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Abstract: We compute the functional determinant quotient (detP/^)/(det/^) for the
Paneitz operator P in conformally related Riemannian metrics g,h, and discuss
related positivity questions.

1. Introduction

In 1983, Paneitz introduced a fourth-order differential operator invariant P of
conformal manifolds, which has in many aspects proved to be the analogue of
the two-dimensional scalar Laplacian in four-dimensional conformal theory [P].
The original application of this operator was to conformally invariant gauge-fixing
for the Maxwell equations, but it has played important roles in the later studies
[Bl-3,BCY,B03,CY,ESl-2]. In [C, IV.4.y], the functional determinant of P is
found to define an anomaly associated to a quantum gravitational action defined
using the Wodzicki residue [Wo].

In [B03], it was shown that determinant quotients for a large class of operators
3) which includes P are explicitly computable in dimension 4. The quotients in ques-
tion have the form (det^ω)/(det^0)5 where A G ®, AQ is the operator A evaluated in
some background metric go, and Aω is the same operator evaluated in a conformally
related metric gω = e2ωgQ, where ω is a C°° function. The underlying space is a
4-dimensional smooth manifold M equipped with a conformal structure compatible
with go. By Schoen's solution of the Yamabe problem [S], we may assume #o has
constant scalar curvature. The class 2 consists of formally self-adjoint operators
with positive definite leading symbol, which are positive integral powers of confor-
mally covariant differential operators. These operators can act on tensor-spinors (the
square of the Dirac operator is an example), but in this paper we shall only look
at scalar operators. Of course the "operators" we speak of are really functors which
canonically assign an operator to each manifold of this type; an example of such
a functor is provided by the Yamabe operator (conformal Laplacian). A conceptual
point which has been crucial in the later works [B3,BCY, CY] (see also [Be]) is
the decision in [B03] to use a basis for the invariants appearing in the operator



302 T. Branson

asymptotics which is suitably adapted to P (whether or not the operator A whose
determinant is being studied is P).

The purpose of this paper is to compute the determinant quotient for the Paneitz
operator. To do this using the methods of [B03], one needs a formula for a
certain local invariant, specifically, a term from the small-ί asymptotic expansion
of ΎrL2(fe~tP) for an arbitrary smooth function /. The best results on asymptotics
of differential operators with leading symbol |£|4, due to Gilkey [G], only pro-
vide integrated asymptotics (from the expansion ofΎrL2e~tp) at the required order.
However, given conformal covariance, we can use a principle introduced in [B01]
to reconstruct the local information from the integrated information in dimensions
wφ4, and observe its dependence on the dimension. By the recursive construction
of the asymptotics, this should be rational in m (after division by a certain mero-
morphic factor determined by the leading symbol). Thus the formula for mφ4 leads
to one for m = 4 by meromorphic continuation, with m — oo as the limit point.

2. The Determinant of the Paneitz Operator

Let (M,g) be a Riemannian manifold of dimension m ^ 3, with Riemannian
curvature R, Ricci curvature p, and scalar curvature τ. Our convention on placement
of indices has R12\2 > 0 on standard spheres. Let d be the exterior derivative and
δ its formal adjoint; the Laplacian on scalar functions is then A = δd. Let

V = (p-Jg)l(m-2),

T = (m-2)J -4V ,

Q = mJ2/2-2\V\2 + ΔJ . (1)

Here V is the natural action of a two-tensor on one-tensors, i.e (V φ)j = Vk j(pk,
and |F|2 = V^kVjk. The Weyl conformal curvature tensor C is defined by

R'ju = C'JH - Vfr&i + Vjι#k - ΓiQjk + rkgfl . (2)

The Paneitz operator is

P = Δ1 + δTd + ^-^-Q

P is conformally covariant in the sense that

gω = e2ωgϋ, ω e C°°(M) =» Pω = e-^Wp^-W] . (3 }

Here and below, for any F G C°°(M), [F] is the multiplication operator / ι— > Ff.
Note the analogy with the conformal Laplacian

which satisfies the conformal covariance relation
Yω = e-(m+2)ω/2yo[β(m-2)α>/2j

The quantity Q is not really visible when we view P only in dimension 4; similarly
the Gauss curvature J does not show up in 7 for m = 2. But Q in dimension 4, like
J in dimension 2, gives rise to a curvature prescription problem which puts us in
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contact with exponential class inequalities of Moser-Trudinger type [B3]. (See (13)
and Sect. 3 below.) As shown in [GJMS], Y and P generalize to a sequence Pn of
conformally covariant differential operators of even order n, defined whenever m is
odd or m ^ n.

Suppose A is a formally self-adjoint differential operator with positive definite
leading symbol. Then the order of A is necessarily an even number 21. Suppose
/ > 0 and let / be a smooth function. Recall the heat expansion

oo

TrL2(/vr*) - Σ t(i~m}'21 IfUj[A]dv, t [ o ,
7=0

where dv is the Riemannian measure, and the Uj[A] are smooth invariants of the
total symbol of A. (More specifically, Uj[A] is polynomial in the total symbol, with
coefficients that are smooth in the leading symbol.) With this labelling of the heat
invariants, the t/0dd vanish, and Um is the coefficient of t° (and thus is the invariant
at the index level).

Lemma 1 [B01]. If A is conformally covariant in the sense gω — e2ωgo =>Aω =
e~bωAQ[eaω]for any smooth ω, or if A is a positive integral power of a conformal
covariant, then for the variation gεω = e2εω#o>

f(Uj[A]dv)εω = (m -j)fω(Uj[A]dv)0 .

In particular, f Um[A]dv is a conformal invariant.

By WeyΓs invariant theory [We], local scalar O(m) invariants of the homogene-
ity of U4[A] are linear combinations of the four invariants |^|2, |p|2, τ2, and Δτ.
After a change of basis, these are linear combinations of |C|2, £?, J2, and ΔJ. Us-
ing (d/dε)\ε==Q(dv)εω = mω(dv)o, the conformal invariance of C, and the conformal
covariance relation (3) for P9 we get

f(\C\2dv)εω = (m- 4)fω(\C\2dv)0 , (4)

, f(Qdv)εω = (m-4) fω(Qdv)Q . (5)
aε ε=0

Actually, (5) does not follow immediately from (3) when m = 4, but one can
analytically continue the relation, which is rational in m, to m = 4.

ΔJ is an exact divergence, so its integral is universally 0. The conformal
covariance relation for Y shows that (d/dε)\ε=oJεω + 2cα/o = Δω\ thus

f(J2dv)εω - (m - 4) fω(J2dv)0 + 2 f(ΔQω)(Jdv)Q

= (m-4)fω(J2dv)0 + 2fω((AJ)dv)o . (6)

Thus if
U4[A] = βoJ2 + ft |C|2 + β2Q + β3AJ, βj = βj[m,A],

then

4- f(U4[A]dv)εω = (m-4) fω(U4[A]dv)Qdε

 £=o

+ (2β0 -(m- 4)β3)fω((AJ)dv)0 . (7)
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If A is conformally covariant or a positive integral power of such, the fact that (7)
holds for all (M,#,ω), together with Lemma 1, yields

,A]. (8)

In particular, under this conformal assumption on A, we have βo[4,A] = 0.

Lemma 2. Let
jΓ/m^4λ

u(m) := 720(m2 - 4)(4π)m/2

 Γ}m

2_4( .

-ΓL ^"'Then

U4[P] = u(mΓl{-(m - 8)(m + 4)(m + 2)(m - 12)[ΔJ + \(m - 4)J2]

+ (m - 8)(m3 - 52m - 24)β + 2(m2 - 4)|C|2} .

Proof. To restate, the assertion is that

u(m)β0[m,P] = -\(m - 4)(m - 8)(m + 4)(m + 2)(m - 12) ,

u(mϊβl[m,P] = 2(m2 -4),

u(m)β2[m,P] = (m- 8)(m3 - 52m - 24) ,

u(m)β3[m,P] = -(m - 8)(m + 4)(m + 2)(m - 12) . (9)

Gilkey [G] shows that if A is a scalar differential operator of the form

Af = Δ2f + ( p, V V/> + (q, V/> + r/ , (10)

where j? is a smooth symmetric section of TM <8> ΓM, g is a smooth vector field,
r is a smooth function, and { , ) is the natural dual pairing, then

fU4[A]dv = u(mΓl J{(m2 - 4)[5τ2 - 2|/f + 2|^|2]

+ 30(m + 2)[τ(g, p) - 2{p, p)] + 45 (g, p)2

-f 90|/?|2-360(m + 2)r}. (11)

Note that the coefficient q from (10) does not appear in the formula for fU4 . As
noted in [G], some invariant theory shows that it can only appear in pure divergence
terms in U4 .

Now let A = P. By (1) and the Bianchi identity V 7'^ = V^.7, the coefficients
in (10) are given by

m — 4
pt = 4V - (m - 2)Jg, q^ = (6-m)VJ, r = —~Q ,

where b denotes the metric identification of contravariant with covariant tensor
bundles. Since Vjj = J and C is orthogonal to the rest of the right-hand side in (2),

|p|2 = 16|Π2+(m-4)(m2-4)J2,

τ(g, p} = -2(m - 1 )(m2 - 2m - 4)/2 ,
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(p,p) = 4(m - 2)| V\2 - 2m(m - 3)J2 ,

\R\2 = \C\2 + 4(m - 2)\V\2 + 4J2 .

Equation (11) and these formulas show that modulo &(δ\

u(m)U4[P] ~(m~ 8)[-2(m3 - 52m - 24)|F|2

+ (5m3 - 6m2 - 92m - 192)J2] + 2(m2 - 4)|C|2

- O ~ 8)|j>3 - 52m - 24)£> - \(m - 4)(m + 4)(m + 2)

x ( m - 12)J2] + 2(m 2-4)|C| 2.

This gives the desired formulas (9) for βj[m,P], except for β^ . For mφ4, the
formula for /?3 follows from that for βQ , together with (8). We can continue the
formula for /?3 to m = 4 by examining the recursion that generates U* from the total
symbol: for the leading symbol \ξ\4, the quantity u(m)U4[A] is polynomial in the
coefficients of A. Since the coefficients of P and V are rational in m, the βj[m,P]
are also. D

Note that u(m) is regular at m = 4, with

u(4) = 720 12 (4π)2 \ = 69120π2 ,
so that

As noted after (8), βo[4,P] = 0 is a consequence of conformal covariance.
Back in the general setting, if A is positive definite, the functional determinant

is defined by det^4 = e~^@\ where £A(S) is the analytic continuation of ΎrL2A~s.
Under our analytic assumptions of formal self-adjointness and leading symbol \ξ\4,
we do not quite have positive definiteness; there may be finitely many negative
and 0 eigenvalues. By [B02], if A is conformally covariant or a power of such,
the number of negative eigenvalues (counted with multiplicity) and the multiplicity
of 0 as an eigenvalue are conformal invariants. We may define det^4 by

- log I det^| = ζ'A(Q), sgndetΛ = #{λj = 0} ,

where λj are the eigenvalues of A, labelled with multiplicity, and ζA(s) is the analytic
continuation of Y\ , n U/|~ s. We then get:

' * Λy =F U I 7 I «-'

Lemma 3 [B02,PR]. If A satisfies the analytic assumptions above and is confor-
mally covariant or a power of such, then

L Qjo) = 21 /ω J Um[A] - £ \φj\2 I do , (12)
dε ε=Q ( λj=0 }

where { ( λ j , φ j ) } is an orthonormal spectral resolution of A.

This variational property uniquely determines
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for all smooth ω, since one can compute C^εω(0) as the solution of an ordinary
differential equation in the parameter ε. Thus one knows det^4 as a functional
on the conformal class {e2ωgQ\ω £ C°°(M)}, up to a constant factor. The determi-
nant supplies the missing conformal primitive (integral) for Um[A] not provided
by Lemma 1.

To solve these ordinary differential equations, first write P = P + (m — 4)g/2.
Then P annihilates constants, and equals P in dimension 4. Applying the conformal
covariance relation (3) to the function 1, we get

Analytically continuing to dimension 4, we get

o = e4ωβω, m = 4. (13)

This is the Paneitz curvature prescription equation, in full analogy with the Gauss
curvature prescription equation Δ^ω 4- JQ — e2ωJω in dimension 2. This shows that
in dimension 4, the functional

—
ε=ε0

solves the relevant ordinary differential equation, namely

= fω(Qdv)SQω .

Since (\C\2dv)ω is independent of ω in dimension 4,

fεω(\C\2dv)εω= fω(\C\2dv)£Qω.

By (6) with g£()W in place of gQ,

for m = 4.
In dimension 4, we always have 1 G Jf(P\ We make the simplifying assump-

tion that this is the whole null space; that is, we work on a manifold (M,g0)
satisfying the conformally invariant condition ^Γ(P) = Rl. If v = fdυ is the total
volume, then the constant function i;"1/2 is an orthonormal basis for Λ~(P). The
computation

— log vεω = f4ω(v~ l dv )εoω

ε=ε0

thus solves the ordinary differential equation corresponding to the last term in (12).
With Lemmas 2 and 3, these computations give:
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Theorem 4. On a compact conformal 4-manifold with Jf(P} = Rl,

-32f{(J2dv)ω - (J2dv)0} + /ω(|C|2^)0] - log ̂  .

3. The Extremal Problem

Suppose we would like to find the extremals of the functional determinant within
a conformal class. The job as stated cannot be done, since the determinant is
not invariant under uniform scaling of the metric. If α is a constant, Ga(^) —
C-2/^oO) = e2/a5U)0); thus Ca(0) - CΛO(O) + 2/a. This problem can be cured by
restricting to metrics of a certain fixed volume, or (what amounts to the same thing),
shifting attention to the scale-invariant zeta function

ζ ίs\ --

for which

If A is conformally covariant, d(0) is a conformal invariant; in fact G(0) =
— dim ̂ (^4) 4- fUm[A]dv. (Recall Lemma 1 and the discussion above.) With
Theorem 4, this shows that on a compact conformal 4-manifold with ^Γ(P) = Rl,

-32f{(J2dυ)ω - (J2dv)Q}

where det is defined to correspond to <f.
If 0o is locally symmetric (i.e. (V^?)o = 0), then all local scalar invariants are

constant when evaluated at #o The last equation can then be rewritten

- log = _ [7 {2 JfaPoωXAOo - βo log j[^-

ω-ώ>(^)o] ,(14)

where ώ is the (dv)o average of ω, and jf := i^^"1/.
From the point of view of the extremal problem, this functional would seem to

be more subtle than the corresponding functionals for the conformal Laplacian Y
and the square ^2 of the Dirac operator studied in [BCY, B03]. This is because
the signs of the coefficients of the constituent functionals
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differ. On M = S4, with g$ the standard round metric (where QQ = 6, JQ = 2, and
P0 = AQ(ΔQ + 2)), both «^Ί and J^ are nonnegative by virtue of two sharp inequal-
ities with the same extremal functions:

Lemma 5 [Be,BCY,CL]. On S4, if QQ is the round metric, then J^(ω) ^ 0, / = 1,2,
with equality if and only if gω = (h~l)*gQ, where h is a conformal dίffeomorphism.

Thus there is a finite-parameter family of extremals in each case, as the
conformal group of (S4,#o) is isomorphic to SO(5, 1). If gω = (h~l)*gQ for a con-
formal diffeomorphism h, we shall call ω a conformal factor. The scale-adjusted
determinant quotients for 7 and tf2 on S4 have the form c\^\(ω) + €2^2(0)) for
sgn c\ = sgn CΊ thus the sharp inequalities expressed in Lemma 5 are immediately
decisive in these cases.

As noted in [B3], the J*2 inequality is a covariant form of the norm calculation
for the embedding L\ c-̂  L4, while the 3F\ inequality similarly governs the embed-
ding L\ °-> eL (where the L2 are Sobolev classes, and eL is meant in the sense of
Orlicz classes). The L2 -̂> eL embedding may be viewed as an endpoint deriva-
tive of the borderline Sobolev embeddings L2 ̂  L4/(2~^ as r | 2 [Be]. Each such
embedding in turn has an interpretation as a comparison of two invariant norms on
a complementary series representations of SO(5, 1 ); the process r f 2 takes us to
the endpoint, or first point of reducibility, for the complementary series [B3]. In
fact, the fact that P annihilates constants is an expression of this reducibility.

By virtue of the sign agreement mentioned above, it was possible to show
in [BCY] that the suitably scale-adjusted determinant of Ύ (respectively ^2) is
minimized (respectively maximized) exactly at the round metric and its SO(5, 1 )
transforms. For the scale-adjusted determinant of P, one must study the relative
size of ^ι(ω) and ^(ω); i.e., of the gaps between the two sides in two sharp
inequalities.

Conjecture 6. On S4, in the conformal class of the round metric go, the functional
det.Pω is minimized exactly when ω is a conformal factor.

As evidence for this, we have:

Lemma 7. On S4, the second variation of (^ + a^\)(ω) at ω = 0 is positive
semίdefinite if a ^ —15/8, indefinite if — 3 < a < —15/8, and negative semίdefi-
nite if a ^ —3.

Proof. Without loss of generality, we may assume ώ = 0; that is, ω _L 1 in L2.
With all operators and measures computed in the round metric,

2) - 24}ω + O(ε3) = \£2$ω(Δ -h 6)(A - 4)ω

= ε2 (-4$\dω\2 + jf(zlω)2) + 0(ε3) - ε2$ωΔ(Δ - 4)ω + O(ε3)

(One way to get the formula for J^(ω) is to apply the conformal covariance relation
for 7 to the function 1.) Thus

εω) = ε2jω{(l + \a)A -h 2a}(Δ - 4)ω + O(ε3)

= ε2 j[ω{(l -h \ά)(Δ - 10) -h 10 -h ^a}(Δ - 4)ω -h O(ε3) .



Anomaly Associated with 4-Dimensional Quantum Gravity 309

The significance of the operators A — 4 and A — 10 is that 0,4,10 are the bottom
eigenvalues of A. The lemma follows upon examination of the signs of 1 + \a and

10+^fl. D

The Laplace eigenfunction corresponding to the 0 eigenvalue is 1 _L ω. The
eigenfunctions with eigenvalue 4 are the homogeneous coordinate functions; these
are first-order approximations to the conformal factors, which are known to give 0
upon application of either Jv In fact, the conformal factors are the log(coshί-f
(sinhί)*5) and their images under the rotation group SO(5); here t runs through
R, and (*/) are the homogeneous coordinate functions. By (14), the determinant
functional of interest has a = —21/16, in the positive semidefinite range.
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