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Abstract: The quasi-particle structure of the higher spin XXZ model is studied. We
obtained a new description of crystals associated with the level k integrable highest
weight Uqίsh) modules in terms of the creation operators at q = 0 (the crystalline
spinon basis). The fermionic character formulas and the Yangian structure of those
integrable modules naturally follow from this description. We have also derived the
conjectural formulas for the multi quasi-particle states at q = 0.

0. Introduction

In this paper, we consider the integrable XXZ spin chain with spin k/2 of si2. The
space of states is the infinite tensor product (the space of local fields)

In remarkable papers [7,25], using the Bethe Ansatz, Faddeev and Takhatajan dis-
covered that the one-particle excitation in the anti-ferromagnetic regime of XXX
chain is always (a kink of) spin 1/2. According to this picture, one can expect
another description of space of states [7,23] such as (the space of asymptotic par-
ticles)

- Symm

/I=0 /?6path

where Symm is the symmetrization with respect to the S-matrix. On the other hand,
stimulated by the deep results by Smirnov [24], the third description of the space of
states in terms of the representations of Uq(sl2) (the space of non-local symmetries)
was proposed [5,10]

Here V(λi) is the integrable highest weight representation of Uq(sl2) and 0 means
some extended tensor product. The particle picture is recovered using the ^-vertex
operators acting among them.



180 A. Nakayashiki, Y. Yamada

In [3,4], a new description of the Hubert space of the (chiral) WZW conformal
field theory was obtained. The spin 1/2 vertex operators were identified with the
particles (spinons) and the basis of the integrable sl2 modules are determined in
terms of the spinons (spinon basis). Their picture is clear, but technically it is quite
hard because of the very complicated algebra of spinons.

The aim of this paper is to establish the remarkable equivalence

rigorously, focusing on its combinatorial aspects, that is at the level of crystals. In
a sense this can be considered as the crystallization of the ^-deformation of [3,4].

One of the (and the most remarkable) advantages to consider the ^-analogue
is that one can go into q —» 0 limit where everything becomes clear and trans-
parent (the "crystal" theory). It is expected that in the limit q —• 0 the resulting
algebraic structures for the "crystalline spinon" will be much simpler than that of
q=l.

Here we must recall that there are two kinds of ^-deformation of the vertex
operators, called type I and type II in the terminology of [5]. They almost have the
same properties as far as we consider them separately. However, since it is crucial,
in the study of spin chains, to consider them simultaneously, they inevitably reveal
different faces.

While the type I ^-vertex operators have a well defined q = 0 limit and play
the central role for the equivalence J f = W, the existence of q —> 0 limits of the
creation operators (those represented as type II q-VO) is not clear. Indeed it is
known that type II q-VO produces poles at q = 0, hence the q —» 0 limit does not
exist in a naive sense.

Nevertheless, it is conjectured [5] that those poles summed up to a meromorphic
function in spectral parameters and the q —> 0 limits of the creation operators are
well-defined, if they act on the true vacuum, the ground state of the model. In fact
what we need here is this type II ^-vertex operators.

One way to avoid this subtle problem is to construct the creation operators and
their action on the path basis directly at q = 0, rather than taking the limit q —> 0.
For the level k — 1 case, this kind of description of q = 0 creation operators was
considered previously in [5], and we will generalize it to higher levels k ^ 2.
Though there still remains a deep gap between q = 0 and q Φ 0 descriptions, the
thus obtained statements of combinatorial nature (such as character formulas) are
independent of q and available to generic q including 1. This is reminiscent of the
"Combinatorial Bethe Ansatz" due to [19].

The paper is organized as follows. Section 1 is a quick review of the path real-
ization that shows the equivalence 2tf — Ψ*. Then in Sect. 2, we define and study
the algebra of the creation operators at q = 0, and give a precise combinatorial
description of the space J^ including subtleties on the statistics. In Sect. 3, we for-
mulate and prove our main theorem (Theorem 3) that gives bijection (isomorphism
of crystals) between the space of fields Of and the space of particles # \ In Sects. 4
and 5, we discuss the Yangian structure and spinon (or fermionic) character for-
mulas. These kinds of structures, that are conjectured by recent TBA analysis (see
for example [17,20,18]), will be obtained as corollaries of the results in Sect. 3. In
Sect. 6 the conjectural formulas for the q — 0 limit of the quasi-particles of the spin
k/2 XXZ model are given in terms of path basis. This is also an easy consequence
of the commutation relations of creation operators at q = 0. Section 7 is devoted to
comments and discussions.
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1. Review of the Path Realization

Here we review a path realization of crystals. Unless otherwise stated we follow
the notations of Sect. 2 of [10]. For other notations and fundamental properties
of crystals which we use in this paper we refer to [16,22]. We denote by B^
= {bf^\O S I ίk k] the associated crystal to the crystal base of the k + 1 dimen-
sional Uqisli) module V^k\ The actions of ez , ft ( /= 0,1) on B^ are specified
by

and Xίb) — 0 (otherwise) for x — e, / , ί = 0,1. We call a crystal defined from

Uqίsh) a sΪ2 crystal. An sl2 crystal is called the (sΪ2)i crystal (/= 0,1) if we

forget the actions of ei_;, f\-ι- Let P and P* denote the weight and the dual

weight lattice of sT2, P = ZΛ0 Θ ZΛX Θ Zδ, P* = Zh0 θ ZAi θ Zd, (hi9Λj) = δiJ9

(d,δ) = 1, (hi,δ) — (d,Λj) — 0, {hi} being the simple coroots.

Let us set 0>(m>m'ϊ = B(λm)®B(λm*)*9 which is the crystal associated to V(λm)
0 V(λmrYa. The ground state path pm is defined by

P m V ) = w + ( * - 2 m ) ε ( l ) l e Z ,

where ε(/) = 0(/ : even) = 1(/ : odd). Define the (m, mf) ground state path by

Then

Proposition 1. There is a bijection

^ » . » ' ) = {p = (p(l))lez I p(l) e {0,...,k},p(l) = pm,m,(l) (\l\» 0)} .

We call an element in the right-hand side of this an (m, mf) path. From now on

we identify ^ m ' m ' ) with the set of (m, m') paths.

A (m, m!) path can be described in terms of domain walls. For p G gP(m>m \ we
can associate the uniquely determined data

neZ^o, (i» /i)GZ", and (rnn,...,m0) G {0,...,£f+1

such that

ln ^ ^ /i, mn = m, mo = mf, \ntj — rrij-i | = 1 for any j ,

if ls+s, > /J+J/_! = = ls > 4 - 1 , then \ms+sl_x - ms\ = s\

p(l) = pmr(I) lr+ι ^l^Ir + 1. (1)

If lr — / Γ + i , we understand that there are no corresponding conditions of the form
(1). Conversely these data uniquely determines the (m,m!) path. For a fixed se-
quence (mn,...,mo) we denote this path by [[/„,...,/}]].
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Let us describe the actions of Si a n d / on [[/„,.. .,/i]]. Set

sj = sign(p(lj) + p(lj + I) - k) l ^ j ^ n (2)

and Yj = \{\ +sj), where sign(y) = l(y > 0) = - l ( y < 0). Note that p(lj) +

p(lj + 1) — A φO. Let us associate the element b of B^®n with the path p by

6 = 6£><g)...®6(;>. (3)

Suppose that

^ ] j (4)
Then

fO, if Jc/fe = 0 ,

where l's = /5 (^Φy) and

7 \ lj. - 1, for x = e .

The weight of a (/n, /«') path p is given by

wt(p) = (m-m' + 2s(p)){Λλ - Λo) - ω(p)δ ,

s(p)=Σ(pmAi)-p(i)),

lez
ω(p) — Σ ιφ(p(i +1), p(i))

lez

where the function H(jJ') is defined by

ί - / if j + f < k ,

\j-k if j + f > k .

2. Creation Algebra at q = 0

Definition 1. The algebra srf is generated by {φ*p \ j e Z, p G {0,1}} U {1}

Z subject to the following defining relations:

φ*Px (p*P2 + φ* 2

P l Φ*^ 2 = 0, yΊ = J2 mod.2 and (/?i, p2) — (1,0) ,

φ*Pιφ*Pl -f- φ*p}γ(p*p^ι = 0, y Ί Φ y 2 m o d . 2 and (pi, Pi) = ( l ? 0 ) ,

and
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As a special case of the above defining equations we have

φ*pι φ)K = φ*pι φ)p_\ = 0 , if (pu p2) = (1,0) ,

ψ]Pλψ)l\ = ΨTΨ)1\ = 0, if (puPiHihO) .

We call stf the crystalline creation algebra. The derivation of the above com-
mutation relations is explained in Appendix A. The algebra stf is naturally graded
by

J oo

n=0

to]* ^o = Z. (7)
(Pn,-,P

Let us introduce the functions H, K, ε by

#(0,0) = #(0,1) = #(1,1) = 0, #(1,0) = 1 ,

up2), ε(j)= 1 ~ 3 ~ 1 ) 7

Then the commutation relations can be written compactly as

*/?2 *P\ *P2 *P\
φ J 2 φ J \ + φ j ( P

Let us set

n=\

B(pn,...,pχ) = {φ*n

Pn - - φ*h

Pι I( j n , . . . ,7i) satisfies the condition (8)} ,

If n = 0, we define (pn,..., p\) = φ and B(φ) = {1}. The condition is

j n - 2In(pn,...,p\) ^ ^ 72 - 2I2(p2,P\) ^ju (8)

/-I

//(/?/,..., pi) = Σ H(Ps+u Ps)

Theorem 1. U(<Pn^pχ)e^λγB{pn,...,px) is a Z linear base of sdn.

We prove the theorem in a more general setting. Let J be a set. Let us consider
the associative algebra over Z with unit generated by {ι/^(/ί)|̂ ί G J,« G Z} whose
defining relations are

ψA(n)ψB(m) + feO + sAB)\l/B{n - sAB) = 0 ,

where s ^ is some fixed integer. In what follows, we fix a sequence (A\,...9An)
and put siyi+\ = SAlfAι+r I n general let us define

{ U+i + ^ +l,z+2 H h S/-l,yJ (ϊ < 7) ,

0, O'=7),

•S/,1. (i > j) -
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Lemma 1. For any permutation σ of ( 1 , 2 , . . . , n ) ,

φAι(m\)'" ΨAn(mn) = sgn(σ)φAι(mlσ(ι)) φAn(mnσ{n)),

where
mij = nij + sUj .

Proof By the induction on the length of σ, the lemma is easily proved. D

Definition 2. In a product

Ψ = φAχ(mx) - φAn(mn),

the index pair (mi,rrij) (i < j) is said to be normal {zero, abnormal) iff

nii > nij + Sij (nii = nij + stj, mi < nij + s^ ) .

Furthermore, Ψ is normal iff all pairs are normal.

Lemma 2. The notion of normal (zero, abnormal) of two indices (rrii,mj) is inde-
pendent of the position of them as far as their order is preserved. If the order is
exchanged, then the normal pair is transformed into abnormal one and zero pair
to zero pair.

Proof Under any permutation σ such that σ" 1 ^) = /' and σ~x(j) =f, one has

rrif/j = nii + Sj/j, mj'j — mj + Sjfj .

Then, for the new pair (m /^mj/j) at position (if,f), one has
mi',i — mj'J ~ si'j' = mi ~ mj + si',i ~~ sίrf ~ sj',j ~ mi ~ mj ~ sij •>

and
rrijij - m^i - Sjtj = -(mi ~ rπj - su) .

Hence the normal (zero, abnormal) pair is transformed into normal (zero, abnormal)
for i' < f, or abnormal (zero, normal) for i' > j ' . D

Corollary 1. A product of the form

Ψ = ψAι(ntι) - ψAn(mn),

is 0 iff there exist (at least) a pair (mi,mj) such that

rrii = rrij + Sjj .

Otherwise, it can be transformed into normal form.

Corollary 2. The set of normal forms {\jjAχ(m\) ιl/An(mn)} forms a Z linear base
of the algebra.

Proof The corollary is proved by the standard argument of constructing a repre-
sentation of the algebra using Corollary 1. D

Proof of Theorem I. Take J = {0,1}2 and

Then the above algebra is isomorphic to s$ by φ\ζM — ψ(P,i)(n), where / = 0,1.
In this case the normality condition is exactly the condition (8). Hence Theorem 1
follows from Corollary 2. D
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Definition 3. Let us define the weight of a nonzero element of B by

Jn J\ / = i Jl

wt(φ*p) = - W δ + (1 - 2ε(y))(Λi - ΛQ) ,

where [j] is the Gauss symbol. We set wt\ — 0.

Let us introduce the actions of Si, ft (i — 0,1) on the set B(p) — {φ*p\j G Z}
(/? = 0,l) by

>ϊ ̂ 2/ = Φ 2 Λ I . /0Φ2/-1 = Φ 2 / >

e\ψ2j+\ = ΦljΓ' e$Ψ2j = Φlj—λ '

Xj(PjP = 0 otherwise ,

where x = e,f. By these actions and the weight of φ*^, £(/?) is an aίfine crystal

[16,22] isomorphic to Afϊ(5(1)). In general

Theorem 2. Lei n ^ 1 α«J (/?„,...,/?i) G {0,1 }w. There is a unique sl2 crystal
structure in B(pn,...,p\) such that the natural map

commutes with the actions of Si, ft (i = 0,1).

We consider B(φ) = {1} to be the trivial crystal, Jcz l = 0 for x = e9f and / =
0,1.

Proof of Theorem 2. Take any (p2, P\) £ {0,1}2 and fix it. Let us set, as a subset
of the tensor algebra generated by B{p) {p — 0,1),

Then it is sufficient to prove that

xtj C «/ U {0}

for x = e,f, / = 0,1. Here in general for the elements 6i,Z?2 of a crystal we
understand Jc/(fei H- Z?2) = xΦi +ί/Z>2 By direct calculations this property is easily
proved. D

3. Crystalline Spinon Base

Definition 4. Let us call (pn,...,p\) e {0,1}" α level k restricted path from 0 ίo
/ of length n if

(_l)/>i + . . . + (_!)/* G {0,...,*} > r 1 ^ 5 ^ « ,
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We denote by ̂ e s , « ( ^ 0 t n e s e t of restricted paths from 0 to I of length n and
set

k
φk _ I I φk /Q i\

1=0

We understand that f̂es 0 = {φ}.

The following theorem provides a new parametrization of the crystal base of

the integrable highest or lowest weight Uq(sh) modules.

Theorem 3. There is an isomorphism of affine crystals

oo

LJ U B(pn,...,Pl)~B(λι)®B(λo)*
»=°(pn,..,Pi)e^n(0,i)

given by

ΨT • • • ΨjΓ —> [L/» - Pn, • • • J l - Pi]] •

Corollary 3. The map in Theorem 3 induces the isomorphism of (si2)1 crystals
with affine weights:

00

U U B>0{pn9...9Pι)~B(λι)9
n=°(pn,.,Pi)e^n(0,l)

where we make the identification:

Here b^χQ is the lowest weight element in B(λo)*.

Note that there are no naturally defined sh crystal structure on B^(pn,...,p\).
The map in Theorem 3 determines a representation of s$ as in the proof of

Corollary 2. The action of φ*p on Θ̂ ZZ? is described in the following manner, where

b runs over all the elements in \-\k

lz=0B(λι) ®B(λoy. Let b = [\Jn-ι — pn-i, ,

J\—P\W be as in Theorem 3 and φ = (PjPφ*^~ι Ψjf1- If <p + 0 then, by

Lemma 1 and Lemma 2, there exist unique μ G {±1} and normal sequence

(/«>•• >/i) s u c h t n a t

*P *Pn—\ *Pλ

ψ = μψ/ψΓ ••• φ/1 •

We define φ*pb = 0 if (p,pn-\,...,p\) is not a restricted path. Suppose that

(p,Pn-U.-;Pl)£0L,n- T h e n

•Ph=ί °' if> = 0 ,
Ψj \μlU'n-P,Jn-ι-P»-u...,A-pι1\, i

In part icular for the e lement in B{pn,...,p\) w e have

Ψ*jn

P" • • • φ*/1 [[]] = [[jn -P«,...,jl-Pl]].
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This representation is considered as a Fock type representation of the crystalline
creation algebra, the vacuum being [[]].

We call the basis given in Theorem 3 and Corollary 3 the crystalline spinon
basis.

Proof of Theorem 3. The bijectivity of the map is obvious by the description of
the paths in terms of domain walls and the normality condition (8). So what we
should prove is the following two statements:

(i) The map commutes with the actions of ei,fi (i = 0,1).
(ii) The map preserves weights.

Let us prove (i) first.

Lemma 3. Let p = (p(n))neZ = [[jn - Pn,- .,jι]] be an element of Uk

ι=0B(λι)
®B(λoγ. if

jr+l — Pr+l > jr+l-\ ~ Pr+l-1 = " ' = jr ~ Pr > jr-\ ~ Pr-\ ,

then
PUr ~ Pr) + P(jr ~ Pr + 1) = k ~ l(-l)Jr .

Note that the assumption of the lemma implies pr+ι-\ = - = pr and jr+ι-\ =

• = j r . By the rule (2)-(4), the above domain wall corresponds to b^]^1 G .

Proof. The statement is easily proved by direct calculations. D

Let us consider the classical crystal morphism

cΓ\.

* Pn x-> * Pλ iS. i j x~λ zJ

'jn ' j \ ε(Jn) J

Since cln commutes with the actions of Si and f{

is equivalent to
XJl) ^

Hence (i) follows from the definition of the actions of ez, ft on B(p) and
(2)-(6). Π

Next let us prove (ii).

Lemma 4. Let p e U m m / ^ ( w ' m ^ be a path with n domain walls counting multiple

ones. Then there exists P which is a composition of Si and/• (i = 0,1) such that

P p = [ [ / „ , . . . , Λ ] ] , In > ••• > h ^ 0 .

Proof Since B^ is a perfect crystal of level 1, B^®n is connected. Hence there
exists a composition Pi of ey, /j (/ = 0,1) such that
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If we denote P\p — [[/„,..., h]] then

Hence p is connected to [[/«,...,π]] such that

rx £ 0 , c/"[[rB,...,r,]]

So let us assume that p is of this form from the beginning. Then

( / o / i 2 X ^ «:

fι(fofΐ)'-(fo~2fΓl)P = l[rn + n- l , . . .,r 2 + l ,n]] n: even ,

which proves the lemma. D

We prove the weight preservation by induction on the number of domain walls.
By Lemma 4 and the statement (i) above it is sufficient to prove the weight preser-
vation for such a path [[/«,..., h]] that

ln > . . • > / ! £ 0 .

0) For the vacuum (=zero domain wall) state, the statement is obvious since
wKίί ]]) = wf(l) = 0. Now, we will prove that

for any (b,c)- and (α, c)-path, p\ and p2 such as

/ < n,
f ^() , ,

P\{1) = * f and Λ ( / ) - I pb{l\ n< I ^ m,
/ ύ n ,

and the corresponding creation operator Θ (see 3) below). Here we can assume
m > n ^ 0.

1) First, calculate the ω-function. For ω(p\), one decomposes the summation
into four parts ω(Pι) = h^ + hf} + hf] + ^ ί 0 as O < /), (Λ = / ) , ( « > / > 0)
and (0 > /), then

M4) = Σ l[H(pι(l + 1), pi(/)) - ΛΓ(ft(/ + 1), Pb(l))] = 0 ,

f] /i + 1),?(/!)) - H(pb(n + 1),

= Σ
«>/

= Σ
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Similarly, by decomposing to six parts, one has ω(p2) = h^ H h h^\ where

hf = Σ l[H{pi{l + 1), Pi(l)) - H(pa(l + 1), £,(/))] = 0 ,

4 5 ) = m[H(pa(m + 1), pb(m)) - H{pa{m + 1), pa(m))] ,

hf = £ /[^(^(/ + 1), pb(l)) - H(pa(l
m>l>n

hψ = n[H(pb(n + \),q{n)) -H(pa{n + \),pa(n))],

n>l>0

*2° = Σ l[H{q{l+\)9q<J))-H{pc(l+\)9pc{l))\ .

Taking the difference of these two, one obtains

ω(p2) - ω(pι) = m[H(pa(m + I), pb(m)) - H(pa(m + l),^fl(/w))]

m>l>0

The first line of the R.H.S. is evaluated as

m[H(pa(m + 1), pb(m)) - H(pa(m + 1), pa(m))]

\ 0, pa(m) < pb(m) .

The second line is

llHip^l+l),,Σ
n>l>0

—(a — b)m/2, even m ,

(a-b)(m- l)/2, odd m.

Hence

(α — b)m/2, even m, a > b ,

—(a — b)m/2, even m, a < b ,

(a-b)(m- l)/2, odd m, a>b,

2, odd m, β < 6 .

I, even

»— α, odd

2) By similar and easier calculation, one can show
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Together with the results of 1), one obtains

' (a — b)(Λ\ — Λo) — (a — b)m/2 δ, even m, a> b,

(a — b)(Λ\ — Λo) + (a — b)m/2 δ, even m, a < b,
wt( p2) — wt( p\) = <

1 -(a-b)(Λλ - Λo) - (a - b)(m - l)/2<5, odd m, a>b,

3) On the other hand, in the spinon basis, the path p2 is obtained from p\ by
applying the following (products of) operators:

ί (φ^)a~b, a > b ,

(<Pm+i)6~α> a < b .

It is easy to see that the difference of wt, wt(p2) — wt(p\) is given exactly by the
weight of these operators, hence the theorem is proved. D

4. Yangian-like Structure

In this section we give a decomposition of the crystal of integrable irreducible

highest weight Uq(sl2) modules as Cs72)i crystals which has a natural description

in terms of crystalline spinon basis. Those (sl2)\ crystals can be considered as
describing the Yangian module structure in the q —» 1 limit. In fact one half of the
character formula (11) corresponds to this structure which is known to describe the
Yangian contribution [4].

Definition 5. For (pn,..., p\) G {0, l}n and (jn,... J\) which satisfy the condition

ji+i -jι ^ H(pi+ι,pi) 1 ^ / S n - 1 (9)

define

Here we set (jn, ...Ji) = φ if n = 0, and @φ

φ = {1}.

Note that the set ^"'"."}^1 LJ {0} is preserved by the actions of S\ and fλ and all
nonzero elements of it has the same weight with respect to d. As a corollary of
Theorem 3 we have

Theorem 4. There is an isomorphism of the (sl2)\ crystal

oo

U U *;S'
π(0,/) Un,.Jl )

where the disjoint union in (jn,...,jι) is over all sets which satisfy the condition
(9) and j λ ^ 0.

Let us determine the structure of $^'"j* as a (sl2)\ crystal. The crucial point

for it is that an element of the form φ2f"+in' * Ψy\i c a n be zero. We first study

the most degenerate cases.
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Proposition 2. If jι —jι-\ — H(pupι-\) for any / ^ 2, then

as a (si2)i crystal.

Proof Using

and the definition of fx, e\, the statement is easily verified. D

In order to state the general case we need to introduce some terminology.

Definition 6. For (pn,...,p\) G {0,1 } n the (jn,..., j \ ) G 7J1 is said to be a string

if
j ι - j ι _ ι = H ( p h P l - l ) 2 ^ 1 ^ n . (10)

We call n the length of the string.

For a fixed (pn,...,p\) we can uniquely decompose O«, . . . ,yΊ) into strings in
such a way that

(i) there exist M G Z ^ 1 and 0 = r0 < < rM = n such that (jrs,..., jrs_λ+\)
is a string for any s = 1,... ,M,

( i i ) Λ ί + i -7V, > H(prs+Uprs) for any £ = 1 , . . . , M - 1.

Setting ms = rs — rs- \, we call this decomposition the string decomposition of type

Theorem 5. Let us fix (pn,...,p\). If the string decomposition of (jn,...,j\) is
°f tyPe (mM>- >m\)> then there is an isomorphism

Pn,.,Pi _ β{mM) 0 . . . 0 β{m\)
Jn,—,J\

of (s12)i crystals.

Proof. Let us use the notations of the above definition for the string decomposition
of (jn9..., j\) such as rs. Set

& = Wtf+ln ® ® ^V/, |lB, , II = 0, 1} .

By definition the product map 1% —> ^j"Zj\ u ί^i *s f a c to ri zed as

a u {0} —» ^ " : : ; ^ 1 u {0}

I II

By the definition of the crystal structure on ̂ "'""f{
1, each map of the above diagram

commutes with e\ and fx. It is easily verified that F is a bijection. Then the theorem
follows from Proposition 2. D
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To each ^ZZh —β{mM) ® ' ' ' ®^ ( m i )> l e t u s define t n e Uq(βh)\ module
yPn,.,P\ b

jn-n yjr:tx = γ{mM) ® ® F ( W 1 ) '
where Uq(sl2)\ is the subalgebra generated by e\,f\,h\. Then, by the uniqueness of
the crystal base (Theorem 3 of [13]), as a corollary of Theorem 4 and Theorem 5
we have

Corollary 4. Suppose that q e {q e C\qn φ 1, ft = 1,2,...} U {1}. Γλew r/zere is an

isomorphism of Uq(sΪ2)\ modules,

So far we do not have a natural full Yangian type operation on each set &^]Zί\

or on the Uq(sl2)\ module ^/"'jf1- One reason for this will be explained in the

following way. We consider not a sl2 module but a Uq(sl2) module. The full
Yangian action may not survive in the deformation but it is possible for the sl2

structure to outlive. If we see appropriately we can extract the full Yangian structure
from it.

5. Character Formulas

Here, we derive the character formulas for the level k integrable sl2-modules V(λj)
(λj = (k —j)Λ0 +jΛ\, 0 ^ j ^ k) using the description of the crystalline spinon
basis in Sects. 3 and 4.

Let us denote (pη,...,p\) e {0,1}" the level k restricted path (mn,...,mo) be-
ginning mo = 0 ending mn — j by making identification as πii — mι-\ + 1 —2p\. In
Sect. 3 (Corollary 3), we obtained a spinon parametrization of the basis of B(λj)

where the conditions for the indices are

jι ^jι-i+2 if (/>/,/>/_!) = (1,0),

jι ^ jι-ι otherwise ,

7 i ^ 0 .

The weight wt of which is given by1

ι=ι

hx = (huwή = Σ (1 - In) = n- 2m(r) ,
ι=\

where jι = 2nι + ru (n £ {0,1}), and m(r) = #{/ | rt = 1}.

1 In conformal field theory language, Lo = —d + Δ(j), (A(j) = j(j + 2)/4(& + 2)) is the con-
formal weight and J® = h\/2 is the U(l) charge.
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For fixed p = (pn,..., p\) and r — (rm..., r\), the above conditions on
(jn,..., j\) can be rewritten in terms of mode sequences (nn,..., n\) as

where r0 = /?o = 0 and the //-function is

//(0,0) = //(0,l) = //(l,l) = 0, #(1,0) = 1 .

Especially, the minimal allowed mode sequence is

/
«min,/ = Σ (H(rU n-l) + //(Pi, Pi-\ )) ~ Π .

i=\

The general mode sequence can be parametrized as

nι = Wmin,/ + h - \ h ί/, (ί/ ^ 0) ,

and weight — d of which is given by

Σ «/ = Σ «/ + Σ [ ( « - / + l)#(r/,r/_i) + ( / i - / + \)H{PuPi-\) ~ n] .
/=1 /-I /-I

To sum up, the crystalline spinon basis can be parametrized by three sequences
/ = ( / „ , . . . , / i ) G ( Z ^ o ) " , P = (Pn,...,P\)£ {0,1}* (restricted) and r = (rn,...,rλ)
e {0,1 }w, with weights

=n- 2m(r)

= Σ «/,

Using this description of basis, one obtains the following character formula:

Theorem 6. The character chj(q,z) = tτv(<χj){q~dzhλ) is given by

oo n 1

hj(q,z) = Σ Σ (nΛ (nΛ ΣiKp)z"-2m, ( i i )
,2=0 m=0 W )n—m\H)m p

where p = (/?„,..., p\) w fefe/ k restricted fusion path from mo = 0 to mn — /

Proof Using the parametrization of the crystalline spinon basis as above, one obtains

Chj(q,z) = g - L
n=0 \Ά)n p r

oo n 1

/-/ /-/ /_\ / _ \
w=0 w=0 \H h-m\H)m p
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where we have used the formula

and

r=(rn,...,rι) m=0 \a)n-m\Sl)m

Thus the formula is proved. D

This result is exactly the spinon character formula proposed in [4].
In the paper [4], the remaining sum over the restricted fusion path p has also

been done explicitly. We quote their final result

and

m2,.,mk i^

Here K is the Cartan matrix of ^-type, {uj)i = ίz ,y+i and

n=0 w=0 yqh-mVDm

m\ (q)n_m(q)m

The m sum is taken over all non-negative odd [resp. even] integers for (my , ntj-29 •)
[resp. otherwise].

6. Quasi-Particles at q = 0

In this section, as another application of the crystalline creation algebra, we derive
the conjectural formula for the multi quasi-particle states of the higher spin XXZ
models at q = 0. In the case of spin 1/2 XXZ chain, the formulas are consistent
with the results of the Bethe Ansatz calculations [5],

Proposition 3. For (pn,..., p\) e &^n and (εn,...,εi) E {0, \}n we have

= Σ C(mn ' mλ)[[2mn + εn - Λ,...,2/»n + εi]] ,

= Π z ;

V / det (z™J~

The sum in (mι,...,mn) is over the modes M such as

M = {(mι,...,mn) I 2mn + εn - Ήn ^ ^ 2mλ +
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Proof. Let us use the notations in the proof of Theorem 1. Namely, for μ = 0,1,

Ψln+μ = VW)00

Let us set Aj = (/?w_y+i,εw_y+i). Then, using Lemma 1, we have

Σ d e t ( z ^ " - 7 + 1 ) [ [ 2 m « + εn - pn9...,2mι + βi]] .
(wlv..,m/?)GM

Noting that

det ( z ^ 7 ^ + 1 ) = det (z^+ 5 w-/ + 1 ' n~J+ι) - ft z;"-/ + u

and Vy = ^-y+ij = —s\in-j+\ we obtain the desired formula. D

Let {G(b)\b e B(λι) ® B(λoγ} be the global crystal base of V{λt) (8) F(/L0)*α

[15] and {(G(6)|} the dual base, (G(Z?)|G(^)) = δw. Let φ*μ

£(z) be the creation
operator defined in [10] acting on the actual representation. We denote by |vac)o
the ground state in V(λo)®V(λoy

a [10]. Then

Conjecture 1. Assume the same data as in Proposition 3. Let b = [[2mn + εn -
pm...,2πi\ + εi]] be an element of Uk

ι=0B(λι) 0 B(λ$)*. Then the n-quasί-partίcles
have the well defined q —• 0 limit and

ln (zπ).. φ*Λ l(zi) |vac) o |^o= f[zjC(mm..
- 1 '0 y = 1

where zΌ = 0, z'/ — z'/_i = 1 — 2/?/ α « J r y = ^ ( / / ) — zl(z7 _ i ) .

7. Discussion

In this paper we have given a spinon type description of the crystal of level k
integrable highest or lowest weight Uq(sl2) modules. The algebra of creation op-
erators for the higher spin XXZ model at q = 0 has been introduced and it plays
a central role. As consequences of this description we derived the fermionic type
character formulas and found the Yangian like structure in the integrable highest
weight modules or in the level zero modules. Moreover this description clarifies
the structure of the crystal associated with the tensor products of the integrable
highest and lowest weight modules of the same level in a different manner from
that in [10]. In the following part we shall discuss the possible generalizations and
remaining problems.

To generalize our formalism to the case of arbitrary affine quantum algebras
will be possible. The problems there are the identification of creation operators
with type II VOs and to calculate the commutation relations of them. As to the
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first problem Reshetikhin [23] gave a conjecture that the elementary excitations of
the model defined by the simply laced affine Lie algebra # will be parametrized by
the fundamental weights of <&. We remark that the second process will be skipped
with the aid of the general theory of crystals [16,6]. The treatment of the RSOS
models will also be possible [12].

So far we could not prove the existence of the q —> 0 limit of the cre-
ation operators. However it is reasonable and certain that this limit actually ex-
ists (see for example [21]). If the limit exists, the corresponding components
in the products of ^-vertex operators to our crystalline spinon basis form a
base of the Uq(sl2) module. To understand the "Yangian" representation VJ^'""jPι

in the integrable highest weight modules the study of these problems will be
important.

Note added in proof. While preparing this manuscript we came to know that Nakanishi et al. [27]
also proved the character formula which is equivalent to one in Sect. 5 rigorously based on the path
description of the character. They also discuss the Yangian structure from the combinatorial point
of view which is closely related to our results in Sect. 4. We would like to thank T. Nakanishi
for sending us his private note.

A. Appendix

Here we consider the naive limit of the ^-vertex operators at q — 0. The consid-
eration here motivates the definition of Sect. 2, though it tells nothing about the
existence.

In the vertex operator formalism, the creation operators are represented as the
type II vertex operator φ*v

ε(z). The commutation relation of them are given by

For the definitions and notations see [5,10,12]. Ry*y* is the trigonometric R-
matrix of Uq(sl(2)) for 2-dimensional representation V*. W is essentially the elliptic
Boltzmann weight due to [1]. Infinitely many poles in W corresponds to the mul-
tivaluedness of usual (q = 1) CFT chiral vertex operators [26].2

Being regarded as a commutation relation, it looks too terrible to treat. For
instance when q — 1, the algebra brings some generalized commutation relation in
the sense of the vertex operator algebra which takes a very complicated form in
general. However, if one considers the opposite limit q —> 0, a remarkable simple
structure comes out. In fact one can show that

Rv*v*(z)

1

2 One can take another q —> 1 limit in which R and W reduce to rational and trigonometric R
respectively by rescaling the spectral parameter z = q~2^in. This limit is exactly what we expected
for the "particles," that is (nilpotent half of) the Faddeev-Zamolodchikov algebra.
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λ x±

λ± x

and other W9s vanish. Note that the W are independent of the initial weight λ in
this limit, hence, one can regard it as a vertex type weight. Accordingly, we change
the notation as

where ε G {0,1} and we identify ± with ± 1 . Then the commutation relation takes
the form

where the exponent e is given by

e = H(pι,p2)+H(ε29ει)- 1 .

This algebra can be regarded as a twisted version of the anti-commutation relation.
The algebra in the main text (Definition 1) can be derived by mode expansion as
follows:

Pl() Σ

B. Appendix

Table 1. Crystalline spinon basis of V(ΛQ)

(0,0)

(1,2)
(1,0)
(1,-2)

(2,2)
(2,0)
(2,0)
(2,-2)

(4,4)

crystal base

••• 010101

••• 01010/0/
••• 0101/10/
••• 0101/1/1

• 010/010/
••• 010/01/1
••• 01/1010/
••• 01/101/1

• 010/0/0/0/

[[domain wall]]

[[]]

[[1,0]]
[[2,0]]
[[2,1]]

[[3,0]]
[[3,1]]
[[4,0]]
[[4,1]]

[[3,2,1,0]]

(fusion path)

( )

(1,0)
(1,0)
(1,0)

(1,0)
(1,0)
(1,0)
(1,0)

(1,0,1,0)

[y-path]

[ ]

[2;0]
[3;0]
[3;1]

[4;0]
[4;1]
[5;0]
[5;i]

[4;2,2;0]
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Table 2. Crystalline spinon basis of V(Λ\)

A. Nakayashiki, Y. Yamada

(-d,hι)

(0,1)

(0,-1)

(1,1)

(1,-1)

(2,3)

(2,1)

(2,1)

(2,-1)

(2,-1)
(2,-3)

crystal base

••• 101010/
••• 10101/1

••• 1010/01
••• 101/101

••• 1010/0/0/

••• 10/0101

••• 101/10/0/

••• 1/10101

••• 101/1/10/

••• 101/1/1/1

[[domain wall]]

[[0]]

[[1]]

[[2]]

[[3]]

[[2,1,0]]

[[4]]
[[3,1,0]]

[[5]]
[[3,2,0]]

[[3,2,1]]

(fusion path)

(0)

(0)

(0)

(0)

(0,1,0)

(0)

(0,1,0)

(0)

(0,1,0)

(0,1,0)

[./-path]

[0]

[1]

[2]

[3]

[2,2;0]

[4]

[3,2;0]

[5]

[3,3;0]

[3,3;1]

Table 3. Crystalline spinon basis of F(2Λ.Q)

(0,0)

(1,2)
(1,0)
(1,-2)

(2,4)

(2,2)

(2,2)
(2,0)

(2,0)

(2,0)

crystal base

• 020202

• 02020/1/

••• 0202/11/
• 0202/1/2

• 02020//0//

••• 020/111/

• 0202/1/0//
••• 02/1111/

• 0202//20//

••• 020/11/2

[[domain wall]]

[[]]

[[1,0]]
[[2,0]]

[[2,1]]

[[1,1,0,0]]

[[3,0]]
[[2,1,0,0]]

[[4,0]]

[[2,2,0,0]]

[[3,1]]

(fusion path)

o
(1,0)

(1,0)

(1,0)

(1,1,0,0)

(1,0)
(1,1,0,0)

(1,0)
(1,1,0,0)

(1,0)

[y-path]

[ ]

[2;0]
[3;0]

[3;i]

[2,2;0,0]

[4;0]

[3,2;0,0]

[5;0]

[3,3;0,0]

[4;l]

Table 4. Crystalline spinon basis of V(ΛQ + A\)

(-«/,*! )

(0,1)
(0,-1)

(1,3)

(1,1)
(1,1)

( i , - i )

(1,-1)
(1.-3)

(2,3)

(2,3)

crystal base

••• 111111/
••• 11111/2

••• 1111/0//

••• 1111/02

••• 1111/20//
••• 111/202

••• 1111/0/1/

••• 111 1/2//2

••• 111/020//

••• 1111/0/1/

[[domain wall]]

[[0]]

[[1]]

[[1,0,0]]

[[2]]
[[2,0,0]]

[[3]]
[[2,1,0]]

[[2,1,1]]

[[3,0,0]]

[[2,1,0]]

(fusion path)

(0)

(0)

(1,0,0)

(0)

(1,0,0)

(0)

(1,0,0)

(1,0,0)

(1,0,0)

(0,1,0)

[y-path]

[0]

[1]

[2;0,0]

[2]

[3;0,0]

[3]

[3;i,0]

[3;i,i]

[4;0,0]

[2,2;0]
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Table 5. Crystalline spinon basis of V(2Λ\)

(-«/,*! )

(0,2)

(0,0)

(0,-2)

(1,2)

(1,0)

(1,0)

(1,-2)

(3,4)

crystal base

• 202020//

• 20202/1/

• 20202//2

••• 2020/11/

••• 202/111/

• 2020/1/2

••• 202/11/2

• 2020//0/1/

[[domain wall]]

[[0,0]]

[[1,0]]

[[1.1]]

[[2,0]]

[[3,0]]

[[2,1]]

[[3,1]]

[[2,2,1,0]]

(fusion path)

(0,0)

(0,0)
(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0,1,0)

[y-path]

[0,0]

[1,0]

[1,1]

[2,0]

[3,0]

[2,1]

[3,1]

[2,2,2;0]
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