 0 = 0, / ^ 0 . (2.3)

To investigate the global existence it is convenient to transform the system (2.2)
to that in Lagrangian coordinates. The Eulerian coordinates ( r 9 t ) are connected to
the Lagrangian coordinates ( ζ 9 t ) by the relation

τ)dτ, (2.4)
o

where v(ξ,t) := v(r(ξ,t),t) and

ro(0:=T'(0; η(r):=}S

n-ip0(S)dS, r € [ f l , oo ) . (2.5)
a

Note that if PQ(S) > 0 for any ££[#,00) (which is assumed in Theorem 2.1 later),
then η as a function of r G [fl, oo) is invertible. Using Eq. (2.2)ι, (2.4) and the
boundary condition v(a9t) = 69 we obtain

r(ξ,t)
09 (2.6)

which, by integrating with respect to t, turns into

r(ξ,ί) r0(ξ)

/ sn-lp(s9t)ds = / sn-lpo(s)ds = η(rQ(ξ)) = ξ. (2.7)
a a

Thus, we have under the assumption p(s,t) > 0 for any s G [α, oo) and ί ^ 0
(which is a posteriori justified by (4.9) in Sect. 4) that r = a iff ξ = 0, r — » oo iff
ξ — » oo, and

= [r(ξ,0"-VWξ,0,OΓ1. (2-8)

For a function φ(r,t) we write φ(<^, t) := φ(r(ξ,t),t). By virtue of (2.4)
and (2.8),

£, 0 = dtφ(r, t) + vdrφ(r, t) ,

, 0 = drφ(r, t)dξr(ξ, t) = —^—^drφ(r9 ί) . (2.9)

Without danger of confusion we denote ( p 9 v 9 θ ) still by ( p 9 v 9 θ ) and ( ξ 9 t ) by
(jc,ί) We use u := l/p to denote the specific volume. Therefore, by virtue of
(2.8)-(2.9), Eqs. (2.2)-(2.3) in the new variables ( x 9 t ) read

Ut = (r"-lΌ)X9 (2.10)

vt=r"-1 \β(r" *υ)x - R?\ , αr€(0,oo) , t>09 (2.11)

+ -[β(r"~lv)x -Rθ](r"-lv)x - 2μ(n - \}(r"-2v\ (2.12)
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with the initial and boundary conditions

u(x,0) = UQ(X), v(x,Q) - VQ(X), θ(x,Q) = ΘQ(X), *G[0,oc), (2.13)

ϋ(0,0 = 0, θ*(0,0 = 0, t^09 (2.14)

where UQ := 1/po, β = λ + 2μ, and by virtue of (2.4)-(2.5), r = r(*,/) is deter-
mined by

r(*,0 - r0(x) + fυ(x,τ)dτ, x G [0,Z], ί ^ 0 ,
o

. (2.15)

As mentioned in the introduction our aim is to prove a global existence theorem
for (2.10)-(2.14). For this purpose we assume that

KO - 1, uo, 0o - 1, To"-1 δ^o, ηΓ^o, r^ldxθQ € L2. (2.16)

Before stating the main result we introduce the following definition:

Definition. {u,v,θ} is called a (global) generalized solution of (2.10)-(2.15), if
for every T > 0,

«- l , ι>, θ-\&L°°(yί,T\,Hl\ u,eL°°([0,T],L2),

v,, θt, uxt, υxx, θxx, r"-]ex, r
2"-2θxx€L2(Qτ), (2.17)

and {u,υ,θ} satisfies (2.10)-(2.15) almost everywhere in QT = (0, oo) x (0, T) and
takes on the given boundary and initial conditions in the sense of traces.

It should be noted that r(x,t) ^ α, (x,t) G Qτ (cf. (3.19) in Sect. 3), and if
{u, v, 9} is a generalized solution, then u, v, θ G C°([0, oo) x [0, T]) (see the proof
of (4.8) in Sect. 4). The main result of the paper reads:

Theorem 2.1. Assume that (2.16) is satisfied and UQ(X), ΘQ(X) > 0 for x G [0,oo).
Let the initial data be compatible with the boundary conditions (2.14). Then the
problem (2.10)-(2.15) has a unique generalized solution {u,v, 9} with u9 9 > 0 on
Qτ. If in addition

MO € C/+α[0,(X)), DO, θo - 1 € C^"(0,oo) for some α e (0, 1) ,

L2(0, oo) , (2.18)

then
u, ut e Cα'(1+α)/2(ρr), », 0 € C^«I\QT) . (2.19)

The proof of Theorem 2.1 is essentially based on a careful examination of
a priori estimates and a limit procedure. Since the domain is unbounded and the
coefficients tend to infinity as x — » oo, some difficulties arise; for example, from the
a priori estimates we could get only v(x,t) — o(Λ:~1//2+1/(2w)) as x — > oo; but this is
not sufficient to guarantee integration by parts in the proof where v = o(x~l+l/n)
is required. To overcome such difficulties we first study an approximate problem
in the bounded interval (0,£) and show the a priori estimates independent of k by
utilizing some cut-off function and modifying a technique of Kazhikhov [13,3] for
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the one-dimensional case, then letting k tend to infinity and using the obtained a
priori estimates, we get a global spherically symmetric solution as the limit.

Remark 2.2. The same techniques work and an analogous theorem is obtained when
(1.3) is replaced by the following boundary conditions:

VUn = t > 0.

3. A Priori Estimates for the Approximate Problem

As mentioned in the introduction, to show Theorem 2.1 we first consider an appro-
ximate problem in (0,&) (k G N) to (2.10)-(2.15), and prove the uniform a priori
estimates for solutions of the approximate problem, then we let k go to infinity to
get the existence.

We start with the construction of the approximate initial data {u^v^θ®}. For
& 6 N let φk be a C3 -function on R such that φk(x) =1 for c G [0,A/2] and
Φk(x) — 0 for jc ^ k, and

(3.1)

;[0,oc). (3.2)

We consider the following approximate problem to (2.10)-(2.15) in the bounded
interval (0,*):

Λ /• n — 1.. \ /o o \

-R- , (3.4)

1 = 1,2,3

for all x G [0,oo) and k G N ,

where C is a positive constant independent of k. We define

4(x) := (uo(x) - l)φk(x) + 1, ι£(*) := υ0(x)φk(x) ,

uk uk

cvdtθk = κn

.,2/1-2

Uk

xe(0,fr), t > 0,-2μ(«-l)(rΓX

with the initial and boundary conditions

uk(x9 0) = 4(x\ υk(x, 0) - vl(x\ θk(x, 0) = θl(x\ x e [0, k],

tfc(0,0 = vk(k, t) = 0, 3^(0,0 - 5,0 *̂, 0^0, t^ 0 ,

where A: e N, and
ί

ri ^v ^^ — r^Γv^ -I- Γ ί)ι ί^v r^ /7τ r £= ΓΠ ^1 / > ΠAy^^Λ, t ^ — ί k\Λ, j π^ I t/y^^Λ, i J U> C, Λ tZ j^V/, /vj, t -̂ \J ,

0

1/1

(3.5)

(3.6)

(3.7)

(3.8)
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From the definition of {u®,v®,θ®} it is easy to see that the initial data u%9 v%9

θQ

k are compatible with the boundary conditions (3.7) as UQ, VQ, ΘQ do, and under
the conditions of Theorem 2.1 we have

c~l ^ ul(x\ θl(x) ^ co, \vQ

k(x)\ ^c0 Vxe [0,*], * e N (3.9)

for some positive constant CQ independent of k. Moreover, one has

Lemma 3.1. Under the conditions of Theorem 2.1 we have

-> {uo,υo9θo,r£~ldxuo9rζ~ldxvo,rζ~ldxθo} in L2(0,oo) as k -> oo .

(3.10)

^jΓiΛ addition (2.18) A0/<fr, ίA^/i

Γ/-,Ox2«-2^2..0 / rO\2«-2^2/)0\ _. Γr2«-2^21. ^2«-2^2/i \
\(rk) όxυk>(rk) uxUkf-^\rQ OxVQ9rQ OχVo]

in Z2(0,oc) as k -> oo . (3.11)

Proof. In view of (2.16) we easily see that ||(M£ — wo^jj! — ι>o,θjj! ~ ^o)|| ̂  0 as
k — > CXD. From (3.9) and the definition of r0 and r£ one gets

C-!(l -h*1/π) g r0(jc), r^( c) ^ C(l +J1 / W)

for all jc e [0,oo) and A: G N , (3.12)

which together with (3.1) and Cauchy-Schwarz's inequality implies

\\(rlY~lΦ'k\\L°° ^OΓ1/" V

^ Csup ^C sup Jc- I + 1 / l7|l-uo|</y

^O as^^oo. (3.13)

Hence from (3.12)-(3.13) and (2.16), it follows that

iioir-'Φ* -^r WH ^ ιi(/ί)"-Vt»oiι + ιικ/ί)"-v* -^'K^λii
l + IK/ί)"-1^* - l)(ι*);c|| + UK/-?)-1 -ΓO

g C{t-'/« + llro-'ίuo),^^^ +

— > 0 as k — > oo .

The rest of (3.10) as well as (3.11) can be shown in the same manner. The proof
is complete. D

By virtue of the well-known global existence theorem for the problem (3.3)-
(3.8) (in bounded domains), (3.9) and Lemma 3.1 imply (see [23,28,29]).
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Lemma 3.2. Under the conditions of Theorem 2.1 there exists a unique solution
{uk,Vk,θk} with positive Uk.θk to (3.3)-(3.8) on [0,A;] x [0, oo) such that for every
T> 0,

uk9υk9θkeL°°([09T]9H
l(09k))9

(uk)t,(vk^(θk^(uk)xh(vk)XXί(θk)xx G L\Qk

τ) , (3.14)

where Q^ = (0,&) x (0, Γ). If in addition (2.18) holds, and UQ, VQ, ΘQ are compat-
ible with the boundary conditions (2.14), then

«*,(«*), e cl+^l+2(Qτ), vk,θk e c2+«'1+α2(βr) . (3.15)

In this section we show that the global solution {uk9vk9θk} of (3.3)-(3.8) can
be uniformly bounded with respect to k, exploiting some relations associated with
the second law of thermodynamics and using the (weighted) energy method. The
main result of this section reads:

Theorem 3.3. Let the conditions of Theorem 2.1 be satisfied. Then we have for
every T > 0,

+ \\((vk)t,(θk),,(uk)xt,(vk)xx,(θk)xx)\\L2φ ^C Vk € N . (3.16)

If in addition (2.18) holds, then

+ \\((uk)u,(vk\t,(θk\t}\\L2(Qkτ} ^C Vk e N . (3.17)

The proof of Theorem 3.3 is broken up into a sequence of lemmas. For sim-
plicity we will generally suppress the subscript k (and denote (uk9υk9θk9rk) by
(u,v,θ,r)) in the calculations of this section that follow. We start with the follow-
ing identities:

rt(x9t) = υ(x9t)9 rn-\x,t)rx(x,t) = u(x,t), x G [<U], t^ 0 , (3.18)

which can easily be verified. In fact, by virtue of (3.3) and (3.8), rt(x9 1) — v(x,t)
and (r°)"~ V)* = "°. So we get from (3.3) that

[rn-l(x,t)rx(x9t) - u(x9t)]t = (n - l)rn~lvrx + rn~lvx - (rn~lv\ = 0 ,

which yields (3.18).
It follows from (3.18) and (3.7)-(3.8) that rx(09t) = al~nu(^t} > 0 for t ^ 0.

If rx(x,t) > 0 is violated on [0,A:] x [0,oc), then there are y G (0,&] and τ G [0, oo)
such that rx(x,t) > 0 for 0 ^ x < y, 0 ^ t ^ τ, but rx(y,τ) = 0. So by continuity,
rx(x,t) ^ 0 for x G [0, y] and t G [0,τ], and we have r(y,τ) ^ r(Q,τ) = a > 0.
From (3.18) we get 0 = rx(y,τ) = rl~n(y,τ)u(y,τ) > 0, which is a contradiction.
This shows rx(x,t) > 0 for x G [0,A:], t ^ 0. Therefore

r(x,t) ^ r(0,0 = a > 0 for x G [0,*], t ^ 0 . (3.19)

The following lemma is motivated by the second law of thermodynamics and em-
bodies the dissipative effects of viscosity and thermal diffusion.
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Lemma 3.4. There is a positive constant e^ independent of k and t, such that

k t k

^ e0,0 0 0 UV

\/t ^ 0, k e N , (3.20)

t/(jc,0 := {t;2/2 + R(u - logu - 1) + cF(θ - log θ - 1)} (jc,0 . (3.21)

Proof. Using (3.3)-(3.5), we obtain after a straightforward calculation that

u u

1 ..-2..

If we integrate the above identity over [0,A:] x [0,ί] (ί ^ 0) and use the boundary
conditions (3.7), we obtain

k t k (rn-\^\2 t k r2n-2f)2

/ U(X, t)dX + βf! (—Q±dXdS + K f / —^dxds
0 0 0 uυ 0 0 UO

k t k (rn-2v2\

= / U(x, 0) dx + 2μ(w - 1 )/ / - — ̂ —^dxds, t^O. (3.22)
0 0 0 ^

Recalling nλ + 2μ ^ 0, we make use of (3.18) to deduce

β

V-X - 2μ(n - I)(r"-2v2)x

r J
(3.23)

By virtue of Taylor's theorem and (3.9)-(3.10), /* C/(jc,0)Ac ^ C(l + ||(MO -

l,ϋo,θo- 1)||2) (V* ^ 1); so substituting (3.23) into (3.22), we obtain (3.20).
The proof is complete. D

From Lemma 3.4 we see that

/+!

/ (K - log ii -1 )(*,*)</*,
z

/+!
/ (θ-logθ- l)(jc,0^ ^ β0/min{^,cF}, z = 0,...,*- 1 . (3.24)

Hence by terms of the mean value theorem, for each / ^ 0 there are points
α, (0» bi(t) e [/, / + 1] (i = 0, . . . , k - 1 ) such that

0 < αi ^ u(at(t\t\ θ(bi(t\t) ^ α2, / ^ 0, / = 0,...,* - 1, (3.25)
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where αi, <%2 are two (positive) roots of the equation y — log y — 1 = eo/mm{R,cv}.
Moreover, if we utilize (3.24) and apply Jensen's inequality to the convex function
y — log y — 1 , we obtain:

H-l /+1
/ u(x9t)dx — log / u(x9t)dx — 1 ,
/ /

H-l H-l

/ θ(x,t)dx - log / θ(x,t)dx - 1 g eo/πώι{^,cF} ,
/ /

which gives a\ ^ /|+ u(x,t)dx, jjl+ θ(x,t)dx ^ α2 for / = 0, . . . ,& — 1. In view
of (3.25), we thus have proved

Lemma 3.5.

H-l H-l

θ(x,t)dx ^ α2 ί^ 0, ί = (),...,& - 1 , (3.26)
i

and for each t ^ 0 /fere are points 0z (/),ό/(£) G [/,/ -f- 1] (/ = 0, ...,^ — 1)
that

ai ^ 11(̂ (0, 0, θ(6, (09 0 ^ «2, ί ^ 0, i = 0, . . . , k - 1 , (3.27)

where ai, a2 are ίwί? (positive) roots of the equation y — logjμ — 1 = eo/mm{R9cy}
and the constant eo is the same as in Lemma 3.4.

Our next object is to derive pointwise bounds on the specific volume u.
We have

Lemma 3.6. There are positive constants u and ΰ, independent of k, such that

u ^ u(x,t) ^ ΰ for any x <Ξ [0,A], t G [0, Γ] . (3.28)

Proof. Using (3.3)-(3.4), we rewrite (3.4) as follows:

« (3-29)

Integrating (3.29) over [O,/] with respect to t9 then over [cii(t)9x] with respect to x
for c 6 [/,/ + 1] (0 ^ / g A; - 1), we obtain

αI ^ J _„+, . ,
-̂  / — — r^ — Γ"5 — TT / / ^ vtdyas ,
βiu(a,(t),s) βaf(t)i

 t y

which, when the exponentials are taken, turns into

], 0 g / g j f c - 1 , (3.30)



Global Spherically Symmetric Solutions to Ideal Gas Equations

where (noting u, θ > 0)

0 .

349

(3.31)

(3.32)

Multiplying (3.30) by Rθ/β and integrating over [0,ί] (ί £ [0, T]) in the variable ί,
we arrive at

Inserting (3.33) into (3.30) and utilizing (3.27), one gets for t £ [0, Γ], x £ [/,/ + 1],

^ c ( i + / θί^Λ jy
0

(3.34)

If we integrate by parts with respect to t, use (3.18)-(3.19), Cauchy-Schwarz's
inequality, and (3.20), (3.10), we infer

/ fr-"+lυtdyds
α,(ί) 0

-»+l υdy
α,(ί)

(n-l) J f r

/ fr~nv2dyds
α/(0 0

^ C o /

^ C, Vί £ [0, Γ], Λ: £ [/,/ + 1],0 g / ^ A: - 1 . (3.35)

Recalling the definition of Bi(x9t)9 taking (3.9), and (3.35) into account, we see
that

0 < C~l ^ Bf(x,t) g C \/t £ [0, Γ], jc £[/ ,/+ 1], 0 ^ i ^ A: - 1 . (3.36)

Now we integrate (3.34) over [/, / + 1] in the variable x9 employ (3.26) and (3.36) to

arrive at Y&t) ^ C(l -h /J Yt(s)ds) for t £ [0, Γ] and 0 ^ / ^ k - 1. This together
with GronwalΓs inequality leads to Yt(t) ^ C for all t £ [0, Γ] and 0 ^ z ^ A: - 1,
from which, and (3.30), (3.27), (3.36), (3.34), and (3.31), one gets

/ ί \
u ^ w(;c,0 g C I 1 + / max θ( ,5-)^ ,

\ o [z'»/+1] /

ί G [0, Γ], jc £ [ί,ϊ + 1], 0 ^ z g k - 1 ,

where u is a positive constant independent of / and k.

(3.37)
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It follows from Cauchy-Schwarz's inequality and (3.26) that for all x £ [/, / + 1],

ί+l

1/2( ,0 (3.38)
[ί,ί+l]

Substitution of (3.38) into (3.37) and use of (3.27) yield immediately

/ z+l 02

max u( ,0 ^ C 4- C/ / ~^dy max «*( ,s)ds . (3.39)
D'.H-l] 0 ϊ w^ [M+l]

Applying GronwalΓs inequality to (3.39) and using (3.19)—(3.20), we see that for
any 0 ^ ί ^ k — 1 and t £ [0, T] max^y+i] u( , t ) ^ ΰ with w being a positive
constant independent of / and k. This together with (3.37) proves the lemma. D

Next we apply the energy method to derive Sobolev-norm estimates of deriva-
tives for w, f, θ.

Denote (recall (3.18))

σ(jc,0:=-(rΛ"H-Λ- = ^((«-l)r-1ιιι; + r Λ - 1 ι? J C )-Λ-,
u u u u

w(;c,0 := cv(θ -1)4-1;2/2 . (3.40)

Using (3.3)-(3.4), we may write (3.5) in the form

w, = [σrn~lv]x + κρ ί̂ -!̂ l - 2μ(/ι - l)[rΛ-V]JC . (3.41)

Multiply (3.41) by w and integrate. Recalling the boundary conditions (3.7), inte-
grating by parts in the variable x9 and making use of (3.10), (3.40)ι, and Cauchy-
Schwarz's inequality, (3.19), and (3.28), we obtain

- i / w2(;c,0)dx - / / ίσrn~lv + κQ

Γ * θχ - 2μ(n - l)rn-2v2} wxdxds
2 0 0 0 I U )

* k r2n~2fβ t k

-f f ^ + Cf / {r2"~Wx +v4 + Θ2υ2} dxds (3.42)
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for t G [0,Γ]. To bound the term /0' /* r2n~2v2v2dxds, we multiply (3.4) by v3

and integrate over [Q,k] x [0,ί] to arrive at

4 0 ^ 0 0 0

1 k t k
. - j o ? ) dx-j j \P\(»-v- + -u

x {3r"~1t;2ι;JC + («

t k t k
^ C - =/ / r2"-Vt;2 rfjcώ + Cf f (v4 + V2θ2)dxds , (3.43)

W o o o o

where we have used (3.10), (3.18)-(3.19), and (3.28). Note that w2 + v4 ̂
\(c2

v(θ- I)2 -fV). So we multiply (3.43) by (2ΰC)/β and add the resulting
inequality to (3.42), and utilize (3.28) and (3.20), we infer

k t k
f {(θ - I)2 + ΌΛ}(x9t)dx + ffr2n~2(θ2

x + v2v2)dxds
0 0 0

^ C + Cf f(v4 + v292)dxds
0 0

^ C + C/ JV d tίfc + Cf max Θ2( , s ) ds . (3.44)
0 0 0 [°>*]

On the other hand, it follows from (3.20) that for any x G [/, / -f 1] (0 ^ i ^ * - 1),

/ \ 2 . . . . .

i+l 02 i+l i+l Q2

-2 \ ~ffidy\ ( -1)^ + 2 J ffiJy

Therefore by (3.27) and (3.19),

max Θ2( , 0 ^ 2 max(θ( 9t)- 9(bt(t\ t))2 + 2oc2

2

k Ω2 k k pβ

\ j ~ f 2 d x (3.45)
0 ^ 0 0 "

for all t G [0,Γ] and 0 ^ ί ^ k - 1. In view of (3.19)-(3.20) and (3.28), (3.45)
implies

t t k 02 k t k 02

f max Θ2( 9s)ds g 2o^Γ + 4/ / -| dxf (θ - I)2rfjcΛ -f 4/ / -|
o [/'/+1l o o ^ o o o ^

ί A: r2n-2n2
Γ Γ v ' " 'Λ - I)2 rfjcώ, ί G [0, Γ] . (3.46)
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Inserting (3.46) into (3.44), applying GronwalΓs inequality and (3.20), we obtain
immediately

Lemma 3.7. For all t e [0, T] we have

/ {(θ-l)2 + v4}(x,t)dx + ffr2»-2{θ2 + v2v2}dxds
0 0 0

+ f maxθ2( ,s)ds ^ C . (3.47)
o [°»*]

As a consequence of Lemma 3.7 we have

Lemma 3.8.
t k

1 1 r2n~2v2 dxds ^ C Vf 6 [0, T] . (3.48)
o o

Proof. We first observe that (3.3) can be written as (u — l)t = (rn~lv)x. Integrating
this over [0,&] and recalling the boundary conditions (3.7), we conclude

f(u(x,t)-l)tdx = Q, O^t^T. (3.49)
o

Now multiply (3.4) by υ and integrate over [0,fc] x [Q,t] (0 ^ t g T). If we in-
tegrate by parts with respect to c, utilize (3.28), (3.3), and Cauchy-Schwarz's
inequality, (3.47), and (3.49), we obtain

0 0 0 0
U

— l-l(rn-lΌ)x dxds + Rff- dxds
0 0 U 0 0 u

^ C+^ff(rn-lvγxdxds + Rff(logu(x,t)-u(x,t)+l\dx,
Zu 0 0 0 0

from which, and the fact that logw — u + 1 ^0, Taylor's theorem and (3.9)-(3.10),
it follows that

/ f(rn~lυ)2dxds ^ C + C/(w° - log κ° -!)(*)</*
0 0 0

k
g C + Cf(uQ-lγdx ^ C, ίe[0,Γ]. (3.50)

o

By virtue of (3.18)-(3.19) and (3.28), (rn~lv% ^ {r2n~2v2 - Cv2. Inserting this
into (3.50) and using (3.20), we obtain (3.48). This completes the proof of the
lemma. D
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Lemma 3.8 together with (3.19)-(3.20) gives immediately

t t k

/ max v2( ,s) ds ^ 2/ / \vvx\ dxds
o [°»*J o o

/ k
^ Cf f(v2 + r2n~2v2)dxds ^ C, Q^t^T. (3.51)

0 0

Lemma 3.9.
k
fr2n-2(x,t)u2(x,t)dx g C, 0 ^ t g T . (3.52)
o

Pr06>/ Using (3.3) and (3.18), noting that [ux/u]t = [ut/u]x, we may write (3.4) as
follows:

Multiplying this equation by βrn~λux/u — v and integrate over [0,£] x [O,/], we
deduce by (3.9)-(3.10), (3.28), Cauchy-Schwarz's inequality, and (3.19) that

o o

g C + C/ f 1 + max(θ2 + v2)} f r2"~2 ̂  dxds + Cff (v2 + r2"-2θ2

x) dxds ,
0 V 1°'*] 7 0 M 0 0

which together with (3.20) and (3.47) yields

t / \ k u2

< C + Cf 1 + max(02 + v2)} Γr 2 n ~ 2 ^dxds
o V [<U] )ί u2

+ C/ v2(x, 0 rfjc + Cf f (v2 + r2n-292)dxds
0 0 0

f / \ k u2

^ C + C/ ( 1 + max(6>2 + y2) f r2n~2-± dxds, t e [0,7]. (3.53)
o V t°'*] / o w

Applying GronwalΓs inequality to (3.53), utilizing (3.47), (3.51) and (3.28), we
obtain (3.52). The proof is complete. D

In the following lemma we estimate vt in the L2(Qk

τ)-norm. The crucial step in
the proof is to bound max[(U] \(rn~lv)x/u\ by the L2(£^)-norm of (rn~λv)x and vt,
using Eq. (3.4) and Sobolev's imbedding theorem.
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Lemma 3.10.

t k k

f f υ } dxds + / (r2n~2vl + u})(x, t)dx ^ C, te [0, Γ] . (3.54)
0 0 0

Proof. Multiply (3.4) by υt and integrate over [0,&] x [0,f]. After integrating by
parts, and making use of (3.18), (3.28), and (3.47), (3.52), (3.9)-(3.10), and
Eq. (3.3), we obtain

t k />«-l|

o o u

t k Γf)~\

f f \-\ rn~lvtdxds
o o Lu\x

t k

0 0 U

l

0 0 U

+ C\ ] (r^θl + r^-^ul }dxds+l-ff j dxds
0 0 Z 0 0

β k (rn-\~\2 t k

C_PΓ z — υAdx +ff
2J

0 u o o

n-\

With the help of (3.28), (3.18)-(3.20), (3.55) impl

t k k

ffv} dxds + f (rn-λv)l(x, t)dx

lies

max
o to,*] M

..2^ϋ I dxds .
2 J

(3.55)

C -I- C/ max 1 + ('(rn~lv)ldx \ds .
J v /Λ I

o

From Sobolev's imbedding theorem (Hl(Q,
we get

IUoo(/,, +i) ^ C||

IU°°(ι ,ι +i) ^ C||

C

0, 1), or

(3.56)

, \)<->L°°(Q9 1)),

VO ^ ί ^ *- 1, or

VO ^ / g £- 1 , (3.57)

with some constant C being independent o f / and k. So the term max[o,£] \(rn~lv)x\/u
on the right-hand side of (3.56) can be estimated as follows, using (3.40), (3.28),
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(3.4) and (3.19),

max I(Γ" p)'( >' )l < Cmax\σ( ,t)\+Cmax(-}( , t )
[i,i+\] U ~ [i,i+l] [0,k] \U J

+ IMOIU^+i)) + C max θ( ,t)

l iZftί+i) + lk~"+Vθlli2tt/+I)) + C max θ( , t )

I2(oΛ + IK(OII£2<o,t)) + c ™x 0( ,0, 0 £ / £ *- 1 .

(3.58)

Inserting (3.58) into (3.56) and applying (3.47), we conclude

/ / v] dxds + / (r"-lv)2

x(x,t)dx ^C + l-fJv^ dxds
o o o 20 o

' Λ \
+ Cf / (r"-'t;^(Λ:,5)c/Jc + max6>2( ,s) + 1

o \o to.*] /

x / ί / '-'^jc.^ΛH/ί, te[θ,T],
0

which together with GronwalΓs inequality, (3.47) and (3.50) gives us

t k k

/ / v2 dxds + / (r"-lυ)l(x,t)dx ^ C V t 6 [0, T] . (3.59)
0 0 0

Noting that by virtue of (3.18) and (3.28), (rn~lv)2

x ^ ^r2n~2v2 - Cv2, thus (3.59)
combined with (3.20) and Eq. (3.3) yields (3.54). This completes the proof. D

An immediate consequence of Lemma 3.10 is

\v(x,t)\ ^ C, 0 ^ * ^ £ , ΰ ^t ^ T . (3.60)

In fact, (3.60) easily follows from (3.57)ι, (3.19)-(3.20) and (3.54).
Another corollary of Lemma 3.10 is the following.

Lemma 3.11.

T k T k T
n-lv)x( ,s)ds ^ C . (3.61)

o o o o o '

Proof. From Eq. (3.4) we get

=vt
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So if we use (3.28), Lemma 3.10, (3.52), and (3.57)2, (3.47), (3.3), and (3.19),
we obtain

fSr^-^r'-
0 0 0

0 0

C f f {(r"-lυ)2

x + \(r»-lv)x\ \(rn~lv)xx\] dxds
0 0

0 0 z 0 0

Z0 0

whence

ffr2n-2(r"-lv)2

xxdxds + ffr2n-2u2

tdxds ^ C, (3.62)
0 0 0 0

where we have also used Eq. (3.3). In view of (3.18)-(3.19), (3.28), (3.60), and
(3.57)ι, we see that

l-r4n~4v2

xx ^ r2"- V-'tOL + C(υ2 + r2n~2u2 + r2n~2v2

x);

max|(r«-M*KO|2^C(y^^^^

t G [0, Γ] . (3.63)

Combining (3.62) and (3.63), and utilizing (3.20), (3.52) and (3.48), we obtain
(3.61). The proof of the lemma is complete. D

Similarly to Lemma 3.10 we can show the following estimates for θ:

Lemma 3.12. We have

t k k

/ / θ? dxds + / r 2n-2θ2(x, t) dx ^ C, 0 ^ t ^ T (3.64)
0 0 0

0 ^ 0(jc, 0 ^ 0 for any x G [0, *], t G [0, T] , (3.65)

where θ and θ are positive constants independent of k.

Proof. Multiply (3.5) by 0, and integrate over [0, Λ] x [0,f] (0 ^ ί ^ Γ).
Integrating by parts, applying Cauchy-Schwarz's inequality, and using (3.10),
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(3.18)-(3.19), (3.28), (3.60), and (3.47), (3.54), (3.20), (3.61), and Eq.(3.3) we
get

^JJΘjdxds+^-J- t ^
2 i i ' 2i u(x,t)

< C + Cf f {r2"-2θ2

x\ut + (r"-X + 02(r"~X + (r1

J J l_ Λ I * V /Λ V /Λ V

0 0

^ C + Cf maxu2fr2n~2θ2dxds
o [°»*] o

-f- Cf max {(r"-lv)2 + θ2 + 1} f (r2n~2v2 + v2)dxds

2n-2

- dxds, t G [0,7] . (3.66)

Applying GronwalΓs inequality to (3.66), and recalling (3.61) and (3.28), we obtain
(3.64).

To show (3.65) we make use of (3.57)ι, (3.19), (3.47) and (3.64) to deduce

02(;c,0 ^ 2(0(*,0 -I)2 + 2 ̂

k

. (3.67)

To get a lower bound of Θ(x9t) we adapt and modify an idea of Alikakos [2] for
parabolic equations. Multiplying (3.5) by — 1/θ2, using (3.23) and taking

-2/1-2 ,.2/1-2/32

into account, we see that

Cγ Iι <= KQ

,2/1-2

uθ
(3.68)

If we multiply (3.68) by jθ~J+l (j ^ 2 integer), integrate over [0, k] x [0,ί], em-
ploy a partial integration with respect to x, and use (3.28), we find

1

W)

1

LAO,*) 0

(3 69)

where the constant C is independent of j and k. An application of GronwalΓs
inequality to (3.69) and use of (3.61) yields

1 c(ι+7 )/ [0,7],
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which, by taking the l//h power and then passing to the limit as j — > oo, implies
l|l/0(OIU°°(o,*) ^ C||l/θ°||Loo ^ C for any f E[0,Γ]. This together with (3.67)
gives (3.65). D

As a result of Lemma 3.12 one has

Lemma 3.13.

/ fr4n~4 e%xdxds + f max[r2n-2θ2]( ,s)ds ^ C . (3.70)
0 0 0 [°»*1

Proof. From Eq. (3.5), (3.18)-(3.19), (3.28), (3.47), and (3.52), (3.60), (3.20),
(3.54), and (3.61), we get (cf. the proof of (3.66))

ffr4»-4θ2

xdxds
o o

o o

n^

T

< C + Cf maxr2n-2θ2( ,s)ds. (3.71)
o [<U]

Here the second term on the right-hand side of (3.71) can be estimated as
follows, using (3.57)2 and (3.47),

Cf maxr2n-2θ2ds ^ Cf f {r2n~2θ2 + \rn~lθx\ \[rn~l θx]x\} dxds
0 [°»*] 0 0

0 0 z 0 0

^ C+\fIr4n~4θ2

xdxds . (3.72)
20 0

Substituting (3.72) into (3.71), we get (3.70). The proof is complete. D

From (3.28), Taylor's theorem and (3.20), it follows that \\u(t) - 1||L2(0^) ^ C
for all t G [0,Γ]. This, together with Lemmas 3.4, 3.6-3.13, yields (3. 16) 'in The-
orem 3.3.

Now we turn to the case that UQ,VQ,ΘQ satisfy (2.18). In this case we proceed
to get estimates of high derivatives of u, v, θ in the Z2-norm.

Using (3.18), we differentiate (3.4) with respect to t, multiply the resulting
equation by vt and then integrate. We integrate by parts with respect to x to arrive at

(r^v\-R-\ [rn~lvt]xdxds
0 0 1 U\t

- (n ~ I)// \£(rn-lυ)x-R-} [rn~2vvt}xdxds, t G [0, Γ] . (3.73)
0 0 lu u\
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It should be pointed out here that the derivation of (3.73) is informal because of the
lack of regularity in some steps. However, the rigorous derivation can be achieved
by using difference quotient (with respect to t) and taking to the limit (cf. Renardy,
Hrusa and Nohel [24, pp. 145-163]), or by using mollifiers.

If we apply Lemma 3.1, (3.18)-(3.19), (3.28), (3.60), and (3.65), Cauchy-
Schwarz's inequality, (3.20), (3.54), (3.61), and (3.64) to (3.73), we infer

/ v2(x, t)dx + f f r2n-2v2

xt dxds
0 0 0

0 0

g C, te [0, Γ] . (3.74)

Similarly, differentiating (3.3) with respect to t we obtain

/ / 4 dxds g C / / {v2 + υ2 + r2n~2v2 + u2 + r2n'2v2

xt}dxds ^ C . (3.75)
0 0 0 0

It follows from (3.4), (3.65), (3.74), (3.52), and (3.64), (3.57)2, and (3.59) that

k

< C ( \v2 4- r2n~2u2l(rn~lvΫ + 114- r2n~2θ2} (x tϊdx= ^J IΛ* ^ wjclΛΓ ^Λ i X J i Γ Όχf\Λ*l)(4X

0

A:

< C + Cmaxίr""1!;)^-^) ^ C + Cf {(r""1!;)^ 4- \(rn~lv)x\ Kr""1^!}^
[Q,k] X 0

S C+ i/r^V'^&^O^ ί e [0,Γ], (3.76)
z o

which combined with (3.63)ι, (3.20), (3.52) and (3.54) implies

fr4n-\x,t)v2

x(x,t)dx g C for all t G [0,Γ] .
o

From this and (3.74) we conclude:

Lemma 3.14.

k k t k

/ v}(x, t)dx + / r4n~4v2

x(x, t)dx + / / r2n~2v2

xt dxds ^ C V t G [0, Γ] . (3.77)
0 0 0 0

It is easy to see that by (3.57)ι, (3.19), (3.3), (3.59) and (3.76),

£ Cf {(r"-lv)2

x+r2"-\r"-lυfxx}(X,t)dX 5Ξ C (3.78)
0

for any c E [0, k] and t G [0, Γ].
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We differentiate Eq. (3.5) with respect to t, multiply by θt and integrate over
[09k] x [0,f] (0 ^ t ^ Γ). Using (3.77)-(3.78), following the same procedure as
used in Lemma 3.14 we obtain the following lemma the proof of which will be
omitted here.

Lemma 3.15.

/ Θ2(x, t)dx + f r4n~4θ2

x(x, t)dx + f f r2n~292

xt dxds ^C V t G [0, Γ] . (3.79)
0 0 0 0

From Lemmas 3.14-3.15, (3.75) and (3.78) we get (3.17) immediately. The
proof of Theroem 3.3 is complete.

4. Proof of Theorem 2.1

In this section let {uk,vk,θk} denote the solution of (3.3)-(3.8). We first prove the
existence.

/. Existence. Let φk be the same as in Sect. 3. For k G N we define

uk(x9t) := (uk(x9t) - l)φk(x) + 1, ΰk(x,t) := υk(x9t)φk(x)9

Θk(x9t) := (Θk(x9t) - l)φk(x) + 1, x G [0,oo), t G [0,Γ] . (4.1)

Then for any / G N we have

{uk(x, t\ vk(x, 0, θk(x, 0} = {uk(x, t\ vk(x, t\ tk(x, 0}

for all (x9t) G [0, /] x [0, T] and k^2l. (4.2)

By virtue of (3.16) in Theorem 3.3 we have

\\(uk - l9Vk9θk - l)\\L°°

+ \\(dtuk9dtΰk9dtθk9dtdxuk)\\L2(Qτ) ^ C for any k ^ 1 . (4.3)

In view of (4.3) there are functions u9 υ, Θ9 and a subsequence of {uk9Vk,θk}9 still

denoted by {uk,vk,θk}, such that as k — > oo,

(uk -I9ΰk9θk- l,(uk)t9(uk)X9(ΰk)X9(θk)x)

^(u-l,v9θ-l9ut9uX9vx,θx) (weak-*) in L°°([09T]9L
2) ,

(("*)/, (Vk)t, (θk)t, (uk)xt) -^ (ut9 vt9 θt, uxt) (weakly) in L2(QT) ,

(ΰk9 Θk-l)^(υ9θ-l) (weakly) in L2([0, T]9H
2) (4.4)

and

\\(u- I9υ9θ- l)ILoo([0,n//i)-h lklLoo([o,r],L2) + IKvt.θt.Uxt.v^θ^H^Qj.) ^ C.
(4.5)

Furthermore by Rellich's selection theorem and the diagonal procedure, we may
extract a subsequence of {uk,vk,θk}, still denoted by {uk,vk,θk}9 such that for any
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/ G N, we have

K, ΰk, θk} -> {«, v, 9} strongly in Z2((0, /) x (0, Γ)) . (4.6)

Define
t

r(x, 0 := rQ(x) + / v(x, τ)dτ ,
o

f x ϊ V«

r0(x) :=\an + nfu0(y)dy } , x, t ^ 0 . (4.7)
I o J

Next we prove that {w,t;, 0} obtained in (4.4), together with r(x,t) defined by
(4.7), is a generalized solution of (2.10)-(2.15).

The first observation is that by virtue of (4.5) and Sobolev's imbedding theo-
rem, u- 1, v, θ- 1 G C°([09T]9L

2)r\L°°([09T]9H
l). From this and the interpola-

tion inequality (|| \\Hy ^ C\\ \\l-y\\ \\y

HJ, 0 ^ y < 1), it follows that u-l9v9

θ - 1 G C°([0, Γ],/P) for any 7 G [0, 1). So, with the help of Sobolev's imbedding
theorem (Hv ^ C° for y > 1/2), one finds

>)x[0,Γ]) . (4.8)

By (3.28), (3.65), (4.1), (4.6) and (4.8) we conclude

u ^ u(x, t)£ΰ9 θ^ θ(x, 0 ^ θ V (Λ:, ί) G [0, oo) x [0, Γ] . (4.9)

Let φ G CQ°(O,(X)) be arbitrary but fixed, and let suppφ C [0,L] for some L.
Then from (4.2), (4.4)ι and (3.10) we see that for any k ^ 2L,

(ιι(0) - u0, φ) = (κ(O) - ̂

Γ

u(t) - dtuk(t\ φ) (t - T)dt~1 o

1 τ

^/ («(0 - uk(t\φ)dt + (4 - MO, φ) -> 0 as t -̂  oo ,
^ o

which yields w| ί=o = WQ. In the same manner we can show (u, θ)\t=o = (VQ,ΘQ).
Therefore, {t/,f, θ} satisfies the initial condition (2.13). To show that v9 θ also satisfy
the boundary conditions (2.14), we note that by virtue of (4.5) and (4.8), f(0, ) G
C°([0,Γ]) and 0^(0, ) €L2(0,Γ) are well-defined for t G [0,Γ]. On account of
(3.7), (4.2) and (4.4) we conclude that for any η G C0°°(0,Γ),

/ KO, t)η(t) dt = ί (KO, 0 - vk(09
0 0

- / / (υ - ΰk)x(x, t)(x - 1 MO dxdt
0 0

T 1

+ / / (v - ϋk)(x, 0*7(0 <ί*A -^0 as A: -> oo ,
0 0
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which implies t;(0,0 = 0 for t G [0, Γ]. In the same way one gets θx(Q,t) — 0 for
ίG[0,Γ].

From (4.2), (3.10)-(3.12), (3.19), and (4.6)-(4.7), it follows that for any
/ G N ,

rk -> r strongly in L2 ((0, /) x (0, Γ)) as k -> oo , (4.10)

a ^ r(jc, 0 for any (*, t) G [0, oo) x [0, T] . (4.1 1 )

Let ψ G C$°(QT) be arbitrary but fixed, let supp ψ C [Q,L] x [0, Γ] for some L.
Then by (4.2), (3.47), Cauchy-Schwarz's inequality, (4.10), and (4.4) we find that
for any k ^ 2L,

C\\ψ\\L2(Qτ)

-* C\\Ψ\\L\QT) as ^ -̂  oo ,

which gives rn~lθx G L2(QT\ Analogously, we obtain r2n~2θxx G L2(QT). There-
fore, to show that {u, v, θ} is a generalized solution it remains to show that
M, v, θ satisfy Eqs.(2.10)-(2.12). To this end let ψ G C^(QT) with supp^C
[0,1] x [0,7] for some L, we have by (4.4), (4.2), (3.3), (4.6) and (4.10) that as
k — > oo,

= (dtuk,\l/)Qτ =

= -(r"k-
lvk9ιk)Qτ -+ -(*»-\k}QT = ((rn-'v\^}Qτ , (4.12)

which gives

ut = (rn~lv\ mL2(QT) (4.13)

with r(x,t) being defined by (4.7). Recalling the definition (4.7) and using
(4.13), we deduce by the same argument as used in the derivation of (3.18)
that

r*-l(x, t)rx(x9 0 - u(x, t\ x G [0, oo), t G [0, T] . (4.14)

In view of (4.2), (3.3), (4.4) and (4.13), we see that for any / G N,

(rn

k-
lvk)x = (uk)t = (ύk\ -ut = (r"'lv)x

weakly in Z2((0, /) x (0, Γ)) as k -+ oo . (4.15)

For any ψ G C%°(QT) with supp ψ C [0,L] x [0, T] for some L we infer by (3.3),
(4.2), integration by parts with respect to *, and (3.28), (4.9), (4.3)-(4.6), and
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(4.13), (4.15), (3.52), (3.59), (3.61) that for any k ^ 2L,

' QT

QT QT

QT

Similarly,

-i* * QT

(4.17)

Now multiplying (3.3)-(3.5) by ψ e CQ°(QT), passing to the limit as k —> oo,
applying (4.2), (4.4), (4.6), (4.15)-(4.17), and (4.13), we conclude that {u,v,θ}
satisfies (2.10)-(2.14). Thus we have proved the existence.

//. Uniqueness. Let {u,v,θ} and {ύ,v,θ} be generalized solutions of (2.10)-(2.15)
satisfying (2.17) and u,θ,ύ,θ > 0 on Qτ. Then by Sobolev's imbedding theorem
(Hλ ^Z°°), we obtain

C~l ^ u(x9t)9 Θ(x9t)9 u(x9t)9 Θ(x9t) £ C,

|ϋ(jc,ί)| + |t?(jc,0| ^ C V(jc,0 e [0,oo) x [0,Γ] . (4.18)

Here and throughout the proof of the uniqueness C denotes a generic positive
constant that may depend on u, v, 0, w, ί; and θ.

Integration of (4.14) over [0,*] in the variable x and use of (4.18) yield (note
r > 0, see the proof of (3.19))

C~l(l +x)l/n ^ r(x9t) ^ C(l +jc)1/w V(Λ:,0 G [0,oo) x [0,Γ] . (4.19)

By (4.14), (4.19), (2.17) and Soboiev's imbedding theorem (H} <^Z°°), we infer

T 2

/ max {r2n~2θ2

x + r2n~2θx +u2 + u2}(s) ds < C . (4.20)
Q [0,oo) L x * t t J ~ V J

From (4.18) we see that C~lύ(x,t) ^ u(x,t) ^ Cύ(x,t), which gives

C-lfn-l(x9t)fx(x9t) ^
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where r(x,t) := rQ(x) + f^v(x,τ)dτ. Integrating the above inequality over [0,;c] and
recalling r(0,ί) = r(0,ί) = a we get

C~Lr(x90 ^ r(jt,0 ^ Cr(x,t) V(jc,0 G [0, oo) x [0, Γ] . (4.21)

Let {[/, F, 0} := {w - fi, v - v, θ - θ}. Then U, V, Θ satisfy

Vt = βrn

-K

+
((/•"- '-

-Rrn~

UU

Θ ΘU

U UU

CγΘt = +
UU

~β-
UU

+β

(4.22)

+

- 2μ(n - fn~2(v + v) (4.24)

If we integrate [r"/n - f"/n\x = U with respect to x, utilize (4.21), Cauchy-
Schwarz's inequality and (4.19), we obtain

r(x,t) - r(x,t)\ ^ Cr-"+\x,t)f \U\dy
o

^ 0"/2(jc,0||(' ~"+1ί/XOI|, * e [0,oo), t e [0,7] . (4.25)

With the help of (3.18)-(3.19) for r resp. f, (4.18), (4.21), and (4.25), one gets

< C
U U

I v
r r '

C||r-Λ(r-Off | |+C| |r-Λ(r-;
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g C{||r-(r - r)ϋ\\ + \\r~\r -

g C max {/•-"( .,/)|r( ,ί) - r(
[0,oo)

110(01

g C||(r-n+1ί/)(0||, 0 ^ t ^ T . (4.26)

Note that (4.26) still holds if ϋ resp. ut is replaced by v resp. w,.
Now multiply (4.22), (4.23) and (4.24) by r~2n+2U, r~2n+2V and r~2n+2Θ

respectively, and integrate then over [0,oo) x [0,ί] (0 ^ t ^ T). Keeping in mind
that F, Θx tend to zero for a.e. t E [0, T] as x — > oo, we integrate by parts with
respect to jc, we use (3.18)-(3.19) for r resp. r, (4.18), Cauchy-Schwarz's inequal-
ity, (4.21), (4.25), and (4.26) (as well as similar estimates like (4.26)) to arrive
at

o

^ C/{1 + llto.fi^-'tolli^
o

t

Cf max(r-2"|r-r|
0 [0,0°)

0

x ||(r-'l+1C/,r- |l+1K,r- |I+1βχj)||2rfj, t € [0,Γ] . (4.27)

Applying GronwalΓs inequality to (4.27), taking (2.17) and (4.20) into ac-
count, we obtain r~n+l U = r~n+l V = r~n+l Θ Ξ 0, which implies U = V = Θ = 0
on [0, cχo) x [0, T]. This proves the uniqueness.

///. Regularity. In the calculations that follow C/ ( / E N ) will denote a generic
positive constant which may depend on /. Let {uk>Vk>θk} denote the same subse-
quence as chosen in (4.6). If UQ, VQ, ΘQ in addition satisfy (2.18), then by virtue
of (3.17) in Theorem 3.3 we see that IKi^)?^^)/^^)^^^)^^^)^)!!^^^^)

and \\((uk)tt,(Vk)xt,(θk)xt)\\ι2(Qτ)
 are uniformly bounded with respect to k. Hence

we can extract a subsequence, still denoted by {#*>#£> 0*}, such that as k — > oo,

((^^(^(uk^t^Vk^^θk)^ - (vttθttU^VπM (weak-*) in I°°([0,Γ],Z2) ,

((uk)tt, (Vk)χ, (θk\t) — (utt9 OX, θxt) (weakly) in L2(QT) , (4.28)

and
\\(vt,θt,uxt,vxx,θxx)\\LOG([^τlL2} + \\(utt,vxt,θxt)\\L2(Qτ} ^ C . (4.29)

Recalling (4.7) and (4.14), using (4.5), (4.8), and (4.29), we get

r, rt rx G C°([0,oo) x [0,Γ]), rtt, rxt ,rxx, rxxt G Z°°([0, Γ],L2) ,

rxtt£L2(QT). (4.30)
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Employing the estimates (4.5) and (4.29), now we can derive the bounds of the
Holder norm of u, v, θ, r.

Lemma 4.1. For any I G N we have

^ d . (4.31)

Proof. On account of (4.5), (4.29) and Sobolev's imbedding theorem (cf. the
proof of (4.8)), one has u,v,vx,θ,θx G C°(gr). Moreover, \u\, \v\9 \vx ,\θ\,\θx\ are
bounded (by a constant) on [0,oo) x [0, Γ]. From (4.30) we conclude that for any
/ G N |r(jc,0|, rx(x,t)\ ^ C/ for all (x,t) G [0, /] x [0,Γ]. We use (4.5), (4.29)
and Cauchy-Schwarz's inequality to see that for any / 6 N θ(x,t) resp. Θx(x9t)
is uniformly Holder continuous in t resp. in x with exponent 1/2 on [0, /] x [0, T]
(also cf. [5], Lemma 3.7). A standard interpolation property (see [5, Lemma 3.3]
or [15, Chapter II, Lemma 3.1]) implies that θx is also uniformly Holder contin-

uous in t with exponent 1/6 on Qτ\ hence ||0jc||cι/3,ι/6/,y ^ Q This immediately

yields l l ^ ! l i / 3 , i / 6 ^ c/ Similarly, we can show \\vx\\cιM6(Qi^ ^ Q and thereby

Icι/3,ι/6(ρ/,) ^ c/> IMIcι/3,ι/6($.) ^ c/ Therefore, from (4.7) and (4.14) we get

^ Q This completes the proof. D

Multiplying (2.11) with r~"+1, integrating with respect to t over [0,ί] (ί G
[0,Γ]), using (2.10) and noting that [ut/u]x = [ux/u]t and r~n+l vt = (r~n+l v)t +
(n — \)r~nv2, we arrive at

- «fc <)/ iί1., j *, I e [0, oo), ( € [0, Γ]. (4.32)
p o w ,̂5;

If we take the absolute value on both sides of (4.32) and apply GronwalΓs inequal-
ity, we infer by (4.30), (4.9), (4.11), and (4.31) that for any / G N,

max
[0,/]x[0,Γ]

^ Cι . (4.33)

Using an argument similar to the one used for (4.33) we obtain that for (*o,£o) ^
[0, oo) x [0, T] \ux(x, t) - UX(XQ, ί0)| ^ A(*o» ίo»^» 0 — >• 0 as x — > x0 and t — >• ί0, which
gives w^ G C°(βr). Taking || \\cιM6{Qiτ} (/ e N) on both sides of (4.32), again

applying GronwalΓs inequality, and taking (4.31) and (4.33) into account, one gets

11^11^/3,1/6^ ^Cι ( / G N ) , (4.34)

which, with the help of (4.14) and (4.31), leads to

(4.35)
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Let 21 G N be arbitrary but fixed, let φ2ι(x) be the same as in Sect. 3. We
multiply Eqs. (2.10) and (2.11) by φ2ι to obtain

(φ2lv)t-βr»-Λ(r"~lM*} = -Λ*-'Ή Φu-βr-
u I w L

(4.36)

= -KQ

v)xφ2l + 2μ(n - l)(rn~2v2U2l . (4.37)

It is easy to see by the definition of $2/00 and (2.14) that

0, 0 = (ψ2/tO(2/, 0 - 0, (02/0MO, 0 - (02/0M2/, 0^0, f £ 0 . (4.38)

Thus we may consider (4.36)-(4.37) as the linear parabolic equations (for φ2ιv
and φ2ιθ) with the boundary conditions (4.38) on (0,27) x (0, Γ). Moreover, by
virtue of (4.31) and (4.34)-(4.35), the coefficients and the right-hand sides of
Eqs. (4.36)-(4.37) are Holder-continuous on [0,27] x [0,Γ] with exponents 1/3 in
x and 1/6 in t. By the classical Schauder-Friedman estimates [15,6] we infer φ2ιv,
φ2ιθ G C2+/u+^/2([0,2/] x [0,Γ]) with β := min{α, 1/3}, which gives

v, θ G C2+/M+/V2([0, /] x [0, Γ]) , (4.39)

since φι(x) = 1 for jc g /. Equation (4.39) together with (2.10), (4.31) and (4.34)
implies

«, ut G C1+/?'(1+/?)/2([0, /] x [0, Γ]) . (4.40)

Equations (4.39) and (4.40) imply that w, v, vX9 θ, ΘX9 r, ^ in C1'1/2(β^). With the
help of this fact we can repeat the same procedure as used for (4.34)-(4.40) to ob-
tain the assertions (4.39)-(4.40) with β = min{α, 1} = α. Since / G M is arbitrary,
from (4.39)-(4.40) we get (2.19). The proof of Theorem 2.1 is complete.

5. Large-Time Behavior in the Case of n = 3

In this section we show for n = 3 that as t —> oo, v goes to zero in L2j' for j ^ 2
arbitrary but fixed, and u remains uniformly bounded for all t ^ 0. Throughout
this section the same letter A will denote various positive constants which are in
particular independent of t, k and x. We will use the same notation as in Sect. 4.
We have the following large-time behavior.

Theorem 5.1. Let n = 3 and {u,v9θ} be the generalized solution established in
Theorem 2.1. Assume 3/l-h2μ > 0. Then

i) There are positive constants 71,72 independent oft and x, such that y\ ̂
u(x,t) ^ 72 for all x,t ^ 0.

ii) For an arbitrary but fixed integer j ^ 2, IKOlIz,2./ —> 0 as t —» oo.
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Proof. Let {uk9vk9θk} be the same as in Sect. 3. First we adapt and modify an idea
of Kazhikhov [12] (also cf. [3]) for the one-dimensional case in bounded intervals
to give a representation for uk.

Let t x t k

Φk(x9t) := / σ(x9s)ds + / {(r°kΓ
24}(y^y + 2/ / {r^k}(y9s)dyds , (5.1)

0 0 0 x

where σ is defined by (3.40) in Sect. 3. Note that in view of (3.18) Φk satisfies

dtφk = β^kVk'x - R-JL _|_ _ ΣJL^L f rΓ3vldy . (5.2)
Uk Uk 3 uk x

By virtue of (3.4), a partial integration in the variable t and (3.18), dxΦk = rk

2vk.
So, multiplying (5.2) by uk and using (3.3), we arrive at

(ukΦk)t - (r2

kvkΦk)x = -^ - Rθk -

Keeping in mind that υk vanishes on the boundary and rk(Q,t) = a, we integrate
the above identity over [0, k] x [0, t] to infer

k k t k
f (ukΦk)(x9t)dx =f (u^Φ^)(x)dx — //
o o o o

- -?r!Srk*4dxds> (5 3)
0 0 0

where ΦJjCO := Φyt(^O). It follows from integration of (3.3) over [0,&] x [0,ί] and

use of (3.7) that J0 uk(x,t)dx = J0 w^(^:)i/x =: w^ for t ^ 0. Moreover, by virtue
of Lemma 3.1 w£ satisfies

£/2 g j t-V* | |w2- 1|| g u*k ^ k +\fk\\ul- 1|| g 2k

for some ^o, all k ^ A:0 and ί^ 0 . (5.4)

Note that % > 0. If we apply the mean value theorem to (5.4), we conclude that
for each t ^ 0 there is an xk(t) G [Q,k] such that

1 *
Φk(xk(t),t) - — / Φk(x,t)uk(x9t)dx . (5.5)

uk o

Therefore from (5.1), (5.3) and (5.5) we get

t χk(t) t k
fσk(xk(t)9s)ds = Φk(xk(t),t)- / (r°kΓ

2vQ

kdy-2f / r^
0 0 0 xk(t)

4k 0 0 \ J / DUk 0 0

t k _ ι k „ ^(0
- / (rΓ\>, ^ 0. (5.6)

0 xk(t) uk 0 0
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Using (5.6), we have the following representation:

369

where

-fu°kΦ()dx-f(r0

kΓ
2v0

kdy + f
Uk 0 χk(t)

1 t k

!!
k θ o

Ox

and Xk(t) G [0,&] is the same as in (5.5).
In fact, note that (3.29) can be written in the form r^2dtVk = dxσk —

—Rθk/Uk]x. We integrate this over [0,ί] and then over [xk(t\x] If we integrate by
parts with respect to t, utilize (3.18) and (5.6), we infer

0 Uk

ι t k /7,2

- - i f/ (%
uk 0 0 V J

f fr-2(vk)tdsdy
xk(t) 0

0 0

xk(t) uk 0

which, when the exponentials are taken, turns into

Multiplying (5.8) by Rθk/β and integrating over [0,ί], we find that

R'θk(x,S)
eχP ~τ\ —,—^v J

0 uk(x,s)

R >r θk(x,s)Bk(x,s) J= 1 H— / ds .+ /?ί Z)t(*,ί)

Substituting this into (5.8), we obtain the (5.7).
Next we derive uniform bounds on u/,(x, t) by using the representation (5.7).

Integration of the second identity in (3.18) over [0,x] and use of (3.26) lead to

rl(x, 0 = α3 + 3/ uk(y, t)dy ^ a3 + 3 / uk dy ^ Λ(2 + [x]) ^ Λ(\ + x)
0 /=0 i-l

(5.9)
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for all x € [0,&] and t ^ 0. Recalling (5.1), we get from Cauchy-Schwarz's in-
equality, (5.9), (3.20) and (5.4) that

vkdy
xk(t)

1

^C /(I
\o

IMOID

which, in view of the definition of Dk(x,1)9 leads to

0 < A~l ^ Dk(x,t) ^ A Vx 6 [0,*], t ^ 0 .

By (3.19), (3.26) and (5.4) we find

- i l l )

(5.10)

Similarly,

Bk(x,t)
^ ΛέΓ'11*'-**, t ^ s ^ 0;

(5.11)

^ 1, / ^ 0 (5.12)

with A\ being independent of ί and k, where we have used (3.19), (3.20) and
(3.26).

It is easy to see by (3.38) and (3.27) that

- A max «t( , 0 /
Z [0,A:] Q

, 0

6 [0,*], ί ^ O . (5.13)

Hence it follows from (5.7), (5.10), (5.11), (5.13) that for all c G [Q,k],t ^ 0,

t (

uk(x, t)£Λ + ΛΠl
_

~A (t~

t k

< A + A f max uk f -
ί [0,*] *ί ukθ

2

k

Applying GronwalΓs inequality to the above inequality and utilizing (3.20), one
obtains Uk(x,t) ^ 72 for all c e [0,&] and t ^ 0, where 72 is a positive constant
independent of t,k and x. Therefore we make use of (5.7), (5.10), (5.12), and
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(5.13) to infer

•**" ^ A\ f^T^* = Λί Ί ~
_

2 0 0 0 uk"k

- e~«) - Ae-^l ^ - Λf f

> 0 (5.14)

for all t ^ TO and some (large) Γ0 > 0, where /L2 is independent of t,k and x.
Furthermore, from (5.7) and (5.10) we get uk(x,t) ^ Dk(x,t)/Bk(x,t) ^ e~Λt/A
for all x G [0,&] and t ^ 0. Combining this with (5.14) we see that there are
positive constants 71,72 independent of t,k and x, such that 71 ̂  Uk(x,t) ^ 72 for
all x G [0, &], t ^ 0. This combined with (4.2), (4.6) and (4.8) yields i) in Theorem
5.1.

Note that by virtue of (5.9), (4.2), (4.4), (4.6) and (4.10), the estimates (3.20),
(3.26) and (5.9) still hold when uk9vk,θk,rk,[Q,k] are replaced by w,t;,0,r,[0,oo)5

respectively. Thus it follows from i) of Theorem 5.1 that

t
f max[rv2](x,s)ds
o *=υ

ds * Λf max -
x- 'o x- ' o

From (3.26), (4.6) and (4.8) we get αi ^ f θ(x,t)dx ^ α2, which gives αi ^

θ(c(t\t) = θ(t) ^ α2 for ί ^ 0 and some c(0 G [0, 1]. It is easy to see by (5.9)
that

t t oo r4f)2 σo f)2
f max [0 - θ]2( ,s)ds < A f Γ ̂ Jx f -.dxds
o Woo) - ^ uθ2 J

0 r4

t oo ^4/i2
< Λ + Λf f —^dx max [0 - £]2(s) ώ .

o o uθ t°'°°)

Applying GronwalΓs inequality and (3.20) to the above inequality, one gets

/
f max [θ( ,s) - θ(s)]2ds ^ A for all t ^ 0 . (5.16)

0 [0,oo)

Using (4.18), (4.20), and the estimate (rV)(;c,0 = ^[(^v)^ + r2vvx] ^

(u2 + v2)dx ^ C that follows from (4.20) and (2.10), we deduce that for
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each t ^ 0, f^(βut — Rθ)(r2v3)(x,s) ds —> 0 as x —> oo. Therefore if we multiply

(2.11) by 2jv2j~l (j ^ 2) in L2((0,oo) x (0,0), integrate by parts with respect to
x, utilize (4.14) and i) of Theorem 5.1, we deduce

00 t 00

/ v2J(x, t)dx +/ / / v2j~2(r2v)2

x dxds
0 0 0

t oo

o o
{v2J + θ(\υ2J-2(r2v)x\+r-l\υ2J-l\)}dxds = Λ+Ij(t). (5.17)

Denote Fj(t) := maxo^^ /0°° v2J(x,s)dx. Then // can be estimated as follows, us-
ing (3.20), (5.15)-(5.16),

t 00

72(0 ^A + Af J(\(r2v)x\v2 4- r-V)(|θ - 0| -h
0 0

and for j ^ 3,

0 0

t _ oo

4- Af max {\θ — θ\2 4- rv2}f (^2 4- j
Q [0,Oθ) Q

V2(r2v)2dxds 4- ̂ / max |θ - ^|2/ t;4^rfj , (5.18)
0 0 0 t0'00) 0

ί
2//(O ^ Aj2Fj-ι(t) 4 4/2 Γ max {10 - θr 4

o [°'°°>

y2 f oo

2 o o

(5.19)

Inserting (5.18)-(5.19) into (5.17), applying GronwalΓs inequality and (5.16) if
j = 2, we arrive at

t 00

Fj(t) 4- / / V2j~2(r2v)2 dxds g Λ{1 +j2Fj-ι(t)+j(j - 2)F;-_2(0}? 7 ^ 2 ,
0 0

which by induction leads to

Jv2J(x,t)dx+j2f Jv2J~2(r2v)2

xdxds g Γy Vί ^ 0, y ^ 2 , (5.20)
0 0 0

where Γy is a constant that depends only on j and A.
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Using Eq. (2.11), (5.15)-(5.16), following the same arguments as used for
(5.17)-(5.19), we get for j ^ 2,

Λ 00 00 00

— f v2J(x, t)dx ds ^ A + Λj2f f V2j~2(r2v)2

x dxds
dt 0 0 0

CO

i - 2)y max / (v2j~2 + v2J~4)dx < oo ,
t^O Q

which together with (5.15) and (5.20) yields ii) of Theorem 5.1. The proof is
complete. D
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