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Abstract: We consider the anisotropic and inhomogeneous viscoelastic equation and
we prove that the first and second order energy decay polynomially as time goes
to infinity when the relaxation function also decays polynomially to zero. That is,
if the kernel G^/ satisfies

1 + 1 l + i

Gijki ^ -coGijkiP> and Gίjki>GijkiP e L (R) for P > 2 sucn tnat 2m - 1 < P,

then the first and second order energy decay as π * with q = 2m — 1.

1. Introduction

Several authors have studied the asymptotic stability of the solutions in visco-
elasticity. Thanks to the works [1-5,8,9,11] among others, it is well known
that the stability holds for inhomogeneous and anisotropic /7-dimensional materials
and also for one-dimensional nonlinear equations. The question now is about the
uniform rate of decay of the solution as time goes to infinity. Somehow, the
way that the solution goes to zero depends on the decay of the kernel as time
goes to infinity. We may ask, under what conditions on the kernel does the solution
decay to zero exponentially or at least polynomially? To fix ideas, let us consider
the simplest homogeneous isotropic « -dimensional viscoelastic equation with density

utt - μλu - (μ + λ)Vάivu + fg(t - τ)[μΔu -(μ + A)Vdiv u]dτ = 0 , (1.1)
o

where λ and μ stand for Lame's constant and by g we denote the relaxation function.
The kernel "#" plays an important role in the study of the asymptotic behaviour of
the solutions.To see this, let us cite a few results about the uniform rate of decay.
For example, in the work of Hrusa [8] the author showed, among others, properties
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that the solution of the one dimensional viscoelastic equation goes to zero expo-
nentially when the kernel is given by

g(t) = c0e^> .

Dassios and Zafiropoulus [6] showed, for the same kernel, that the solution of
Eq. (1.1) decays as ί~3/2 for materials which occupy the whole 3-dimensional space,
with a rate of decay that can be improved depending on the symmetry of the
initial data. The solution of the viscoelastic equation decays uniformly (exponentially
in bounded domains and algebraically in Rw), when the kernel is an exponential
function. A serious restriction in this point is that Eq. (1.1) does not behave as
a genuine integro differential equation, because in this particular case the integral
term can be removed so the resulting equation is a partial differential equation. To
see this let us differentiate Eq. (1.1) with respect to time. Using gf(t) = —yg(t)9

we can write, in the resulting equation, the first three terms given in Eq. (1.1)
instead of the integral term. So the new equation does not have the integral term;
it has turned into a third order (in time) partial differential equation. To know
how this transformation is useful let us consider the 3-dimensional Cauchy problem
(1.1). Using the Fourier transform we get a third order ordinary differential equation
with coefficients depending on the Fourier parameter ξ. To know the asymptotic
behaviour of the solution we have to study the behaviour of the real part of the
roots of the characteristic polynomial associated to the ordinary differential equation.
This method works for any ordinary differential equations, with constant coefficients
which do not depend on time, but unfortunately does not work for "genuine" integro-
differential equations.

In [10] one of the authors of this paper improved the result due to Dassios and
Zafiropoulos. In that paper we proved that, when the kernel decays exponentially
to zero, the solution also decays exponentially for bounded domains, while for
materials which occupy the whole Rw space, the solution decays as ί~w/2, with
rates which can be improved depending on the regularity of the initial data. For
kernels which decay exponentially, the asymptotic behavior of the solution is known
for bounded and unbounded domains. But what about no exponential kernels? More
precisely, what can we say when the kernel decays like (1 + t)~pΊ Does the solution
decay exponentially? Does the solution decay algebraically, for example, like (1 -f
t)~q? If this is the case, then what is the relation between p and qΊ It seems to
us that there is no result in the literature concerning these questions, so to fill this
gap, we will study these points here.

The main result of this paper is to show that a uniform rate of decay also holds
for kernels which decay like (l+t)~p. We will prove that the solution decay to
zero as (1 + t)~q, where q = 2m — 1 and p > 2m — 1, for some natural number m.
The rate of decay also depends on the Lp-regularity of the kernel. This means in our

framework that the kernel must satisfy /0°° \Giβi\dτ < oo and /0°° |G^/ l~pdτ <
1+1

oo and also Gijkι ^ ~CGijkl

p for 2m - 1 < p and C > 0.
We study in Sect. 2 the asymptotic behaviour of inhomogeneous and anisotropic

bounded material, while in Sect. 3 we study the case of materials which occupy
the whole ^-dimensional space. In this later case, to use our approach we consider
isotropics and homogeneous materials, because our method uses the Fourier trans-
form of the solution. The hypotheses we consider here are simpler than others use
in previous works (see [2-5,8,9,11]). Our method is different and explores the
dissipation given by the memory effect as well as the Z^-regularity of the kernel,
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to construct a Liapunov functional whose derivative is negative proportional to a
power of itself.

We finish this section giving some notations and introducing the hypotheses we
need to prove our result. For spatial derivatives we use the following notation:

'1'""W1'"•'•'* ' dxjl...dxjs '

while for time derivatives we use:

dw .. d2w (k) dkw
w := -Γ-, w := -r-τ- and w= -τ-τ-

dt dt2 dtk

The viscoelastic equation we study in this paper is:

put = {Cijki ukj}j - {/%/( ,t - τ)ukj(. ,τ)dτ} in βχ]0, T [ , (1.2)
I o ) j

with initial data
u(x,Q) — UQ(X), ut(x,0) = u\(x) ,

and supporting the Dirichlet boundary condition,

M = 0 inΓx]0,+oo[. (1.3)

Our result is also valid for Newman boundary conditions with normalized initial
data. The proof is essentially the same. Further, we suppose the following conditions
are valid:

Ciijk = Cjtii, Gijki = Gkiij and Cnβ G C1, G^/ G C3 . (1.4)

Also there exist positive constants α, j8, fc, C and v0 such that

Gφi ^ -κ[Gijkι]
l+p; Gijki ^ C[GiJkι]

l+p, for p > 1 , (1.6)

Γ °° Ί/ s Cijki - f Gijki dτ > Uij ukj dx ^ v0/ utjUtj dx . (1.7)
Ω I o J Ω

Finally we suppose that the following integrability conditions hold:

OO j

S [Gijki}1—P <oo (1.8)
0

for p > 1.

Remark 1.1. Condition (1.6) says that the kernel is like the function

1
11—> .

(i + O*
If we take p > 2 then hypothesis (1.8) is always true.

In the next section we will prove that the solution of (1.2) decays uniformly to
zero as time goes to infinity, for bounded domains.
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2. Asymptotic Behaviour

To simplify our analysis we introduce the following notation:

t
GΏdυ := / Gijkι( ,t- τ)K/( 9 t ) - υkj( ,τ)}R;( ,t) - υitj( ,τ)} .

o

To prove the polynomial rate of decay we will use the following lemma.

Lemma 2.1. Let us suppose that G satisfies hypothesis (1.4) and G^/ G C1.
//?£ following identity holds:

t
J Gtjkι( , ί — τ)l)kj( , T) ί/T ί)z j

0

1 J 1 . I d ( *

2dt 2 2dt |^0

Proof. It is easy to see that

// // '

o
ί

;)}rfrt;/j
o

= G D δi; + 2 J G^/ dτ v^ lύjj — 2 J G^/( ? ^ — τ)^, ι(' >τ)dτ Vjj .
o o

From the above it follows that

d_

t
- 2/G i j k ι( ,t-τ)vktι( 9τ)dτvitj ,

o

which proves the lemma. D

The following lemma plays an important role in the rest of this paper:

Lemma 2.2. Assume that hypotheses of Lemma 2.1 holds. Then for any w,v G
C([0, Γ];L2(ί2)), the following inequality is valid:

t
ffGijki( ,t- τ){wkj( , t ) - wkj( , τ ) } d τ v t j d x
Ω O

1 \

Proof Using Holder's inequality we get

ffGiju( ,t - τ){wkj( ,t)-wkj( , τ)} dτ υiyj dx
Ω O

t I_J_ I + J_
= JfGyM 2p GUM 2p ( " ' * ~ τ){^,/(' j 0 ~ w)t,/( 5 ̂ )} dτ Vjj dx

Ω O
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i

dx
0 Ω

I

o Ω

From (1.8) we have that the integral:

oo

/ - /G//w rfτl u/j^
o J

ve

E(t\ u) = -- / GyW ukj Uij dx+- f GΠdudx ,

f\Gijkl( 9τ)\l-τdτ,
o

t i-1 i
is bounded. Taking c0 = { /0 Gίjkl

p dτ}ϊ our result follows. D

By E(t; v) we denote

fύiύi + Gϋ}dvdx + f
2 Ω

Lemma 2.3. Under the above conditions we have

d

~dt

d . 1 1
—E(t\ u) — — - J Gijki ύk, i ύij dx -f- - / G D dύ dx — J [G^/( , ι
at 2 Ω ' 2 Ω Ω

Proof. Let us multiply Eq. (1.2) by w/ to get

- — < fύiύi -t- Cijki Uij ukjdx \ = ffGijkι( , t - τ)Mjt,/( , τ) rfτ «,-,_/ dx .
z"t I Ω J ΩO

Using Lemma 2.1 our first identity holds. To show the second assertion, let us take
the time derivative of Eq. (1.2) to get

(3) ί ' Ί
ui —{Cijki ύk /} j + \G/y )t/( * 50)w/t /} y H~ ) J Gijki( 9t — ι)uk /( ,T)£/τ / = 0 .

I o ' J j
(2.1)

Since Gijkι = -J^G/^/, we have

t ϊ

o J /

Substitution of this identity in (2.1) yields:

(3) ί l . \
Ui - {Cijkιύkj}j - < jG//jt/( ,t - τ)ύ^ι( 9 τ ) d τ >

(2.2)
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Multiplying Eq. (2.2) by ύi and using the same reasoning as above, we prove the
second part of this theorem. D

Remark 2.1. In particular Lemma 2.1 implies that the first and second order energy
are bounded, that is:

E(t\ u) ^ £(0; u) E(t'9 ut) ^ cE(0; ut) . D

Let us define the functionals K(t; v) and I(t; v) as

κ(t\ v) := - f vA dx + - / Cijki vkj ύjj dx - / Gijkι( , 0)vk,i vtj dx
λ Ω L Ω Ω

t

+ yf djki vk, i ύij dx - ffFίβι( 9t-τ)Vk,ι( 9τ)dτ vtj dx ,
Ω Ω O

1 l

I(t\ v):= f VM dx- - f Gijkι( , Oχ / vitj dx - ffGίjkι dτ vk, / vitj dx + G D dv ,
Ω L Ω ΩO

where
(2.3)

with these conditions we get the following lemma

Lemma 2.4. Under the above notations there exist constants C2,c,y > 0 satisfying

^-{K(t; i/) + (7 - c)I(t u)} ^ g(t)cE(0) -cf UM dx - % f ύijύfj dx
at Ω Z Ω

~ lκ!Gijki( ^t)ukJUijdx + C2/G1+^ Ώdudx .
2 Ω Ω

Proof. Using the identity

ί * 1
{Cijki ukj}j = ύi + < $Gijkι( 9t- τ)ukj( , τ) dτ > ,

I o )j

we get that Eq. (2.1) implies:

u i - {Cίjkι ύkj}j -f- γύi + {Gijkι ( , $}ukj}j + γ{CiJkι uk,ι}j

(2.4)
)j

where F^i is given by (2.3). Multiplying (2.4) by M/, we have

W UV ύu dx ί = -yβM
J Ω

$ύίύί dx + fCW UV ύu dx = -yβM dx

lβ

-yf Cijki ukjύijdx+ I IFijki( ' ,t-τ)ukj( 9 τ ) d τ u i t j d x .
Ω Ω 0
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Using the identities:

fGjjki( ,0)ukjύijdx = -τfGijkι( ,0)uk,ιύijdx- fGijki( ,Q}ύkjύijdx,
Ω atΩ Ω

ύij dx = -y-rJCijki ukj ύij dx + γfCiJkι ύkjύij dx ,
atΩ Ω

ι( J-τ)ukJ( ,τ)dτύijdx = -rf fFijki( ' ,* - τ)ukj( ,τ)dτui9jdx
Ω 0 atΩ 0

/

- fFίjkι( ' ,Q)ukjύijdx- f fFijki( ^-τ)«jt,/( 9τ)dτuitjdx9
Ω Ω o

we get

-r.K(t\ u) = -yfύfύi dx - fGijkι( , 0)ιi*,/ ιi/,7 ώc -f yfCijkι ύkj uitj dx
aΐ Ω Ω Ω

t

- ί Fijkι( ,t- τ){ukj( ,0 - WA,/( ,τ)}rfτί/, j
o

- /^ι/w( , 0"Λ,7 "ι,y ̂  (2 5)
Ω

Let us multiply Eq. (2.1) by ύ to get

— / ύiύi dx = / ί/Mi rfx - fdjki ύkj ύfj dx + / Gy w( , 0)tt*,/ «;,_/ Λ
"* ί2 Ω Ω Ω

t

+ f fGijkι( ,t-τ)ukj( ,τ)dτύijdx.
Ω 0

From Lemma 2.1 and recalling the definition o f / we obtain:

— I(t; u) = f ύiύi dx - fQju ύkj uitj dx + f Gijkι( , t)ukj Ufj dx + / G D du dx ,
"* Ω Ω Ω Ω

(2.6)
which together with relations (2.5) and (2.6) yields:

— {K(t\ u) + (y - c)/(ί; M)} = -c/ M/M/ ώc + c/C^/ «*,/ M/,y dx
at Ω Ω

-f Gijkι( , O)M*, / «!,_/ dx + (y - c)/ <%/( , O«Λ, / «ι,y ̂  + (y - c)/ GΠdudx

t
-fFijk/( ,t)ukjύudx - fFiJU( ,t - τ){ukj( ,/) - M4,/( ,τ)}fi?τM ; j . (2.7)

Ω 0
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Since Cίjkι is continuous, there exists a positive constant CQ such that

fQjki ΰkj ύltj dx ^ CQ ύij ύij .

From hypothesis (1.5) and taking c ^ ^~ we conclude

cfCijkιύkjύijdx - fGijki( ,0)ύkjύijdx g -- fύijύkjdx . (2.8)
Ω Ω Z Ω

Using hypothesis (1.6) we get

1+ι
(y - c) f Gίjkι( . , t)ukj utj dx ^ -(y - c)κ f Gίjkl

p ( , t}ukj utj dx (2.9)
Ω Ω

x- f Fijkl( , *)"*,/ ύfj dx ^ (y - c)C / G1+ D du dx
Ω ' Ω

m ^/ Gijkι( , t)ukj Uij dx } { f Gίjkι( - , t)ύkj ύtj dx } (2.
Ω J I Ω J

10)

(2.11)

From (2.7)-(2.11) and taking y big enough, our conclusion follows. The proof is
now complete. D

To get our final result we will use the following lemma.

Lemma 2.5. Let us suppose that / is a nonnegatίve C1 -function satisfying

then we have that

Proof. Let us denote by h(t) and g(t) the functions
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We have

^ -κo I [f(t)V

It follows that there exists a positive constant κ\ for which we have:

g'(t) 5̂  — κ \ { [ f ( t ) } +~P -f [h(t)] +^} ^ — κ ι [ g ( t ) ] +^ .

Our result follows. D

Lemma 2.6. Let us suppose that the function G satisfies:

00

fGl-rdτ«x>, (2.12)
0

for r = —— < 1. Then the following inequality hold:

GΏdu ^

Proof. Using Holder's inequality we get:

GsΠdu ^ {G^-pΏdu^iG^pΏdu}* , (2.13)

for any s g: 1, from (2.13) we get:

G

^ {Gl~p

obvious induction shows our result. D

Theorem 2.1. Under assumptions of Lemma 2.6 and hypotheses (1.4)-(1.6), for
p>2 with 2m — I < p, we have that

where q = 2m — 1.
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Proof. Multiplying Eq. (1.2) by ut we get

— / ύi ut dx = / ύi ύi dx - / djki UkjUij dx
aΐ Ω Ω Ω

t
+ / ! G ϋki( ' ,t~Φk,ι( ,τ)dτuijdx

Ω 0

t

= / ύi ύi dx- f {Cijki - f Gijki dτ}uij uk, / dx
Ω Ω 0

t

+ / Gijkι( , t - τ){ukj( , 0 - ukj( , τ)} dτ uitj . (2.14)
o

On the other hand, Lemma 2.6 implies

t
fGίjkι( ,t-τ){uk,ι( ,0-"*,/( * ,
o

-^fuijUiJdX. (2.15)
V0 Ω 4 Ω

From (2.14) and (2.15) we get

7 /Λ

— / wz w, dx^f ύi ύi dx — / UijUij dx + C/ G1+^ Ududx . (2.16)
"* Ω Ω ^ β ' Ω

From Lemmas 2.1,2.3,2.4 and inequality (2.16) positive constants N\ and Λ^ exist
such that the function

£?(t\ u) — N\E(t\ u) -f NjE(t\ u) -h ̂ (ί; u) + (y — ̂ )/(ί; w) + —c^ / w/w z rfx ,

satisfies

j&(t\u) ^ cg(t)

—Co s / Uijutj dx + J wz 57 Mz }y dx + f ύiύi dx + f G +

Ω Ω Ω Ω

where c^ denotes Poincare's constant. Using Lemma 2.6, it is not difficult to see that

S(t) ^ c fGΠdudx + fGUύdx R(t) ̂
IΩ Ω

So we have

Using Lemma 2.5 our result follows. D
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3. Rates of Decay in Rn

In this section we extend the results due to Dassios and Zafiropoulus [6]. We study
the asymptotic behaviour of the energy of the following Cauchy problem:

t
utt - μAu-(μ + y)V div u -f / g(t - τ)Δu( , τ) dτ

o

+ / λ ( f - τ ) V d i v M ( ,τ)</τ = 0 in Rπ , (3.17)
o

u( ,0) = MO(*); ut( ,0) = uι(χ) .

To do this we prove that the displacement vector field can be decomposed into
two parts: solenoidal and irrotational, both having the same regularity as u, whose
corrsponding energies decay uniformly to zero with the rate depending on the reg-
ularity of the initial data and the rate of decay of g and h. The regularity of the
decompositions is similar to the regularity of the solution for the equation:

Δu = f i n R w , (3.18)

whose existence and regularity results are given in the following lemma

Lemma 3.1. Let f be a C2-functίon satisfying

/eL\R 2 )n//(IR 2 ) and x ι-> |*Π/(*)I G Ll(R) n = 2 ,

for p^2 and a > 0. Then there exists a function

u G C(R2) Π L°°(R2) with Vu G [//^(R2)]2

satisfying (3.18). While for n ̂  3, p> j^, and f satisfying

there exist a solution 0/(3.18) satisfying:

u G Z/(R"); Vu G [Z^R^Γ; for any q >

In particular we get Vu G [Hl(R.n)]n. Finally if p> n > 2 we get

u G Lp(W) Π C(R2) Π Z°°(R2) .

Proof. Let us denote by U the function:

l n ( ) i f n = 2

where σn is the area of the unit ball of R". It is well known that the solution of
Eq. (3.18) is given by:

u(x)= fU(x-ξ)f(ξ)dξ.
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Without loss of generality we can suppose that / has bounded support. To prove
the regularity result we will use the convolution:

Λ = Pv * / ,

where pv is the mollifier satisfying

pv(-x) = pv(x)l f ρv(ξ)dξ = 1 and pv(x) = 0, if |*| ^ - .

It is well known that /v converges to / strong in Lr(ΊR.n) when / G Z/(IRW). Let
us denote by uv the solution of (3.18) for f = fV9 then it follows that

uv(x)=JU(x-ξ)Mξ)dξ.
R"

From (3.19) it follows that

f \Vuv(x)\2dx ί f\uv\\fv\dx,
R" R"

/ \Auv(x) - Aum(x)\2dx ^ / |/v(;c) - fm(x)\2dx .
R" R"

(3.19)

(3.20)

(3.21)

First, we prove that uv is bounded in Hl(]Rn).l then that (uv) is a Cauchy sequence
in C(R")ΠL°°(IRn). Using (3.19) we have:

IR"

Denoting by χ and χc the characteristic functions over the unit ball and its comple-
mentary set respectively, we get

It is easy to see that

and also

χ— £ L l ( J R " ) and χc-

Using Young's inequality we get:

Also,

1

dU

du

n) for any r >
n — I

- * /, e Ir(R") VI ^ r ^ p; χc * /„ e Ir(IR") Vr
n — I

R»

at/ Ί '
S \ f v \ r d ξ \ ,

R" )

J\fv\dξ.
R"
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Under these conditions, for p = q — r, we get that

595

I
duv

which implies that

R"

duv

dU dU }q

f \ f v d ξ \ ,
R« J

(3.22)

for g > n/(n — 1). To prove that uv is a Cauchy sequence in C(R2) nZ°°(R2), let
us consider

Wv == / ί/(

^ 1
«£Γ χ->
== cα

σ2

x-OΛ(0^ = ̂  JΓ

1x — ίΠ/v(oι ^έ H —
x| σ2

Γ Ir ^ l α l f Γ^Ή //^J F s| |/vls; |«ζ

ln|jc-ξ|/v(ί)^

l ί i ίw lχ

i Γ '̂  ~~
J Iri ^ i ^ w if

α I

α Γ

-*

<2α

Z C a f \ ξ \ " \ f v ( ξ ) \ d ξ .

Repeating the above reasoning for MV — wm instead of wv, we conclude that wv

is a Cauchy sequence in L°°(1R2). Since / has bounded support we can apply
Lebesgue's Convergence Theorem to show that:

H zcaf\ξ\"\f(ξ)\dξ.
K."

Using (3.20), (3.21) and the fact that / G Ll(JR?) ΠL^(IR2) we conclude that Vuv

is bounded in HlCR.n). So, our result follows for case n = 2. For n > 2 using
(3.22) we get that Vuv is bounded in [H2(ΊR")]n. Moreover we have

χ U e L l ( W ) , χcu e

From hypotheses on / we get

wv

and also that

for
rc-2

where by we denote the norm of the space Lp'. It remains only to prove the

regularity of w when p > n. To do this we will use the following lemma:

Lemma 3.2. Let us suppose that υ is a continuous function satisfying
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for any q ^ 1 and any p > n. Then the following inequality holds:

|»(*)| £ -JUΠL + —P "-""

Using Lemma 3.2 we conclude that uv satisfies

\uv(x)\ < c l \ q + { / \Vuv\
pdx\P\ ί

IR» J J

and our result follows. D

Proof of Lemma 3.2. Let us consider the identity:

i
υ(ξ) - Ό(X) = fVυ(tξ + (1 - t)x) -[ξ-x]dt.

o

Integration over the ball B of center x and radius r = 1 yields

i

B 0

B 0

Making a change of variable we get

fv(ξ)dξ-σnv(x)
B

where D is the disk of center in the origin of coordinates and the radius equals to
t. Since t ^ 1 and tD C D, it follows that

tD

so we have that:

fv(ξ)dξ

Using the Holder inequality our conclusion follows. D

Now we are in a position to prove the decomposition of the displacement vector
field.

Lemma 3.3. Let f be a vector field in \Hk(Wl)'\n such that the divergence of F
(div F — /) satisfies the conditions of Lemma 3.1. Then, we can decompose F in
two parts, both in [Hk(W)]n, one of them a gradient and the other a solenoidal
function (that is with null divergence).

Proof. From Lemma 3.1 there exists a function p such that Vp G [/^(K/1)]71

satisfies:
Δp = div F, in Rw .
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Since Δp = div F e Hk~l(Rn)9 then Vp e Hk(JR»). From the identity:

F = \7P + (F- Vp) ,

we obtain the desired decomposition. D

Using Lemma 3.3 we can decompose the initial data of Eq. (3.17) in the fol-
lowing way:

UQ = UQ + UQ; uι=u{ + u{ ,

where uj and uf are the irrotational and the solenoidal part of the function Uj
for / = 1,2 given in Lemma 3.3. Let us denote by us by u1 the solution of the
equations:

uϊt-μAus + μfg(t-τ)Aus( ,τ)dτ = Q in Rw , (3.23)
o

u(x,Q) = u$(x), w,(*,0) = u[(x) ,

u\t - (2μ + y)Δu1 + (2μ + y) f h(t - τ}Au\ ,τ) dτ = 0 in R" , (3.24)
o

u(x, 0) = MQ(^); ut(x9 0) = wf (jc) ,

respectively. Since divwf = 0 for / — 1,2, the solution us also satisfies: divw 5 = 0.
Similarly, since the initial data u is such that

duY _ du{J

then the solution of (3.23) also satisfies:

Using these properties we conclude that the sum us + u1 is the solution of
Eq. (3.17). Our next goal is to prove that the solution of Eq. (3.23) and (3.24) de-
cay algebraically as time goes to infinity. Without loss of generality we consider the
equation:

/
utt-μAu + μfg(t-τ)Au( ,τ)dτ = 0 in Rn , (3.25)

o

u(x,Q) = UQ(X); ut(x,Q) = uλ(x) .

From now on by g D υ we denote:

gΏv = fg(t-τ)\v(t)-v(τ)\2dτ.
o

Let us define the following functionals:

E(t;v) := 1 / \\ύ(t)\2 +μ ( 1 - f gdτ] ± \Vvt\
2 + $ Σ^DvJ dx .
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Also we define the density energy function:

To get the rate of decay of the energy function we will use the following
lemmas:

Lemma 3.4. Let v be a function in L2(JRn)Γ\Ll(JRn) for which there exists
f G L2(ir) Γ\Ll(Rn) satisfying

v = daf where |α = m .

Then we have that

\v(ξ)\ g [2π]i|<f| / \f(x)\dx Vξ e RΛ .
IR"

Proof The proof is immediate. D

Lemma 3.5. Let m ^ 1 and s ^ 0 be two natural numbers. Then we have that

* σ*dσ fC(m?^Ln

 tfm^S

0 [c(m,s,η)a~s+η if m = s + 1

for 0 < η < 1, where c(m,s,η) -^ oo as η ̂  Q.

Proof Let us denote

Integration by parts shows:

a(m-

so we have:

1 >
J

9 , .
α(m — 1 )

Note that a simple calculation shows that

/(j,l) ^ 4Φ-1 for s ^ I, 7(0, m) ^ - -a~l for m > 1 ,

Using the last three inequalities our conclusion follows. D
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In this condition we are able to prove the uniform rate of decay of the energy
associated to the viscoelastic equation for the whole space IRΛ Our main result is
summarized in the following theorem:

Theorem 3.1. Let us suppose that the functions g and h satisfy the following
hypotheses:

g(t) ^ 0; g'(t) ^ -cgλ+Lp(t\ g"(t) ^ cgl+p(t) , (3.26)

h(t) ^ 0; -chl+Lp(t\ h"(t) ^ chl+Lp(t) , (3.27)

for p > 2 such that 2m — 1 < p and the couple (UQ, u\ ) is a vector field in
[//2(IR/2)UZ1(IR")Γ x [#1(R/I)UZ,1(R/I)]/I, such that div u0 and div uλ satisfy
hypotheses of Lemma 3.3. Then the displacement vector field can be decomposed
into two parts, one of them a solenoidal and the other a gradient of a real function
whose energy decays as:

;ut) ^ c{E(0 u)+E(0 ut)}-

where
(2m - //2m+1 ^ n- 1

//2m+1 > n- 1

m n -l,(l-^) («-!)} if 2™^ = n .

Moreover if there exist functions f\,f\ € L2(IRn) ΠZ^R") swc/z ί/zflί:

Then

where
(2m - 1

min

αra/ 6

?(0;ι/)-

;* + /o}

(3.28)

1
•;«*)}:(i -r i y

if2m+l g Λ - 1

z/2m+1 > /ι- 1

//2m+1 = Λ
j

with β = min{|α^| + 1, \βk\\ k — !,...,«}.

Proof. From Eq. (3.25) we have that the Fourier transform of u satisfies:

% + |£|2*5 - \ξ\2 / ff(ί - τ)ώ( ,τ)rfτ = 0 .
o

Reasoning as in Theorem 2.1 we can prove that:

d A 1 2 , A 1 Λ 2

Jί ' ' 2 2

Differentiating Eq. (3.29) we get

ώ«» + \ξ\2ΰ, - g(0)\ξ\2u - \ ξ } 2 f g ' ( t - τ)ύ( ,τ)dτ = 0 .
o

(3.29)
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Substituting ύ given by Eq. (3.29) we get:

fim + \ξ\2ύt + g(0)ύtt - \ξ\2 / [g'(t - τ) + g(0)g(t - τ)] ύ( ,τ)r fτ = 0 .

Multiplying the above equation by % we get:

~{l^|2 + l£|2|^|2} = -g(0)\ύtt

 2 +

so we have:

I=\ξ\2ffdτuutt\ξ\2

o

From this identity we get:

= -|£|20(0ώώ* - ^(0)|^|2 ( 1 - /^r fτ ) |^|2 + ̂ M0)|^|2^
o

where α = 1 — f^°gdτ. So we conclude that there exist positive constants N\,Nι
such that the function

;t/)|^|2 + \ξ\2 * 2 - 0(0)|ξ|2 (1 - /flfrfτ) uut
V o /

satisfies

where

«(ζ,0 := \ύtt

 2 4- \ξ\4\ύ\2 -f Iξplώί l 2 , ^(ξ,ί) := \ξ\2gΏu + \ξ\4gΠύ

and

with
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We will consider two cases. First we prove that the energy density decays alge-
braically as ^ for \ξ\ ̂  1, then that the density energy function decays as -j when

\ξ\ ^ 1. In fact, for \ξ\ ̂  1 we get

Since the energy is bounded, and from Lemma 2.6, a positive constant exists (de-
pending on the initial data) satisfying:

( }l'W
/ I^Dώ+l^flfDώrf^cJ / \ξ\2gl+LpΠύ+\ξ\4gl+LpΏύdξ\

J

ζ , t ) d ξ ^ C l { / a(ξ9t) + se(ξ,t)dξ\

We get:

d_

which implies that

so, we have

/ &(ξ,t)dξ ^ c f jSP(ξ,0;iι)rfξ—ί— . (3.30)

Now we consider the case \ξ\ ̂  1. Since

\ ξ \ 2 J £ ( ζ , t ; ύ ) < cι{&(ξ,t\u) + 5^(£,t)Y~^ \/\ζ\ < 1 , (3.31)

it follows that

which implies

ϊ, t\ u) ^ c -\ . (3.32)

Since the initial data belongs to L^IR"), and ύ is a continuous function, then
we get

- κ

From (3.32) a positive constant c exists satisfying:

Λ, _ c
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where r :— 2 + - = ^m—[- It is easy to see that:

Using spherical coordinates we conclude that

cJ
o

where n is the space dimension. Using Lemma 3.5 our conclusion follows. Finally if
hypothesis (3.28) holds, then a positive number β exists such that J£?(0, ξ) ^ c \ ξ \ P ,
so we get,

\ξ\β \ξ\β
J L !< c

=

wherre y := -β^o — 2^+1

 l

β. Again using Lemma 3.5 our conclusion follows. The

proof is now complete. D

Remark 3.1. Theorems 2.1 and 3.1 are optimal in the sense that when m increases,
the rate of decay of the energy also increases. In the limit case when m = oo,
(p = oo) from the hypotheses we get that the kernel of convolution is exponential.
In this case our result is the same as in [10] or in [6].
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