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Abstract: The Haar functional on the quantum SU(2) group is the analogue of
invariant integration on the group SU(2). If restricted to a subalgebra generated by
a self-adjoint element the Haar functional can be expressed as an integral with a
continuous measure or with a discrete measure or by a combination of both. These
results by Woronowicz and Koornwinder have been proved by using the corepresen-
tation theory of the quantum SU(2) group and Schur's orthogonality relations for
matrix elements of irreducible unitary corepresentations. These results are proved
here by using a spectral analysis of the generator of the subalgebra. The spectral
measures can be described in terms of the orthogonality measures of orthogonal
polynomials by using the theory of Jacobi matrices.

1. Introduction

The existence of the Haar measure for locally compact groups is a cornerstone in
harmonic analysis. The situation for general quantum groups is not (yet) so nice,
but for compact matrix quantum groups Woronowicz [22, Thm. 4.2] has proved that
a suitable analogue of the Haar measure exists. This analogue of the Haar measure
is a state on a C* -algebra. In particular, the analogue of the Haar measure on
the deformed C*-algebra Aq(SU(2)) of continuous functions on the group SU(2)
is explicitly known. This Haar functional plays an important role in the harmonic
analysis on the quantum SU(2) group. For instance, the corepresentations of the
C*-algebra are similar to the representations of the Lie group SU(2), and the matrix
elements of the corepresentations can be expressed in terms of the little g-Jacobi
polynomials, cf. [14,17,20], and the orthogonality relations for the little #-Jacobi
polynomials are equivalent to the Schur orthogonality relations on the C*-algebra
Aq(SU(2)) involving the Haar functional. This was the start of a fruitful connection
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between ^-special functions and the representation theory of quantum groups, see
e.g. [12,15,18] for more information.

The Haar functional can be restricted to a C*-subalgebra of Aq(SU(2)) generated
by a self-adjoint element. It turns out that the Haar functional restricted to specific
examples of such C*-subalgebras can be written as an infinite sum, as an integral
with an absolutely continuous measure or as an integral with an absolutely contin-
uous measure on [—1,1] and a finite number of discrete mass points off [—1,1].
These measures are orthogonality measures for subclasses of the little g-Jacobi poly-
nomials, the big #-Jacobi polynomials and the Askey-Wilson polynomials. These
formulas for the Haar functional have been proved in several cases by Woronowicz
[22, App. A.I] and Koornwinder [16, Thm. 5.3], see also [15, Thm. 8.4], by using
the representation theory of the quantum SU{2) group, i.e. the corepresentations
of the C*-algebra Aq(SU(2)) equipped with a suitable comultiplication. See also
Noumi and Mimachi [19, Thm. 4.1].

The proofs by Woronowicz and Koornwinder use the Schur orthogonality rela-
tions for the matrix elements of irreducible unitary corepresentations of Aq(SU(2)).
They determine a combination of such matrix elements of one irreducible unitary
corepresentation as an orthogonal polynomial, say pn, in a simple self-adjoint ele-
ment, say p, of the C*-algebra Aq(SU(2)). Here the degree n of the polynomial pn

is directly related to the spin / of the irreducible unitary corepresentation. Hence,
they conclude that the Haar functional on the C*-subalgebra generated by p is
given by an integral with respect to the normalised orthogonality measure for the
polynomials pn. The result by Noumi and Mimachi is closely related to a limiting
case of Koornwinder's result, but the invariant functional lives on a quantum space
on which the quantum SU{2) group acts. Their proof follows by checking that the
moments agree. However, the invariant functional takes values in a commutative
subalgebra of a non-commutative algebra.

It is the purpose of the present paper to prove these results in an alternative
way by only using the C*-algebra Aq{SU(2)). And in particular we study the spec-
tral properties of the generator of the C*-subalgebra on which the Haar functional
is given as a suitable measure. In order to do so we use the infinite dimensional
irreducible representations of the C*-algebra. The infinite dimensional irreducible
representations of the C*-algebra Aq{SU{2)) are parametrised by the unit circle,
and the intersection of the kernels of these representations is trivial. So this set
of representations of Aq(SU(2)) contains sufficiently many representations. We de-
termine the spectral properties of the operators that correspond to the self-adjoint
element which generates the C*-subalgebra on which the Haar functional is given
by Woronowicz, Koornwinder and Noumi and Mimachi. An important property of
the corresponding self-adjoint operators is that they can be given as Jacobi matrices,
i.e. as tridiagonal matrices, in a suitable basis, and hence give rise to orthogonal
polynomials. These orthogonal polynomials can be determined explicitly and can
then be used to derive the explicit form of the Haar functional.

The contents of this paper are as follows. In Sect. 2 we recall Woronowicz's
quantum SU{2) group and the Haar functional on the corresponding C*-algebra. The
spectral theory of the Jacobi matrices is briefly recalled in Sect. 3. Woronowicz's
[22] expression for the Haar functional on the algebra of cocentral elements is
then proved in Sect. 4 by use of the continuous #-Hermite polynomials and its
Poisson kernel. In Sect. 5 we prove the statement of Noumi and Mimachi [19]
and Koornwinder [16] that the Haar functional on a certain C*-subalgebra can be
written as a ^-integral. Here we use Al-Salam-Carlitz polynomials and g-Charlier
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polynomials. Finally in Sect. 6 we give a proof of Koomwinder's [16] result that the
Haar functional on certain elements can be written in terms of an Askey-Wilson
integral. Here we use the Al-Salam-Chihara polynomials and the corresponding
Poisson kernel. It must be noted that the result of Sect. 5 can be obtained by a
formal limit transition of the result of Sect. 6, cf. [16, Rem. 6.6], but we think that
the proof in Sect. 5 is of independent interest, since it is much simpler. Moreover,
the basis of the representation space introduced in Sect. 5 is essential in Sect. 6.

To end this introduction we recall some definitions from the theory of basic
hypergeometric series. In this we follow the excellent book [10, Ch. 1] by Gasper
and Rahman. We always assume 0 < q < 1. The ^-shifted factorial is defined by

k-\ . r

(aiq)k= Π O - ^ X (au...,ar;q)k = Yl(ai;q)k
i=0 i=\

for k e Έ+ U {oo}. The ^-hypergeometric series is defined by

a\,...,ar

k(k-\)/2γ+\-r

rψs[ u r ;#>

^k k(k-\)/2

Note that for at — q~n, n 6 Z + , the series terminates, and we find a polynomial.
We also need the ^-integral;

b oo b b a

/ f(χ)dqx = {\- q)b Σ f{bqk)qk, f f(x)dqx = J f(x)dqx - f f(x)dqx .
0 k=0 a 0 0

For the very-well-poised 8φ7-series we use the abbreviation, cf. [10, Ch. 2],

2. The Quantum SU(2) Group

We recall in this section Woronowicz's first example of a quantum group, namely
the analogue of the Lie group SU{2), cf. [21,22]. In the general theory of compact
matrix quantum groups Woronowicz has proved the existence of the analogue of a
left and right invariant measure [22].

We first introduce the C*-algebra Aq(SU(2)). The C*-algebra Aq(SU(2)) is the
unital C*-algebra generated by two elements α and y subject to the relations

ocy = qycc, αy* = qy*cc, 77* = y*y,

α*α + 7*7 = 1 = αα* + q2yy* , (2.1)

where 0 < q < 1. Here q is a deformation parameter, and for q = 1 we can identify
Aq(SU(2)) with the C*-algebra of continuous function on SU(2), where α and 7
are coordinate functions. The group multiplication is reflected in the comultipli-
cation, i.e. a C*-homomorphism Δ:Aq(SU(2))^Aq(SU(2))®Aq(SU(2)). (Since
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Aq(SU(2)) is a type I C*-algebra, we can take any C*-tensor product on the right-
hand side.) The Haar functional is then uniquely determined by the conditions
A(l) = 1 and (id ® h)A(a) = h(a)l =(h® \ά)Δ(a) for all a G Aq{SU{2)).

The irreducible representations of the C*-algebra Aq(SU(2)) have been com-
pletely classified, cf. [20]. Apart from the one-dimensional representations α ι-> eiθ,
y i—> 0, we only have the infinite dimensional representations πφ, φ G [0,2π), of
Aq(SU(2)) acting in / 2 (Z + ) . Denote by {en\n e Z+} the standard orthonormal
basis of / 2 (Z + ) , then πφ is given by

πφ((x)en = Λ / 1 - Λ - I , nφ(y)en = eiφqnen . (2.2)

Here we follow the convention that β-p = 0 for p G N. This is a complete list of
the irreducible *-representations of Aq(SU(2)). Moreover, P\φkerπφ is trivial, so that
the spectral properties of a G Aq(SU(2)) are determined by the spectral properties
of πφ(a).

Woronowicz [22, App. A.I] has given an explicit formula for the Haar functional
(not using corepresentations) in terms of an infinite dimensional faithful representa-
tion of Aq(SU(2)). This can be rewritten in terms of the irreducible representations
oϊAq{SU{2)) as

oo a2p 2π

h(a) = (l-q

2)Σ?rJ (πφ(a)ep,ep) dφ, a G Aq(SU(2)).
p=0 2 π 0

Observe that h(p(γ*γ)) = /0 p(x)dq2X, for any continuous p on {q2k | k G Z + } .
This can be considered as a limit case of the results of Sect. 5,6, cf. [16, Rem. 6.6].

Introduce the self-adjoint positive diagonal operator D: / 2 (Z + ) —> / 2 (Z + ) , ep \-^
q2pep, then we can rewrite this in a basis independent way, cf. [20, Thm. 5.5];

h(a)=il~q2)2ftr(Dπφ(a))dφ, a e Aq(SU(2)). (2.3)
zπ 0

The trace operation in (2.3) is well-defined due to the appearance of D. Since
Z)1/2 is a Hilbert-Schmidt operator, so is πφ(a)Dx^. The trace of the product of
two Hilbert-Schmidt operators is well-defined. Moreover, tr(Dπφ(a)) = tr(πφ(a)D)
and it is independent of the choice of the basis. The trace can be estimated by
the product of the Hilbert-Schmidt norms of Z)1/2 and πφ(a)Dι/2 and then we get
\tr(Dπφ(a))\ ^ | | a \\Aq(su(2)) /(I — # 2 ) ? so that the function in (2.3) is integrable.
See Dunford and Schwartz [9, Ch. XI, Sect. 6] for more details.

3. Spectral Theory of Jacobi Matrices

In this section we recall some of the results on the spectral theory of Jacobi matrices
and the relation with orthogonal polynomials. For more information we refer to
Berezanskiϊ [5, Ch. VII, Sect. 1] and Dombrowski [8].

The operator / acting on the standard orthonormal basis {en\nEΈ+} of 12(Έ+) by

Jen = an+\en+\ + bnen + anen-U an > 0, bn G IR , (3.1)

is called a Jacobi matrix. This operator is symmetric, and its deficiency indices are
(0,0) or (1,1), cf. [5, Ch.VII, Sect. 1, Thm. 1.1]. In particular, if the coefficients
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an and bn are bounded, J is a bounded operator on / 2 (Z + ) and thus self-adjoint.
Then eo is a cyclic vector for ./, i.e. the span of finite linear combinations of the
form Jpeo, p G Z+, is dense in l2(Ίί+). This is the case for all Jacobi matrices
considered in this paper.

Using the same coefficients an, bn we can generate polynomials pn(x) of degree
n in x by the recurrence relation

xpn(x) = an+{pn+ι(x) + bnpn(x) + anpn-ι(x), p-ι(x) = 0, po(x) = 1 . (3.2)

By Favard's theorem, which states that polynomials satisfying a three-term recur-
rence relation are orthogonal polynomials, cf. e.g. [7], there exists a positive measure
m on the real line such that the polynomials pn(x) are orthonormal;

/ pn(x)pm(x)dm(x) = δntm .
IR

If the orthogonality measure m is uniquely determined, we speak of a determined
moment problem. In this case the set of polynomials is dense in the weighted L2(m)-
space, and the polynomials {pn\ft G Z + } form an orthonormal basis for L2{m).
The boundedness of an, bn implies that the moment problem is determined. More
generally, the moment problem is determined if and only if the Jacobi matrix is a
self-adjoint operator.

So we now assume that the coefficients an, bn are bounded, so / is self-adjoint
with cyclic vector e0 and the corresponding moment problem is determined. We
can represent the operator J as a multiplication operator M on L2{m), where

M: L2(m) -> L2(m), (Mf)(x) = xf(x) .

For this we define

Λ: /2(Z+) -> L2{m\ (Λen)(x) - pn(x),

then A is a unitary operator, since it maps an orthonormal basis onto an orthonormal
basis. Note that we use here that the polynomials are dense in L2(m). From (3.1)
and (3.2) it follows that

AJυ = MΛv, V t ; G / 2 ( Z + ) ,

so that A intertwines the Jacobi matrix J on 12(Έ+) with the multiplication operator
M on L2(m). Observe that | |J | | = | |M||, so that M is bounded and hence the support
of the orthogonality measure m is compact.

What we have described in the previous paragraph is essentially the spectral
theorem for self-adjoint operators. The theorem states that there exists a projection
valued measure E on IR, the spectral decomposition, such that

J = fxdE(x).
IR

The relation between the spectral decomposition E and the orthogonality measure
m is given by m(B) = \\E(B)eo\\9 where B c IR is a Borel set and e0 is the cyclic
vector for J. More generally we have

(E(B)en,em) = / pn(x)pm(x)dm(x) .
B
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The point spectrum of J corresponds to discrete mass points of the measure m. Let
us finally note that Favard's theorem can be proved from the spectral theorem for
the Jacobi matrix J.

4. The Haar Functional on Cocentral Elements

Using the characters of the irreducible unitary corepresentations of the quantum
SU{2) group Woronowicz [22, App. A.I] has proved an expression for the Haar
functional on the C*-subalgebra generated by α + α*. The set of characters is known
as the set of cocentral elements and it is generated by the element α + α*. The
purpose of this section is to give a proof of this theorem based on the spectral
analysis of the generator α + α*. The method used in this section is also used in
Sect. 6 in somewhat greater computational complexity.

Theorem 4.1. The Haar functional on the C*-subalgebra generated by the self-
adjoint element α + α* is given by the integral

h(p((a + α*)/2)) = - J p(x)V^x2dx
71 - l

for any continuous function p G C([—1,1]).

In order to give an alternative proof of this theorem, we start with considering

α*)/2)βΠ = V l - Λ - i + ΛΛ ~ q2n+2en+ι . (4.1)

So the operator π^((α + α*)/2) is represented by a Jacobi matrix with respect to

the standard basis of /2(2£+).
Recall Rogers's continuous g-Hermite polynomials Hn(x\q) defined by

λ{x\q\ #-i(*|?) = 0, H0(x\q) = 1 .
(4.2)

The continuous g-Hermite polynomials satisfy the orthogonality relations

fHn(cosθ\q)Hm(cosθ\q)w(cosθ\q)dθ = Sn,m

2^g'^n , (4.3)

with w(cosθ\q) = (e2ίθ,e~2iθ;q)oo, cf. [1]. The Poisson kernel for the continuous
g-Hermite polynomials is given by, cf. [1,6],

n=o \,q, q)n

= w+. .θ_. ( < 2 ΐ ^ + 7 _ (4.4)
yltϊ , Li> , le , ίcί , q /oo

for \t\ < 1.
Compare (4.1) with the three-term recurrence relation (4.2) to see that (4.1) is

solved by the orthonormal continuous g-Hermite polynomials Hn(x\q2)/y/(q2;q2)n.
Using the spectral theory of Jacobi matrices as in Sect. 3 we have obtained the



Spectral Analysis and the Haar Functional 405

spectral decomposition of the self-adjoint operator πφ(((x + α*)/2), which has spec-
trum [—1,1]. This link between α + α* and the continuous g-Hermite polynomials
is already observed in [12, Sect. 11]. So the spectrum of (α + α*)/2 e Aq(SU(2))
is [—1,1] and by the functional calculus /?((α + α*)/2) e Aq(SU(2)) for any con-
tinuous function p on [—1,1].

We use the results of Sect. 3 here with pn(x) = Hn(x\q2)/y/(q2;q2)n as the
orthonormal polynomials and dm(x\q2) = (2π)~ι(q2;q2)oow(x\q2)(l — x2)~χl2dx as
the (normalised) orthogonality measure, which is absolutely continuous in this case.
With the unitary mapping Λ, intertwining πφ((oc + oc*)/2) with the multiplication
operator M on L2([— 1, \],dm(x\q2)) as in Sect. 3, we get in this particular case

oo

tτ(Dπφ(p((oc + α*)/2))) = Σ ^ ( ^ ( ^ ( ( α + ot*)/2))en,en)
n=0

oo

= Σ,q2n(Λπφ(p((* + <**)/2))en9Λen)
n=0

oo 1

= Σi2n J PWUen)(x)\2dm(x\q2)

n=0 - 1

oo 1 i l l i

= / p(x)Pq2(x,x\<l2)dm(x\q2), (4.5)

by (4.4). Interchanging summation and integration is justified by (4.3) and (4.4)
and estimating p(x) by its supremum norm on [—1,1].

From (4.4) we see that

4(1 -x2)

so that

tr(Dπφ(p((oc + α*)/2))) = ^ / / 7 ( x ) λ / Γ ^ Λ .

Since this is independent of the parameter φ of the infinite dimensional representa-
tion, we obtain Woronowicz's Theorem 4.1 from (2.3).

5. The Haar Functional on Special Spherical Elements

We start with introducing the self-adjoint element

Pτ,oo = iq\**y - fa) - (1 - q2τ)y* 7 & Aq(SU(2)).

This element is a limiting case of the general spherical element considered in Sect. 6,
and from that section the notation for this element is explained. The Haar functional
on the C*-algebra generated by pτ,oo can be written as a ^-integral as proved by
Koornwinder [16, Thm. 5.3, Rem. 6.6] and Noumi and Mimachi [19, Thm. 4.1] using
the corepresentations of the quantum SU{2) group.
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Theorem 5.1. The Haar functional on the C*-subalgebra generated by the self-
adjoint element pτ OQ is given by the q-integral

for any continuous function p on {-q2k\k G Z+} U {q2τ+2k\k G Z+} U {0}.

To prove this theorem from a spectral analysis of 7iφ(pτ^oo) we have to recall
the following result. It is shown in [11, Prop. 4.1, Cor. 4.2] that / 2 (Z + ) has an
orthogonal basis of eigenvectors of πo(pτ,oo) The proof of that proposition only
needs a minor adaptation to handle the general case π ^ ( p τ o o ) . In general we have
the following proposition.

Proposition 5.2. / 2 (Z + ) has an orthogonal basis of eigenvectors vf, where λ =
—q2k, k G Z + , and λ = q2τ+2k, k G Z + , for the eigenvalue λ of the self-adjoint
operator πφ(pτίOO). The squared norm is given by

I»A> **Φ\ ~—2kr 2 2\ / Λ—2τ. 2\ / Jlτ. J2\ i 2k
(VχiVχ) = tf W >Q / H ~ # >Q )k\~Q >Q )oo > λ — ~~tf •>

(vj, vχ) = q (q iq )k{~tf \ Q }k(~& τ? Q )oo? λ = q

Moreover, vf — Σ^o ine1"^pn(λ)en with the polynomial pn(λ) defined by

Q—nτ^Xnin—X)

Pn\A) == — 2ψ\\fί ?q Iλ\0',q \ —q λ)

ί-λ\nnnτn\n{n-\)

-2φι(q-2\-l/λ;0;q2;q2-2τλ). (5.1)

Remark. 5.3. The polynomials in λ in (5.1) are Al-Salam-Carlitz polynomials Un .
The orthogonality relations obtained from (υf,vf) — 0 for 2Φμ are the orthogonality
relations for the g-Charlier polynomials, cf. [11, Cor. 4.2].

Remark. 5.4. The basis described in Proposition 5.2 induces an orthogonal decom-

position of the representation space / 2 (Z + ) = V{ Θ V\t, where vf is the subspace

with basis v_2k,k£ Έ+, and F2 is the subspace with basis v lχJrlk, k G Έ+.

In this section we use the basis described in Proposition 5.2 to calculate the
trace. The spectrum of πφ(pτ^oo) is independent of 0, so the spectrum of p τ ? o o G
Aq(SU(2)) equals {-qlk\k G Z+} U {#2 τ + 2*|£ G Έ+} U {0}. Hence, for any function
p continuous on the spectrum {-qlk\k G Z+} U {^2τ+2 |̂A: G Z+} U {0} we have
p(Pτ,oo) E Aq(SU(2)). This time we do not need the mapping A of Sect. 3, since
we have a basis of eigenvectors. So we can calculate the trace with respect to the
orthogonal basis of eigenvectors described in Proposition 5.2;

v 2k

Σ
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So it remains to calculate the matrix coefficients on the diagonal of the operator
D with respect to this basis. We give all the matrix coefficients in the following
lemma.

Lemma 5.5. The matrix coefficients of the operator D with respect to the orthog-

onal basis vλ are given by

{Dviq2k,v
φ_q2l) = (-q2τ+2;q2U(i2;q2)k(-q2-2τ;<l2)ι, k Z I,

{Dvφ

2τ+2t,v
φ

2τ+2l) = (-q2-*; q2)^2; q2H-q2+2τ; q2),, k ^ l ,

(Dvφ__g2k,υ
Φ

2τ+2l) = (q2;q2)U-qz'2τ;q2U-q2+2τ;q2)ι,

and all other cases follow from D being self-adjoint.

Proof The proof is based on calculations involving the #-Charlier polynomials
cn(x;a;q) = 2φ\(q~n,x', 0;#, -qn+ι/a). Define a moment functional S£ by

1\q2\

for any polynomial p. Note that all moments, i.e. ££{xn\ n e Z+, exist. The ortho-

gonality relations (v_ 2k>v_

the g-Charlier polynomials;

gonality relations (ί/ 2k>vt. 21) ~ ® a r e rewritten as the orthogonality relations for

cf. [10, Ex. 7.13; 11, Cor. 4.2].
Using Proposition 5.2 and the definition of the self-adjoint operator D we see

that

(DvΦ_q2k,v
Φ_g2l) = <?CiCk(xrfW)cite<?W))

Note that this expression is well-defined, since 0 is not an element of the support
of the measure representing «£?. Now use the orthogonality of the #-Charlier poly-
nomials to see that for k ^ / this equals c/(0;^2τ;^2)^f(Q(x;^2τ;^2)/Λ:). Use the
2ψ\-series representation for the g-Charlier polynomials and (5.3) to evaluate the
moment functional on this particular function. We get

c ( r ί 7 i 2 ^ _ Λ ( q \ q ) l ( a2k+2+2τ,l y i±^W^_ 2/i(τ+l) n{n-\)
^χck(x,q ,q »-Σ, (q2;q2)ι ( q ) L, { q l , q l χ q q ,

where interchanging the summations is allowed as all sums are absolutely
convergent. Replace the summation parameter n = m + I and use that (g-2(m+0 q2)^
(q2;q2)m+ι = (-l)ιq~l(l+ι+2m)/(q2\q2)m. Now the inner sum can be summed
using oφo(— ~\q2,z) = (z g 2 ) ^ , cf. [10, (1.3.16)]. The remaining finite sum can be
summed using the terminating ^-binomial formula \(po(q~2n',—;q2,q2nx) = (x',q2)n,
cf. [10, (1.3.14)], which can also be used to evaluate the g-Charlier polynomial at
x = 0. This proves the first part of the lemma. The second part is proved in the
same way, but with τ replaced by — τ.



408 H.T. Koelink, J. Verding

For the last part of the lemma we use the same strategy, but now we have to
use the moment functional Jί defined by

/i=0 \H ><i )n

for which we have J/(ck(x;q2τ;q2)cι(x;q-2τ;q2)) = 0, cf. [11, Cor. 4.2]. D

Now use Lemma 5.5 and Proposition 5.2 in (5.2) to find

1 / TL 'ϊϊ, •-) ^ _oo \

Σ P{qlτ+2k)q2k

This expression is independent of φ, so that we obtain from (2.3),

1 + q T V £=0 k=0

which is precisely the statement of Theorem 5.1 using the definition of the ^-integral
given in Sect. 1.

6. The Haar Functional on Spherical Elements

In this section we give a proof of Koornwinder's theorem expressing the Haar
functional on a C*-subalgebra of Aq(SU(2)) as an Askey-Wilson integral from the
spectral analysis of the generator of the C*-subalgebra.

We first introduce the self-adjoint element

Pτ,σ — | ( # 2 + (#*) 2 + qy2 + q(y*)2 + iq(q~σ — qσ)(jχ*y — y*^)

- iq{q-τ - qτ)(ya - α * f ) - q{q~σ - qσ){q~τ - qτ)y*y) e Aq(SU(2)) .

Note that the element pτ,oo? as introduced in Sect. 5, is a limiting case of this general
spherical element, namely

Pτ,oo = lim 2qσ+τ~xpτ?σ .
o—^oo

The Haar functional on the C*-algebra generated by p τ ? σ can be written as an
integral with respect to the orthogonality measure for Askey-Wilson polynomials,
as proved by Koornwinder [16, Thm. 5.3].

Theorem 6.1. The Haar functional on the C*-subalgebra generated by the self-
adjoint element pτ,σ is given by

h(p(Pτ,σ)) = f p(x)dm(x;a,b,c,d\q2) (6.1)

for any continuous function p on the spectrum of p τ ? σ , which coincides with the
support of the orthogonality measure in (6.1). Here a — —qσ+τ+ι, b — -q~σ~τ+x,
c — qσ~τ+ι, d = q~σ+τ+ι and dm(x;a,b,c,d\q2) denotes the normalised Askey-
Wilson measure.
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We recall that the normalised Askey-Wilson measure is given by, cf. Askey
and Wilson [4, Thm. 2.1,2.5],

1 π 1
/ p(x)dm(x; a, b, c,d\q) = — — / p(cos θ)w(cos Θ)dθ+—Σ P(*k)wk (6.2)
K. Λozπ 0 n0 k

Here we use the notation w(cos#) = w(cosθ;a,b,c,d\q), h0 = ho(a,b,c,d\q) and

(abcd q)oo
ho(a,b,c,d\q) =

(q, ab, ac, ad, be, bd, cd\ q)0

w( cos θ; a, b,c,d\q) = -—^ .a τ .a , ^ ^—°°a Ί -a Ί—^— — > (6.3)
v {HJ (aeιθ ,ae~ιθ ,beιθ ,be~ιθ ,ceιθ ,ce~lB ,deιθ ^e-^ q)^ v '

and we suppose a, b, c and d real and such that all pairwise products are less than 1.
The sum in (6.2) is over the points Xk of the form (eqk -f e~ιq~k)/2 with e any of
the parameters a, b, c or d whose absolute value is larger than one and such that
\eqk\ > 1, k e Έ+. The corresponding mass w^ is the residue of z ι—> w(\(z + z~x))
at z = eqk minus the residue at z = e~ιq~k. The value of w^ in case e — a is given
in [4, (2.10)], but (1 - aq2k)/(l - a) has to be replaced by (1 - a2q2k)/(l - a2).
Explicitly,

wk(a;b,c,d\q) =
(q, ab, b/a, ac, c/a, ad, d/a; q)^

ad' πλu ί π \k

(6.4)
- a2q2k) (a2,ab,ac,ad;q)k / q \k

(1 — a2 ) (q, aq/b, aq/c, aq/d; q\ \abed 7

see [10, (6.6.12)].
We prove Theorem 6.1 from a spectral analysis of the self-adjoint operators

πφ(Pτ,σ) We realise 7iφ(pτf(T) as a Jacobi matrix in the basis of 12(TL+) introduced
in Sect. 5.

Proposition 6.2. Let vf be the orthogonal basis of 12(Έ+) as in Propositions.!,
then

2πφ(pz,σ)vφ

λ = qe-v+v+j + ̂ ' ^ ( l - q~2τλ){\ + λ)vΦ

λ/q2 + λqχ-\q-° - q°)vf ,

(6.5)
where λ = -q2k, k £ Έ+, and λ = q2τ+2k, k e Έ+.

Proof. We use a factorisation of /9τσ in elements, which are linear combinations in
the generators of the C*-algebra Aq{SU(2)). Explicitly,

2qτ+σpτ,σ - q2"'1 - q2τ+[ = (j?τ+i,oo - ^ " V L O O X ^ O O + qσδτ^) , (6.6)

where

ατ,oo = ql/2κ + iqτ+XI\ iSx,oo = iqXβf + < T V V ,

7τ,oo = -qτ+ll20L + iqι/2y, δτtOO = -/<?τ+1/2y* + ^~ 1 / 2 α* , (6.7)

cf. [13, Prop. 3.3, (2.14), (2.2)]. Of course, (6.6) can also be checked directly from
the commutation relations (2.1) in Aq(SU(2)). As proved in [13, Prop. 3.8], the
operators corresponding to the elements in (6.7) under the representation π 0 act
nicely in the basis vQ

λ. The proof immediately generalises to the basis vf. Using the



410 H.T. Koelink, J. Verding

notation vφ(qτ) = vf to stress the dependence on qτ, we get

~ λ)vφ(qτ+λ),

From this result and (6.6) the proposition follows. D

Proposition 6.2 implies that πφ(pτ,σ) respects the orthogonal decomposition

12(Έ+) = vf θ V^, cf. Remark 5.4. We denote by wt, m G Z+, the orthonormal

basis of vf obtained by normalising vφ_ 2m, m e Z+, and by uti, m G Z + , the

orthonormal basis of F2 obtained by normalising υ 2τ+2m> m £ ^ + Then we get,

using Proposition 5.2,

and

bm = q w ~ q ) (A")

In order to solve the corresponding three-term recurrence relations for the
orthonormal polynomials, we recall the Al-Salam-Chihara polynomials pn(x) —
pn(x;a,b\q). These polynomials are Askey-Wilson polynomials [4] with two
parameters set to zero, so the orthogonality measure for these polynomials follows
from (6.2). The Al-Salam-Chihara polynomials are defined by

q~n,aew,ae~w \
, ' ',q,q) (6.10)

ab, 0 )
The Al-Salam-Chihara polynomials are symmetric in a and b and they satisfy the
three-term recurrence relation

2xpn(x) = pn+ι(χ) + (a + b)qnpn(x) + (1 - abqn~ι)(\ - qn)pn-χ(x) .

The Al-Salam-Chihara polynomials are orthogonal with respect to a positive mea-
sure for ab < 1. Then the orthogonality measure is given by drn(x;a,b,0,0\q), cf.
(6.2). We use the following orthonormal Al-Salam-Chihara polynomials;

hn(χ s,t\q)= tf o χ pn[x;q2-,-q2 -

Now the corresponding three-term recurrence relations (6.8), respectively (6.9), are
solved by e2imφhm(x;q\qσ\q2), respectively e2ίmφhm(x;q'\q~σ\q2). So we see that
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Kφ(pτ,σ) preserves the orthogonal decomposition / 2 (Z + ) = vf 0 V% of the repre-
sentation space and that this operator is represented by a Jacobi matrix on each of
the components.

The operator D: 12(%+) —• / 2 (Z + ) introduced in Sect. 2 does not preserve the

orthogonal decomposition / 2 (Z + ) = vf 0 vf as follows from Lemma 5.5. Let

DΦ DΦ j

be the corresponding decomposition of D, then

tr(Dπφ(p(pτ,σ))) = trvφ(Dφ

nπφ{p{pτ,σ))) + trvφ{Dφ

22πφ{p{pτ,σ))), (6.11)

since τtφ(p(Pτ,a)) does preserve the orthogonal decomposition. Moreover, as in
Sect. 3, we define

Ay : V* ^ L\dmx), w* ~ e2in""hm(x; q\q°\q2) ,

Λ2 : V2

Φ - . L\dm2), uφ h-> elimφhm{x; q~\q~a\q2) ,

where
dmλ{x) =

dm2(x) = drn(x;qι-σ+τ,-qι+σ+\0,0\q2)

are the corresponding normalised orthogonality measures. Then, by using the spectral
theory of Jacobi matrices as described in Sect. 3 in a similar way as in the derivation
of (4.5), we get

tr v

oo oo

)Σ Σ (Dwtwφ)hn(x;q\qσ\q2)hm(x;qτ,qa\q2)e2i^-n)φ dmί(x) ,(6Λ2)
H=0 m=0

and similarly

OO CXD

) Σ Σ
(6.13)

The double sum in both (6.12) and (6.13) is absolutely convergent, uniformly in φ
and uniformly in x on the support of the corresponding orthogonality measure. To
see this we observe that Proposition 5.2 and Lemma 5.5 imply

\{pwt,wt)\ S qn+m(-q\-q2~2τ;q2)oo/(q2;q2)oo ,

so that for some constant C

n,m=0 «=o
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Now we use the asymptotic behaviour of the Al-Salam-Chihara polynomials on
[-1,1], cf. Askey and Ismail [2, Sect. 3.1], and, if (aqk + a~ιq~k)/2 is a discrete
mass point of the orthogonality measure of the Al-Salam-Chihara polynomials we
have pn((aqk + a~ιq~k)/2;a,b\q) ~ a~nq~nk as n —> oo, cf. (6.10), to find our as-
sertion. The other double sum is treated analogously.

Now that we have established (6.11), (6.12) and (6.13), we have an explicit
expression for the Haar functional on the C*-subalgebra of Aq(SU(2)) generated
by p τ ? σ . Integrate (6.12) and (6.13) with respect to φ over [0,2π], cf. (2.3), and
interchange summations, which is justified by the previous remark. Since the inner
products in (6.12) and (6.13) are independent of φ by Lemma 5.5, the integration
over φ reduces the double sum to a single sum. Now use (2.3), Lemma 5.5 and
Proposition 5.2 to prove the following proposition.

Proposition 6.3. For any continuous function p on the spectrum of pτ,σeAq(SU
(2)), i.e. the union of the supports of the measures drπ\ and drri2, we have the
following expression for the Haar functional:

Kp(Pτ,a)) = ^ ^ f p(x)Pq2(x,x;ql+σ-\-ql-σ-τ\q2)dmι(x)
1 ~Γ# R

""
-2τ J PMPq2(x,x;ql-σ+\-ql+σ+τ\q2)drn2(x) , (6.14)

R

where

Pt(X,y;a,t\g) = g

is the Poisson kernel for the Al-Salam-Chihara polynomials (6.10).

Remark. 6.4. For all values needed the Poisson kernel in (6.14) is absolutely conver-
gent for t = q2 by the asymptotic behaviour of the Al-Salam-Chihara polynomials,
cf. the remarks following (6.12) and (6.13).

In order to tie (6.14) to Theorem 6.1 we have to use the explicit expression for
the Poisson kernel of the Al-Salam-Chihara polynomials given by Askey, Rahman
and Suslov [3, (14.8)]. It is given in terms of a very-well-poised sφyseries, cf. the
notation (1.1),

Pt(cos θ, cos ψ; α, b\q) = —
+Ψ, teiθ~^, te^-w, te-^-ίθ, abt; q)oo

x %Wη ( — ;t,beiθ,be-ίθ,aeiφ,ae-iφ;q,t) , (6.16)

where we also used the transformation formula [10, (2.10.1)]. Askey, Rahman and
Suslov [3] are not very specific about the validity of (6.16), but from [3, Sect. 1] we
may deduce that it is valid for \a\ < 1, \b\ < 1 and |ί| < 1. We first observe that
(6.16) also holds for ab < 1 and \t\ < 1, for which (6.15) is absolutely convergent.
To see this we show that the simple poles of the infinite product on the right-hand
side (6.16) at \jt = abq1, I G Z + , are cancelled by a zero of the very-well-poised
8</>7-series at \/t — abq1, i.e.

q, 0ab
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This follows by writing the very-well-poised 8<p7-series as a sum of two bal-
anced 4φ3-series by [10, (2.10.10)], in which case both 4φ3-series have a factor
(q~l\q)oo = 0 in front.

We also need the Poisson kernel evaluated in possible discrete mass points
of the corresponding orthogonality measure. For x in a bounded set, containing the
support of the orthogonality measure, we see that for \t\ small enough Pt(x,x;a,b\q)
defined by (6.15) is absolutely convergent and uniformly in x, and by analytic
continuation in x we see that (6.16) is valid for \t\ small enough. Now assume that
a\ > 1 and that Xk = (aqk + a~xq~k)/2 is a discrete mass point of the orthogonality

measure of the Al-Salam-Chihara polynomials, then the radius of convergence of
Pt(xk,Xk;a,b\q) in (6.15) is a2q2k, so the radius of convergence is greater than 1,
cf. (6.2). For this choice of the arguments the right-hand side of (6.16) can be
expressed in terms of a terminating very-well-poised 8<P7-series;

? k k , (abtqk,btq~kla:q)oo ΎΎr (abt(^^ ;g) ^ 4 Λ X W \
(6.17)

This expression has no poles in the disc \t\ < a2q2k, and coincides with the Poisson
kernel (6.15). So we have shown that (6.16) for t = q with x = cos# = cosφ is
valid for ab < 1 and x in the support of the corresponding orthogonality measure.

After these considerations on the Poisson kernel for the Al-Salam-Chihara poly-
nomials, we can use Bailey's summation formula, cf. [10, (2.11.7)], in the following
form;

ιW7(a;b,c9d,e,f;q9q) +
(b/a; q)o

χ (aq, c, d, e, f, bq/c, bq/d, bq/e, bq/f; q)oo

(aq/c, aq/d, aq/e, aq/f, be/'a, bd/a, be/a, bf/a, b2q/a; q)c

b2

 r be bd be bf
— b,—,—,—,—;q,q
a a a a a

_ (aq, aq/(cd), aq/(ce), aq/(cf), aq/(de), aq/(df), aq/(efy, q)^

(aq/c, aq/d, aq/e, aq/f, be/a, bd/a, be/a, bf/a; q )<*,

Use Bailey's formula with q replaced by q2 and parameters a = —q2~2τ, b = q2,
c = -qχ-σ-τew, d = -qχ-σ-τe~iΘ, e = qx+(J-τeiΘ and / = qx+σ-τ

e-
iθ, and multiply

the resulting identity by

(1 - q2)(\ - e2iθ)(l - e-2i0)(q2,-q2+2τ,-q2-2τ',q2)oo

(1 — qx+σ~τei®)(\ — qx+σ~τe~iθ)(l + qx~σ~τeiθ)(l + qx~σ~τe~iθ)

to find, using the notation of (6.3),

( l - ^ ) ^ 2 ( χ , χ ; ^ τ + ^ - ^ - τ + M ^ M ^ ; ^ " τ + ^ - ^ ί ~ ( 7 ~ ^ o ? Q [ ^ 2 )

(l+q2τ)ho(qσ-τ+ι,-qι-σ-τΛO\q2)

(1 -q2)PAx,x;q-σ+τ^x,-qσ+τ+x\q2)w(x;qτ-σ+x,-qι+σ+τ,0,0\q2)

w(x',q^+x,-qx^\q^+x,-qx-^\q2)_
τ-"+ι, -qλ+σ+τqσ-τ+\ -qχ-"~τ

ho(qτ-"+ι, -qλ+σ+τ,q
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for x G [—1,1], the absolutely continuous part of dπi\ and drri2. This proves the

absolutely continuous part of the Askey-Wilson integral in Theorem 6.1.

In order to deal with the possible discrete mass points in the orthogonality mea-

sures on the right-hand side of (6.14), we first observe that the discrete mass points

of dm\ do not occur as discrete mass points of dm2 and vice versa. Furthermore,

note that for t = q the expression in (6.17) reduces to

This can be seen directly from (6.17), since only the last term in the gφ7-series

survives, or by applying Jackson's summation formula [10, (2.6.2)]. Now a straight-

forward calculation using this formula and the explicit values for the weights given

in (6.4) proves

1 - q Pk(a; b\q)wk(a; b, 0,Q\q) wk(a; b, q/a, q/b\q)

1 - q/(ab) ho(a9 b9 0,0\q) ho(a, b9 q/a, q/b\q) '

This proves that the discrete mass points in (6.14) lead to the discrete mass points

in Theorem 6.1. This proves Theorem 6.1 from the spectral analysis of πφ(pτί(J).

Remark. 6.5. It is not allowed to take residues in (6.18) to prove the statement

concerning the discrete mass points. For this we have to know that (6.18) also

holds in a neighbourhood of the discrete mass point x ,̂ but the explicit expression

for the Poisson kernel in (6.16) leading to (6.18) may fail to hold.
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