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Abstract: The explicit formulas for fundamental solutions of the modified wave
equations on certain symmetric spaces are found. These symmetric spaces have the
following characteristic property: all multiplicities of their restricted roots are even.
As a corollary in the odd-dimensional case one has that the Huygens' principle in
Hadamard's sense for these equations is fulfilled. We consider also the heat and
Laplace equations on such a symmetric space and give explicitly the corresponding
fundamental solutions - heat kernel and Green's function. This continues our pre-
vious investigations [16] of the spherical functions on the same symmetric spaces
based on the fact that the radial part of the Laplace-Beltrami operator on such a
space is related to the algebraically integrable case of the generalised Calogero-
Sutherland-Moser quantum system. In the last section of this paper we apply the
methods of Heckman and Opdam to extend our results to some other symmetric
spaces, in particular to complex and quaternian grassmannians.

Introduction

It is well-known that the behaviour of the solutions of the wave equation on the
plane and in the space is rather different. A pointwise disturbance in R3 generates
a pure spherical wave, while on the plane the disturbed domain is the whole disc.
In the first case we say that Huygens' principle holds (in Hadamard's sense), in
the latter we have the wave diffusion (see e.g. [1]).

More precisely, Huygens' principle (HP) for a second order hyperbolic equation
means that the fundamental solution of the corresponding Cauchy problem is located
on the characteristic conoid. The problem of finding all hyperbolic equations with
HP is known as Hadamard's problem. In his fundamental lectures on the Cauchy
problem [2] in Yale University in 1923 Hadamard found the criterion for the validity
of HP and as a result he proved that HP is impossible in the even-dimensional
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case. Unfortunately, this criterion turned out to be not effective enough to solve
Hadamard's problem, which is open until now.

At first it was believed that all equations with HP are equivalent to the
usual wave equation. But in 1953 Stellmacher found an example of a non-wave huy-
gensian equation in R5, and then in 1965 Gϋnther found the equations with HP cor-
responding to non-trivial metrics in four-dimensional space-time. The reader can find
more details of the history of HP and Hadamard's problem in Gϋnther's book [3].

New examples of the equations with HP in the flat space have been found
recently by Yu. Berest and one of the authors [4,5]. The starting point for these
investigations was the comparison of the important papers [6,7] by Stellmacher and
Lagnese devoted to the so-called restricted Hadamard's problem with the results of
the modern theory of the finite-gap Schrodinger operators in one dimension (see
e.g. [8]). In many dimensions there is no such complete theory; there are some
partial results only (mainly in dimension 2) [9-13]. In particular in [12] it was
suggested that the Schrodinger operators given by the quantum hamiltonians of
the Calogero-Sutherland-Moser (CSM) problem and its generalisations found by
Olshanetsky and Perelomov [15] with the special values of parameters are "finite-
gap" or algebraic, and moreover under some assumptions they exhaust all such
operators. This conjecture was later partially proved (see [16,17]).

This was the motivation to consider these operators in the context of Hadamard's
problem in [4] and in the present paper. On the intuitive level it is natural because
these operators are "reflection-less" in a sense and this property is very close to HP.
But we should mention that as follows from the results of Lagnese and Stellmacher
[6,7] the wave equation with the general soliton (Bargmann) potential does not
satisfy HP; it holds for the corresponding rational limits only. The same is true for
the generalised CSM problem (see [5]).

It turns out that the trigonometric versions of the generalised CSM problem
nevertheless in some special cases are related to Huygens' principle not in the
euclidean but in certain symmetric spaces. The corresponding symmetric spaces are
rather special: all their root multiplicities have to be even.

Here is the list of the irreducible globally symmetric spaces with even root
multiplicities.

List 1

Compact type

1. Odd-dimensional spheres S2w+1.
2. Simple compact Lie groups.
3. Symmetric spaces of All type in Cartan's notations

X = SU(2«)/Sp(n).

4. Exceptional 26-dimensional symmetric space of EIV type X — E6/F4.

Noncompact type

1. Odd-dimensional Lobachevsky or hyperbolic spaces H2w+1.
2. Symmetric spaces with a complex group of motions: X = G/K, G is a sim-

ple complex Lie group considered as a real one, K is its maximal compact sub-
group.
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3. Symmetric spaces of All type:

X = SU*(2«)/Sp(/ι), dimX = (n- l)(2n + 1) .

Here SU*(2«) is a quaternian analogue of SL(n):

SU*(2«) = SL(2rc,C) Π GL(«,H)

and Sp(w) is its intersection with U(2«) (see [18]).
4. Exceptional symmetric space of EIV type which is dual to the space

X = E6/F4 and related to Cayley numbers or octonions (see [18, 19]).

These spaces in the noncompact case have been discussed in our previous
paper [16] (see also [20]), where we have found some explicit formulas for the
spherical functions and the inversion of the integral Abel's transform on the spaces
of All type based on the fact that the radial parts of the corresponding Laplace-
Beltrami operators are conjugate to the algebraically integrable cases of the trigono-
metric version of the CSM problem. It is interesting to note that the same symmetric
spaces are characterized by the property that their horocycle Radon transform can
be inverted by means of a differential operator [21,61].

Exactly the same spaces appeared to be considered already in the theory of
Huygens' principle. Namely, consider the wave equation on symmetric space X:

φtt-&xφ = 09 (1)

where &x is the Laplace-Beltrami operator on X. If X is flat and odd-dimensional
then this equation satisfies HP in accordance with classical results by Tedone [1].
On a sphere however HP for Eq. (1) never holds (see e.g. [22]), while the modified
wave equation

φtt - &xφ + cφ = 0 , (2)

satisfies HP for a suitable constant c. For the unit odd-dimensional sphere Sn the
corresponding constant is

'/ι- Γ "
c =

(see P. Gϋnther [23] for n = 3 and Lax-Phillips [24] for all odd n).
For an arbitrary irreducible symmetric space X the constant c has the form

m α α . (3)

Here £%+ is a set of positive restricted roots of X, p is half of their sum with the
multiplicities and ± is the sign of the curvature of X: plus for spaces of compact
type and minus for spaces of noncompact type (see e.g. [18]). For a reducible
space c is the sum of the constants corresponding to its irreducible components.

Note that Eq. (2) as well as (1) is invariant under the group of isometrics of X.
There is the following result about the modified wave equation on symmetric

spaces.

Theorem. If all root multiplicities mα of an odd-dimensional symmetric space X
are even then the modified wave equation (2), (3) on X satisfies Huygens' principle.

For symmetric spaces of noncompact type this result belongs to Solomatina [25],
the detailed proof of it was given by Olafsson, Schlichtkrull [26] and Helgason [27].
The case of symmetric spaces with a complex group of motion was considered
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earlier by Helgason [29,28]. We should mention also the paper by Semenov-Tian-
Shansky [30] where HP is established on the same symmetric spaces but for a
certain system of equations with many "times."

For the modified wave equation on a compact semisimple Lie group HP was
established by Helgason [28,29] (see also the paper by Dowker [31]). As it concerns
the general case of compact symmetric spaces with even root multiplicities we
have not found the proof of the corresponding result in the literature although the
specialists seem to have no doubt about it after the papers [25-27].

In the present paper we give the explicit formulas for the fundamental solu-
tion of the Cauchy problem for the modified wave equation (2) on the symmetric
spaces listed above. From these formulas Huygens' principle for these equations
and the formulated theorem follow immediately. In the forthcoming paper [32] we
use the results about the generalised Calogero-Moser problem to prove the inverse
statement, i.e. that for modified wave equations Huygens' principle holds only for
symmetric spaces with even multiplicities.

We consider also the Laplace equation ^xφ = 0 as well its modified version

Sζf -c)φ = Q (4)

and heat equation

ut = 3>xu (5)

on such a symmetric space and give the corresponding fundamental solutions -the
heat kernel and Green's function -explicitly. In various special cases such formulas
were known before, see e.g. [23,28,31,33-37,39] (it should be noted that the
formulas for the heat kernels on compact simple Lie groups in paper [38] seems to
be wrong).

Notice that the form of the heat kernel essentially depends on the global prop-
erties of the corresponding manifold in contrast to Huygens' principle, which is
a local phenomenon. In particular, for the symmetric spaces of compact type the
heat kernels are expressed via theta- functions while for noncompact type-lpt in
elementary functions.

In the last section we use the shift operator of Heckman and Opdam [44, 45]
to find some less explicit formulas for the fundamental solutions of the modified
wave, Laplace and heat equations on certain other symmetric spaces.

More precisely, these spaces are characterized by the following properties: 1)
their root system ^ is of BCW type, 2) if we identify & with the set {±ei9±2ei9

±βi ± βj] in R" then the roots ±e, ± ej have even multiplicity (for the spaces of
rank 1 this is supposed to be fulfilled automatically).

Here is the list of all such irreducible globally symmetric spaces X and
the corresponding values k = (k\9k29k$)9 where 2k\,2k2 and 2k^ are the multi-
plicities mα of the roots α = ±ei9 ±2eι and ±ez ± βj (ί < j). For the spaces of
rank 1 one has only k\ and k2. Notice that Lists 1 and 2 cover all symmetric
spaces of rank 1 .

List 2

1. Even-dimensional spheres S2n and Lobachevsky spaces H2w, the rank is 1,
* = (0,/ι-l/2).
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2. Complex grassmannians and their duals, type AIII in Cartan's notation:
SU(p,q)/S(Up x U?) and SU(p + q)/S(Up x U^) (p g q), the rank equals /?

and k — (q — p, 1/2,1) if p > 1. When p = I, i.e. for complex projective spaces
CPq and their dual hyperbolic spaces k = (q — 1,1/2).

3. Quaternian grassmannians and their duals, type CΠ: Sp(/?,#)/Sp(/>) x Sp(#)
and SpO + <?)/SpO) x Sp(q) (p ^ q\ the rank equals p and t = (20 - 2p, 3/2,2)
if p > 1. When /? = 1, i.e. for the quaternian projective spaces HPq and their dual
hyperbolic spaces k = (2q — 2,3/2).

4. The spaces of complex structures in R2w and their duals, type Dili: SO*(2w)/
U(/ι) and SO(2/ι)/U(/ι), the rank is the entire f and k = (1/2,0,2) for even n and
£ = (2,1/2,2) for odd n.

5. Exceptional spaces of type EIΠ (of rank 2) and EVΠ (of rank 3) with the
following k: (4,1/2,3) for EΠI and (0,1/2,4) for EVIL

6. Projective Cayley plane CaP2 and its dual hyperbolic space, type FII in
Cartan's list, the rank is 1, * = (4,7/2).

By using the shift operator we reduce the problem of finding the fundamental
solutions for the modified wave, Laplace and heat equations on these spaces to
that for the spaces, which are much simpler: for the complex grassmannians with
odd p + q they are the products of the complex projective planes, for the rest -
the products of two-dimensional spheres (or hyperbolic planes in the noncompact
case). As far as we know the first observation of such a kind belongs to Berezin
and Karpelevich [53].

1. Radial Parts of Laplace-Beltrami Operators and Shift Operators

We restrict ourselves to the noncompact type since all formulas for the compact
type can be obtained from the formulas below by changing hyperbolic functions to
their trigonometric counterparts.

So let X = G/K be a symmetric space of the noncompact type, G be a real
semisimple group with finite center, K be its maximal compact subgroup. Consider
the corresponding Cartan's decomposition [18] G = KAK. Let ^ and j/ be Lie
algebras of groups G and A and 0t denotes the set of the roots of ^ with respect
to J3/, 31 C <£/*. It is known that the roots α may have non-unit multiplicities raα

in contrast to the theory of complex simple Lie algebras. We write $+ for the set
of positive roots and p for half of their sum with multiplicities:

Introduce the "polar" coordinates (r,k) on X in accordance with Cartan's
decomposition

G - KAK : 0K - A exprK , (6)

where g K = G/K = X, r G ja/, A: G K. It should be noted that the coordinates
("radii") r — (rι,...,rw), n = dimj/ = rkX, are defined up to the action of the
Weyl group W. The action of the Laplacian <£x on the "radial" functions is equiv-
alent to that of the following operator:
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where A is the usual Laplacian in R" = d [43]. The operator <g^ is called the
radial part of the Laplace-Beltramί operator 3?x.

Theorem 1.1. If all root multiplicities ma are even, then there exists a differential
operator <2)(r, ^) with the following property.

3>?άo@ = @o(A-\p\2). (7)

For the rank one spaces it follows from [35,36,23]. For the spaces X = G/K
with complex G, i.e. for the case when all m^ — 2, this result is essentially equiva-
lent to the observation made by F. Berezin [41]. For the spaces of All type (mα = 4)
of rank 2 and 3 as well as for the space of EIV type (raα — 8) the explicit for-
mulas for the operator 2 can be extracted from [47,48] for all spaces of All
type-from [12,16,20].

E. Opdam [44] established the existence of such an operator called the
shift operator for some formal generalizations of the radial parts of the Laplace-
Beltrami operators with arbitary even multiplicities mα. Later G. Heckman [45] gave
an effective construction of the shift operators; we will describe it at the end of this
section.

The operator ® (r, -j^ ) has a form

2= Π (sinh(ot,r))-2m« Π ^h + . . . , (8)

where δα = (α, ̂ ) and the dots mean the lower terms. The operator of this form is
completely determined by the property (7) if its coefficients are the rational functions
of exp(α,r), α G ̂ +. This implies that 0) is invariant under the Weyl group.

Now we give the explicit formulas for the operators 2 for all irreducible sym-
metric spaces with even root multiplicities (see List 1). For such a reducible space
the shift operator is a product of the operators corresponding to the irreducible
components.

1. For the hyperbolic space X = H2w+1 we have only one radius r = r\ and

It is easy to check that

satisfies the relation

d2 d\ ( d2

-r^ + 2n cothr— o 0 = 0 o [ — - n2

dr2 drj \dr2

and is therefore the shift operator (compare with [35,36]).
2. For the symmetric spaces X = G/K with a complex group G all root multi-

plicities mα = 2 and the operator <2) has the form (compare with [41]):

0 = Π sinh-!(a,r) Π d« (10)



Integrability and Huygens' Principle on Symmetric Spaces 317

3. For the symmetric spaces of All type, X = SU*(2w)/Sp(w), the Car-
tan subalgebra consists of all real diagonal matrices diag(π,...,rw,rι,...,rm)
with r\ + + rm — 0. The roots have the form α = r/ — ry, and all mα = 4. We
normalize the invariant metric on G by the condition that its restriction to si is the
standard euclidean structure.

Introduce the following operator:

/ Λ a \
(11)

where the differential operators ®/ (/ = 2,...,«) are determined as a result of
replacing zz by -j^ — Jr in the following polynomial on z with the coefficients

depending on r:

®/(r,z) = exp ( -Σ 2 coth (r/ - r/)— + Σ 2 smh~2(rz - ry) ̂ —- ] ΓU
\ / < / ί̂ i<y</ aziόzj J ,-</

(12)

The operator ^ defined in this way is the shift operator in that case (see [16]).
4. For the space of EIV type the shift operator has the form [47,48,42]:

& = (sinh r\2 sinh r23 sinh r$\ )~ ^3 o ̂ 2 ° ®ι ° ^o 5

where

<&l = Dι2 oD23 oD3ι - 2//ι2D23 oD3ι - 2//2 3D3 i o DJ2 -2// 3ιD ϊ 2 o D23

+ (4/2/i2/23 - /(/- l)/3

2ι)D31 +(4/2/23/31 - /(/- l)/?2)Di2

i/ = cothr/; , Πj = n - rJ9 r\ + r2 + r3 = 0 .

At the end of this section we describe the general procedure proposed by
Heckman [45] to construct the shift operators for an arbitrary root system.

Consider any root system ^ c J/* and an arbitary W-invariant function
&(α) = k% on .̂ For a fixed set of positive roots ^+ C 0t and ξ G stf we
define the following difference-differential operator V^ on the space of functions
of f(r\ r G A which is the trigonometric version of the Dunkl operator [46]:

Σ *«(ί,α)coth(α,r)(l -fα), (13)
deR+

where (ξ, |) is the derivative in the direction ξ: (& |) = ΣLi %j? in R" - '̂
and the operator fα acts on a function / of r in the following way:

5α is the orthogonal reflection in j/ corresponding to the root α: sα(r) = r —

(we identify «s/ and ,$/* with the help of Killing's form and suppose that ̂  C
It will be important for us in the next section that the operator V^ is regular.



318 O.A. Chalykh, A.P. Veselov

Suppose now that the system $ is reduced (the case ^ = BCn we discuss in
the last section) and let S C & be one of the orbits of Weyl group W in &.
The orbit S defines the character of the group W ε^: W — » ±1 in the following
way: εs(sα) = -1 for α e S and ss(s^ = +1 for other α G .̂ Put S+ = S Π ̂ +

and

πs(0 = Π sinh(α,r).
αes+

We write rf for the number of elements in S+ and define for any ξ e j/ the
following differential operator

A,s = Res π-1 £ ^(^)V^ , (14)
V wew /

where VW(* is defined by (13), and Res denotes taking the differential part by
means of the restriction of the operator onto the space J^w of W-invariant func-
tions. For an algebraic combination of the operators (13) such a procedure is well-
defined. Indeed, all operators £α can be transposed to the right using the commutation
laws:

ξ, T- ) = [stξ, —
dr dr

and then one should replace all ία by the identity operator. Remark that a differential
operator on jtf is determined completely by its restriction to the space J^w.

Let's introduce the following differential operator 5£^ on jtf:

A:αcoth(α,r) *, + |p(^)|2 , (15)

where k — (A:α)α€^ is any W-invariant function, p(k) =2α6^ A:αα, and Zl is the
Laplacian in Rn ^ ̂ .

Theorem 1.2 [45]. For the operators (14) and (15) the following relation holds:

DkίS o 3>k = £>k+ls o Dk,s , (16)

w/zere Is is the characteristic function of the set S, which is equal to I on S and
zero on the other roots.

The relation (16) means that the operator D]^s transforms the eigenfunctions
of &k to the eigenfunctions of JS^+i^ and shifts in that sense from k to k + 1$.
Now Theorem 1.1 follows immediately from this result because for ka = ^mα one
has <ek = ̂  + |ρ|2, while for A; Ξ 0 JSf0 = A. Furthermore, the highest symbol
of the operator (14) has the form πJΓ1 ΣwGW

 fiw(^ί» ̂  Y an^ up to a coefficient
is π^l(r)πs( jfc). So one can obtain the shift operator Q) from Theorem 1.1 as the
composition of the "elementary" shift operators (14) each of them increasing for 2
the multiplicities mα of the roots α e 5.
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2. Fundamental Solution of the Modified Wave Equation on Symmetric Space

Let X be an odd-dimensional symmetric space with even root multiplicities of non-
compact type. Now we find the fundamental solution Φ(x, ξ)9x9 ξ G X of the corre-
sponding Cauchy problem for the modified wave equation on X:

Φtt - (JSζr + |p|2) Φ = 0, Φ |,=0 = 0, Φt t=0 = δξ(x), (17)

where δξ(x) is the delta-function located at the point ξ.
Remark that it is sufficient to find the solution F(x,t) of the equation

with the initial data
^ί=o = 0, Ft\t=o = δ(x), (19)

where δ(x) is the delta function on X, concentrated in the "origin" x = elϋ, e is
the unit of G. Indeed, one can obtain the fundamental solution

Φ(gχ,gξ,t) = Φ ( g 9 ξ , t ) 9 # e G

for any ξ = hK from the function F(x9t) = Φ(x9eK9t) in the following way:

Φ(x9ξ,t)=F(h-lx,t)9 (20)

because X is homogeneous and the Laplace-Beltrami operator is invariant. In its turn
if one knows Φ(x9ξ) the fundamental solution E(x9ξ9t9τ) of the nonhomogeneous
modified wave equation

Ett ~ (&x + \P\2)E = δξ(x)δ(t - τ) (21)

can be found as E(x9ξ9t9τ) = Φ(x9ξ9t) if t > τ and zero otherwise (see e.g. [40],
p. 204).

Introduce the following distribution on X depending on t:

(22)

Here r G &0 = R" is the radial component of x = gK G X, determined from Cartan's
decomposition

(23)

N and n are the dimension and the rank of X correspondingly, which for the spaces
considered are odd numbers with the relation

N = n+ Σ ™*> (24)
αe^+

δ(P\Γ) is the pth derivative of the delta function δ(Γ) (see [40]), and ®(r,|:) is
the shift operator given by the explicit formulas (9)—(12) in the section before.
The coordinates r — (r\9...9rn) are defined only modulo the action of the Weyl
group W of the system ^ (see [18]). But since the operator Q) is also W-invariant,
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the formula (22) gives the well-defined distribution on X which is located on the
geodesic sphere with the radius t and with the center in c = e K.

Theorem 2.1. For an odd-dimensional symmetric space X of the noncompact
type with even root multiplicities, the distribution (22) satisfies the modified wave
equation (2)-(3) with the initial data (19) and defines its fundamental solution
by formula (20).

The proof of the theorem follows from the properties of the operator & and
from K-invariance of F. Indeed, note that

since F is "radial." Then according to (7),

and now while δ^~2~\t2 — r2) satisfies the usual wave equation in Rn'lF(x9t) is the
solution of the equation

Fn - (&x + \P\2)F = 0 .

It turns out that due to the properties of the operator 29 F has also the required
initial data: F|/=0 = 0, Ft t=Q = δ(x). To prove this we recall that the operator ^
in formula (22) can be obtained as the composition of the operators (14). In its

turn the action of these operators on δ^^~\t2 — \r\2) in formula (22) is equivalent
to the action of the corresponding combination of the operators (13) from formula

(14). Indeed, the function δ^~^~\t2 — \r 2) is W-invariant and hence the proce-
dure of restriction Res is not necessary in that case. Now consider the expression
under Res in (14): n^l^we^εs(w)(Vwξ)d. Note that the operator Vf is reg-

ular and the expression R = Y^weW £s(^)(^ wξ)d is clearly ^-antisymmetric (i.e.
wR — εs(w)R). Hence the latter expression being divided on π$ remains regular,
that is the operator π^Γ1 ΣweWε5(w)V^ is also regular. On the other hand acting

by 2 on δ^~^~\t2 — r|2) we obtain according to (8) the following result:

2 ) + aλ(r)δt - \r ) + - - + aN-n(r)δ - \r ) ,

(25)

where N — dim X. Therefore the coefficients αz(r) are regular. It is easy ^/see from
(8) that α0 has the form

«o(r)= Π (-2(<*,rΓ stih(a,r)Γ*m*-

while r —» 0. As well as in TV-dimensional euclidean space we have:

-dt (0 for s <

That gives the required initial data for F.
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Remark. For the dual spaces of compact type the fundamental solution for small
time can be obtained from the formulas above by replacing the hyperbolic functions
by their trigonometric counterparts.

Corollary 2.1. The modified wave equation on an odd-dimensional symmetric space
with even root multiplicities satisfies Huygens' principle.

Now we apply the general formula (22) to the spaces from List 1.

For the Lobachevsky space H2w+1 its rank n equals 1, δ^~^ = δ^~1^ is the
Heaviside function θ and the formulas (9), (20), (22) give the well-known result

r\ \ m

~] θ^-r2)

2 2

v ' ' ''
(2π)m \smhrdr sinhr

where r denotes the distance between x and ξ.
For a symmetric space X = G/K with a complex group of motions G of odd

complex dimension N all root multiplicities mα are equal to 2 and we obtain:

F(x,t) = C Π sinh-α,/*) Π ^ ( t 1 - |r 2)

π 2-1^' (26)

where p denotes the number of positive roots of G.
The latter equality follows from the following identity, which can be proved by

using simple symmetry arguments:

2) = (-2)' Π («,r)δ(s+P\t2 - H2) . (27)

Formula (26) is equivalent to the formula found by Helgason in [28].

Example. The symmetric space X = SL(n,C)/SU(w) can be identified with the
space of the unimodular positive hermitian matrices in accordance with the well-
known polar decomposition of any g e SL(«, C):

where the matrices h and u are correspondingly positive hermitian and unitary with
determinant 1. The coordinates r\9...,rn are determined as the logarithms of the
eigenvalues of h:

Γi = log/ίz,rι H ----- h rn = log λλ - λn = logdet/z = 0 .

The corresponding function (22) has the form:

F(h,t) = —^~ Π .(?,~rj) ^"^\t2 - r\2) . (28)
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For odd-dimensional spaces of All type we have in accordance with (22),

F(x,t) = C(-2)"(2"-1} [ Π sinrΓ2(n - η)\9 I Π (n - rj)δ(2"2 ~2\t2 - \ r \ 2 ) } ,
V<y / \i<J J

(29)
with

where the operators ^2, ,<^2« are given by (20).

Remark L For the even-dimensional spaces with even root multiplicities mα (e.g.
for the exceptional space EIV) the fundamental solution of the modified wave

equation can be obtained in the same way. To do this one should replace δ^^~\t2 —

Irl 2 ) in (22) by , ~'r . In this case the fundamental solution is not located
\ \ Λ H 2 /

on the characteristic conoid so Huygens' principle doesn't hold in agreement with
the general Hadamard's result. Remark that for the products of such a space with
the analogous odd-dimensional one, e.g. for X x S3, Huygens' principle does hold
and the fundamental solution is given by Theorem 2.1.

Remark 2. The modified wave operators 5£ — d2 — S£χ ± \p\2 for the spaces under
consideration admit the wave family

with an arbitrary function /, where 2 is the shift operator and n is the rank of
the symmetric space. This follows from the definition of 3> and from Beltrami's
identity (see [1,49]).

Remark 3. In the papers [35,36] Kiprijanov and Ivanov have considered the
so-called Euler-Poίsson-Darboux equation on the hyperbolic space H2w+1 :

In the special case (1 = 0) one has the modified wave equation. For a certain
singular Cauchy problem and the special values of λ: λ = (p — l ) ( p — 3)/4, p =
3,4, . . . ,2« + 1 they proved that Huygens' principle holds. The method of the "shift
of the parameter" they used goes back to paper [51] and is very similar in its idea
to the methods we use.

3. Laplace Equation on Symmetric Space and its Modified Version

Let X be any globally symmetric space of noncompact type, 5£χ be its Laplace-
Beltrami operator. By the Laplace equation on X we mean the equation

XxΦ = 0 . (30)

Let's define also the modified Laplace equation on X as the following elliptic
equation:

|p|2)φ = 0, (31)
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where p is the same as above, see (3). The corresponding operator

\P\2 (32)

we will call as modified Laplace-Beltramί operator on X. For the general sym-
metric space it has a form

&x=<ex-c,
where c is defined in (3).

The operator — <£χ has λ = \p\2 as the bottom of its spectrum; this explains
why it is natural to consider the modified equations.

We start from the even more general equation of the form

(&x + γ\p\2)φ = 09 (33)

where y is an arbitrary constant. When y — 0 one has the Laplace equation, when
y = 1 - its modified version.

We are interested in the fundamental solution for this equation, which is a
solution of

Gi(X9ξ) = δξ(X)9 (34)

where δξ(x) is the delta-function at the point ξ e X. If one knows it one can find
the solution of the corresponding Poisson equation

7\p\Mx) = f(X), (35)

by the formula

To find Gy(x, ξ) we use the same method as in the previous section. Let's
introduce the radial coordinates r(x9 ξ) of the point x = gK G X with respect to
the point ξ = hK by the following Cartan decomposition:

h'lgK = k(expr)K (36)

(compare with (6)). It is easy to see that r(x,ξ) = —r(ξ,x).
Let's look for a solution Gy(x, ξ) depending only on r(x,ξ). In this case we

have

and using the shift operator Q) (7) we come to the corresponding euclidean operator:

Let GQ be the fundamental solution of the operator (A+(γ— l)|p|2). Up to
some constant it has a form (see e.g. [1]):

G2 = H" M«M)> (37)

where μ = (n — 2)/2, a = \/(y — l)|p| ? Jμ is the Bessel function, if n — rankX is
odd and α is nonzero. If n is even one has

G2 = |r-%(α|r|), (38)

where Nμ is the μth Neumann function.
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When α = 0, i.e. y = 1 we have the usual formula

w={;tl) ten rankx=2'UΠ otherwise .

When γ < 1 it is possible to choose the fundamental solution GQ to be positive
and decreasing at infinity: k

Gl = (~ I J exp(-/fe) (40)

in odd-dimensional case with n = 2k + 1 and

when n = 2k -f 2. Here /? = y^l - y)|p|, z = r and AΓo is the modified Bessel
function (see e.g. [56], p. 374).

Remark. The operator (\ j^)k is the euclidean version of the shift operator for the
hyperbolic space (9). The fact that it "shifts" the orders of the Bessel functions is
known for a long time (see [55]).

Theorem 3.1. For given symmetric space X of noncompact type with even multi-
plicities the function

(42)

where r = r(x, ξ) are the radial coordinates of the point x with respect to ξ, Q)
is the shift operator (7), GQ is given above and C is a certain constant, is a
fundamental solution of Eq. (33). When y g 1 it is positive and decreasing at
infinity.

The proof is based on the properties of the shift operator as well as in
the previous section. The constant C should be chosen in such a way that the
whole expression has the same coefficient at the singularity as in the euclidean case
(see e.g. [1]).

A fundamental solution decreasing at infinity is usually called the Green's func-
tion (for the precise definition and the proof of the existence of the Green's function
for the general symmetric space of noncompact type, see [52]).

As a corollary we have the following two results, concerning the Laplace equa-
tion and its modified version.

Theorem 3.2. The Green's function of the Laplace equation ^xφ = 0 on the
odd-dimensional noncompact space X with even multiplicities has the following
form:

where z — \r(x, ξ)\9 n = 2k + 1 is the rank of X.

Remark. One can see that the corresponding function G decreases at infinity
exponentially. It can be considered as an analogue of the Newtonian potential
on the corresponding symmetric space. It would be interesting to investigate the
corresponding Kepler problem, we would expect some remarkable properties of the
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solutions for the symmetric spaces from List 1. For example, for the sphere and
Lobachevsky space all orbits in this potential are known to be closed (see [57]).

For the odd-dimensional Lobachevsky space H2m+λ one has

/ I d\m

G(x,ξ) = C -Γ-Γ-T- exp(-mz),
\smhz oz J

z =\r\ is the distance between x and ξ.
For m — 1 one has the well-known formula

p("r coth - const
> . ι Mv J 4πsmh | r | 2π exp 2|r| - 1 4π

Example 2. For an odd-dimensional symmetric space of negative curvature dual to
a compact simple Lie group we have the following Green's function (cf. [33,34]):

G(*'0 = c Π ίexp(-|p|z)' (43)

z = \r\ is as before the distance between x and ξ.

Remark. In this case G depends not only on \r but on all radial coordinates r.
The riemannian manifolds whose Laplacian has the fundamental solution G(x, ξ)
depending only on the distance between x and ξ are known as harmonic manifolds.
A. Lichnerowicz [58] conjectured that all such manifolds are nothing else but the
symmetric spaces of rank 1. This is proved only under some assumptions [58,59].

Let's consider now the modified Laplace equation

Theorem 3.3. The Green's function of the modified Laplace equation for a
symmetric space X of noncompact type with even multiplicities has the form

G(x,ξ) = C®(r,2Λ r\2~n (44)

when n = rank X Φ 2 and

G(x,ξ) = C @(r9 jp\log \r\ (45)
V 8rJ

for the spaces of rank 2.

Example. For the Lobachevsky space X = H2m+l we have

1 d\m „ ( 1 d\m~1' 1

, sinhz dz J \smhzdzj sinhz

z is the distance between x and ξ. In particular for X = 7/3,

G (*' ξ ) =4πsinh \r(x9ξ)\ '



326 O.A. Chalykh, A.P. Veselov

Before consideration of the heat equation in the next section we would like to
mention one more formula for the Green's function Gy in terms of the heat kernel
H(x,ξ,t) (see [52]):

G\X,ξ)=fexp(γ\p\2t)H(X,ξ,t)dt.

4. Heat Kernels for the Symmetric Spaces with Huygens' Principle

Consider the heat equation
ut = 2?χu , (46)

where 5£χ is the Laplace-Beltrami operator on the symmetric space X = G/K with
even root multiplicities wα. Here we find the explicit formulas for the fundamental
solution of the Cauchy problem for Eq. (46). As well as for the wave equation the
problem is to find the solution F(x,t) of the equation

Ht = 2?χH (47)

with the initial data
H\t=0 = δ(x) , (48)

where δ(x) is the delta function on X concentrated in the "origin" eK (e denotes
the unit of the group G).

First we consider the noncompact case and let X be a symmetric space of rank
n and D be the corresponding shift operator given by Theorem 1.1. Define for t > 0
the following function on X:

C = -- , N = dim*, p =
V 2π/ 2

Here r G R" is the radial component of the point x = gK G X determined from
Cartan's decomposition (23). As well as it was for the wave equation the function
(49) is well-defined on X.

Theorem 4.1. For any symmetric space X of noncompact type with even root
multiplicities the function (49) satisfies the heat equation (46) with the initial data
H\t=Q = δ(x) and defines the fundamental solution of Eq. (46) by the formula

ξ = hKeX, h^G. (50)

The proof of the theorem is similar to the proof of Theorem 2.1. First, it is easy

to verify that the function φ = (^τ^)"^~'p' t~^Γ satisfies the equation

<Pt = (A ~ \P\2)9 ,

where A = £^=1 J^. Then the function H(r) = CD(r, |;)φ satisfies Eq. (46) accord-

ing to (7):

= CDo(A- \p\2)φ = (CDφ\ .
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The initial conditions are also checked similar to the case of the wave equation.
Indeed, if we present H in accordance with (49) in the form

H(r) = c

+1 + + aN-n(r}} , (51)

then the coefficients as(r) will be the same as in (25). Thus as(r) are regular and

~ ~#o(r) tends to (— 2)~τ~ while r — > 0. Now it is sufficient to note that

_ for 2s=-N,
\t=0 — S

I 0 for 2s > -N ,

and therefore C(^)V~ |p | ί-Γβo(r)(40~ -> δ(x) for / -> 0. The theorem is
proved.

Remark. The coincidence of the coefficients in the expansions of the fundamental
solutions for the modified wave equation and for the heat equation is not accidental
because of the following general result.

Let M be an arbitrary complete riemannian manifold of an odd dimension n
and L be a differential operator on M which coincides in its main part with the
Laplace-Beltrami operator.

Suppose now that the corresponding hyperbolic equation

utt = Lu (52)

satisfies Huy gens' principle. In that case the fundamental solution of the Cauchy
problem must have the following form in accordance with Hadamard's criterion:

Φ(x,ξ,t) = Vj(x9ξ)δ(P-J\Γ) , (53)
7=0

with p = ^- and Γ = t2 — r2(x, ξ) , r(x, ξ) is the distance between x and ξ on M.
The coefficients Vj are determined recursively and coincide up to some factors with
the so-called Hadamard's coefficients (see e.g. [49]).

Consider now the corresponding "heat" equation

ut=Lu, (54)

and the so-called parametrίx for this equation, which is its formal solution of the
form

r2 °° . (55)

Theorem. If Eg. (52) satisfies Huy gens' principle then the parametrix coefficients
Wj for the corresponding equation (54) coincide up to some constant factors with
the coefficients Vj. In particular, Wj = 0 for all j > p.

To prove this fact it is sufficient to compare the recursions for Vj and for Wj
(see for instance [50]).
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Corollary. If Eq. (52) satisfies Huygens' principle, then the equation utt —
L(u) + cu with arbitrary nonzero constant c cannot satisfy this principle. In
particular, the modified wave equation (2) on a symmetric space with even root
multiplicities satisfies Huygens' principle only for the constant (3).

Indeed, the parametrices for such equations differ by the factor ect and therefore
their expansions cannot be finite for both equations.

Consider now the compact case. Let X* = U/K be a space of the compact type
dual to the space of noncompact type X = G/K and $ be its root system. We
may think of U and G as the subgroups of the complex group with the Lie algebra
being the complexification of Lie algebras ^ and ̂  of the groups £7, G. Consider the
decomposition U — KA*K of the group U with A* = expija/. This decomposition
is dual to Cartan's decomposition (6) and it determines polar coordinates (r,k) on
X* in the similar way:

uK = &exp(ir)K, where k G K, r G d . (56)

Note that the radial coordinates r — (r\9...,rn) are defined only modulo the group
W generated by the Weyl group of & and the lattice Q — {r G J/| exp(ir) G K}.
Assume now for simplicity that U is simply connected and K is connected. In that
case the lattice Q is spanned by all elements of the form παv with α G ̂ , where
αv is dual to α : αv = 2α/(α,α). In this situation the group W is the affine Weyl
group of the root system π& (see [43]).

Define now for t > 0 the following function Θ(r,t) on jtf = R":

where Q is mentioned above: Q = nQv, Qv is the dual root lattice for the system &.
It is easy to see that Θ = Θ(r,t\Q) satisfies the heat equation on the torus

Tn = J//Q:
Θt = AΘ, (58)

where A = -j^ + - - +-j^ is the Laplacian on Tn. The initial data Θ\t=o =

Σvee ̂ (r ~ v) *s ^e Dirac ^-function on the torus concentrated at the "zero." We
can rewrite Θ\ί=Q as

where P = {p G S/*\P(OLV) G Z for all αv G ̂ v} is the weight lattice for .̂
Comparing the expansion (59) and Eq. (58) we see that the function (57) can be
presented in the standard for the theta-functions form:

PZP

f« \
= Σ exp Σ 2ιωs(r)Ns - 4t Σ (ωk, ωι)NkNι

N=(Ni,...,Nn)€Z,n \s=l k,l )

= 0(2ωι(r),...,2ωn(r)|4/ίΩ), (60)
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where ω\9...9ωn are the fundamental weights of & which form a basis of the weight
lattice, and Ω is the Gram matrix for the fundamental weights: Ωkί = (ω^,ω/) and
the theta-function θ(z\B)9 z G Cn for a symmetric matrix B with positive imaginary
part is defined as

n

Nszs + i£) BkιNkNt

Example. For n = 1 and Γ1 = R/2πZ we have βv = 2Z, P = ±Z, ω\ = \ and

<9(r, ί) = Σm£z e~m t+mt> satisfies the heat equation on a circle with the initial
data θ\t=Q —£ez^(r ~ 2πΌ and coincides with one of the classical Jacobi's theta-
functions: Θ(r,t) = θ(r\it}.

Now we are going to find the fundamental solution of the heat equation on
the compact space X* — U/K with even root multiplicities. First we recall that as
well as in the noncompact case the Laplace-Beltrami operator £fχ^ has the radial
part

<3*»d = / l 4 - £ mαcot(α,r)fα,^;

which can be reduced according to Theorem 1.1 to the form A -f \p\2 by means of
the corresponding shift operator Z)(r, ̂ ):

3"£oD = Do(A + \ p \ 2 ) . (61)

(We change the sign before \ρ\2 because in the compact case the roots α G «s/*
should be restricted to the space j/* = ijtf.)

Define for t > 0 the following function H(r9t) on X*\

r9—)θ(r,t), (62)

where Θ(r,t) is theta-function (60) and C is the same as in (49).

Theorem 4.2. Let X* — U/K be a symmetric space of the compact type with
even root multiplicities, U be simply-connected and K be connected. Then the func-
tion (62) satisfies the heat equation (46) with the initial data H ί=0 = δ(x)
and determines the fundamental solution of the Cauchy problem for (46) by
formula (50).

Proof. First note that the function (62) is well-defined on X*. In fact, Θ(r,t) ac-
cording to (57) is invariant under the affine Weyl group W = W x nQy. The same
is true for the operator JSf^f, for the highest symbol of D:

and hence for the whole D(r9 £ ).
The fact that H satisfies the heat equation follows from (58), (61) and (62)

as well as in the noncompact case. The initial conditions also can be verified in a
similar way.

Now consider the general formulas (49), (50), (62) for each case separately.
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1. For the odd-dimensional Lobachevsky space X = H2m+l the formulas (9),
(49) and (50) give:

r_1 \mp-m t

Φ(x,ξ,t)= ( U

where r is the distance between x and ξ.
2. For the symmetric spaces X = G/K with a complex group of motions, all

multiplicities mα are equal to 2 and we have:

Π 'r

+ smh(α,r)

where « and TV are respectively the rank and the dimension o f X , p = Σae@ α. To
get this formula we have used the following identity:

n = n
which is similar to (27).

In particular, for X = SL(n,C)/SU(n) we have similar to (28):

2 - - vV

3. For the noncompact space of All type X = SU*(2n)/Sp(n) whose dimension
is N = (n - 1)(2« + 1) we have similar to (29):

with ^ = ̂ w o Q)n_λ o o@2 and ̂  denned in (12)
4. For the noncompact space EIV of dimension 26 we obtain in accordance with

the formulas of Sect. 1 for the shift operator the following expression for F(r,t)\

where rtj = r, - rJ9 n + r2 + r3 = 0.

Now consider the compact case.

1. For the odd-dimensional sphere X = S2m+l we have only one radial coordi-
nate r determined by the geodesic distance, 0 ^ r ^ π. The function (60) for this
case has the form
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and the fundamental solution of the heat equation on S2m+l is obtained by the
formulas (9), (62):

Φ(x,ξ,t)= (~υΓ e"2' f— I-}" Θ(r|ι0,
2i+wπϊ+ ιn \smrdrj

r is the distance between * and ξ on a S2n+1.
2. Let X be a compact simple simply-connected Lie group. In accordance with

the formulas (10), (60), (62) we obtain:

where

P is the weight lattice for the root system $ of X.
Thus 6>(r,0 is completely determined by the weight lattice P(&) C stf* = Rn

which can have one of the following form:

1) The standard cubic lattice P(Cn) = Zn.

2) The "chess" lattice P(Bn) = P(Dn} = Zn Θ Z(^"=1e/).

3) The orthogonal projection P(An) of the cubic lattice Zn+l C Rw+1 to the
hyperplane x\ + + ^«+ι — 0, P(An) is isomorphic to the lattice of integer vectors
with zero sum of their components.

6) The special lattices P(Ej)9 i — 6,7,8. For instance, P(E%) C R8 consists of

all ξ — (ξi,...,^) wim even ΣLi^/ and all ξ/ being simultaneously integers or
half-integers.

For all these lattices the theta- function (63) can be expressed in terms of
classical one-dimensional theta-functions. Now we show it for the classical lattices
only.

1) P = ZΛ. It is clear that in this case θ(r,t) = Π"=l θ(2rj\4it)9 where θ(x\τ) =

J^wGZ eιτn +mx denotes the classical one-dimensional theta-function.

2) P = Zn Θ Zί^X jL^/). In that case we have:

r)-h

where /?0 = iΣLi
Thus

(r,0 = Π 0(2ry|4/0 + ̂ -4^ol+2^o(O]-[ θ(2ry + 4lϊ|4ϊγ) ,
7=1 7=1
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3) P = Zn+l Π {jrι + - + *„+! = 0}. Let θ(x\τ) denote as before θ(x\τ) =

n n+\

Σ Π + = Σ ΓI Σ

where (w,.x) = ]ζ jn/jc/, |w|2 = m 2 + + ̂ +1.
Then changing the order in summation we get:

/GZ
Σ

h/«Λ+ι=/(«+l)

Put fcf = m, - /, then m = k + /ε and for
with ε = (!,...,!). So

f(χ) =
;/2/

h ^+ι =0 m|2 = |A:|2 + /2 |ε|

- (n -h
• I / 12

The last sum is the required many-dimensional theta-function that corresponds to
the lattice P e Zw+1 Π {xι H ----- h *«+ι = 0}. Thus for 3$ = An the function (60) has
the form

θ(r,0= Σ «Γ4'l

= [(n + l)θ(2n + - + 2rπ+1|4ί(/ι + l)ί)]"

« « + ι / / kπ

Finally, because r\ + h rw+ι = 0,

~ , 1 n n+l
U

=0/=l

4 Λ . (64)

It is useful to rewrite this theta-function for the isomorphic lattice which is
the orthogonal projection of the standard cubic lattice in R" to the hyperplane
r\ H h rn — 0. The result is the following:

1

nθ(Q\2ΐ(n- 1)0

Ar=0y=l \ W

(in this formula ry+i for j = n is n).

2i(n- \)t
(65)
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As a result, the fundamental solution for the heat equation on a compact simple
simply-connected Lie group can be obtained by substitution of the corresponding
expression for the function (60) to (62).

Example. For X = SU(«) the radial coordinates r\9...9rn of a unitary matrix c £
SU(«) are the logarithms of its eigenvalues divided by i9 r\ -f - + rn = 0. The

roots α £ & have the form -—-1- and the heat kernel can be obtained from the
formulas (62), (65):

F(*,0 = C e x p f — ( / ι 3 - / ι

.(/ι-l)f

2/ι

At last for the simply-connected compact spaces All and EIV the corresponding
fundamental solutions are obtained by the substitution of (65) into the formula (62).

5. Shift Operators for BCΛ and Symmetric Spaces

In this section we consider the class of the symmetric spaces characterized by the
following properties: 1) their root system $ is of BC« type, 2) if we identify ^ with
the set {±ei9±2eί9±ei ±ej} in R", then the roots ±ez ±ej have even multiplicity.
We have listed all such spaces in the Introduction (see List 2).

For these spaces the radial part of their Laplace-Beltrami operator can be re-
duced to a rather simple form with the help of a suitable shift operator. This allows
us to give some formulas for the fundamental solutions of the modified wave,
Laplace and heat equations on such a space.

We will need the following facts about the shift operators for the root systems
of the type & = BCn. We use the notations of Sect. 1 and consider the noncompact
case mainly.

Consider now the root system ^ = BCn consisting of the vectors ±eί9 ±2ei9

±et ±βj in R". We have three orbits for the Weyl group W in St\ SΊ = {±e, },
S2 = {±2et}9 S3 = {±et ± £?/}/<;. Thus any W-invariant function k = (kΛ) on SI
is determined by three numbers and the corresponding operator (15) «£?# for given
k — (k\9k29k^) has the form

ι cothr; + 4£2 coth2r,) + 2k, £

+coth(r7 + rj) (-j- + ̂ -} ) + \p(k)\2 . (66)
\ Gri crj J /

As well as in Sect. 1 we denote by D^s the operator (14) for a given W-orbit
S in St and k = (kι,k2,k3). Define now for / - (0,0,1), (0,1,0) and (2,-1,0) the
following differential operators Q)\ in R" depending on k — (k\9k29k3):

®(o,o,i) = ^,^35 ^(0,1,0) = Dk,s2 ,

(67)

where k = (k\9k29k3)9 k = (k\ -f 2k2 — 1,1 — k2,kι\ π = π(r) = J|"=

sinh 2y/
1 sinhr.
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Theorem 5.1. [45]. Differential operator (67) S&i = ®ι(k) shifts the operator (66)
from k to k + / in the following sense:

A(*)o^ = ̂ +/oA(*) (68)

Remark L For 3% = BC\ we have only two W-orbits, two corresponding shift op-
erators

2 d

(69)
2 sinh r

and the relations (68) have the form

A2.-0 ° ̂ ι,*2 = Ά+2,*2-ι o D(2f-i) , (70)

with

^2 = ̂ +(kι cothr + 2^2 C0th2r)έ + (tι + 2^2)2 (71)
Remark 2. For the special case & = ( M j f e j O ) the shift operators (67) can be de-
scribed in a more effective way using the following facts.

1) If k = (&i,&2,0) then JS?# is in fact a sum of commuting one-dimensional
operators of the form (71) and therefore ®(o,ι,o) and ®(2,-ι,o> can be presented as
a composition of the operators (70):

n ( d λ
= ΠAo,i) l^^Γ

z=l V 0riJ

(72)

2) If ^/ denotes the operator of multiplication by the function

J(r) = Y[ (sinh2 r{ - sinh2 r/) ,
i<j

then we have the following relation between &*kι,k2,Q
 and <&kι,k2,ι ^n accordance

with the observation by Berezin and Karpelevich [53]:

It is easy to deduce from this fact that the shift operator (67) ®(o,o,i) can be
presented for k = (&ι, &2, 0) in the form

(73)

where ι̂,̂ 2 ^s me operator (71).

Definition. Lei X be a symmetric space of rank n from List 2. If X w rcoί o/
ίAe type AIII wzYA oJJ p + q define the space XQ β?̂  the following product of
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spheres of the radius 1 // k\ is halfinteger and of radius 1/2 if &2 is halfinteger,
or corresponding hyperbolic planes:

X = S2 x x S2 (n times} in the compact case,
X = H2 x x H2 (n times) in the noncompact case.

For the case AIII with odd p + q one should replace S2 and H2 by the complex
projective plane CP and its dual hyperbolic version CH2 correspondingly.

Recall (see Sect. 3) that for an arbitrary symmetric space X the modified
Laplace-Beltrami operator &x is defined as <£χ — c, where S£x is the usual
Laplace-Beltrami operator and c is of the form (3). In particular, for the spaces from
List 2 the radial part of the modified Laplace-Beltrami operator has the form (66).

For the spaces from List 2 the following analogue of Theorem 1.1 is true.

Theorem 5.2. Let X be a symmetric space of rank n from List 2 and XQ be the
corresponding space defined above. Then the radial parts of the modified Laplace-
Beltrami operators on X and XQ can be reduced one to another by means of a
suitable shift operator Q)\

Λ rad ^ rad

Λ -ΛQ * V }

For the proof of the theorem it is sufficient to check in each case except AIII
with odd p + q that the suitable composition of "elementary" shifts operators (67)
reduces k\,k^k^ in the operator (66) to 1/2,0,0 or to 0,1/2,0 for which this oper-
ator is in fact J2?™o

d + CQ. In the case AIII with odd p + q the operator &q-p, 1/2,1
similarly can be reduced to J£?ι, 1/2,0-

Remark. It is easy to see that the shift operator Q)(r, d/dr) constructed in Theorem
4.2 has the highest symbol

where [ka] is the integer part of ka except the case AIII with odd p -f q in which
for α = βi [ka] should be replaced by ka — 1.

Now the fundamental solutions of the Cauchy problem for the modified wave
equation and heat equation as well as the Green's functions on symmetric spaces
of type AIII, CΠ, Dili, EIΠ, EVII and FΠ can be described in the following way.

Theorem 5.3. Let X be a space from List 2 and XQ be the corresponding space
defined above. The fundamental solutions of the corresponding modified wave equa-
tions F and FO are related by the shift operator @(r, d/dr) constructed in Theorem
5.2:

For the heat kernel and the Green's function on X in noncompact case one
has the following relations

G(r) = C2@ Gj(r) ,

where CQ and c are the constants (3) for X0 and X, y = 1 — ̂ , GQ is the funda-

mental solution of the corresponding equation (3) on XQ, C\,C2 and €3 are some
constants.
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The proof of the theorem is similar to the case of the spaces with even root
multiplicities.

The heat kernel for a direct product of some riemannian manifolds is essentially
the product of the corresponding heat kernels. For the wave and Laplace equation
there is also some procedure giving the fundamental solution on the product if it is
known for each factor (see e.g. [54]), which is the case in our situation.

For example, the fundamental solution for the modified wave equation on the
two-dimensional sphere has the form:

Φ0(x9ξ,t) =
\/cos r — cos t '

where r is the distance between x and ξ, θ is Heaviside function. This implies the
^en-dimensional sphere S2n:

( \ rfN-1 Θ(t2-r2)

following formula for the even-dimensional sphere S2n:

Φ(x,ξ,ί) = C(— , . .
V sin r dr / vcos r — cos /

with some constant C.
For the modified wave equation on the complex protective plane CP2 one has

(see e.g. [60])

toM-c+-.ί< «f-*

where r is the distance between x and ξ and the similar formula is true for C//2.
Green's functions for all rank 1 symmetric spaces can be found in the last

chapter of Helgason's book [18].
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