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Abstract: We show that the action of the universal R-matrix of the affine Uq;lz
quantum algebra, when g is a root of unity, can be renormalized by some scalar
factor to give a well-defined nonsingular expression, satisfying the Yang-Baxter
equation. It can be reduced to intertwining operators of representations, correspond-
ing to Chiral Potts, if the parameters of these representations lie on the well-known
algebraic curve.

We also show that the affine U,sl, for g is a root of unity from the autoquasi-
triangular Hopf algebra in the sense of Reshetikhin.

1. Introduction

The intertwining operators of quantum groups ([1-4]) lead to solutions of the Yang—
Baxter equation, which play the crucial role in two dimensional field theory and
integrable statistical systems ([4, 5]). It is well-known that most of them can be
obtained from the universal R-matrix ([1]) for a given quantum group: the solu-
tions of the spectral parameter dependent Yang—Baxter equation can be obtained
from the universal R-matrix of affine quantum groups ([6]) and the solutions of the
non-spectral parameter dependent Yang—Baxter equations can be obtained from the
universal R-matrix of finite quantum groups.

The situation is not the same for the case when the parameter g of the quantum
group is a root of unity.

In this case the center of the quantum group is larger and a new type of rep-
resentations appear, which have no classical analog ([5, 7, 8, 9]). It was shown in
[10, 11] that the cyclic representations lead to solutions of the Yang-Baxter equation
with a spectral parameter, lying on some algebraic curve. These solutions correspond
to Chiral Potts Model([12—-14]) and its generalizations (for quantum groups U,sl,).

The formal expression of the universal R-matrix fails in this case: it has singu-
larities when ¢ is a root of unity. Recently in [15] Reshetikhin introduced the notion
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of the autoquasitriangular Hopf algebra to avoid these singularities. He treated the
U,sly case.
The main goal of this paper is to show that after suitable renormalization by a
scalar factor the universal R-matrix produces R-matrices for concrete representations.
In Sect. 2, we consider the universal R-matrix on Verma modules of U,s/; when
q is a root of unity. We prove that it is well defined and make a connection with
the R-matrix of the autoquasitriangular Hopf algebra, founded by Reshetikhin.

In Sect. 3 we consider the algebra U,sl, at roots of unity. We found the cen-
tral elements of its Poincaré—Birkoff-Witt (PBW) basis, generalizing the results of
[9] for the affine case. It appears that a new type of central elements appear for
some imaginary roots, which have no analgg for finite quantum groups. After this
we prove the autoquasitriangularity of U,sl,, generalizing the results of [15] for
the affine case. Then we consider the action of the affine universal R-matrix on
U,sl,- and U,sl,-Verma modules. On U,sl;-Verma modules it is well defined. For
Ugsl-Verma modules we renormalize its expression by a scalar factor to exclude
the singularities. The remaining part leads to solutions of the infinite dimensional
spectral parameter dependent Yang-Baxter equation. We showed that under a cer-
tain condition this R-matrix can be restricted to semicyclic representations, giving
the Boltzmann weights of the Chiral Potts model, corresponding to such a type of
representations, which was considered in [16-19]. The condition, mentioned above,
is on the parameters of representations: they must lie on the well-known algebraic
curve. It is the integrability condition of Chiral Potts model.

In the last section we made the same type of suggestion for cyclic representa-
tions.

2. The U,sh, Case
2.1. The Universal R-matrix on Verma Modules at Root of Unity. The quantum

group Ugsl, is a [¢,q ']-algebra, generated by the elements E, F, K with the
following relations between them:

[KK1=0, [EF]=55, (1)

KEK~! = ¢°E KFK~!' = ¢7%F .

On Uys!, there is a Hopf algebra structure with the comultiplication 4 : Usl, —
Uysly ® Uysly defined by

AK)=K®K, AME)=E®1+K'QF , AF)=FQ®K+1QF .
We denote K = ¢, g = €", as usual, and consider the [[%]]-algebra Uysl, with
the same defining relations. Uysl, is a quasitriangular Hopf algebra, i.e. it possesses

the universal R-matrix R € Uysl, ® Uxsl, connecting the comultiplication 4 with
the opposite comultiplication 4’ = ¢ o 4, where o(x ® y) := y Q x:

A'(a) = RA(a)R™', Va € Upsl, . )
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It satisfies the quasitriangularity relations
(A®@ DR =Ri3R3  (1®4)R=Ri;3Rp (3)
and the Yang—Baxter equation ([1])
R12R13R23 = Ry3Ri3Ry; 4
Here we used the usual notation: if R = )" a; ® b;, a;,b; € Uysl, then
R12=Za,~®bi®1 , Ris :Zai®1®bi , Rys =Z1®a,.®b,. .
i i i
The explicit expression of R in terms of the formal power series is
R =exp,2((g — g~ )E @ F))g?"®", (5)

where the g-exponent is defined by exp,(z) = ano ﬁ, (z)g = 11—__‘1;.

Note, that to be precise, U,s/, is not a quasitriangular Hopf algebra, because the
term ¢/7®" in (5) does not belong to U,sl, ® Uysl,, but it is an autoquasitriangular
Hopf algebra ([15]). The latter is a Hopf algebra 4, where the condition (2) is
generalised by

A =R(4),

where R is an automorphism of 4 ® 4 (not inner, in general). So, although (5) is
ill defined on U,sl,, the action

R(a) = RaR™" (6)

where a € Uysl, ® Ugsly is still well defined.

For two representations of U,sl, ¥ and V, one can consider two Ugsl;-actions
on V1 ® ¥V, by means of both comultiplications 4 and A’. If R is defined on
Vi ® V,, then both A4- and A’-actions are equivalent via the intertwining operator
Ry,@v, = R|y,@r,. For general g the restriction of (5) on the tensor product of two
irreducible representations (of any highest weight representations) is well defined.
And all solutions of the Yang—Baxter equation (4), having U,s/>- symmetry in the
sense of (2) can be obtained from the universal R-matrix (5) in such a way.

The situation is different for ¢ being a root of unity. In this case the singularities
appear in the formal expression of R.

Recall that for ¢ = exp (%) the elements F¥, FV, KV, where N = N’ for odd
N’ and N = %/ for even N’, belong to the center of Uysl,. In irreducible represen-
tations they are multiples of identity. Recall that every N-dimensional irreducible
representation is characterized by the values x, y,z of these central elements (and
also by the value of the g-deformed Casimir ¢ = Kq;—fq—_l?_—l + EF, which for the
fixed x, y,z can have in general N discrete values ([9])).

Although the expression of the R-matrix (5) of U,sl, has singularities for ¢V =1
in all terms ﬁE” ® F" for n = N, its restriction on the tensor product of Verma
modules M;, ® M,, is well defined.

Recall that M) is formed by the basic vectors vf,,, m=0,1,..., satisfying

Evé =0, van = U;;H-]a Hvé = }»Ué, recC.
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To consider the action of R on M), ® M;,, we use the formula, which can be
obtained from the defining relations (1) ([9]):

min(n,s) [, s e .
[E"F']l= > [ . ] [j][j]!Fs ](H[H+j—n—s+r])E"—f ,

Jj=1 J r=1
where
9 —q"

[a]!
[Z]:“— and [l =lrly = L= 15

[6]![a — B]!
So, forn > s (n) lJ =0and forn < s:

E" 2 =1 | § n 1
_ = 2 ). — .
(n)q—Z! vS q [ n } rl;ll[ § + r]vs—n

The g-binomial [$] has a non-infinity limit for ¢¥ — 1. So,

R(vl‘®v ) = Xs:

n=0

x H[/h — s+l @v2,, (7)

r=I1

(4 —25)(% —2%) ,,(,, _
2 “(g—q ‘)"[ }

is well defined when ¢q is a root of unity.

2.2. The Connection with Reshetikhin’s R-matrix of Autoquasitriangular Hopf
Algebra. This R-matrix can be presented in another form by using the recent results
of Reshetikhin ([15]). He used an asymptotic formula for the g-exponent in the limit
¢V — 1 to bring out multiplicatively singularities from exp, ((g— g HE ® F). The
expression of the universal R-matrix in this limit then acqulres the form:

—1
2

R =exp (2]\}2hL12(EN ®FN)) (1-EY®F")

N-1 .
x [[(1—€e"E®F) #gqi®H . O(h) .
m=0
Here g = exp(h)e, € = exp(3%) and Lir(x) = — [ 1"(1 =9 gy is a dilogarithmic

function.
Recall that although the elements

EN FN

dH
Myl W)yt ™

do not belong to Uysl, for ¢" " — 1, their adjoint actions
ad(x)a = [x,a], Ad(exp(x))a = exp(x)aexp(—x) = exp(ad(x))a

on Uysl, are well defined in this limit and give rise to some derivations ([9]). Let’s
denote them by e, f and & correspondingly.
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The element 5> Li>(EV @ FV) in the exponent of (8) in the adjoint represen-

tation also acts on Ugsly ® Uysl, as a derivation in the limit 7 — 0 . It can be
expressed by means of the derivations e and f as follows:

et (g8 7)) =on MU TR e P 4B 0 ).
where
) - ——5‘2)_N for odd N’ (N’ =N) ®
v { (~1)V(1—e2)™ foreven NV (N'=2N)
Note that

Ad(féH@H) — 8%(h®HL+HR®h) — (1 ®KL)%h®1 . (KR ® 1)1®-2l-h ,

where X7 (Xg) is the left (right) multiplication on X, is well defined in the adjoint
representation. A

So, one can write down the automorphism R (6) in the limit # — 0, obtained
in [15], in the following form:!

R :Z]_;[;Ad (1-e"EF)7F)

_yIn(1-EN@F")

_2\—N N N
xexp(—(l—s ) Y (e@F"+EV @ f)

x (1@ K)H®' - (Kr @ 1)@, ©)

Let us now consider the restriction of (9) on the quotient algebra obtained from
U,sl, by factorisation on the ideal, generated by EV, i.e. impose EV = 0. Although
this ideal is not stable with respect to derivations e, f, 4, it is easy to see that it is
stable with respect to R.

Moreover, the left U,s/; ® Uysl;-module

Dygy = (Ugslh, ® Izz)@(hl ® Uysly)

is also stable with respect to R. Here we denoted by I, the left U,s/;-module,
generated by E and (K — &*). This fact allows to restrict (9) on Verma modules,
because we have the left U,sl;-module equivalence

(qulz & UqS12)/]ll,).z = Mll ®M/12 .

So, one can derive from (9) the restriction of R on this factormodule given by
the multiplication on?

R=N1:[1 (1 —e"E®F)™¥) exp ((1 — 5_2)—N(6®FN)) (10K ) . (K1) ®1h,
m=0
(10)

! For quantum groups one can introduce 4 equivalent comultiplications: 44, A('I, A1, A"] _, [6]. In

[15] the comultiplication A;_ , had been used as a basic one. So, the R-matrix, used there, is Rq‘_lI in

. . . 1
our notations and differs from the 44-case used here by permutation of g-exponent and q211®H

2 Note that both / and e are well defined on M; in contrast to f.
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This expression is another form of expression of universal R-matrix (5) on Verma
modules and coincide with (7).

3. The Case of Affine Uqﬁz

3.1. The PBW Basis and the Universal R-Matrix. The affine quantum universal
enveloping algebra Uysl; is a [g,q~']-Hopf algebra, generated by elements E; := E,,
F;=F,, K;=q",i=0,1 and ¢° with defining relations ([2]):

¢, 4"1=0, 79" = q"q* , [E:, F;] = 04i[Hi],
qHE;qgH = q%E; , qHF,g T =g, ¢°Evg ™ =qE1, (11)
¢Fiq ' =q7'Er,  ¢'Eeq? =Ep, ¢'Fog™ = Fo ,
(ad,E)'~%E; =0,  (adFy)~F; =0,
and comultiplication
A(g™) = ¢ @ ¢, Mg =q¢'©q
AE)=E®1+qg"®E, AF)=F4¢"+1QF; .

Here we use the q- -deformed adjoint action (adgx)y := Y, x;ys(x'), where A(x) =
>, xi®x' and s: qulz - qulz is an antipode of qulz, defined by

s(E) = —KE; , s(F)=-FK™', sK)=K"', s¢)=q"

Also we denoted by a;; the Cartan matrix of affine s7(2) Lie algebra

2 =2
a;; = ) 2 .

Let’s denote by c the central element ¢ = H; + H,.
Define on Ujsl, an antiinvolution 1 by

K) =K, WE)=F;, F)=E, 1q)=q"

As above, denote by Upsl, the [[A]]-algebra with the same relations but with
the elements H; instead oquH'.
The PBW basis of Uysl, is formed by elements H;, d, Eyns, Fu4ns> E,s and
"5» which are inductively defined by the relations

an+n6 = (_l)n(adEg )nEO 5 Ea1+n6 = (adE(; )nEl 5
Els = [2] (Esgt(—1)0E1 — G *E1Eqy1(n-1)) (12)

Foins = UEw1ns) Fn& =UE 5)
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The expression of the universal R-matrix of Uh;lz is simpler if one redefines
E)s and F,; by means of Schur polynomials ([6]):

— -1 EP:—l
E,= % g-9)
0<ky <+ <kpm Pl!-npm!
ki p1+-+hm pm=n
Fls=1Es) .
In order to rewrite all the relations between (12) in compact form it is suitable
to change slightly the basis as follows:

(Es)? - -+ (Egus)P"

K]:i:l — k! Koil _ k;lq:l:c,
E =(=1 n_—2n_— k—l E =(=1)" —(c+2)n_ .+ 13
ap+né — ( q X s o +néd — ( ) q Xn s ( )
—§n—2n —(§+2)n

q

_ 9 -1 —
Eﬁa—(—l)"m%k s Es=(-1) oy

Then the elements x5, (n € Z), ay,(k € Z,k # 0), Y, @—m>, (m = 1) and Y =
o ' — k satisfy the following relations:
[am,an] = (5,,,,_”%[&1 P [amy k] =0,

- 2 Inl
Bk = g, o] = T

m

+ + +2 4+ + _ 42 4+ + + 4+
X1 X¥n =4 X X1 =4 XXy — X1 ¥m (14)
_ 1 < (m— —S(m—
[x,",;,xn 1= q_q_](qz(m n)l//m+n -4 3(m n)(Pm+n) s

Umz ™" = kexp ((q —q7" ioi amz"”) ,

m=1

T

> o_mz™ =k 'exp (—(q -ghHY a—mzm) .
m=0 m=1

These relations had been introduced by Drinfeld in [20] and define another realiza-
tion of affine algebra U,sl,. The antiinvolution 1 in this notation is
) =x%, . W=, @) =a.., U =q".

We choose the normal ordering of the positive root system A4, of quAlz as
follows:

o, 0g + 0,...,00 +nd,...0,20,...,n0,...,00 +nd,...,000 +0,...,0 . (15)

Then the universal R-matrix has the form [6]:

— nEn(S ®Fn6
R = ( 1;[0 exp,-2((9 — " W Eyns ® Fao+n6))> exp (Z )

2 —2
n>0qn“q "

— 1
X < 1;[0 equ_z((q -4 1)(Eoc1+n6 ® Fa1+né))> q2H0®Ho+c®d+d®c’ (16)
n=

where the product is given according to the normal order (15).
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3.2. Uq.;\lz at_roots of Unity. For q being a root of unity (¢ =¢, ¢ = ezﬁ’%), the
center of U,sl, is enlarged by the N'™ power of the root vectors, as for finite
quantum groups:

[E),x]=0, [FY,x]=0, KN,x]=0, (17)

where y € 44 := {a; +nd,mdéln = 0,m > 0} and x € UesAlz.

These conditions for the simple roots y = a; can be proven by using the defining
relations of the Cartan—-Weyl basis (11) as for finite quantum algebras it had been
done in [9]. Indeed, using

AENY =KV QEN+EVN®1,
recalling that the g-deformed adjoint action ad, is a Uq;lz-representation:
adg(ab)c = ad,(a)ady(b)c , Va,b,c € quAlz ,
and using Serre relations in (12), we obtain for i # j, N = 3:
[EN,E;] = ad (EN )E; = (ad(E)))VE; =0 .

Other commutations in (17) for y = o; can be verified easily.
To carry out (17) for other roots one can try to use the isomorphism, induced
by the g-deformed Weyl group. In the affine case it had been considered in [21].

But it is easier to use the symmetries of Drinfeld realization of Ugsl, directly. It is
easy to see from (14) that the operation w+ on U,s/, defined by

OLX) =Xy s Ox(an) =am,  0x(9)=q,

o+() =4V, 0+(@n) =9 Qs , wx(c)=c. (18)

is an algebra automorphism. As the roots can be obtained by applying w4 from the
simple ones, we finished the proof.

In addition to this, the elements FEyys, Fyys are central for £ € N,. This can be
seen from (14) and (13). These central elements have no analog for finite algebras.

s . EY £y ANE, NF,
| ! s
The adjoint action of (—N—);__z!’ (T);T’ y € 44 and pro ;’lm, qzw_;@m lead

in the limit # — 0 to derivations of Ugglz, which we denote by e,, f,, é, f X
correspondingly. The action of the automorphism  on these derivations inherits its
action from corresponding root vectors.

3.3. The Universal R-Matrix at Roots of 1. Now let’s consider the expression of
the universal R-matrix (16) in the limit # — 0. The singularities, which appear in
all g-exponents, are the same type as in the expression of the universal R-matrix
of Upsl,. A new type of singularities appear due to the factor W in the
exponent before all terms Epys ® Fiys for any natural k. R

But as in the U.sl, case, the adjoint action R of R on Usglz ® Ugsl, is well
defined.
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Indeed, the adjoint action of every g-exponent term
Ry =exp,2((g—q 'NE, ®F,)), y=o0;+nd

in (16) can be treated as it has been done in the U.sl, case:

N—1
lim Ad(R,) = [1 4d((1 — €"E, ® F,)"¥)

m=0

In(1 - EN @ FN)
X exXp (CN’W(%(@F;\/'{-E){\[@JP)') >
Y Y

where ¢y is defined by (8).
From (13) and (14) it follows that the operations

R . kNE s - . kNFys
ek=,§1£})ad<m o Je=jmad | Cw W
also are the derivations on Ueﬂz, as it was mentioned above. So,

A . . kN
Rivs = lim Ad(Rys) = lim Ad (exp (mEkNé ®FkN6))

= exp(éx @ Fivs + Evs ® [ ,

gives rise to an outer automorphism of U€s72.
Finally, the right term in (16) has the following adjoint action:

'%A/ — Ad(g%Ho®Ho+C®d+d®C) — (1 ® (KO)L)%II()@l . ((KO)R ® l)l®%hogc®ad(d)+ad(d)®c‘

Here hy = ad(Hy) is a derivation on Uq;lz.
So, we proved that the quantum algebra U.s/, is an autoquasitriangular Hopf
algebra with the automorphism

R:(H 1@)5{, (19)
yE44

where the product over positive roots is ordered according to the normal order (15).

3.4. The Universal R-matrix on Verma Modules. Consider now the Verma module
M; over Ucsl, with highest weight 4. It is generated by vectors

i ky ki A
Dklw-k,,:Fy,,"'Fyllvé’ kiy..0sky, =0,1,..., y€Ad, 1< <Y,

where v is a highest weight vector:

Epf=0 . Hol=I(H)w .
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As for Ugslp-case all terms R, and K in the product of the universal R-matrix
(16) are well defined in the limit # — 0. Indeed, there is a well defined action of
derivations e;, é; on M; by

eigvg == elg)v} éigvl == éigwg Vg e U.sl, .

Moreover, in the action of (16), on any vector x € M; ® M- the term R, with
sufficiently large y give rise to the identity and the only finite number of R, survive.
In the decomposition of each such R, only finitely many terms also survive. So, the
action of R on x € My, ® M- is well defined.

To define the action of the Universal R-matrix (16) on U,s/,-Verma modules, the

spectral parameter dependent homomorphism p,: Uq;lz — U,sl, must be introduced

[3]:
px(Edo) =E, pX(Fao) =F, Px(HO) =H,
plE) =3F ,  puFu)=xE,  pulH)=—H .

Note that in this representation the central charge ¢ is zero. Under the action of
p» the root vectors acquire the form ([22]):

Egyins = (Z1)'%"¢™™E ,  Fypyns = (=1 "Fg™

Ea1+n6 — (_l)ner—qu—nh , Foc1+n(5 — (_l)nx—n—lqnhE ,

" = (_[lz)]z_lx”q'("’”h(EF —q7*FE) , (20)

-_— n—1 —_— —_ —
v = g "q"VMFE — g °EF) .

Substituting this in the expression of the affine universal R-matrix following [22],
one can obtain the spectral parameter R-matrix:

R (f> =(p:®py)R=R" (f> R (f) R <f> A, @1
¥ y) " \» y

R*(z) = 1;[0 exp,2 (9 — ¢~ )2"(¢ "™E @ Fg"")),

where

n
R(z) =exp <Z mz"Em; ® F,,,;) , (22)

n>0

R (z) = I;IO exp,—2 (¢ — g~ )" (Fg " © ¢"E)),
n=

A = q%H®H_

Now we consider (22) on Verma modules M; of U,sl, and its behavior at roots
of unity.
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Note that one can represent the terms R*, R® of the universal R-matrix in a more
suitable way by performing the infinite sum and infinite product in (22). So, we
have ([23]):

(g—97"
1-2zg2K-1@K
(EQF) (e-q7 "7
" (2)! (1—2¢2KT@K)(1—-2g—*K~' ® K)

(EQF) (g—q7 'y
(n)g—2! (1-2g2K-1®K)---(1—2g=2"K~ 1®K) ’

R*(z) =1+ (EQ®F)

(23)

z2(g—q")
1—2zg2K-1®K
1 (g —q
(2)q~2v(1 2 2K T @K)1—-2g ‘K 1 ®K)

R(z) =1+ FQE

—1)2
(FRE) +

! g —q” ) \
(n)q_2|(1 Zq—ZK 1®K) (1__Zq_2,,K_1®K)(F®E) 4+, (24)

and 0
R(z) = f(2)R (2), (25)
where

f(z) =exp Z>:1 ((q _ q—l)M> z;”

[2n],

(2" "% 4 oo (2"~ ‘Z‘Z,q“‘)
:(Zqi.m—z 7 oolzg— 12, g=4)

(26)

@)oo = ﬁo(l —zg")

n

R (Z) = exp Z (%_i;g_:a (q—lm _K—n) ® (Kn _ qlzn)> Z;

xexp 3 ((CI‘* kM eq 2 g ol g en ‘2”>> @7
nx1 [ ]q [ ]‘I

By performing the infinite sum in (27) one can easily show that the term Ro(z)
acting on U '@ A2 gives rise to the following expression, which is well defined in
the limit g% — 1

Hﬁ, (1 — g~ 2gh AIZ)H q—zlqzzmz)
| J AR —q”qiz hz) TI é(l — g )

Rz © v = M. (28)

i
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The scalar factor f(z) (26) is singular for ¢ " = 1. It can be omitted from the
expression of the R-matrix. So, the regular expression of the R-matrix for ¢ = 1
on M;, ® M;, has the form

R;(2) = RY ()R ()R~ (2)A . (29)

1

Note that it satisfies R g,,xz(z)vé‘ ® véz = q2hh vé‘ ® véz. This renormalized expression
of the R-matrix doesn’t satisfy the quasitriangularity condition (3). The intertwining
property (2) and the spectral parameter dependent Yang—Baxter equation

X1 X X2 X X X
Ry, 2, (x_z) Rll,lz (;i) R), 2 <g> = R, 15 <x_§> R, <x_;> Ry, 0, (;;‘) (30)

are satisfied.

Let us consider now the possibility to restrict (29) on finite dimensional semi-
cyclic modules. Recall that the semicyclic module ¥, is obtained by factorisation
of M; on I,; = (F¥ — a)M; for some « € C:

Va,l = M/I/Ia,}. .
The R-matrix (29) is well defined on V,, ;, ® V,,,, if it preserves this factorization,
ie.
R/h,lz(z)(MM ® 10!2,12) - (Mlx &1y, ;) @([awh ® Mlz) (31)

and
Rl],lz(z)(loq,ll ® Mlz) C (Mll ® Idz,ﬂz ) @(qu,,l, ® Mﬂz) . (32)

The conditions above follow from

R;, 1, (%) N FVR14+10F) =" - 19FY + FN @ )R, 4, (%) ,

Ry G) GV Y1+ Y c1eFY)
X
=" 1 FY 20" - FY @ 1R, (5)

Here we used the intertwining property (2) for
AEN)=EN @1 +K " ®E ,  AFN)=F'@K)+1®F!.
So, one can express the operators

X X
Riis <;> (F¥®1) and R; (;)(1®FN)

as a linear combination of the operators

X
(F¥ ® 1)R;, 1, <;> and (1®FY)R;,,, (%)
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(if ’y‘—x #* /IIN/'LZN). In the same way,
X N X N
R}q,]q ; ((F" — A)®1) and Ril,lz ; (1F" — /12))
are a linear combination of terms
N X N X
(F" = 21)® DRy, 2, 7 and (1®(F" — L))R;, 4, y

with the same coefficients if parameters x, y, 4, 42, a1, lie on the algebraic curve

o N 0%) N _ {N_
rn kv S =(3) =1. (33)

In this case the factorisation conditions (31), (32) are fulfilled and the R-matrix (29)
can be reduced to the R-matrix Ry, , gy,,,, of semicyclic representations of U.sly,
considered in [17-19].The condition (33) on parameters of representations appears
naturally as a consistency of factorisation V,; = M;/I,, with the intertwining prop-
erty (2) of R-matrix.

Note that the formulae (23), (24), (27), (29) can be applied directly to semicyclic
modules, using the constraint FV = o - id on Vo

4. Discussions

Let’s consider now the possibility of restriction of the automorphism (19) in
the evaluation representation (20) to cyclic modules. Recall that their intertwin-
ing operators are the Boltzmann weight of the Chiral Potts model ([10]). The
cyclic modules are representations of the quotient algebra Qr = Qpos, & = (B, 1),
which is obtained from U.sl, by factorisation on the ideal Ig,;, generated by
(FY — ), (EY — B), (K" — V), (B, 2 € C) ([9]):

O = UeslyfIgy; .

The necessary condition for restriction of R(z) to Q¢ is the constraint on the pa-
rameters of the representation to lie on the algebraic curve, defined by

N
g ()
=Y 1=1Y" y ’

B _ B
-4V 11—V

(34)

We expect that this condition is also sufficient and the automorphism R can

be restricted on some automorphism (outer, in general) of the quotient algebra
O¢, ® Q¢,, which we denote by RPa®%
Consider now its action on the tensor product of cyclic modules Ve ® V%,.

"Q{y ®Q§2

R is reduced here to the matrix algebra automorphism. Recall that every
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automorphism of the matrix algebra is inner. So,

pQ0¢ @0
RV¢11®V522 = Ad(Rz,&,)

with some matrix R, ¢,. This R-matrix is nothing but the Boltzmann weights of the
Chiral Potts model.

For quotients Qg 1, corresponding to semicyclic irreps, this suggestion is true.

Note that in the case of g* = 1 there is a Hopf algebra homomorphism between
different quotients, as was observed in [24]. This fact was used there to construct
R-matrices of quotient algebras for ¢* =1 from the R-matrix of Q00,4 ® Q00,45
which corresponds to nilpotent irreps.

Another question is to extend these results in the case of other quantum algebras.

When we had finished this work, we saw the paper [25, 26] where the center
of the quantum Kac-Moody algebras was studied also. As was observed there the
automorphisms w4 (18) correspond to translations of the quantum Weyl group.
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