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Abstract: We show that the action of the universal i?-matrix of the affine Uqsl2
quantum algebra, when q is a root of unity, can be renormalized by some scalar
factor to give a well-defined nonsingular expression, satisfying the Yang-Baxter
equation. It can be reduced to intertwining operators of representations, correspond-
ing to Chiral Potts, if the parameters of these representations lie on the well-known
algebraic curve.

We also show that the affine Uqsl2 for q is a root of unity from the autoquasi-
triangular Hopf algebra in the sense of Reshetikhin.

1. Introduction

The intertwining operators of quantum groups ([1^4]) lead to solutions of the Yang-
Baxter equation, which play the crucial role in two dimensional field theory and
integrable statistical systems ([4, 5]). It is well-known that most of them can be
obtained from the universal i?-matrix ([1]) for a given quantum group: the solu-
tions of the spectral parameter dependent Yang-Baxter equation can be obtained
from the universal R-maiήx of affine quantum groups ([6]) and the solutions of the
non-spectral parameter dependent Yang-Baxter equations can be obtained from the
universal i?-matrix of finite quantum groups.

The situation is not the same for the case when the parameter q of the quantum
group is a root of unity.

In this case the center of the quantum group is larger and a new type of rep-
resentations appear, which have no classical analog ([5, 7, 8, 9]). It was shown in
[10, 11] that the cyclic representations lead to solutions of the Yang-Baxter equation
with a spectral parameter, lying on some algebraic curve. These solutions correspond
to Chiral Potts Model([12-14]) and its generalizations (for quantum groups Uqsln).

The formal expression of the universal i?-matrix fails in this case: it has singu-
larities when q is a root of unity. Recently in [15] Reshetikhin introduced the notion
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of the autoquasitriangular Hopf algebra to avoid these singularities. He treated the

Uqsl2 case.

The main goal of this paper is to show that after suitable renormalization by a

scalar factor the universal ^-matrix produces ^-matrices for concrete representations.

In Sect. 2, we consider the universal ^-matrix on Verma modules of Uqsl2 when

q is a root of unity. We prove that it is well defined and make a connection with

the i?-matrix of the autoquasitriangular Hopf algebra, founded by Reshetikhin.

In Sect. 3 we consider the algebra Uqsl2 at roots of unity. We found the cen-

tral elements of its Poincare-Birkoίf-Witt (PBW) basis, generalizing the results of

[9] for the affine case. It appears that a new type of central elements appear for

some imaginary roots, which have no analog for finite quantum groups. After this

we prove the autoquasitriangularity of Uqsl2, generalizing the results of [15] for

the^affine case. Then we consider the action of the affine universal /^-matrix on

Uqsh- and L^572-Verma modules. On L^^-Verma modules it is well defined. For

Uqs l2 -Verma modules we renormalize its expression by a scalar factor to exclude

the singularities. The remaining part leads to solutions of the infinite dimensional

spectral parameter dependent Yang-Baxter equation. We showed that under a cer-

tain condition this i?-matrix can be restricted to semicyclic representations, giving

the Boltzmann weights of the Chiral Potts model, corresponding to such a type of

representations, which was considered in [16-19]. The condition, mentioned above,

is on the parameters of representations: they must lie on the well-known algebraic

curve. It is the integrability condition of Chiral Potts model.

In the last section we made the same type of suggestion for cyclic representa-

tions.

2. The Uqsh Case

2.1. The Universal R-matrίx on Verma Modules at Root of Unity. The quantum

group Uqsl2 is a [q,q~ι]-algebra, generated by the elements E, F9 K with the

following relations between them:

[K9K'l] = 09 [E9F] = £E^, (1)

KEK-χ = q2E , KFK~ι = q~2F .

On Uqsl2 there is a Hopf algebra structure with the comultiplication A : Uqsl2 —•
Uqsl2 Θ Uqsh defined by

A(F) = F <g> K + 1 Θ F .

We denote K = qH\ q = eh

9 as usual, and consider the [[ft]]-algebra U%sh with

the same defining relations. Uπsh is a quasitriangular Hopf algebra, i.e. it possesses

the universal 7?-matrix R G U%sl2 ® U%sl2 connecting the comultiplication Δ with

the opposite comultiplication A1 = σ o A, where σ(x <g> y) :— y ® x :

A'(a) = RΔ{a)R~\ \/a e Uhsl2 . (2)
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It satisfies the quasitriangularity relations

(zl 0 1)7? = Rl3R23 (1 0 Δ)R = RuRn (3)

and the Yang-Baxter equation ([1])

R\2R\3^23 = ̂ 23^13^12 (4)

Here we used the usual notation: if R — ̂  aι 0 b\, Q>ub{ G Uqsl2, then

The explicit expression of R in terms of the formal power series is

R = expq-2((q - q-λ)(E®F))qϊH®H, (5)

where the ̂ -exponent is defined by exp^(z) = Σ«^o (̂ T» (z% : = T ^

Note, that to be precise, Uqsh is not a quasitriangular Hopf algebra, because the
term qH®H in (5) does not belong to Uqsl2 0 Uqsl2, but it is an autoquasitriangular
Hopf algebra ([15]). The latter is a Hopf algebra A, where the condition (2) is
generalised by

where R is an automorphism of A ®A (not inner, in general). So, although (5) is
ill defined on Uqsl2, the action

R(a) = RaR~ι , (6)

where a G Uqsh ® Uqsh is still well defined.
For two representations of Uqsli V\ and Vι one can consider two Uqsh-actions

on V\ 0 F2 by means of both comultiplications zl and Δ'. \i R is defined on
V\ 0 K2, then both Zl- and Zl'-actions are equivalent via the intertwining operator
RV{^v2 — R\vι®v2 F° r general q the restriction of (5) on the tensor product of two
irreducible representations (of any highest weight representations) is well defined.
And all solutions of the Yang-Baxter equation (4), having UqsΪ2- symmetry in the
sense of (2) can be obtained from the universal 7?-matrix (5) in such a way.

The situation is different for q being a root of unity. In this case the singularities
appear in the formal expression of R.

Recall that for q = exp (ψ) the elements FN, FN, KN, where N = N' for odd

N' and N — ^- for even N', belong to the center of Uqsl2. In irreducible represen-
tations they are multiples of identity. Recall that every TV-dimensional irreducible
representation is characterized by the values x,y,z of these central elements (and

also by the value of the ^-deformed Casimir c = q+_ _q

λ h EF, which for the

fixed x,y,z can have in general N discrete values ([9])).

Although the expression of the i?-matrix (5) of Uqsl2 has singularities for qN'-*\

in all terms ,•} sE
n 0 Fn for n ^ TV, its restriction on the tensor product of Verma

modules Mχγ 0 Mχ2 is well defined.
Recall that Mχ is formed by the basic vectors v^, m = 0,1,... , satisfying

Eυλ

0 = 0, Fvλ

m = v λ

m + ι , Hvλ

0 = λ v i λ e C .
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To consider the action of R on Mχx <g)Mχ2, we use the formula, which can be
obtained from the defining relations (1) ([9]):

min(n,s)

[En,Fs] = Σ
7=1

where

L . and Γ~Ί - Γ-Ί -qH~q H

q-q~x

So, for n > s j-γ—^υλ

s = 0 and for n ^ s\

En , -ί-^
7Γ^ -A = q ^

The ^-binomial [^] has a non-infinity limit for qN —> 1. So,
N

11=0

x fl[M-s + r]v$!_n®i#+n (7)
r=l

is well defined when q is a root of unity.

2.2. 77ze Connection with Reshetίkhin s R-matrίx of Autoquasίtriangular Hopf
Algebra. This i?-matrix can be presented in another form by using the recent results
of Reshetikhin ([15]). He used an asymptotic formula for the ^-exponent in the limit

qN —> 1 to bring out multiplieatively singularities from expJ(q — q~λ)E ® F ) . The
expression of the universal 7?-matrix in this limit then acquires the form:

R =

N-\

x ΓΓ (

Here ^ = exp(ft)ε, ε = e x p ( ^ ) and Li2(x) — — f£ l n ( 1 y^dy is a dilogarithmic

function.
Recall that although the elements

EN FN

(N)q-2\ (N)q-2\

do not belong to Uqsl2 for qN —> 1, their adjoint actions

ad(x)a = [x,α], Ad(Gxp(x))a = exp(x)αexp(—x) = exp(αd(x))<2

on C/̂ /2 are well defined in this limit and give rise to some derivations ([9]). Let's
denote them by e, f and h correspondingly.



Universal i?-Matrix of Uqsh at Roots of Unity 161

The element ^μLi2(EN <g)FN) in the exponent of (8) in the adjoint represen-
tation also acts on Uqsl2 0 Uqsl2 as a derivation in the limit h —> 0 . It can be
expressed by means of the derivations e and / as follows:

- ( 1 - ε " 2 ) " ^ for odd N' (N' = N)
_M (8)

(-If (I - ε~2) for even Nf (N' = IN)

^ (KR .

where XL(XR) is the left (right) multiplication on X, is well defined in the adjoint
representation.

So, one can write down the automorphism R (6) in the limit h —» 0, obtained
in [15], in the following form:1

N-\

R = ΓM
m=0

(^0 1)^. (9)

Let us now consider the restriction of (9) on the quotient algebra obtained from
Uqsh by factorisation on the ideal, generated by EN, i.e. impose EN = 0. Although
this ideal is not stable with respect to derivations e, / , h, it is easy to see that it is
stable with respect to R.

Moreover, the left Uqsh 0 Uqsl2-module

lλλM = (Uqsl2®Iλ2)G)(Iλl ® Uqsl2)

is also stable with respect to R. Here we denoted by Iχ the left Uqsl2-module,
generated by E and (K — ελ). This fact allows to restrict (9) on Verma modules,
because we have the left Uqsl2-module equivalence

(Uqsl2 0 Uqsl2)lhuk2 ^ Mλι

So, one can derive from (9) the restriction of R on this factormodule given by
the multiplication on2

R= γi ((1 - ε

mE®F)-%) exp (7l - ε~2)~N(e®FN

(10)

1 For quantum groups one can introduce 4 equivalent comultiplications: Aq, Δ' A _ i , Δr_λ [6]. In

[15] the comultiplication A1 _x had been used as a basic one. So, the ^-matrix, used there, is R~}γ in

our notations and differs from the zl^-case used here by permutation of ^-exponent and qϊH®H.
2 Note that both h and e are well defined on Mχ in contrast to / .
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This expression is another form of expression of universal i?-matrix (5) on Verma
modules and coincide with (7).

3. The Case of Affine Uqsl2

3.1. The PBW Basis and the Universal R-Matrix. The affine quantum universal

enveloping algebra Uqsh is a [ ^ " ^ - H o p f algebra, generated by elements Et := E^,

Fi = Fα,, Kt = qH\ i = 0,1 and qd with denning relations ([2]):

\qHi] = 0 , qdqH> = < ? V , [Ei,Fj] = < ,

H d - d = qEx , ( 1 1 )

rf = Fo ,

i)x-avEj = 0 , (adqFi)ι-avFj = 0 ,

and comultiplication

= F, (8) ̂  + 1 0 F| .

Here we use the ̂ -deformed adjoint action (adqx)y := ^ ^ - ^ ( Λ : 1 ' ) , where Δ(x) =

iXi ®xι and s: 6̂ 5-/2 -^ C/̂ 5/2 is an antipode of Uqslι, defined by

s{EΪ) = -KiEt , s(F0 = -FiKΓ1 , s(K0 = Krλ , ^ ( / ) = q~
d.

Also we denoted by a^ the Cartan matrix of affine si(2) Lie algebra

2 - 2
aV - \ -2 2

Let's denote by c the central element c = H\ + H2.

Define on Uqsl2 an antiinvolution i by

ι(Ki) = Kr\ ι(fii) = Fi , ι(Fi) = Et , ι(q) = q~ι.

As above, denote by U%sl2 the [[h]]-algebra with the same relations but with
the elements Hi instead of qHι.

The PBW basis of U%sh is formed by elements Hi9 d, Eai+ns, F^ι+ns, E'nδ and
Ff

nδ, which are inductively defined by the relations

= ( - 1 )"(adE, )"E0 , Eai +nδ = {adE, )nEλ ,

Kδ = PJ-H^αd+ίn-i^i - g~2EχEaQ+(n_ι)δ) , (12)

Faί+nδ = KEon+nδ) 9 F'nδ = l(E'nδ) .
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The expression of the universal i?-matrix of U%sl2 is simpler if one redefines

E'nδ and F'nδ by means of Schur polynomials ([6]):

(a _ /7

Ks = Σ p\\...pm

kιpχ+ +kmpm=n

In order to rewrite all the relations between (12) in compact form it is suitable

to change slightly the basis as follows:

EXΰ+nδ = (-\)nq-2nχ-+ιk-\ Exι+nδ = ( - 1 ) ^ - ( C + 2 V , (13)

a-\n-2n -(f+2)w

Then the elements xf,{n e Z) , a^(k e Z,k ^ 0), ψm,φ-m, (m ^ 1) and ifo =

φ~x — k satisfy the following relations:

\.um >un\ — υm,—n m •> \.um^^\ — u?

κxmκ — H xm ' lamixn J ~ ^ m H xm+n ?

r ± r ± _ ^ ± 2 r ± r ± _ / 7 ± 2 γ ± r ± _ r ± ±

oo

i ; ^ " " = Λexp

oo / oo

Σ, Ψ-mZm = k~x e x p -{q -q~])Σ
m=0 V m=l

These relations had been introduced by Drinfeld in [20] and define another realiza-

tion of affine algebra Uqsl2. The antiinvolution i in this notation is

ι(x±) = x^n , ι(ιk) = φ-n , ι(an) = a-n , ι(q) = q~ι .

We choose the normal ordering of the positive root system A+ of Uqsl2 as

follows:

αo,αo + δ , . . . , α o + Λδ, . . .δ ,2δ, . . . ,wί , . . . ,α i + w δ , . . . , α i + ί , . . . , α i . (15)

Then the universal ^-matrix has the form [6]:

D In it -\\tτ? ^Ί7 \ \
R =[{[ exp 2((q - q )(Eao+nδ ® Fao+nδ)) exp I Σ j

\ ) \n>o y ~ q

x ( Πexp,- 2 ((<7 - q-ιXEaι+nδ®Fai+nδ))\

where the product is given according to the normal order (15).
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3.2. Uqsl2 at roots of Unity. For q being a root of unity (q = ε, ε = e$), the

center of Uqsl2 is enlarged by the Nth power of the root vectors, as for finite
quantum groups:

[E^x] = 0 , [F»,x] = 0 , [K?9x] = 0 , (17)

where γ e zl+ := {αz + «(5,m<5|ft ^ 0,m > 0} and x e t/^/2.
These conditions for the simple roots y = αz can be proven by using the defining

relations of the Cartan-Weyl basis (11) as for finite quantum algebras it had been
done in [9]. Indeed, using

recalling that the ̂ -deformed adjoint action adq is a Uqs12-representation:

adq(ab)c = adq(a)adq(b)c , Vα,6,c G Uqsl2 ,

and using Serre relations in (12), we obtain for i Φ j , N ^ 3:

[Ef,Ej] = adq(E?)Ej = (ad.iEOfEj = 0 .

Other commutations in (17) for γ = αz can be verified easily.

To carry out (17) for other roots one can try to use the isomorphism, induced

by the ̂ -deformed Weyl group. In the affine case it had been considered in [21].

But it is easier to use the symmetries of Drinfeld realization of TJqslϊ directly. It is

easy to see from (14) that the operation ω± on Uqsh defined by

ω±(xt) = xm±\ > o)±(am) = am, ω±(q) = q ,

ω±(ιk) = <fΨn , co±(φn) = q~cφn , ω±(c) = c . (18)

is an algebra automorphism. As the roots can be obtained by applying ω± from the
simple ones, we finished the proof.

In addition to this, the elements E^, FkN$ are central for k e N+. This can be
seen from (14) and (13). These central elements have no analog for finite algebras.

The adjoint action of ^ j , < ^ , y e Δ+ and q l ^ 2 m , φkf^2W lead

in the limit ft —> 0 to derivations of Uεsl2, which we denote by ey, fy, βk, f ^
correspondingly. The action of the automorphism ω on these derivations inherits its
action from corresponding root vectors.

3.3. The Universal R-Matrix at Roots of 1. Now let's consider the expression of
the universal R-matήx (16) in the limit ft —> 0. The singularities, which appear in
all ^-exponents, are the same type as in the expression of the universal ^-matrix
of U%sli. A new type of singularities appear due to the factor 2kNkN~2kN m the
exponent before all terms E^s 0 FkNδ f°Γ a n y natural k.

But as in the U£sl2 case, the adjoint action R of R on Uεsh Θ U£sh is well
defined.
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Indeed, the adjoint action of every ^-exponent term

Rγ = oxpq-2((q - q~l)(Ey 0 F γ ) ) , y = αz + nδ
γ = o x p q - 2 ( ( q - q ) ( E y 0 F γ

in (16) can be treated as it has been done in the Όεsli case:

N-\

\imAd(Ry) = U Ad((l -

( ( 0)
x exp [CN—E»IF» (e

where c^> is defined by (8).
From (13) and (14) it follows that the operations

- ,. J kNEkNδ \ - ( kNFkNδ

βk = hm ad I —r^ —TTT I , fk = hm ad

also are the derivations on U£sh, as it was mentioned above. So,

e X P ( kN _ -kNEkNδ ® FkNδ

= exp(4 ® FkNδ + EkNδ 0 7^) ,

gives rise to an outer automoφhism of Uεsl2

Finally, the right term in (16) has the following adjoint action:

JΓ = Ad(e*Ho®Ho+c®d+d®c) = ( 1 0 (Ko)Lγiho®1 - ((K0)R 0 i)i®i*

Here /*o = ad(Ho) is a derivation on ί/^/2.

So, we proved that the quantum algebra Uεsl2 is an autoquasitriangular Hopf
algebra with the automorphism

R= I Π Λy) Jf , (19)

where the product over positive roots is ordered according to the normal order (15).

3.4. The Universal R-matrίx on Verma Modules. Consider now the Verma module
M^ over Uεsl2 with highest weight λ. It is generated by vectors

v\v..kn =F%- 'F$ι

ιv%9 k u . . . 9 k n = 0 , 1 , . . . , y G Δ+ yx < < y n ,

where VQ is a highest weight vector:

l = 0 , Hvl = λ(H)υ% .
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As for Uqsl2-csiSQ all terms Ry and K in the product of the universal i?-matrix

(16) are well defined in the limit % —> 0. Indeed, there is a well defined action of

derivations eu βι on M^ by

o V#

Moreover, in the action of (16), on any vector x G M ^ ® Aff the term i?y with

sufficiently large γ give rise to the identity and the only finite number of Ry survive.

In the decomposition of each such Ry only finitely many terms also survive. So, the

action of R on x e M^ 0 M^ is well defined.

To define the action of the Universal /^-matrix (16) on L^ s^-Verma modules, the

spectral parameter dependent homomorphism px: Uqslj —> Uqsfa must be introduced

[3]:

fo(£αo) = E , p , ( F α o ) = F, px(HQ) = H ,

px(EXι) = xF , px(FXl) = x- ιE , px(Hx) =-H .

Note that in this representation the central charge c is zero. Under the action of

px the root vectors acquire the form ([22]):

E^+ns = (-\yxnq-»hE , F^+ns = {-\)nx-"Fqnh ,

EXι+nδ = (-l)"x"+lFq-"h , Faχ+nδ = {-\γχ—x<t*E ,

^ - q~2FE) , (20)

^ - q~2EF) .

Substituting this in the expression of the affine universal Λ-matrix following [22],

one can obtain the spectral parameter i?-matrix:

^ (^)(f)fyr, (21)
where

R\z) - exp ( Σ n l n "-2nz
nEm Θ Fnδ) , (22)

R~(z) = Π exP?-2 ((? - q-ι)z"+ι(Fq-"H ® q"HE)),

Jf =q

Now we consider (22) on Verma modules Mχ of Uqsl2 and its behavior at roots

of unity.
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Note that one can represent the terms 7?±,i?° of the universal 7?-matrix in a more
suitable way by performing the infinite sum and infinite product in (22). So, we
have ([23]):

R+(z) = 1+( ^q~q )

-zq~2K-χ

-2! (\-zq-2K-χ ®K)(l-zq-4K-1 ®K)

(E^FT ( g g y
(n)q-i\ (l-zq-2K-ι®K)(lzq-2nK-ι®K) ' ^ ;

I

and

where

R\z,

- exp Σ ( (<

) = f{z)k\z\

^-\^[kn\q[λ2ή\q\ zn

(25)

ι }

xexp Σ (<«-*" -K-)ϋ>q-"[^ψ- +<f[-^®(K" -,'•")) ί. (27)
Λ^l V lnϊq lnϊq / W

By performing the infinite sum in (27) one can easily show that the term R (z)

acting on vjι 0 Vj2 gives rise to the following expression, which is well defined in

the limit qN —> 1:

R%)vf'®υf = l l ί ^ + | U g g fjll/=o(l-g g £) A, |2 ( 2 8 )
1 J πuw1(i-?2v-^)π !/::(i-^- l2-^) ! ;
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The scalar factor f(z) (26) is singular for qN = 1. It can be omitted from the
expression of the i?-matrix. So, the regular expression of the i?-matrix for qN = 1
on Mχλ ® Mχ2 has the form

Rλuλ2{z) = R+{Z)R\Z)R~{Z)X . (29)

Note that it satisfies Rχltχ2(z)υ^ ® VQ2 = qϊλιλ2v§ ® v^2. This renormalized expression
of the /^-matrix doesn't satisfy the quasitriangularity condition (3). The intertwining
property (2) and the spectral parameter dependent Yang-Baxter equation

I ) f f - ( I ) «'••>• ( I ) - «"•'• ( I ) «>••>• ( I ) " " (%) (30)

are satisfied.
Let us consider now the possibility to restrict (29) on finite dimensional semi-

cyclic modules. Recall that the semicyclic module V^χ is obtained by factorisation
of Mχ on Iaχ = (FN — cc)Mχ for some α G C:

The i?-matrix (29) is well defined on Vauχλ <g> V^χ2 if it preserves this factorization,
i.e.

Rλuλ2(z)(Mλι <g>IaiM) C (Mλι ( 8 ) I a i M ) 0 ( / β l Λ ® M l 2 ) (31)

and
R^φXI^ W l 2 ) c (Mλι ® / β 2 f A 2 ) 0 ( / α i Λ 0M λ 2) . (32)

The conditions above follow from

j ) (hN FN®\ + \®FN) = (λ,N 1®FN+FN® l)Rλuλ2 fy ,

• 1 ® F N +xNλ2

N FN

Here we used the intertwining property (2) for

So, one can express the operators

Rχuλ2 (-) (FN ® I) and Rλuh (-λ (I ® FN)

as a linear combination of the operators

(FN®l)Rλuλ2(^j and (I ®FN)Rλuλ2 ( ^
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(if ^ φ λ\"J λ2

N). In the same way,

?N — λ\) <S> 1) and
..,,.. . y

are a linear combination of terms

' x
J and ( ® ( 2 ) ) A I Λ (

with the same coefficients if parameters x,y,λ\,λ2,0L\,tX2 lie on the algebraic curve

In this case the factorisation conditions (31), (32) are fulfilled and the R-matrix (29)
can be reduced to the 7?-matrix RvaLλλλ^vgLlλ2 of semicyclic representations of Uεsh,
considered in [17-19].The condition (33) on parameters of representations appears
naturally as a consistency of factorisation V^χ = Mχ/I^χ with the intertwining prop-
erty (2) of i?-matrix.

Note that the formulae (23), (24), (27), (29) can be applied directly to semicyclic
modules, using the constraint FN — a id on V^χ.

4. Discussions

Let's consider now the possibility of restriction of the automorphism (19) in
the evaluation representation (20) to cyclic modules. Recall that their intertwin-
ing operators are the Boltzmann weight of the Chiral Potts model ([10]). The
cyclic modules are representations of the quotient algebra Qξ = QβAiχ, ζ = (β, α, λ),
which is obtained from Uεsl2 by factorisation on the ideal Iβ^λ, generated by
(FN - α), (EN - β\(KN - λN\ (β, oc,λeC) ([9]):

Qβ,«,λ = U£sl2/Iβ,a,λ

The necessary condition for restriction of R(z) to Qξ is the constraint on the pa-
rameters of the representation to lie on the algebraic curve, defined by

l-λ2

N

-N Λ Λ -N1-λΓ" l-λ
(34)

We expect that this condition is also sufficient and the automorphism R can

be restricted on some automorphism (outer, in general) of the quotient algebra

Qξi ® Qξy which we denote by RQξι®Qζ\
Consider now its action on the tensor product of cyclic modules Vξλ <S> Vξ2.

R ξχ ξl is reduced here to the matrix algebra automorphism. Recall that every
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automorphism of the matrix algebra is inner. So,

RVVξι®Vξ

with some matrix Rξuξ2. This i?-matrix is nothing but the Boltzmann weights of the

Chiral Potts model.

For quotients Qo,a,λ, corresponding to semicyclic irreps, this suggestion is true.

Note that in the case of q4 = 1 there is a Hopf algebra homomorphism between

different quotients, as was observed in [24]. This fact was used there to construct

i?-matrices of quotient algebras for q4 = 1 from the 7?-matrix of βo,(Ui ® Qo,o,λλ •>

which corresponds to nilpotent irreps.

Another question is to extend these results in the case of other quantum algebras.

When we had finished this work, we saw the paper [25, 26] where the center

of the quantum Kac-Moody algebras was studied also. As was observed there the

automorphisms ω± (18) correspond to translations of the quantum Weyl group.
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