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Abstract: In this paper, a novel method is presented for the study of the de-
pendence of the functional determinant of the Laplace operator associated to a
subbundle E of a hermitian holomorphic vector bundle E° over a Riemann sur-
face Σ on the hermitian structure (h,H) of E°. The generalized Weyl anomaly
of the effective action is computed and found to be expressible in terms of
a suitable generalization of the Liouville and Donaldson actions. The general
techniques worked out are then applied to the study of a specific model, the
Drinfeld-Sokolov (DS) ghost system arising in ^-gravity. The expression of
the generalized Weyl anomaly of the DS ghost effective action is found. It
is shown that, by a specific choice of the fiber metric Hh depending on the
base metric h, the effective action reduces into that of a conformal field the-
ory. Its central charge is computed and found to agree with that obtained by the
methods of hamiltonian reduction and conformal field theory. It is also shown
that the dependence of the effective action on H is local. The DS holomor-
phic gauge group and the DS moduli space are defined and their dimensions are
computed.

1. Introduction

In the last thirty years, a large body of physical literature has been devoted to the
study of functional determinants in connection with quantum gravity, gauge theory
and, more recently, string theory. Several methods for their computation have been
developed such as zeta function regularization [1-5], proper time regularization [6]
and Fujikawa's method [7] to mention only the most frequently used. All these
approaches analyze the dependence of the determinants on the relevant background
fields and employ in a crucial manner the Seeley-De Witt coefficients of the asso-
ciated heat kernels [8-10].

In this paper, a novel method is presented for the analysis of func-
tional determinants of Laplace operators associated to a subbundle of a holomor-
phic vector bundle on a Riemann surface from an extrinsic point of view. The
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general techniques worked out are then applied to the study of a specific model,
the Drinfeld-Sokolov ghost system arising in JF-gravity. The results obtained in this
way are interesting both as an illustration of the general formalism and for their
applications to JF-strings.

The problem tackled in the first part of this paper can be stated as follows. Con-
sider a holomorphic vector bundle E° on a Riemann surface Σ and a subbundle E
of E°. A hermitian structure (h,H) on E° is a pair consisting of a hermitian metric h
on Σ and a hermitian fiber metric H. When E° is equipped with a hermitian structure
(/*,//), a hermitian structure (h,HE) is induced on the subbundle E. This allows
to construct the Laplace operator Δw = d*dw associated to the Cauchy-Riemann
operator dw acting on E-valued conformal fields of weight w. Using proper time
regularization, one may then define the determinant detgZl̂ , where ε is the proper
time ultraviolet cut-off. Two different approaches to the study of such a determinant
can be envisaged. In the "intrinsic" approach, one considers E as a holomorphic vec-
tor bundle on its own right equipped with the induced hermitian structure (h,Hβ).
The problem is then reduced to the standard one of studying dQtf

εAw for a holo-
morphic vector bundle E° endowed with a hermitian structure (h,H) [11]. This
approach has the drawback that all results are expressed in terms of HE, which
depends in a complicated way on H, while, in certain physical applications, one
would like to express the results directly in terms of H. Hence, an "extrinsic" ap-
proach capable of computing the dependence of detgZlw on the hermitian structure
(h,H) ofE° would be desirable.

In Sect. 2, d e t ^ ^ is studied as a functional of (h,H) in the framework of
the Liouville-Donaldson parametrization of the family of hermitian structures [12].
The expressions obtained involve the //-hermitian fiber projector XΠH of E° onto E,
which is a local functional of H. In Sect. 3, the class of special holomorphic
structures of the smooth vector bundle E°, for which the smooth subbundle E is
holomorphic, is characterized in the framework of the Beltrami-Koszul parametriza-
tion of the holomorphic structures [12]. Further, it is shown that the special
subgroup of the automorphism group of E° preserving E preserves such a class
of holomorphic structures and is the symmetry group under which detgZJw is
invariant.

In the second part of the paper, the results outlined above are applied to the study
of the renormalized effective action of the Drinfeld-Sokolov (DS) ghost system in
W-gmvity [13-15]. Let us briefly recall the formulation of the model. Let G be
a simple complex Lie group and let S be an SL(2,(C) subgroup of G invariant
under the compact conjugation f of G. To these algebraic data, there is associated
a halfinteger grading of g and a certain bilinear form χ on g [14]. On a Riemann
surface Σ with a spinor structure &®2? one can further associate to the pair (G,S) a
holomorphic G-valued cocycle defining a holomorphic principal G-bundle, the DS
bundle L [16]. Ad L is then a holomorphic vector bundle. If $ is a maximal negative
graded subalgebra of g isotropic with respect to χ, then the £ -valued sections of
AάL span a holomorphic subbundle of AdL? of AάL.

W gravity may be formulated as a gauge theory based on the smooth principal
G bundle underlying the DS bundle L. The gauge fields are ^-valued sections of

k ® AάL. The gauge group, the DS gauge group Gaucos> consists of the expp-valued
gauge transformations. Fixing such a gauge symmetry yields the DS ghosts β, γ as
Faddeev-Popov ghosts. Here, β is an anticommuting section of k®AdL valued
in g/.r1, where ^ is the orthogonal complement of $ with respect to the Cartan
Killing form trad of g. y is an anticommuting j:-valued section of AdZ. The action
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is given by

SΌS(β,β\y9yi) = -fd2ztraά(βdy) + c. c . (1.1)
71 Σ

The quantum effective action is thus related to the determinant det̂ zlo relative to the
holomorphic vector subbundle AdL¥ of AdL equipped with a hermitian structure
(/*,Ad//), where H is a hermitian metric on L. In Sect. 4, the effective action is
studied by means of the general methods developed in Sects. 2 and 3. It is shown
that the metric h can be lifted to a metric Hh on L depending only h. Setting H — Hh
in the determinant, one finds that the resulting renormalized effective action is that
of a conformal field theory perhaps perturbed by a term of the form J VhR^ as in
the model considered in refs. [18-19]. Its central charge is computed and found to
agree with that obtained by the methods of hamiltonian reduction and conformal
field theory [14]. It is also shown that the dependence of the effective action on H
is local. The dimensions of the spaces of β- and y-zero modes and the index of
the ghost kinetic operator are also computed. Finally, the relevant classes of special
holomorphic structures and special automorphisms of Ad L are defined and studied.
A notion of stability for holomorphic structures is introduced. The holomorphic DS
gauge group and of the DS moduli space of stable holomorphic structures are then
defined and their dimensions computed. It must be emphasized that the above is the
DS moduli space and is distinct from the ^-moduli space introduced by Hitchin in
ref. [20] and later identified with the moduli space of quantum W-gravity in ref. [21].

2. The Determinant of Δ{

In what follows, E° is a holomorphic vector bundle over a compact connected

Riemann surface Σ of genus /. k® z is a fixed tensor square root of the canonical
line bundle k of Σ, i.e. a spinor structure in physical parlance. E is a holomorphic
vector subbundle of E° of strictly positive rank. See ref. [17] for basic background.
Below, I shall adopt the following convention. All objects relative to E, will carry
an extra superscript 0 for E = E°.

Let w, w e Z/2. Denote by <&Wiw the complex vector space of smooth sections of

the complex line bundle kΘw ®k w. The elements of %,,$ are ordinary conformal
fields of weights w9 w. Denote further by ^w,w m e complex vector space of smooth

sections of the complex vector bundle k®w (&k ®E. The elements of ^w ? vρ are
generalized ^-valued conformal fields of weights w, w.

A hermitian structure (h,H) on E° consists of a hermitian metric h on the base
Σ and a hermitian fiber metric H, i.e. a section h of k <g> k such that h > 0 and a
section H of E ®E such that H = H^ > 0. To any hermitian structure (h,H) on
E° there is associated a Hubert inner product on ^w^ by

ψ, φ , ψ e <rWt* . (2.1)
Σ

By completing Sfw^ with respect to the corresponding norm, one obtains a complex
Hubert space Jfw,w containing 5̂ WjVρ

 a s a dense subspace. The Hubert structure
depends on the holomorphic structure of is0 and on the hermitian structure (h,H).

The Cauchy-Riemann operator δw is the linear operator from £PW$ to SfWf\
locally given by dw = d on 5?WiQ. dw can be extended to a linear operator dw from
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a dense subspace of 2f?w$ containing SfWjo into JίfW)\. Its adjoint <9* is a linear

operator from a dense subspace of Jί?Wi\ containing £fW)\ into Jf^o Using dw and

δ*, one can define the Laplace operators

Aw = d*dw, (2.2)

4£ = d w 3 * . (2.3)

zlw is a linear operator from a dense subspace of Jf^o containing ^ W j 0 into Jfw,o
zl^ is a linear operator from a dense subspace of «#w,i containing 5^w?i into J^w,i
J w and A^ are essentially self-adjoint unbounded elliptic linear differential operators
with a discrete non-negative spectrum of finite multiplicity. Furthermore, Aw and A^
have the same spectrum and their non-zero eigenvalues have the same multiplicity.
All the above operators depend on the background holomorphic structure of E° and
on the hermitian structure (h,H) through the relevant Hubert structures.

One has that kerδ^ =kerzJ w and cokerδw = kerδ* =kerzl^. The difference
ind dw = dim ker dw — dim coker dw is the Atiyah-Singer index of dw and is a topo-
logical invariant, i.e. it is independent from the background holomorphic structure
of E° and from the hermitian structure (h,H). One has thus

ind δw = dim ker dw - dim ker δ* = dim ker Aw — dim ker A^ . (2.4)

In field theory, the main objects of interest are the functional determinants of
Aw and A^. In this paper, these will be defined by the proper time method [6]. In
such an approach, the zero eigenvalues are excluded in order to get a non-trivial
result. Further, since the spectrum of the operators considered is not bounded above,
it is necessary to introduce an ultraviolet cut-off l/ε with ε > 0. One thus uses the
standard notation det^ to denote the cut-off determinant with the zero eigenvalues
removed. Since the non-zero spectra of Aw and A^ are identical, one knows a
priori that

detX = άet'X . (2.5)

It is thus convenient to denote by A\ either Aw or A^. Following [6], one has

l n d e t X = - / - [ T r ( e x p ( - ί z O ) - d*w], (2.6)
ε ^

where d%

w — dim ker A^. Using the small t expansion of the diagonal part of the heat
kernel exp(—tA*w) of Jj,, one can compute the terms of lndet^^, which diverge
as ε —• 0.

As is well-known, it is very difficult to compute detgJ^ as a functional of
(h,H) directly from (2.6). It is instead relatively easier to compute the variation of
detgZl̂  with respect to (h,H). To this end, one introduces the differential complex
(<5,Ω*0), where δ is the differential operator on the infinite dimensional manifold § °

of hermitian structures (h,H) on E° satisfying δ2 — 0 and Ω*o is the corresponding

exterior algebra. The cohomology ring H*(δ,Ώ*o) is trivial since $ ° is contractible.

The variation of the Hubert space structure defined by (2.1) is given by an
expression of the form

,Ψ)w,w = (Φ,Qw,wΨ)w,w, Φ, Ψ € ^w,w . (2.7)
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Here, Qw^ is a smooth section of End is valued in Ωι

 0, where EndE is the en-
domoφhism bundle of E. QWfw acts as a multiplicative operator in J f ^ valued in
Ωι

 0 and, as such, it is bounded and self-adjoint.

One can show that there are bases {ωw.j\ί = l,...,dw} and {ω^;i\i = l,...,rf^}
of kerzlw and kerzl^, respectively, such that

δωw;i = 0, i=l,...,dw, (2.8)

Scotia = - Q W t ι G % . i 9 / = 1 , . . . , < # . (2.9)

The Gram matrices of these bases are

Mw(ω)ij = (ωw.hωw-j)w,o, i,j=l,...,dW9 (2.10)

Mw(ωw)ij = (ω^ ; i ,ω^ ;</)w,i, /, y = l,...,rf^ . (2.11)

A standard analysis shows that

δ In d e t ^ t = δ In det Mw(ω) + δ In det M w ( ω v )

- Tr(ρw,oexp(-εzJw)) + Tr(βw,i e x p ( - ε ^ ) ) . (2.12)

The last two traces can be dealt with by using the small t expansion of the diagonal
part of the heat kernel exp(—tA^) of ZljJ,. In principle, this relation can be integrated
and yields an expression for det^zl^ up to a constant. The part of the constant that
diverges in the ultraviolet limit ε —> 0 can be computed from (2.6).

The above method for computing functional determinants, and other methods as
well, exploit heat kernel techniques in an essential way. The elliptic operators A
considered here act on a suitable space of sections of some smooth vector bundle
V and are given locally by an expression of the form

A = -hr\\dd + σδ + σ*d + τ), (2.13)

where σ, σ* and τ are certain smooth matrix valued functions. A standard calcula-
tion along the same lines as those described in ref. [6] yields for the diagonal part
of the heat kernel exp(—tΔ) of A the local expression

exp(-ίZθd i a g = —hi - —ddlnhl - —(dσ* + dσ + σ*σ + σσ* - 2τ) + O(t) .
nt 6π 2π

(2.14)

By covariance, exp(—A)^ag must be a smooth section of k <g> k 0 End V.
One must now proceed to the implementation of the methods described above.

As explained in the introduction, instead of considering the hermitian structure in-
duced by (//,//) on E and carrying out the calculation intrinsically, one is interested
in expressing the determinant directly in terms of (h,H). For such a reason, one in-
troduces the orthogonal projector ww^ of Jf JJ,>vP onto Jf7

w^. ww^ is a bounded self-
adjoint multiplicative operator corresponding to a smooth section WH of E®EOw

independent from w,w and /z, where EOw is the dual vector bundle of E°. As E is
a subbundle of E°, wH is also a smooth section of End E°. The fact that ww^ is
an orthogonal projector in Jf Jj, ̂  implies that

WH2 = tπH , (2.15)

= wH . (2.16)
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If φ G ^W,Q > then dwφ G «S ŵ,i Hence, one has at the same time that WHΦ = φ
and WH8WΦ = dwφ. From this remark and (2.16), the following equivalent relations
follow:

dwHτπH = 0, VJHSH^H = 0 , (2.17)

where <3// = d — &ά(dHH~λ) is the covariant derivative on EnάE0 associated to
the metric connection dHH~λ} Projectors wH satisfying (2.17) were introduced
earlier in the mathematical literature in the analysis of Hermitian-Einstein and Higgs
bundles [22-23].

If φ G £fw$, then mHφ = φ, so that mHφ is independent from H. This implies
the relation

δmHmH = 0 (2.18)

By combining (2.16) and (2.18), one obtains

δmH = -wHδHH-\l - wH) . (2.19)

This identity is of crucial importance. It is a functional differential equation con-
straining the dependence of XΠH on H and shows that τπH is a local functional
of H.

By direct calculation, one finds that the differential operators dw,dw, Δw and A^
defined earlier have the following local expressions:

dw = 13, on y w , 0 , (2.20)

d* = -h~\\d - wd\nh\ - dHH~x - dHmH)9 on <fwΛ , (2.21)

Aw = -h~ι[ldδ - (wdϊnhl + dHH~ι + dHwH)d], on «5^w>0 , (2.22)

Δl = -h~l[ldd - dlnhld - (wdlnhl + dHH~ι + dHwH)d

- w(fh ~ d\nhd\nh)l + d\nh(dHH~ι + δ^m^)

on ^ W f l , (2.23)

where /^ = ddlnh and F// = d(dHH~ι) are the curvatures of h and //. One can
easily check that all these operators map F-valued conformal fields into F-valued
conformal fields.

By (2.22) and (2.23), the operators Δw and Δ^ are of the form (2.13). This
allows one to obtain the diagonal part of the corresponding heat kernels by applying
(2.14). The resulting local expressions are

exp(-/zl w ) d i a g =-h\ + ^ P - / * 1 + ±-{FH + ddHmH) + 0{t), (2.24)
Tit 6π 2π

e x p ( - ί z C ) d i a g = —h\ + 2LZ^M ~ ^-(FH + ddHwH) + O(t). (2.25)
Tit 6π 2π

Using (2.17), it can be verified that exp(—^w)diag and exp(—tA^)^[ag, as given
by (2.24) and (2.25), are sections of E n d £ , as expected on general grounds. As
they preserve E, one has that Tr(exp(—tA^Q) = fΣ J2ztr(ϋ7//exp(—^J,)diagβ) f° r

any bounded self-adjoint multiplicative operator Q in the appropriate Hubert space

1 By convention, each differential operator acts on the object immediately at its right.
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corresponding to some smooth section Q of ΈndE, tr denoting the ordinary fiber
trace of End E°.

Finally one needs to compute the operators Qw^ defined in (2.7). By varying
(2.1), one finds the following local expression:

Qw^ = (1 - w - w)δ\nh - δHH~ι + [δHH~\ mH], on <fw^ . (2.26)

One can check that this operator preserves E.
Now, one has all the elements required for the study of det^Zl^. In view of

physical applications, it turns out to be more convenient to consider a closely related
object, the unrenormalized effective action I^aτQ(h,H;ε) defined by

Let us find the terms of 7^are(/z,//;ε), which are singular in the limit ε —* 0
corresponding to the removal of the cut-off. By plugging either one of (2.24) and
(2.25) into (2.6), one gets

= -—fd2zh+Kw\nε + 0(1) , (2.28)
Σ

where r is the rank of E and

Kw = ( 3 w 1)rJd2zfh + ̂ -Jd2ztr((FH + dδHmH)mH) - dw ,6π Σ 2πΣ

Jd2zfh - i - fd2z tr((F f f + ddHmH)wH) - <% . (2.29)

on Σ 2π Σ

Kw is independent from (h,H). This can be verified using the variational relations

δfh = ddδ\nh, (2.30)

δtv((FH + ddHxnH)wH) = ddtr(δHH-ιmH), (2.31)
the second of which follows from repeated applications of (2.17) and (2.19). By
comparing the two expressions of Kw, and recalling that i n d ^ = dw — d^9 one
obtains the index relation

= (2W~l)rJd2zfh + -Jd2ztv((FH + dδHwH)wH) . (2.32)

Hence, the right-hand side of (2.32) is a topological invariant. Independence from
(h,H) follows from (2.30)-(2.31). Independence from the background holomorphic
structure of E° can be verified employing the Beltrami-Koszul parametrization of
holomorphic structures described in Sect. 3. Indeed, the above integrals are respec-
tively, up to factors, the Gauss-Bonnet invariant and the Chern-Weil invariant of
E [23].

Next, let us compute δI^re(h,H;ε). By using (2.12), (2.24)-(2.25) and (2.26),
one finds

δllΆt\h,H; ε) = - — fd2zδh+A0w(h,H) + O(ε), (2.33)
τιε y
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where

x /rf2z[<Sln Atr((F* + ddHwH)wH) + tr^/tf/"1 m*)/*]
Σ

+ -Jd2ztv(δHH-ι(FH + ddHmH)wH). (2.34)

One may verify that AOw(h,H) is an exact element of Ω*o. It clearly must be so,

since δI^aτe(h,H;ε) is obviously exact in Ωί 0 . The verification relies on (2.17)

and (2.19) and the fact that Hι(δ,Ω*0) = 0. Remarkably, all three terms in the

right-hand side of (2.34) are separately exact.
It is possible to integrate (2.33). The integration is carried out along a functional

path in § ° joining a fiducial reference hermitian structure (h,H) to the hermitian
structure considered. The choice of the path is immaterial because of the exactness
of the 1-form of Ω* 0 integrated. By combining (2.28) and (2.33), one obtains

I*arQ(h,H;ε) = -—Jd2zh + Kwlnε + SOw(h,H;KH) + sw(h9H) + O(ε). (2.35)

Here, sw(h,H) is a finite functional of (h,H) only and Sow(h,H;h,H) is formally
given by

Sow(h,H;h,H)= f AOw(ti,Hf). (2.36)
(h,H)

To perform the functional integration, one introduces the Liouville field φ of h
relative to h and the Donaldson field Φ of H relative to H [12]. Recall that φ and
Φ are a scalar and a section of End£°, respectively, such that

(2.37)

(2.38)

(2.39)

Γι = Φ. (2.40)

Using (2.19), it is straightforward to show that wH has a local Taylor expansion in
Φ of the form

(2.41)
r=0 ' -

where, for each r ^ 0, w^(Φ) is a smooth section of End£° and a homogeneous
degree r polynomial in Φ:

Φ(2 - 3wα)Φm

(2.42)
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As functional integration path, it is convenient to use (gt,Gt) = (Qxp(tφ)h,
Qxp(tΦ)H) with 0 S t S 1. One then finds

x fd2z \]-
Σ I2

- -Jd2z \t[dήΦK*A{Φ, dΦ) - F^D^Φ) + 7>(Φ)] , (2.43)
πΣ

where

S S ( ) * <-"'(»)»«<»(*), (2.45)

(2.46)

The above expression greatly simplifies when E — E°, since in such case m^

<5r?ol. One then finds

ί&Λi2 £,., i 1 \ ^ 0 Γ i "I /"">-., 1

-fkΦ\- 2π

dφdt Φ +x }dzz \-dφdtrΦ+ -dφdixΦ- f^xΦ-trFj^

Σ \2 2

Expression (2.43) provides the appropriate generalization of the Liouville action
in the present context. By setting H — H and Φ = 0 in (2.43), one recovers in fact
the customary conformal anomaly. The central charge is

cw = -2(6w2 - 6w + 1 )r (2.48)

and is the same as that of r copies of a spin w fermionic b — c system. By setting
h — h and φ — 0, one gets the generalized Weyl anomaly. When E = E°, so that
(2.47) holds, such an anomaly is given by the Donaldson action as discussed in
ref. [12].

To conclude this section, let us discuss renormalization. From (2.35), it appears
that in order to renormalize I^aτe(h,H;ε), one has to add a counterterm of the form

AI%"(h9H;ε) = λhaΐQ(ε)Jd2zh + vbare(β) + AI™(h,H) + O(ε). (2.49)
Σ
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Here,

4are(0 = — + r̂en + O(s) , (2.50)

πε

Vbare(ε) = -Kw In ε + vren + O(ε). (2.51)

AI™(h,H) is a finite local functional of (h,H). Its choice defines a renormalization
prescription. The renormalized effective action is

Iτ:\KH) = Km [Ce(h,H;s) + Δ$Γ{h9H;ε)] . (2.52)

From (2.35) and (2.49), one has

/;en(/z,//) = Aren/</2z/* + vren + SUKH\h,H) + sw(h,H) + AΓw

en(h,H). (2.53)

From (2.53) and (2.36), one obtains then

δΓw

en(h,H) = λτenfd
2zδh+Aw(h,H), (2.54)

where
ΛW(Λ,/O = ΛOw(h,H) + δAΓw

Qn(h,H) (2.55)

with AOw(h,H) given by (2.34). (2.54)-(2.55) provide the expression of the gener-
alized Weyl anomaly. Note that the anomaly is local since ΉJH is a local functional
of i/ by (2.19).

If minimal subtraction is applied, one has /lren = vren = 0 and AI™n(h,H) = 0.
Another possibility is to have λTQn φ 0. This would lead to a generalization of the
Liouville model. Other interesting renormalizations may be considered in specific
models, such as the DS ghost system discussed in detail in Sect. 4.

Extended conformal field theory, studied in ref. [12], is a particular case of the
above framework with E = E° and w — \. The case where E — E° but
wφ^,can be reduced to the latter one by redefining the bundles E° and E

into El = k®w~i ®E° and Ew = k®w~ϊ ® £ , respectively, and w into \ and the
hermitian structure (h,H) into (h,h®w~ϊ 0//) .

Before concluding this section, the following remark is in order. For E = E°, the
results obtained above for the dependence of the effective action I™n(h,H) on the
background hermitian structure (/*,//) are formally similar to the well known ones
giving the combined conformal and chiral anomaly of the Wess-Zumino-Witten
model, the fiber metric and the Donaldson action being the counterpart of the Wess-
Zumino field and the Wess-Zumino-Witten action, respectively. This analogy was
noticed in a different context by Donaldson himself in ref. [24]. It must be kept in
mind, though, that the geometric setting is completely different: H is not a chiral
gauge transformation but a background metric necessary for the proper definition
of the determinants and plays in this way a role analogous to that of h.

3. Zί-Special Holomorphic Structures and ii-Special Automorphisms

Let E° be a smooth vector bundle over a compact smooth surface of genus /. Let
further £ b e a subbundle of E° of strictly positive rank.

Let Θ° be the family of holomorphic structures s of E°. For S G S ° , let E%
be the corresponding holomorphic vector bundle. In general, there does not exist
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a subbundle Es of E® corresponding to E. The holomorphic structures S G S ° ,
for which this happens, are called ^-special. They form a subfamily ® of 6 ° .
The holomorphic structures s G δ are precisely those, for which the formalism
developed in Sect. 2 applies.

Let Aut^ and Diffc be the groups of smooth automorphisms of E° homotopic
to id£o and of smooth diffeomorphisms of Σ homotopic to id^, respectively. If α G
Aut^, there exists / α G Diffc such that π o α = / α o π and that oc\Eo is a linear iso-

morphisms of E°p onto E%^ for every p G Σ, where π is the bundle projection and

E°p is the fiber of E° at p. In general, for a given α G Aut£, oc\Eo does not map Ep

onto Efa(P), i.e. α does not respect the subbundle E. The automorphisms α G Aut^,
for which this happens, are called ^-special. They form a subgroup Autc of AutJ!.
This is the relevant symmetry group for the field theoretic constructions of Sect. 2.

There is a natural action of Aut^ on S° . This associates to any S G S ° and any
α G Aut° the pull back α*s G 6 ° of s by α (see [12] for a detailed discussion). A
simple but important theorem states that Autc preserves ® .

Proof. Let s G S° . s is a collection of trivializations {fefl,wSβ)}, where zsa is
a complex coordinate on Σ, usa is a fiber coordinate and, whenever defined,
dsaZsb = 0 and usa = Tsab o πusb with ΓSflί, an r° x r° matrix valued function such
that δscTsab = 0. If α G Aut° and s G ®°, then α*s G ®° with zα*Sβ = zsb o / α and
wα*Sfl = WSZJ O α and Γα*sαc = Γ s ^ o / α for suitably related a, c and b, d. If s G S ,
there exists, for each trivialization (zsa,usa), an r° x r° matrix valued function Θsa

such that (6>sα o πusa)(E Π π^^domzsα)) has the last r° — r components identically
ι

zero, ΘsaTsabΘ~b

ι has vanishing lower left (r° — r) x r block and dsaΘsa = 0. If
α G Autc and S G S , then it is straightforward to verify that α*s G ® by setting
6>α*s« = 6> s Z ,θ/ α . D

Let s G S ° b e a holomorphic structure of E° and (hs,Hs) be a hermitian structure
on E®. If α G Aut^, then the pull-back (α*/zα*s, α*//α*s) of (hs,Hs) by α is a hermitian
structure on ̂ *s

Let ^w,w\s;h,H be the Hubert space defined in Sect. 1 with the holomorphic
structure s G ® and the hermitian structure (h,H) e ξ>° indicated. If α G Auto then
the pull-back operator α* is a unitary operator of J^w,w;s;h,H

Proof. This follows from (2.1) using the relations α*(/)αα*s = φbs° fa with φ s G
^w,w-s;h,H and α*Λαα*s = /*δs o / α and α*//αα*s = //^ o / α for suitably related α
and 6. D

If s G 6 and α G Autc, then dw-a*s = α* o 5 w ; s o α*" 1 . This implies, among
other things, that ^t;α*s;α*^,α*// = α * ° ^ t s Λ,// ° ί̂ *"1? where these are the opera-
tors defined in (2.2)—(2.3) with the holomorphic structure S G S and the hermitian
structure (h,H) G $>° indicated, α* being unitary, the spectrum of ^.s.hH is Autc

invariant.

The above geometrical treatment is elegant but abstract. One would like to
translate it into the language of field theory, which is the one suitable for physical
applications. This can be achieved as follows [12].

For any pair of holomorphic structures Si,S2, there exist two distinguished sec-
tions λSχS2 and FS l S 2 of &Sl (& k®~1 and E^ ®E®^, respectively, called intertwiners.
Write a generic trivialization of sz as (zS/,wSi), where zs. is a complex coordinate on
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Σ and uS[ is a fiber coordinate. Then, λSιS2 = dSιzS2 and FS l S 2 is defined by the
relation uSι = FS l S 2 o πuS2. The intertwiners define an isomorphism between the space
of sections of each vector bundle constructed by means of kS} and E^ and the space
of sections of the corresponding bundle constructed by means of kS2 and E®2. Hence,
the field content of a field theory having E° as topological background is described
completely by the spaces of sections of vector bundles built by means of kSQ and
E® for a fiducial reference holomorphic structure s0. All relevant field theoretic
relations may be thus written in terms of the trivializations of So. By convention,
when a field or a combination of fields carries no subscript s, then it is represented
in terms of So. Note that by E° and k both the holomorphic vector bundle E®Q and
canonical line bundle &So and their smooth counterparts are denoted. This generates
no confusion since from the context it will be clear which is meant.

There is a one-to-one correspondence between the family S ° of holomorphic
structures s of E° and the family of pairs (μ9AA), where μ is a Beltrami field and
AA is a Koszul field [12]. Recall that a Beltrami field μ is an element of ^_i,i such
that supz |μ| < 1 and that a Koszul field AA is a smooth section of £ ® End£°. For
s = (μ,AA) G S°, one has

μ = dzs/dzs, (3.1)

A*A = (d-μd)VsVa-
ι+μA, (3.2)

where A is a fixed (1,0) connection of E°, δ = dSQ and Vs = VSQS [12].
All the identities of Sect. 1, valid for an arbitrary holomorphic structure s e S ,

may be easily written in the Beltrami-Koszul parametrization by performing the
formal substitutions

d2z-> d2z(l - μμ) 9

d -(<9 - μd - wdμ), on sections of
μμ)(l-μμ)

-=—^(d — μdπ — wdμ — adA^), on sections of
(1-μμΫ

1

(\-μμ) -μμ

ΘEnd^ 0 ,

dhβ
1 - μμ

(3.3)

(3.4)

(3.5)

(3.6)

η
l-μμ J

Here, dh — d + d In h is the covariant derivative associated to the metric connec-
tion dlnh acting on ^_i,i. A^ is given by (3.2) with A = dHH~ι. By using the
Beltrami-Koszul parametrization one may also check that the integral expression
(2.32) is independent from the holomorphic structure chosen, as expected from the
index theorem.

The Beltrami-Koszul parametrization allows one to state a condition for a holo-
morphic structure s E S ° to be ^-special. s € S if and only if

(dmHwH)s = 0. (3.8)
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Proof. This condition is necessary, as explained in Sect. 2. It is also sufficient.
For if (3.8) holds, there exists on each trivialization domain a local holomoφhic
frame in E® spanning E, implying that E% contains a holomoφhic subbundle Es

corresponding to E. D

The dependence of this condition on the metric H is only apparent. In fact,
using (2.19) it is easy to show that if s satisfies (3.8) for a given hermitian metric
H, then it does also satisfy it for any other close metric H1. It must clearly be
so, for the space S , by its definition, does not depend on a choice of hermitian
structure. Equation (3.8) can be written in the Beltrami-Koszul parametrization,
where it reads

(d - μdA - 2LάA*A)mHmH = 0 , (3.9)

where dA — d — %AA is the covariant derivative on End£° associated to A. This
is the field theoretic constraint that must be obeyed by a holomoφhic structure
s = (μ,AA) in order for it to belong to ® .

In the analysis of symmetries, it is much simpler to proceed at the infinites-

imal level. Let s be the nilpotent Slavnov operator, s2 = 0. Let c and M be the

automoφhism ghosts [12]. c is the diffeomoφhism ghost associated to the natural

map Aut£ —» Diffc defined earlier, c is a section of k~ι valued in f\ι(Lie Aut°c)
v.

M corresponds to the action of Aut^ on the fibers of E°. For a given background

(1,0) connection A ofE°9 M - cA is a section of End£° valued in f\ι(Lie Aut^)v.

The Maurer-Cartan equations of Aut^ yield

sc = (cd + cd)c , (3.10)

sM = (cd + cd)M - )ΛMMλ (3.11)

[12]. The action of Aut^ on S ° induces an action on the Beltrami-Koszul fields
(μ,A*A) given by

(3.12)

sA*Λ = (d- μdA - adA*A)XA + C(dAA*A - dA), (3.13)

where
C = c + μc, (3.14)

XΛ=cA + cA*A-M. (3.15)

C and XA are sections of A:"1 and End£° valued in /\ !(LieAut^)v and depending
on (μ,AA), respectively. Further

sC = CdC, (3.16)

sXΛ = CdAXA + l-[XA,XA] . (3.17)

The pull-back action of Aut^ on the space § ° of hermitian structures (h,H) of
E° yields

s\nh = (cd + cd)\nh + dc + μdc + dc + fide , (3.18)

sHH~x = (cd + cd)HH~ι - M - HM^H~X . (3.19)
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The action of the ^-special automorphism group Autc can still be expressed at
the infinitesimal level by means of the automorphism ghost fields c and M. The
restriction to LieAutc shows up as a relation obeyed by c and M, which will be
derived in a moment. It is not difficult to show that an automorphism α G Aut£
belongs to Autc if any only if

Wa*H = cftΠH (3.20)

Proof. Denote by (za,ua) the trivializations of the reference holomorphic structure,
as done earlier. If α G Aut£, then, for any two trivializations (za,ua) and (zb,Ub) such
that domzα Π/α(domz^)4=0, there exists a local r° x r° smooth matrix function
άab such that ua o α = dab o πw&. One further has %* Θb = ά~b

l Θa o faaab for any
section Θ of EnάE0. Let α G Autc. Then, for any x £ E, one has (WH ° πw)(α(x)) =
w(α(x)), since α(x) G E. This implies that, for any x e E, (α*ϋ7# o πw)(x) = w(x).
Then, since α*ϋ7// is α*//-hermitian, (3.20) holds. Next, let α G Aut^ satisfy (3.20).
Then, since (ma*H ° nu){x) = u(x) for any x G £, one has that (oc*mH ° πw)(x) =
w(x) for x e E. This implies that for any x e E, one has (tσ# o πw)(α(x)) = w(α(x)).
Hence, for any x e E, α(x) G E, so that α G Autc. D

Using (2.19), one can also show that this condition is actually independent from
the metric H, as expected on general grounds from the metric independence of Autc.
Going over the infinitesimal formulation and using (2.19) and (3.19), one finds that,
for the ^-special symmetry,

(cd + cd- diάM)wHwH = 0 , (3.21)

which is the constraint on c and M looked for. If (μ,A%) is an is-special holomorphic
structure, so that (3.9) is fulfilled, then (3.21) can be stated in terms of the (μ,A^)
dependent ghost fields C and XA given by (3.14) and (3.15) as follows:

(CdA+3dXA)wHWff = 0. (3.22)

It can be verified that (3.21) is compatible with (3.10) and (3.11) in the follow-
ing sense. If one applies s to the left-hand side of (3.21) and uses (3.10), (3.11) and
(2.19), one obtains a result that is linear in the left-hand side of (3.21). Thus, en-
forcing the constraint (3.21) is compatible with the action of Aut^. This is expected
on general grounds and verified here. Similarly, if one applies s to the left-hand
side of (3.9) and uses (3.12), (3.13) and (2.19), one obtains an expression linear in
the left-hand sides of (3.9) and (3.22). Hence, imposing the constraints (3.9) and
(3.22) is again compatible with the action of Aut^.

In the Beltrami-Koszul parametrization of holomorphic structures the determi-

nant of Δ*w.s.hH and the associated bare and renormalized effective actions become

functionals of the geometrical fields μ,μ,Aχ and A^. The Autc invariance of the

spectrum of Λ^.s.hH implies that its determinant also is invariant. Hence

X0- (3-23)

The bare effective action /^are(s; h, H\ ε) cannot really be considered a functional
over the space § ° x S because of the ambiguity inherent in the choice of the bases
of zero modes. For this reason, /^are(s;Λ, H ε) is invariant under Autc only up to
redefinitions of the zero mode bases. However, the exponential of /^are(s; h, H; ε)



Extrinsic Hermitian Geometry of Functional Determinants 215

can be viewed as a section of a line bundle on § ° x 6 . As such, I^aτe(s;h,H;ε)
is in fact Autc invariant and one has

sCTQ(μ,μ,A*H,Λ*Hi;h,H;ε) = 0 . (3.24)

The exponential of the renormalized effective action ijfn(s; h, H) may be viewed
similarly as a section of the same line bundle on § ° x S . The counterterm
AI*aτe(s;h,H;ε) given by (2.49) is Autc invariant if AΓw

en(s;h,H) is. In that case,
/Jjfn(s; h,H), also, is Autc invariant and one has

slZ"(μ9μ9A*H,A*Hi;h,H) = 0. (3.25)

There remains to discuss the important issue of holomorphic factorization [11].
This is left for future work.

4. The Drinfeld-Sokolov Ghost System

The construction of JF-algebras can be performed in a lagrangian local field theoretic
framework. A certain nilpotent subgroup X of the relevant symmetry group G of
a Wess-Zumino-Witten field theory is gauged yielding a conformally invariant
gauge theory. Quantizing and gauge fixing a la Faddeev-Popov, one gets a quantum
field theory whose gauge invariant operators generate the PF-algebra [14]. Below,
I shall restrict myself to the PF-algebras resulting from the Drinfeld-Sokolov (DS)
lowest weight reductions [25]. A basic feature shared by all such algebras is the
existence of an SL(2) subgroup S of G defining a halfinteger gradation of the
latter with respect to which X is negative graded and playing a fundamental role.
Though the lagrangian point of view is less popular than the hamiltonian one, it is
the one suitable for the construction of the Polyakov measure of W gravity upon
reinterpreting the geometry and the field content [15].

In ordinary gravity, the basic fields are the Beltrami field μ and the surface
metric h of Σ, whose dynamics is governed by the diffeomorphism invariant effec-
tive action I(μ,μ;h) of a conformal field theory. After gauge fixing, the partition
function enjoys a residual gauge symmetry, the conformal symmetry, and is given
as the integral of a density on moduli space. Similarly, in the model of DS gravity,
proposed in ref. [15], the basic fields are the £-valued Koszul field A* and the fibre
metric H of the DS principal G-bundle defined below. The dynamics is governed
by the DS invariant effective action /(μ,μ,y4*,^4*t;/*,//) of a DS field theory, a gen-
eralization of conformal field theory based on the DS bundle. A* and H correspond
to the gauge field and the Wess-Zumino field of the usual lagrangian formulation
and I(μ,μ,A*,A*ϊ;h,H) to the Wess-Zumino-Witten action. After gauge fixing the
DS symmetry, the partition function has a residual gauge symmetry associated to
the gauge transformations leaving a given Koszul field invariant. This is the DS
counterpart of conformal symmetry. It also involves an integration on a non-trivial
space of DS gauge orbits, the DS moduli space.

In ordinary gravity the ghost system plays a crucial role and provides important
information on the conformal group and the moduli space. In the same way, in
DS gravity the DS ghost system plays a similarly important role and provides
information about the holomorphic DS group and the DS moduli space. A study
of the DS system is thus required. This will also serve as an illustration of the
techniques developed in the previous sections.
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The basic algebraic data entering in the definition of the model are the following:
i) a simple complex Lie group G; ii) an SL(2, C) subgroup S of G invariant under
the compact conjugation f of G. Let t-\,to,t+\ be a set of standard generators of
s, i.e.

[f+i,*-i] = 2ί0, [ίo,ί±i] = ±t±i , (4.1)

*]=*_</, rf = - l , 0 , + l . (4.2)

To the Cartan element ί0 of s, there is associated a halfinteger grading of g: the
subspace gm of g of degree m G Z/2 is the eigenspace of ad to with eigenvalue m.
One can further define a bilinear form χ on g by χ(x,y) = ftad(t+\[x,y]),x,y £ g
[14], where trad denotes the Cartan-Killing form. The restriction of χ to g_i is

non-singular. By the Darboux theorem, there is a direct sum decomposition g_i =

p _ i θ q _ i of g_i into subspaces of the same dimension, which are maximally

isotropic and dual to each other with respect to χ. Set

P P _ . Θ φ g w . (4.3)
2 m ^ - l

£ is a negative graded nilpotent subalgebra of g.

On a Riemann surface Σ of genus / with a spinor structure k®ϊ, one may define
the G valued holomorphic 1-cocyle

Lab = exp(- lnA: f l^o)exp(aα^1ί_i) . (4.4)

This in turn defines a holomorphic principal G-bundle, the DS bundle [16,25]. AdZ
is one of the associated holomorphic vector bundles. The ^-valued sections of AdZ,
span a subbundle AdLf of AdL, since £ is invariant under ad^o and adί_i.

The DS ghost system β — γ, described in the introduction, is governed by the
action (1.1), where β and y are anticommuting sections of k 0 AdZ and AdZ valued
in g/y -1 and jr, respectively, y ̂  being the orthogonal complement of y with respect
to trad. The effective action of the DS ghost system is thus of the type described
in Sect. 2 with E° = AdZ, E = AdZ? and w = 0. The hermitian structures of E°
considered here are of the form (h,AdH), where if is a hermitian metric of L,
but they will be denoted by (h,H) for brevity. From (2.54), (2.55) and (2.34), one
finds that the renormalized effective action I^ξ(h,H) satisfies the Weyl anomalous
Ward identity

δI*£{KH) = λen / d2zδh + AΌS(h,H) , (4.5)

AΌS(h,H) = A0ΌS(h,H) + δAI™(h,H) , (4.6)

where

A0DS(h,H)=ψ-fd2zδ\nhfh6π
ψfdzδ\nhfh

6π z

- ^- Jd2z[δ\nhtr((siάFH + ddHwH)wH)

+ - /^ztrίadίδ/W-^ίad/^ + ddHwH)wH), (4.7)
π Σ

with ΓDS = dimy and AI^(h,H) is a local functional of (h,H).
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For the DS principal bundle Z, there exists a distinguished choice of the fiber
metric H for any given hermitian metric h on the base Σ, namely

Hh — exp(—dInht-\)exp(— Inhto)exp(—dInht+\) . (4.8)

It is not difficult to show that the corresponding projector wHh is given by

Wπh = exp(—d\nh?iάt-\)pχexp(<91n/zadί_i), (4.9)

where p¥ is the orthogonal projector of g onto £ with respect to the hermitian inner

product on g defined by (x, y) — tra^(x^y) for x, y G g.
For the DS ghost system, besides the minimal subtraction renormalization pre-

scription, corresponding to setting AI^ξ(h,H) = 0, there is another relevant renor-
malization defined by the choice

"H 1
ίtτ(aά(δH'Hr-λ)mH,)\fh. (4.10)

The functional 1-form tr(ad(<5//7/ X)WH) of ΩX

Q is exact. Thus, the above functional
line integral does not depend on the choice of the functional path joining Hh to H
in §° . Using the Taylor expansion (2.41) and (4.8) and (4.9), one can verify that
ΔfI^ξ(h,H) is a local functional of (h,H). Further, using (2.31), one can show that

δΔ'l^ξ{h,H) = — / d2z[δ In htr((aάFH + ddHwH)^H) + ft(&d(δHH~ι)mH)fh]

- — J d2z[δ In h tr ( ( a d i ^ + ddHhwHh )wHh)
iπ Σ

+ tv(ad(δHhH-χ)mHh)fh] . (4.11)

Hence, on account of (4.5)-(4.7), choosing A'Igg(h9H) to be given by (4.10),
one obtains a renormalized effective action I^ξ(h,H), for which the classical H
equations are of the form

\x(?Δ(δHH-χ)(2ΔFH + deHwH)wH) + = 0 . (4.12)

The ellipses denote terms coming from the matter sector of the model, which will
not be discussed here [15]. The relevant point is that the above classical equations,
including the contributions coming from the matter sector not shown, do not con-
tain the surface metric h. Thus, the classical H dynamics induced by I^ξ(h9H) is
conformally invariant.

With the metric Hh available, one may define the reduced renormalized effective
action

Iren(h) = ITQn(h Hh) (4 13)

for any choice of the renormalization prescription. Here, AI^ξ(h,H) is meaningfully
chosen to be of the form

A"lns(h,H) = — f d2zh~λfh , (4.14)
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where τco is a real constant. Note that A"I^ξ(h,H) may be added to the countert-
erm A'I^ξ(h,H) given by (4.10) without altering the basic properties of the latter
discussed above. By using (4.5)-(4.7), one can obtain the Weyl anomalous Ward
identity obeyed by I^§(h). This can be written in rather explicit form, because of the
simple dependence of H^ and wnh on h. By a somewhat lengthy but straightforward
calculation, one finds

«£(*) = - ^ Jd2zδlnhfh + *^!*δ J fzH-i ft , (4.15)
1.Z7Γ y 7ί y

where
cos = -2tr[(6(adί0)2 + 6adί0 + l)p y ] , (4.16)

/cos = tr(adί+ 1adί_i/? y). (4.17)

Choosing κ$ = TCDS yields a renormalized effective action I^(h) describing a con-
formal field theory of central charge cDs This is precisely the central charge of
the DS ghost system as computed with the methods of hamiltonian reduction and
conformal field theory [14].2 For a generic value of /Co, one obtains a renormalized
effective action with a / VhR2

h term yielding a model of induced Id gravity of the
same type as that considered in refs. [18-19].

If AI™(h,H) = A'I™(h,H) + A"I™(h,H) in (4.6), Ig£(h,H) takes the follow-
ing form:

lS£(h,H) = lS£(h) + SΌS(h,H), (4.18)
where

SDS(h,H) = - / d2z
H

J tr(ad(δHfH'-ι)(&dFH (4.19)

It can be seen that the right-hand side of (4.19) is independent from the choice
of the functional path joining Hh to H. S^sih^H) is a local functional of (h,H).
Indeed, it is given by the last term on the right-hand side of (2.43). Equation (4.18)
implies that I^ξ(h,H) is a local functional of H and that its non-locality resides
entirely in I£ξ(h), which depends only on h and, as argued above, is essentially
the effective action of a conformal field theory. Hence, quantization of H can be
carried out in the framework of local field theory.

It is possible to compute the index of the ghost kinetic operator d in the above
framework. One uses the general relation (2.32) and carries out the calculation using
the convenient fiber metric Hh. The result is

i n d I = _ ψ . j d2zfh + A j d^trdadF^ + ddHhwHh)wHh)

/ - l ) . (4.20)

The dimension of the kernel of d is the number of linearly independent y-zero
modes. It can be computed as follows. Recall that to any linearly independent
generator of cj of to degree — m < 0 there correspond dm linearly independent holo-
morphic sections of E°, where dm is the dimension of space ^JJJQ of holomorphic

2 The odd looking sign of the mid term in the right-hand side of (4.16) is due to the fact that
is negative graded.
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elements of #w>o [16]. Recall also that d\ = / and that dm = (2m - 1)(/ - 1) for
m ^ \ and / ^ 2 [17]. Using these remarks and (4.3), one finds that

dimkerd = dimg_i + -dim§_ιdι -tr[(2adί o + l ) f t ] ( / - 1), / ^ 2 . (4.21)

The dimension of the cokernel of δ is the number of linearly independent β-zero
modes. This can be easily computed using (4.20) and (4.21). One finds

dim coker<3 = dimg_i + - dim§_ιd\, / ^ 2 . (4.22)

The above analysis has been carried out for a fixed ^-special holomorphic struc-
ture of the smooth vector bundle E° characterized by the holomorphic G-valued
1-cocycle (4.4). One may take such a holomorphic structure as a reference one.
Let us now study the family of the ^-special holomorphic structures of E°. All the
holomorphic structures s considered below are of the form (μ, ad^4*), where A* is
a section of k ®E°, but they will be denoted by (μ,A*) for brevity.

Let R be a holomorphic projective connection. Then

i4Λ = ^ + i - Λ _ i (4.23)

is a holomorphic (1,0) connection of L. Below, AR will be used as background. All
fields built using AR will carry a subscript R.

For any Beltrami field μ, consider the holomorphic structure sμ = ( μ , ^ ( μ ) )
whose Koszul field A^(μ) is of the form

Λl(μ) = \μhχ - dμt0 - (d2 + R)μt_λ . (4.24)

It is straightforward to verify that ^ ( μ ) is a section of k ® E°, so that Aχ(μ) is a
bona fide Koszul field. A generic holomorphic structure s = (μ,A*R) of E° can be
written in the form

A*R=A*R(μ) + a*, (4.25)

where a* is some section of k®E°. Let £>DS be the family of all holomorphic
structures s = (μ,A^) such that a* is y-valued. Then 6 D S C S , i.e. S D S consists
of ^-special holomorphic structures.

Proof. To begin with, one notes that, for the DS bundle, one has

dmHv3H — 0, dwHWH — 0 . (4.26)

The first relation is just (2.17). For a general vector bundle, the second relation
would not be covariant. However, here, because of the specific form of the cocycle
(4.4) and the fact that £ is invariant under adίo and adί_i, it actually is. Equa-
tion (4.26) is shown as follows. Let LQ be the holomorphic G-valued 1-cocycle
defined by LOab = exp(— lnA^o)- A generic metric H of L undergoes a Gauss type
factorization of the form

H = KHQRΪ , (4.27)
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where K is an expjc-valued section of L ® L^ and HQ is some metric of LQ valued

in expfo with ϊ 0 = q_± Θ cjo θ ς_ i'. Next, pick a basis {βξ\ξ G /} of£ constituted

by eigenvectors of adίo. Then, one has

wH = AάK Σeξ® g(HoΓ\ηeηAάH-ιAdK-1 ,

e η ) , (4.28)

where eη — trad (e\ ). From this expression, it is not difficult to check the validity
of (4.26). Using (4.23), (4.25) and (4.26) and the fact that j : is invariant under
ad^o and adί_i, one finds that s = (μ,Aχ) fulfills (3.9) when α* is ^-valued, so that
s is special. D

Note that SDS is strictly contained in (5 . For instance, if ω* G <9\i and y
is a (1,0) connection of the line bundle k, then, setting a* = ω*t0 — yω*/_i, the
holomorphic structure (μ,A^) defined by (4.25) is special but it is not contained
in SDS In ^-algebras, SDs is the relevant class of special holomorphic structures
since the constraint on the Wess-Zumino current is implemented at the lagrangian
level by coupling it to a r-valued gauge field, namely α* [14-15].

Next, consider the automorphism symmetry. Here, I shall restrict to the subgroup
of Aut£ for which the automorphism ghosts are c and adM with M — cAR a section
of E° valued in Λ1(LieAut^)v. Set

M(c9c9μ) = (dc + μdc)t0 + (d(dc + μdc) + dμdc)t-λ . (4.29)

One can verify that M(c,c,μ) — cAR is a section of E° valued in f\ι (Lie Aut^) v.
Using (3.10) and (3.12), one verifies that M(c,c,μ) fulfills (3.11). Write

M = M(c,c,μ) + m (4.30)

with m a section of E° valued in /^(Lie Aut|?)v. Since M and M(c,c,μ) both satisfy
(3.11), one has

sm = (cd + cd — adM(c,c,μ))m - -[m,m]. (4.31)

Now, it is easily checked that (c,M) fulfills the specialty condition (3.21) if m is
r-valued. Such a constraint defines a subgroup Autcos of Autc.

Proof. It follows trivially from (4.26) that (c,M) fulfills the specialty condition
(3.21) once the y-valuedness of m is enforced. Note that the ̂ -valuedness of m is
respected by (4.31), since y is a subalgebra of cj invariant under ad^o and acU_i.
Hence, the constraint defines a subgroup AutcDs of Autc. D

Reasoning in the same way as at the end of the previous paragraph, one can
see that AutcDs is strictly contained in Autc. In JF-gravity, however, the relevant
symmetry group is AutcDs since the renormalized matter effective action is invariant
only under Autcos when the background holomorphic structures s are constrained
to belong to SDS [14-15].

Following (3.15), one defines

XR(C) = cAR + cA*R(μ) - M(c, c, μ) . (4.32)



Extrinsic Hermitian Geometry of Functional Determinants 221

As suggested by the notation, XR(C) depends on c,c and μ through the combination
C defined in (3.14). In fact

XR(C) = l-Ct+ι - dCto - (d2+R)Ct-λ . (4.33)

Remarkably, A%(μ) fulfills (3.13) with XA replaced by XR(C) and XR(C) fulfills
(3.17). It follows from (3.15), (4.25) and (4.30) that

XR=XR(C) + X9 (4.34)

where x is a section of E° valued in /\1(UQ A u φ v . Explicitly, from (3.15), (4.25),
(4.30) and (4.32), one has

x = ca* — m . (4.35)

Using the fact that AR and Aχ(μ) both obey (3.13) with the appropriate ghost field
XR and that XR and XR(C) both obey (3.17), one finds the relations

sa* = (CdR + adXR(C))a* + (3 - μdR -A*R{μ) - adα*)x, (4.36)

sx = (CdR + adX*(C))x + \[x,x\, (4.37)

where dR = ΘAR. If a* is $ -valued, so that the corresponding holomorphic structure
is special, then (C,XR) fulfills the specialty condition (3.22) if x is ^-valued. Note
that (4.36) and (4.37) respect £-valuedness.

In the Beltrami-Koszul parametrization, restricting to holomorphic structures
s G <3Ds, the DS ghost action reads

SΌs(β,βly,y*;μ,μ,a*9a*i) = -JV 2 ztr a d [β(d - μdR - A*R(μ) - adα*)y] + c.c.,

(4.38)

where α* is j -valued. Using this expression, it is straightforward to compute the
classical energy-momentum tensor TΌs(β,y). One has

DR = l-t+ι + toδ - t^(d2 + R) (4.39)

Similarly, one can compute the classical gauge current Tbs(/?,?)• One finds

Jvs(β,y) = π^(j8,j5t,y,yt ;o,O,O,O) = [y,β]. (4.40)

Note that Tv$(β,y) contains a second derivative improvement term trad (DRJvs(β,y)),
a common feature in fF-algebras. Note also that Jusiβ^y) is valued in g/t^y 1 ] since
β is g/^ -'"-valued and γ is y-valued.

In the above geometrical formulation, I have not defined a notion of stability
for special holomorphic structures s = (μ9AR) G SDS with a fixed Beltrami field
μ. In the analysis below, it will be assumed that the holomorphic structure on
Σ defined by μ is generic in the sense that d\ = 0,1 depending on whether the
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spinor structure is even or odd, respectively. Now, no structure s G SDS is sta-
ble in the customary sense. Indeed, the space ^Qhf. s of holomoφhic elements in
6f® 0. s is non-trivial, while, for stable structures, ^[jho s m u s t vanish [17]. In phys-
ical terms, ^oho s i s * n e s P a c e °f m e holomoφhic infinitesimal gauge transforma-
tions of E® and, for stable structures s, has minimal dimension. Here, the relevant
symmetry group is the DS gauge group GauCDS? which is the gauge subgroup of
Autc D S.3 So, one may define stability as follows, s is said to be stable if the
space ^Qhf. s of holomoφhic ^-valued elements in Sf\ 0. s has minimal dimension.
Let us denote by Qζf* the subspace of 2>DS °f aH stable holomoφhic structures
s of SDs Clearly, <Zξf is preserved by AutcDs Non-stable holomoφhic struc-
tures must satisfy in the Beltrami-Koszul parametrization certain linear conditions.
They thus span a submanifold of ®DS of finite codimension. Hence, Sg | b is dense
is ®DS

In JF-gravity there are two geometrical structures of crucial importance in anal-
ogy to string theory. The first is the holomoφhic subgroup Gau^s s °f m e ^S gauge
group GauCDS for any stable holomoφhic structure s G £>osb. The second is the DS
Teichmueller space Teichos = ®Dsb/GauCDS of stable holomoφhic structures s G
Spgb modulo GauCDS Their dimensions can be computed. By direct calculation,
one finds that

^ S ; s g_i +n*dχ - tr[(2adί0 + l ) ^ r ] ( / - 1), / ^ 2, (4.41)

where n* = min x e p χ dimkeradx|p χ «* depends only on s. Using the index

relation (4.20) and (4.41), one finds that

dimTeichDS = dim g_i + n*di, / ^ 2 . (4.42)

The calculation of these numbers is one of the main results of this paper.

Proof. Consider the holomoφhic structure sμ = (μ,Aχ(μ)) defined earlier. It is
not difficult to check that the intertwiner VSμ of sμ is given by exp(—\ndzSμto)
exp(d(dzSμ)-ιt-ι) and that LSμab = e x p ( - l n ^ s ^ o ) e x p ( δ S / | f l ^ - i ί _ 1 ) . Note that
this 1-cocycle is of the DS form (4.4). Hence, choosing the reference holomoφhic
structure of E°, so that the induced holomoφhic structure on Σ is generic in the
sense stated above, one can assume that μ = 0 without loss of generality. The holo-
moφhic structures s G ®DS> in which one is interested, are therefore of the form

(0,α*) with a* an r-valued section of k ®E°. Let Θ be a section of k <g)E°. One
can decompose Θ as follows

Θ = Σ ®{m) w i t h

where 7* is the highest eigenvalue of adίo. Applying Theorems 3.2 and 3.3 of ref.

[16], one can easily show the following. If Θ^ = 0 for p < m ^

j * with —j* S P < j * , then Θ^ is a section of k®~p <g> k 0 9^. Pick a holo-

moφhic protective connection R. For any section θ of k®~p (8) k (8) 9^ with

3 In geometrical terms, an element α of the automorphism group Aut[! of a vector bundle E°
is a gauge transformation if the induced diffeomorphism / α = idj .



Extrinsic Hermitian Geometry of Functional Determinants 223

—j* S P ίk — \> there exists a section TR(Θ) of k 0 E° such that

TR(θfm) = 0, for p < m ^ j \ , TR(Θ)^ = θ . (4.44)

Further, when w = 0, one has

dTR(θ) = TR(dθ). (4.45)
Consider the equation

(d-ada*)η = 0 (4.46)

with η an £-valued section of E°. The space of solutions of this equation is precisely

kerδ s ^ L i e G a u ^ S ; s . Now, set η0 = η. Then, by (4.3), η{™} = 0 for m > -\, so

that η0

 Ί is a section of k®2 0 g _ i , as recalled above. It follows from (4.46)

and the fact that α* ( m ) = 0 for m > — \ that dη0

 2 — 0 by grading reasons. There

are d\ dimg_i/2 linearly independent such η0

 Ί . Define η\ = η0 — TR(η0

 5 ). By

(4.44), one has that η^ = 0 for m > — 1, so that ^i"1^ is a section of k <g> gi. By

(4.45), the holomoφhy of η0

 2 , ίo-grading reasons and (4.46), one has further that

dη\~^ = [a*(~ϊ\η0

 Ί ]. The general solution of this equation, if it exists, is a linear

inhomogeneous function of d\dim§-\ complex parameters since η[~1^ is determined

up to the addition of an arbitrary section C ( - 1 ) of k <S> gi such that dζ(~ι>} = 0. A

solution exists provided the integrability condition JΣd
2z[a*^~2\η0

 Ί ] = 0 is satis-

fied. Since d\ — 0, l,η0

 Ί is of the form σχ(~ϊ\ where σ is a holomorphic section

of k®ϊ such that σΦO if d\ = 1 andx(~2^ e p_ι. Hence, the integrability condition

reduces into [JΣ d2zσa*(~2~\χ(~2~)] = 0. If β* is to represent a stable holomorphic

structure, this must be a condition constraining x^~2^ only. From here, it is easy to

see that, for a stable holomorphic structure, the space of allowed η0

 2 has dimen-

sion n*d\. Next, define η2 = ηι - TR(η[~l)). By (4.44), one has that ^ m ) = 0 for

m > — | , so that η2

 Ί is a section of k®2 0 g_3. By (4.45), one has further that

dη2

 Ί = (dη\ — TR(dη[~ι^)f~2\ The general solution of this equation always exists
and is a linear inhomogeneous function of didimqi complex parameters, since

η2

 Ί is determined up to the addition of an arbitrary section C^~5^ of k®ϊ 0 g_3

such that <?C(~2) = 0. The procedure can now be iterated. At the pth step one defines

a section ηp

 2 of k®~ 0 g_£+± satisfying an equation whose general solution is

a linear inhomogeneous function of dp+\_dim§_p+]_ complex parameters. In conclu-

sion, for a stable structure, dimkerδ s = n*dι + ΣP>\ ^£+idimg_£±i_. Using that

d\ = I and that dm = (2m - 1)(/ - 1) for m ^ \ and / ^ 2 [17] and the remark
just below (4.46), one obtains (4.41) readily. To compute dimTeichos? one notes
dimTeichDS = dimGau^s s ~ ind5 s by a reasoning analogous to that used to com-
pute the dimension of the ordinary Teichmueller space in string theory. Then, (4.42)
follows immediately from the index relation (4.20) and (4.41). D
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