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Abstract: It is shown that the problem of the immersion of a 2-dimensional surface
into a 3-dimensional Euclidean space, as well as the ^-dimensional generalization
of this problem, is related to the problem of studying surfaces in Lie groups and
surfaces in Lie algebras. A particular case of the general formalism presented here
implies that any surface can be characterized in terms of 2 x 2 matrices using
an arbitrary parametrization. It is also shown that this generality of parametriza-
tion is useful for studying integrable surfaces, i.e. surfaces described by integrable
equations. In particular starting from a suitable Lax pair (i.e. a suitable integrable
equation), it is possible to construct explicitly large classes of integrable surfaces.

Introduction

Let F = (Fi ,F 2 ,F 3 ) : π —» R 3 be an immersion of a domain π ClR2 into the
3-dimensional Euclidean space. Let (w, υ) G π. The Euclidean metric induces some
metric gu(du)2+ 2g\2dudv + g22(dv)2 on the surface F. If this surface is suffi-
ciently smooth, the functions gij(u,v), and the functions dij(u,v) which define the
second fundamental form, satisfy a system of three nonlinear equations known as
the Gauss-Codazzi equations. These equations are the compatibility condition of the
Gauss-Weingarten equations, which are a pair of linear equations characterizing the
dependence of the associated Cartan frame on u and υ. There exist two geometrical
characteristics on such a surface known as the Gauss curvature K and the mean
curvature H.

The question of characterizing surfaces with a given K or a given H has been
studied extensively both in the classic and in the recent literature. The most cel-
ebrated results in this direction correspond to constant K and to constant H. It
turns out that the fundamental forms of such surfaces can be expressed in terms of
solutions of the sine-Gordon and of the sinh-Gordon equations. These equations are
integrable, and hence a large class of their solutions can be given explicitly. Us-
ing such global solutions, it is possible to study global properties of the associated
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surfaces (for example the long standing question of Hopf [1], if a compact surface
in R 3 with constant mean curvature is necessarily a sphere, can be answered [2—
11]). The surfaces with dudv(l/\/—K) = 0 (u,v are asymptotic coordinates) [12],
with dζdζ(l/K) — 0 (ζ is a conformal coordinate of the second fundamental form)
[13], and with dζdξ(\/H) — 0 (ζ is a conformal coordinate) [13], are also associated
with integrable equations.

Following [8] we call a surface integrable, iff its Gauss-Codazzi equations are
integrable [14-18]. Integrable equations also arise as the compatibility condition of
a pair of linear equations, which in the soliton literature is called a Lax pair [19].
However, in contrast to the Gauss-Weingarten equations, the Lax pair contains a
free parameter known as the spectral parameter. (For the integrable surfaces it is
possible to insert a spectral parameter in the Gauss-Weingarten equations.) The
Gauss-Weingarten equations are usually written in terms of 3 x 3 matrices. On the
other hand the Lax pairs of the sine-Gordon and sinh-Gordon equations involve
2 x 2 matrices. This shows that at least some integrable surfaces can be formulated
in terms of 2 x 2 matrices. Actually, Bobenko [13], generalizing to arbitrary surfaces
some earlier important results of Sym [20] regarding integrable surfaces, has recently
shown that if one uses a conformal parametrization then it is possible to write the
Gauss-Weingarten equations in terms of 2 x 2 matrices.

We will show that the problem of the immersion of a 2-dimensional surface
into a 3-dimensional Euclidean space, as well as the ^-dimensional generalization
of this problem, is closely related to the problem of studying surfaces in Lie groups
and surfaces in Lie algebras. A particular case of our general theory yields the
characterization of an arbitrary surface in terms of 2 x 2 matrices (Theorem 2.1).
This result, which formulates a surface in terms of an arbitrary parametrization, is
a generalization of [13] which uses a conformal parametrization. In spite of the
fact that the change of parametrization implies only a gauge transformation and
a change of independent variables in the associated Gauss-Weingarten equations,
this generality of parametrization is useful for studying geometries described by
integrable equations.

Using our formalism it is straightforward to show that in certain cases, it is
possible to compute F explicitly: Let U(u,υ,λ), V(u,v,λ) e su(2), where λ E C is
the spectral parameter. Assume that U and V satisfy

Let Φ(u, v, λ) be a solution of the compatible system

dΦ ττ^ dΦ τλ^— = UΦ , — = VΦ. (2)
du dv

Then the function F € su(2),

-1 -1 _1<3Φ _ i

F = a\Φ £/Φ-fα2Φ VΦ + 0C3Φ —- + (χ4uΦ UΦ
oλ

+ <x5vφ-χVΦ + Φ~xMΦ, (3)
where αi,...,α5 are constant scalars, and M^su{2) is a constant matrix, defines
an immersion function. The case OL\ = α2 = 0C4 = α5 = M = 0 has been studied by
Sym [20].

This implies that starting from a suitable Lax pair (2), it is possible to construct
large classes of integrable surfaces. Several such surfaces are studied in [24]. Here
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we only present a simple example: The first and the second fundamental forms of
the Weingarten surface

K-U2H + υ\ + ui = o, (4)

where U\,U2 are real constants, U\ή=U2, U\ή=0, can be obtained through the
solution of the sine-Gordon equation

This surface is parallel to the surface with K = —U\.
We will also show that the use of Lie point groups [21] provides an effective

method for both finding as well as classifying integrable surfaces. As an illustration
of this method we will show that the integrable case of inverse harmonic H [13],
is distinguished by the fact that this is the only case for which the Gauss-Codazzi
equations admit a nontrivial Lie point group of transformations of a given type (see
Theorem 3.1).

After this manuscript was written, it was pointed out to the authors by Juan Al-
varez that there is a close connection of some of our results with Cartan's method
of moving frames [22,23]. Indeed, some of the results of Sects. 1 and 2 are con-
crete realizations of Cartan's general approach. We note that, in spite of the fact
that several examples of Cartan's method are given in [22 and 23], it is in gen-
eral nontrivial to implement Cartan's construction. A brief description of Cartan's
method, as well as the formulation of some of the results of Sects. 1 and 2 in the
language of moving frames, is given in the Appendix. This appendix was written
by J.C. Alvarez to whom we are grateful.

Global consequences of the results presented here will be discussed elsewhere.

1. The General Formulation

Let G be a Lie group and ^ the Lie algebra of G. We assume that in ^ there
exists an invariant scalar product, not necessarily positive definite. (Such a scalar
product exists for any semi-simple finite dimensional group as well as for many
infinite dimensional groups.) We denote the scalar product between Q\ and Qi^Ή
by (g\,g2) Since the scalar product is not degenerate there exist an orthonormal
basis in ^, {euej) = <%, where δy denotes the Kroneker delta. In the following
presentation we only consider the case that dim ^ = n < 00.

We first introduce a surface in G. Let Φ(u,v) e G for every (u,v) in some
neighborhood of R 2 . There exists a canonical map (left shift) from the tangent
space of G to the Lie algebra <§. If | | and | | are the tangent vectors of Φ at the
point (u,v), this map is defined by

^ φ ~ l = ujei> ^ φ ~ i = VJ*)' J=i>->n> O D

where Uj and Vj are some functions of (w, v), and throughout this paper summation
over repeated indices is assumed. Equations (1.1) define Φ through its value in the
Lie algebra.
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Proposition 1.1. Let Φ(u,v) e G be a differentiable function of u and v for every
(u,v) in some neighborhood ofΊR2. Φ defined by Eqs. (1.1) exists iff the functions
Uj and Vj satisfy

έΊt (L2)

where CMJ are the structural constants associated with <&, i.e.

[ek,eι] = Ckijej . (1.3)

In Eqs. (1.2), (1.3) j = 1,...,«, and summation is assumed over k and /, which run
from 1 to n.

Proof. Φ exists iff Eqs. (1.1) are compatible, i.e. iff

d ίdΦ _A d ί dΦ _A ΓδΦ — 1 dΦ

dv \ du J du \ dv J [dv ' du

where [,] denotes the usual commutator. This equation together with Eqs. (1.1) and
(1.3) imply Eq. (1.2). D

We now introduce a surface in ^ . Let F(u,v) £ *§ for every (u,v) in a neigh-
borhood of R 2 . The first fundamental form of F is defined by

( ώ ) ( L 4 )

Let JV(/) G e§, / = 1,...,n - 2 be the set of elements defined by

, l=\,...,n-2. (1.5)

The second fundamental forms of F are defined by

.,« - 2 . (1.6)

We can relate surfaces in G to surfaces in ^ . Using the adjoint representation
we can write

f = ί " V . % = ̂ ~lbjejΦ, j=h...,n, (1.7)

where αy and Z?y are some functions of (u,v).

Proposition 1.2. Let Φ(u,v) e G be a surface defined by Eqs. (1.1). Let F(u,v) e
& be a differ entiable function of u and v for every (w, v) in some neighborhood
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of IRA Equations (1.7) define a surface F(u,v) £ $ iff the functions aj and bj
satisfy

^ ^ (1.8)

Proof Equations (1.7) are compatible iff

^ej + aj[ej, ΦVΦ'1] = | ^ + bfo, Φuφ-'].

Using (1.1), this equation reduces to (1.8). D

We can also use the adjoint representation1 to express the elements N^ e &
defined in (1.5) in the form

N{1) = φ-ιcfejΦ , / = l , . . . ,w-2, j= l , . . . , n . (1.9)

Since the scalar product is invariant under the adjoint representation it is straight-
forward to compute the first and second fundamental forms of F.

Theorem 1.1. Let aj(u,v),bj(u,v),Uj(u,v),Vj(u,v), j= 1,...,«, be differentiable
functions of u and v for every (u,v) in some neighborhood ofΊR2. Let {ej}n-x be
an orthonormal basis in the Lie algebra $ of the Lie group G. Assume that the
functions aj,bj,Uj, Vj satisfy Eqs. (1.2) and (1.8), where ckιj, kjj = l,...,w, are
the structural constants associated with <&. Then

(i) Equations (1.1) define a surface Φ(u,v) E G.
(ii) Equations (1.7) define a surface F(u,v) e &, whose first fundamental form

is given by

aj(du)2 + 2ajbjdudv + b2

j(dvf , j= l,...,w. (1.10)

Let c{}\ \ ^j <.n, 1 ^ / ^ / 2 - 2 satisfy

±cf2 = \, tajcT = tb/P = °> / = l , . . . , π - 2 . (1.11)
7=1 7=1 7=1

Then the second fundamental forms of F are given by

cfcf ( ^ + akUlCkl^ {duf + 2cf (^L + akVlCkl^ dudv

(1.12)

Proof The function ΦeG defined by (1.1) exists iff Eqs. (1.2) are valid. If Φ
exists, then the function F e ^ defined by (1.7) exists iff Eqs. (1.8) are valid.
Using Eqs. (1.7) and (1.9) into (1.4)-(1.6), we find ( l . l θ ) - ( l . 12). D

1 Throughout this paper we use matrices thus we write Φ ιajβjΦ instead
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1.1. On the Explicit Computation of the Immersion Function

It is possible in certain cases, to compute α7, bj, and F, explicitly.

Theorem 1.2. Let Uj(u,v) and Vj(u,v), j = 1,...,«, be differentίable functions of
u and υ for every (u,v) in some neighborhood o/IR2. Let {ej}n

u be an orthonormal
basis in the Lie algebra $ of the Lie group G. Assume that:

(i) Uj and Vj satisfy (1.2), where ckιj, k, IJ = 1,...,«, are the structural
constants associated with c§.

(ii) Uj and Vj depend on the parameter λ, but λ does not appear explicitly in
Eq. (1.2).

Define U and V by
U=Ujej, V=Vjej. (1.13)

Then,

(i) If A and B are defined by

dU dU dU d dU
A = ajej = α i~du~+ α2~dv~+ ^~dλ + a ^ u U ) + a5VΊv~+ [ U M ] ' ( L 1 4 a )

dV dV dV dV d
B = bjej = cc^+a2-+a3-+a4u-+cc5-(vV) + [V,M], (1.14b)

where M = rπjβj and αi,...,α5, mi,...,mw are constant scalars, then the equations

^L=:φ-^AΦ, ^- = φ~xBΦ, (1.15)
ou ov

are compatible, and can be used to define a surface F(u, v) e &.
(ii) The solution of Equations (1.15), where A and B are defined by Eqs. (1.14)

is, to within an additive constant matrix, given by

F = 0ίιΦ~ιUΦ + 0L2Φ~lVΦ + (X3Φ~ι— +oc4uΦ~ιUΦ
oλ

+ u5vΦ~ι VΦ + Φ~λMΦ . (1.16)

Proof (i) The equations

dΦ dΦ

1 Γ = UΦ, i r = F Φ > ( L 1 ? )
ou ov

are compatible iff

ψ-ψ + [U,V] = 0. (1.18)
OV OU

Equations (1.15) are compatible iff

fv-
di+V,V] + [U,B] = 0. (1.19)

It can be verified that if A and B are defined by (1.14), and if U, V satisfy Eq. (1.18),
then A and B satisfy Eq. (1.19).

(ii) It can be verified that F also satisfies (1.15). Using a variation of parameter
it follows that this F is unique to within a constant matrix. D
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Remark 1.1. This result is a consequence of the following observation: Equation
(1.19) is the variational equation of Eq. (1.18). Indeed, if U and V are replaced
by U + εA9 V + εB, then the O(ε) term of Eq. (1.18) yields Eq. (1.19). This means
that every symmetry of Eq. (1.18) implies a solution of Eq. (1.19). In particular the
invariance of Eq. (1.18) under translations in u9υ9λ yield the solutions corresponding
to αi5α2,α3. The solutions corresponding to 0C4 and α5 are due to the invariance of
Eq. (1.18) under the dilations u —» c\u, U —> c^ιU and v —> c2v, V —> c^V, c\
and C2 constants. Finally, the solution corresponding to M is due to the invariance
of (1.18) under U -• DU D~\ V -> DVD~\ D a constant matrix.

2. The Immersion of a 2-Dimensional Surface in R 3

As an example of the general formalism we consider the case that G is SU(2).
Then βj = —iθj9 j = 1,2,3, where

i o j σ 2 = V i o j ' σ 3 = ( , o - i

and c ^ = 2e^ 5 where eψ9 ij',k — 1,2,3, is the usual antisymmetric tensor.

With the vector F_ = (FUF2,F3)
T e IR3 we associate the matrix F = Fjq e

su(2). Thus the problem of the immersion of the 2-dimensional surface xj —
Fj(u,v), j= 1,2,3, into the 3-dimensional Euclidean space, becomes the problem
of studying the relationship between the 3-dimensional sphere Φ(u9v) G SU(2) and
the two dimensional surface F(u9v) G su(2).

Theorem 2.1. Let U(u,v) and V(u,v) G su(2), be differentiable functions of
u and v for every (u,v) in some neighborhood of ΊR2. Assume that these func-
tions satisfy the equation

Then the equations
dΦ dΦ
^ = UΦ, iτ = ^ , (2.3)
du ov

define a 2-dίmensίonal surface Φ(u9v) G SU(2).
Let A(u,v) and B(u,v) G su(2) be real differ entiable functions of u and v for

every (w, v) in some neighborhood of ΊR2. In addition to the above, assume that
these functions satisfy

Then the equations

ψ- = Φ~ιAΦ, ^f- = Φ~ιBΦ, (2.5)
du ov

together with F — —iFjσj, i.e.

—iF^ —F2 — il
F = ( F F p ' ) . (2-6)
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define a 2-dίmensional surface Xj = Fj(u,v) e IR, j = 1,2,3, in a ^-dimensional
Euclidean space. The first and second fundamental forms of this surface are

(A,A)(du)2 + 2(A,B)dudv + (B,B)(dvf , (2.7)

and

d A ~\< * , J d A , ΓA τ/i Λ AA , /dB , rD τπ Λ,AΛ2^— + [A,UlCμduY + 2^— + [A, V],CJ dudv + ^ — + [B, V], C^ {dυf ,

(2.8)
where

1
(A,B) = - - t r a c e d ) , (2.9a)

2
and

Proof. These results follow from Proposition 1.2, using ^ = — iσj and c ^ =
2eijk. D

Remark 2.1. Equations (2.2) are the Gauss-Codazzi equations. They are the com-
patibility conditions of the Gauss-Weingarten equations (2.3). This formulation
involves 2 x 2 matrices and not 3 x 3 matrices.

Remark 2.2. Equations (2.3) can be considered as a Lax pair for the "zero cur-
vature" equations (2.2). However, in order to apply the machinery of the in-
verse spectral theory one needs to insert a spectral parameter in Eqs. (2.3) (see
Sect. 3).

Remark 2.3. Theorem 2.1 characterizes surfaces in terms of a general parametri-
zation. A more restrictive parametrization is used in Theorem 2.2.

Theorem 2.2. Let U\,U2,V\,a,b\,b2, α + 0, Z?2=t=0, be real differentiable functions
of u and v for every (u,v) in some neighborhood ofΊR2. Assume that these func-
tions satisfy the Gauss-Codazzi equations (2.2), where £/3, V2, V3 are defined by

da db\ u TT u ττ U da L. db\ i <9Z>2

Z?2 a ab2

Let Φ e SU{2) be defined by Eq. (2.3). Then the equations

— = -iΦ~ιaσλΦ, — = -iφ-\bxσλ + b2σ2)Φ , (2.11)
όu ΰv

where σi,σ2,σ3 are the Pauli matrices (2.1), define a 2-dimensional surface
Xj = Fj(u,v\ j = 1,2,3, in IR3. Its first and second fundamental forms
are

a2{duf + 2abχdudυ + {b\ + b2

2){dv)2,

aU2(du)2 + 2aV2dudυ + (bλV2- b2Vx)(dv)2 . (2.12)
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This surface is unique to within its position in space. The Gauss and mean cur-
vature are

)\ and H +

a ) a \ ab2 ) a ab2

A frame on this surface is given by FU9 Fv and N = —iΦ~xσ3Φ.

Proof. These results follow from Theorem 2.1 with the choice A — —iotσι,B =
—i(b\σ\ + b2σ2), U = —ψJjO^ V — —\VJGJ. In particular Eqs. (2.4) become

aV2 + b2Ux -bιU2 = 0, ^+b2U3-^=0, ^ + aV3 - bxU3 = 0 .
cu ov ou

Solving these equations for V2i C/3, V3 we find (2.10). The Gauss and mean curvatures
are defined by

K = det(/7 / - 1 ) , H = -trace(/7 Γι),

1 6^22

where g^ and dij are the entrees of the first and second fundamental forms respec-
tively. Using these definitions together with (2.12) and (2.10b), we find (2.13).

Now we show that the surface F is unique within its position in space. Given the
fundamental forms (2.12), Eqs. (2.10) imply U2, V2, V\. Since these functions satisfy
the Gauss-Codazzi Eqs. (2.2), Φ e SU(2) can be defined by Eqs. (2.3) to within
three constants. Then Eqs. (2.11) (which are compatible since (2.4) are satisfied),
imply F € su(2) within three additional constants. These six arbitrary constants
correspond to motions of the surface in R3. Indeed, the transformations

F = fFΓx +A9 N = fNf-\ Φ = Φf9 f e SU(2)9 A e su(2),

leave Eqs. (2.3) and (2.12) invariant. Furthermore, this transformation introduces six
arbitrary constants. The constants of A introduce a translation Xj = xj -f- bj, while the

constants of / introduce a rotation xj = X^ = 1 fl/AΛ? Σ^=i aijaik — ^ik Π

All the well known parametrizations can be obtained as particular cases of the
above general formulation. The orthogonal and the conformal parametrizations are
discussed in Example 2.1 and in Sect. 3.1 respectively.

Example 2.1 (Parametric lines of curvature). Letting b\ = V2 = 0, and introducing
the notations b = b2, f — U2/a, h = —V\/b, the Gauss-Codazzi Eqs. (2.2) become

The first and second fundamental forms are

a2(duf + b2(dv)2, a2f(du)2 + b2h{dvf . (2.17)
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A frame on this surface is

-r— = ~ίΦ~ιaσ\Φ, -—- = —iΦ~λbθ2Φ, N — —iΦ~λσ^Φ .
ou dv

The Gauss and mean curvature of this surface are

K = fh, H = f + h. (2.18)

Equations (2.15) and (2.16) are the integrability conditions of

™ -a

3. Integrable Surfaces

We call a surface F(u,v) integrable iff the Gauss-Codazzi equations are inte-
grable. We call an equation integrable iff it can either be linearized directly or
it can be solved through the inverse spectral method [14-18]. Equations solvable
by this method arise as the compatibility condition of a pair of linear equations
known as the Lax pair. This system of linear equations, in contrast to Gauss-
Weingarten equations (2.3), contains a free parameter. This parameter, which will be
denoted here by λ, plays a crucial role in the integration of the associated nonlinear
equations.

There exist several methods for inserting a parameter λ in Eqs. (2.3). Here
we shall emphasize the following method. Suppose that the Gauss-Codazzi equa-
tions are invariant under the action of some Lie point group of transformations.
If Eqs. (2.3) are not invariant under this group, then the group parameter λ, will
appear in Eqs. (2.3). An elementary illustration of this procedure will be given in
Example 3.1 using a well known integrable surface. This method can also be used
for a systematic search of integrable surfaces. Here we show, as an example, that
the integrable case of harmonic inverse H can be distinguished by the fact that
it is the only case that the Gauss-Codazzi equations admit a nontrivial group of
transformations of a given type (see Theorem 3.1).

The choice of which local coordinates are used on a surface depends on which
particular geometrical property is analyzed. For example, surfaces of given H, or
given negative K, are usually studied using conformal, or asymptotic coordinates,
respectively. We illustrate the importance of coordinates in Example 3.2, where we
show that in a certain coordinate system, surfaces of K = 0 are characterized by
the Born-Infeld equation.

Theorem 1.2 provides an algorithmic approach of constructing integrable sur-
faces starting from a suitable Lax pair. Several such surfaces are presented in [24].
An example of a Weingarten surface, and a certain generalization of this Weingarten
surface, are given in Example 3.3 and in Example 3.4.

Example 3.1 (Constant H). The first and second fundamental forms of surfaces of
constant mean curvature are

e2G((du)2 + (dv)2), l-(He2G-l)(duf+l-(He2G+l)(dv)2, (3.1)
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where G solves the hyperbolic sine-Gordon equation

Indeed, if H is constant, Eqs. (2.16) can be integrated explicitly. It is conve-
nient to write / and h in terms of H and a new variable G, 2 / = H — e~2G,
2h = H + e~2G. Equations (2.15), (2.16) become

a = a{u)eG, b = β(v)eG ,

where the subscripts u and v denote partial derivative. The functions α(w) and
β(v) can be taken equal to 1 without loss of generality, since under the change of
variables -w^.dv = dυι, -^χSu = duι, the above differential equation becomes (3.2).
Equation (3.2) is the integrability condition of

-iGv ί(-HeG + e-G)\

(Heo _ e-G) iGυ J Φ '

•

Equation (3.2) is invariant under the orthogonal group

u' = u sin θ + v cos θ, v' — u cos θ — v sin θ .

Under the action of this group Eqs. (3.3) become

dΦ

dΦ

1

~ 2

1
~~ 2

where λ = eιθ. Equations (3.4) is the Lax pair of Eq. (3.2).
We note that surfaces of zero mean curvature are characterized by the solution

of the Liouville equation

GΌΌ + Guu - X-e~1G = 0 . (3.5)

A surface of constant mean curvature corresponding to an elliptic solution of equa-
tion (3.2) is given in Fig. 1.
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Fig. 1. A surface of constant mean curvature.

Example 3.2 (The Born-Infeld equation). The Born-Infeld equation

dHj_ ίd_G\2 dHj_ ίdG\2

 23GdG d2G

dv2 \du ) du2 \ dv ) du dv dudv ~" '
(3.6)

characterizes surfaces of zero Gaussian curvature (flat surfaces) in the following
coordinates:

{duf + {dvf, eG Gu{duf + 2Gvdu dυ+-± (3.7)

Indeed, let us consider the frame Fu = — iΦ ισ\Φ, Fυ = —iΦ~ισ2Φ, N = —ίΦ~ι

σ3Φ, i.e. a = b2 = l, b\ = 0. Then Eqs. (2.4) become C/3 = F3 = 0, V2 = -Uχ.
The Gauss-Codazzi Eqs. (2.2) yield Vx = -U2/U2, and

Ulυ - Vlu - 0, U2v -V2u=0.

These differential equations are solved by U2 = (βG)M, V2 = (eG)v, and then the
Born-Infled equation follows.

3.1. The Conformal Parametrization

The following characterization of surfaces of a given mean curvature H can be found
in [13]: Using a conformal parametrization the fundamental forms can be written as

e2Gdζdζ, D(dζf + j D(dζ)2 , (3.8)

where // is the mean curvature. The bar denotes complex conjugation, D{ζ, ζ) e C,
G{ζ,ζ) e R, and G,D satisfy the equations

— — e f - Yπ • (19 )
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These equations are the compatibility conditions of

( ) η ( )
This result also follows from Theorem 2.2 with the identification ζ = u-\- iv,
bχ=O9 a = b2=eG, U2 = -2DRe~G + HeG/2, V2 = -2Die-

G, D = DR + iDl9

Ψ = Φexp(G/2).

Theorem 3.1. Equations (3.9), which are the Gauss-Codazzi equations with respect
to conformal coordinates of a surface of mean curvature //, admit a Lie-point
group of transformations of the type

Dλ=D + λΌ(ζ,ζ,D,D,G) + 0(λ2), (3.11)

where g, b are arbitrary differential functions of the arguments indicated, iff

ΓΛe associated group of transformations is given by

Hλ = (l+ ίλf){\ - iλf)H, Gλ = G~ ln[(l + iλf){\ - iλf)],

D (3.13)

In this case the Lax pair of Eqs. (3.9) is

»P, (3.14a)

0

xf, lΨ- 0.14b)

Proof Substituting

Gλ = G + Ag, Dλ = D + λb, Hλ = H + Aί),

where ί)(C, 0 is an arbitrary differentiable function, in Eqs. (3.9) we find

2G + f 2Gί
cf Y f e ί > β S * b ^ e + 2|£| V 2 G g = 0 , (3.15)

b c - = | e

2 G + f e 2 V (3.16)

where g^ and b^ denote total derivatives. We next use the assumption that g and b

depend only on C, (,A D9 G. For example, the total derivative of b with respect to

ζ equals
db db db - db
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Substituting this expression and a similar one for b^- in Eqs. (3.15) and (3.16),

and using Eqs. (3.9) to replace | r^, | 2 <¥±9 we find two equations involving

g, b , ί), G, D, H, their derivatives, as well as

Dζ9 Gζ, Gξ, GζGζ, GζDζ . (3.17)

Equating the coefficients of the quantities (3.17) to zero in these equations we obtain
certain constraints for g, b and ί):

The coefficients of Dζ\ f| = § | = 0 or b = b (ζ, ξ,D).

The coefficients of Gζ: f e~2G + § f = | + f g.

The coefficients of GζGζ\ ^ = 0.

Thus
b = b(U>), g = g(C,C>). (3.18)

The coefficients of Gζ,GζDζ together with (3.18) imply

- r + -=-9 + ^ = 0 , (3-20)
4 2 b 8

(3.21)

(3.22)

Equation (3.21) implies that ^kD^ is independent of D, thus

b(ζ,D) - F(ζ)D, g = i ( F + F) = g(C, 0 .
z

Then (3.20) yields

//2g + ̂ ί) = 0, or 1) = -HG = - h

These equations together with (3.22) imply

FHζ = fy + 2HζG or (F - F)Hζ = FζH .

Thus

= 0, or H = ^

Since // G R, M(ζ) is purely imaginary, i.e. M(ζ) = U, 1 € 1R. Thus

£
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Letting F — —2iλf, these equations reduce to

H = —!—=, t) = iλ^Z, b - -2iλfD9 Q = iλ(f - / ) . (3.23)

Equations (3.23) are the infinitesimal versions of Eqs. (3.13).
Equations (3.14) can be derived from (3.10) using Eqs. (3.13). D

3.2. An Integrable Weingarten Surface and Generalizations

A particular case of Theorem 1.2 implies the following integrable Weingarten
surface.

Example 3.3. Let θ(u,v) be a solution of the sine-Gordon equation

O, (3.24)

constants, U\ Φ0, U\ + U2. Then the surface with fundamental forms

( 3 2 5 a )

uf + u i Uudv + w ^ ξ ? , (3.25b)

is the Weingarten surface,

K - U2H + (Uf + Ul) = 0 . (3.26)

The Gaussian and mean curvature of this surface are

K = Ui- Uf + 2Uχ U2 cot θ, H = 2U2 + 2Uλ cot θ . (3.27)

Proof. Rather than using Theorem 1.2 we verify this result directly: Letting a =
1, C/i constant, U2 constant, Eqs. (2.10) yield

V2 =bιU2 -b2Uu u i = -Ί—> V?> =

o2 o2

The solution of two of the Gauss-Codazzi equations (2.2) yields

cos0 sinθ sinθt/2 + cosθ(/i

Then the third Gauss-Codazzi equation (2.2) becomes (3.24).
We note that if U2 = 0, then the above theorem characterizes surfaces of constant

negative Gauss curvature (K = —U2). D

The following generalization of this result is proven in [24].

Example 3.4. Let w(u, v) be a solution of the sine-Gordon equation

d2w d2w I
^-^ ^ r H — s inzw = 0 .
dvι ou1 2
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Let the subscripts u and v denote partial derivatives. Let R(u,v) be a solution of
the linear equation

(a3Rv + a4Ru + a5R)u + aι(a3Rυ + a4Ru + a5R) + a2R = 0 ,

where

a\ = —ww tan w + (φM — w^) tan <p, «2 = (<Pι> — wM) tan w + (wv — φu) tan φ ,

αoα3 = — sin w, αo«4 = cos w tan φ ,

= [ψu + (tan (/>)2Wί; — wv] cos w + (φ y — 2wu) sin wtan φ ,

(cosφ) 2

cosw
and φ(u,v) is an arbitrary function such that «o + O. Then

i?2(sin wf{duf + 2pR2 sin 0 sin wJw dv + p2R2(dv)2 ,

—[i?(sin w)2 cos φidύf + 7? sin φ sin 2wJw ί/i; + pi? sin 0 sin(φ + w)(Λ)2] ,

where 0 and p are given by

sin φ cos w tan φ
P= tan0 = tan(? +sin(<p + θ)

are the first and second fundamental forms of the surface
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Appendix

by Juan Carlos Alvarez Paiva

The purpose of this appendix is to relate some of the results of the main paper to
Cartan's method of moving frames. We start with a short and, necessarily, incom-
plete, review of the method; for details and examples see [22] and [23].

Let H be a homogeneous space for a Lie group G. If Σ is a 2-dimensional
manifold consider the right action of G on the space of smooth maps from Σ to H,
C°°(Σ,H). The main problem addressed by Cartan is the classification of the orbits
of G on C°°(Σ,H).

Cartan's simple and beautiful idea is summarized in the following proposition

Proposition I. If on a G-invariant subset, C, of C°°(Σ,H) we can define a map,

φ.C-^C^iΣ^G),
such that:

a) π o φ(f) = / , if f is an element of C and π is the canonical projection of
G onto H.
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b) φ(f 9) = φ(f) g,for all g GG.

Then the Lie algebra valued \-form dφ{f) φ(f)~ι depends only on the orbit
of G through f.

Proof. The proof is just the following simple computation:

dψifg) φifgΓ1 = d(φ(f) g)(φ(f) g)~l

= dφ(f) g • g-lφ(fΓl = <W) φ(fΓl .

Note that the 1-form dφ(f) φ(f)~ι is the pullback of the Maurer-Cartan
form on G under the map φ(f). As such, it satisfies the equation

dω = - [ω, ω] .

Any Lie algebra-values 1-form on Σ satisfying this equation is the pullback
of the Maurer-Cartan form under some map from Σ to G, but this map is not
necessarily of the form φ(f) for some / in C.

In what follows we shall call the map φ(f) a Car tan lift of / .
We now indicate how the general results of Sects. 1 and 2 can be formulated

in the language of moving frames. We follow the notation of Sect. 1.
Let G be a Lie group and ̂  its Lie algebra. Let G act on ̂  via the adjoint

representation; form the semidirect product, G ex ̂ . If the pair of ^-valued one
forms,

is considered as a ^ ix ^-valued form, then Eqs. (1.2) and (1.8) imply that this
form satisfies the Maurer-Cartan equations for G M *&. We have then a map, J^,
from a neighbourhood of the origin in R2 to G EXI ̂  such that the pullback of the
Maurer-Cartan form under !F equals the 9 ix ^-valued form. This map is uniquely
defined up to right translation. In the notation of Sect. 1, the G-component of J^ is
Φ, and the ̂ -component is F.

If one starts with a map,

F : Σ - > 0 ,

then, considering ^ as a homogeneous space for the group G tx ̂ , one can construct
a Cartan lift,

φ(F) : Σ -* G ix 0 .

The G-component of φp is a surface on the Lie group associated to F.
In Sect. 2, 1R3 is identified with su(2) and the action of the Euclidean group

is identified with the action of SU(2) tx sw(2). Given a surface, F : Σ —> su(2),
a Cartan lift,

φ(F) = (Φ,F) : Σ -> SU(2) tx su(2) ,

is defined by Eqs. (2.11).
The pullback of the Maurer-Cartan form of SU{2) under Φ gives the second

fundamental form of the surface. Furthermore the Maurer-Cartan equation it satisfies
are the Gauss-Codazzi compatibility conditions.
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