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Abstract: I give an interpretation of the fundamental theorem of algebra based on
supersymmetry and the Witten index. The argument gives a physical explanation of
why a real polynomial of degree n need not have n real zeroes, while a complex
polynomial of degree n must have n complex zeroes. This paper also addresses in
a general and model-independent way the statistics of the perturbative ground states
(the states which correspond to classical vacua) in supersymmetric theories with
complex and with real superfields.

Supersymmetry provides some of the richest insights into the connections between
physics and mathematics, with the Witten index [5] serving as one of the central
tools in forging such connections. Perhaps what is most striking is the range of
the applications of supersymmetry to mathematics; supersymmetry has been used to
prove the Atiyah-Singer index theorem [2], to compute the topological invariants
of manifolds [5, 6], and to derive a variety of results in arithmetic number theory
[3]. The central role of the Witten index in these and in many other physical and
mathematical applications stems from the invariance of the index under deformations
of the parameters of a theory. This makes the index a powerful tool. It means
that the index may be calculated reliably by simple means, as one need only find
one point in parameter space where it is easily calculable to know its value at
all points in parameter space; this in turn makes possible the derivation of exact,
non-perturbative results about physical theories and the mathematical structures they
describe (subject to certain caveats I mention below).

In this paper, using arguments that are not mathematically rigorous but which
are nonetheless instructive and compelling, I extend the scope of the connections
between supersymmetric physics and mathematical results by showing how one can
use supersymmetry to obtain the fundamental theorem of algebra. In fact, I will use
supersymmetry not only to show that an nth -degree polynomial over the complex
numbers always has n roots, but also to demonstrate that an «th-degree polynomial
over the reals has an even or odd number of real roots, according to whether
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n is even or odd, respectively. (Here, and throughout this paper, I always include
multiplicities when I refer to the number of roots of a polynomial.) Furthermore, our
results will provide a physical interpretation of why the zeroes in the complex and
real cases behave differently, of why the fundamental theorem of algebra holds for
complex but not real polynomials. The central piece of the argument is to associate
the zeroes of a polynomial with the classical vacuum states of a supersymmetric
quantum theory, followed by the use of the Witten index to understand how the
number of such states may or may not change as one changes the parameters of
the theory, and hence how the number of zeroes may or may not change as the
coefficients of the relevant polynomial are changed. The polynomial in question is
the first derivative of the superpotential. On the physical side, our work establishes
some general results regarding the statistics associated with these classical vacua,
and why the statistics of these vacua exhibit different relationships in the cases of
theories with complex and real superfields, respectively.

The organization of this paper is as follows. Following this introduction, I review
some of the fundamental properties of the Witten index and address some basic
facts regarding the zeroes of polynomials. Then I proceed to a discussion of the
zeroes of polynomials over the reals by computing the Witten index of a quantum
theory with real superfields. I find that the classical vacua alternate between bosonic
and fermionic statistics, leading to the conclusion that the number of real zeroes
of a real polynomial and its degree are equal in mod 2 arithmetic. Then I move
on to a discussion of complex polynomials, and find that in the corresponding
quantum theories, all the classical vacuum states have the same statistics. This,
in turn, leads to the fundamental theorem of algebra, namely that an nth-degree
polynomial over the complex numbers has n complex roots [1]. In both cases, I
show how the appearance mathematically of multiple roots corresponds physically to
the existence of classical vacua with vanishing perturbative mass gap (i.e., minima
with vanishing quadratic contribution to the Taylor series), and thus develop a
physical understanding of how to identify and treat multiple roots.

In an appendix, I demonstrate that the invariance of the index under parameter
deformations can be established without first diagonalizing the Hamiltonian. Since
some treatments of diagonalization implicitly employ the fundamental theorem of
algebra, this technical detail is important; it ensures us that the argument of this
paper is not circular, i.e., that we are not invoking results that themselves depend
on the fundamental theorem of algebra.

Let me emphasize that the point of this paper is to explore some intriguing con-
nections between the Witten index of supersymmetric theories and the fundamental
theorem of algebra, obtaining insights both into the properties of the perturbative
zero-energy states of a supersymmetric theory and into the behavior of zeroes of
polynomials. As such, I have intentionally focused on the physical theories that offer
the most instructive insights. While this leads to a variety of interesting results, the
derivation of these findings is not entirely rigorous from a mathematical point of
view. The gaps in rigor stem primarily from two points: the use of field theories
which have never been shown to exist formally, and the use of perturbative calcu-
lations of the index (equivalently, the use of the ultralocal limit in the functional
integral to calculate the index), a method which is reasonable but which has not
been rigorously proven to be valid in general. I will return to these points in the
next section.

It is worth pointing out here that there are at least three ways to view the ma-
terial presented in this paper. One can view this paper as a work of interpretation,
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recognizing a common mathematical structure at work in the behavior of the zeroes
of polynomials and of the Witten index of super symmetric theories. Such interpre-
tation enriches our understanding of both fields, and it is this richer understanding,
even in the absence of mathematical rigor, that the reader is urged to get from
this paper. Second, one can view this paper as an outline of a proper derivation
of the fundamental theorem of algebra; where there are gaps in rigor is clear, but
how to fill in these gaps, converting an informal argument into a formal derivation,
is an open task. Third, one can think of reversing the arguments presented in this
paper. Since one knows that the fundamental theorem of algebra has been proven
rigorously by other means, the consistency of our analysis of physical theories (e.g.,
the perturbative calculation of the Witten index) with the fundamental theorem of
algebra provides a non-trivial (although obviously not definitive) check on those
physical methods, a necessary but not sufficient test that those physical methods
must pass. I have thought of this paper primarily in the spirit of the first approach,
but all three approaches have relevance.

1. Index Basics

In a supersymmetric quantum theory, the Hamiltonian H is given by the square of
the supercharge Q, a Hermitian fermionic operator. This implies that there are no
states of negative energy. Furthermore, the operator (— l)F that measures fermion
number anticommutes with the supercharge. This means that the states of positive
energy come in degenerate bose-fermi pairs. Consequently, if we define the Witten
index as t r ( - l ) F e ~ ^ (often written more loosely as tr(— 1)F), we see that the
index calculates the difference between the number of bosonic and the number of
fermionic zero energy states.

Because of the pairing of positive energy states, changes in the parameters of
the theory that maintain supersymmetry can cause states to enter or leave the kernel
of the supercharge (which is also the kernel of the Hamiltonian) only in bose-fermi
pairs. Thus, under continuous deformations in the parameters of a theory (as long
as these do not change the behavior of the potential at infinite field strength or
otherwise similarly change the Hubert space of the theory [5]), the index cannot
change; it may be calculated at every point in parameter space by calculating it at
one convenient point in parameter space. Furthermore, any approximation scheme
that respects supersymmetry will give a correct and exact (not approximate) value
for the Witten index. This is because the higher order corrections can only have the
effect of moving states into and out of the kernel of the Hamiltonian in bose-fermi
pairs.

The Witten index is therefore topological in nature, and so is typically exactly
calculable through rather simple methods. For our purposes, we will generally calcu-
late the index using perturbative methods. Restricting to finite volume with periodic
boundary conditions, we will identify the classical ground states. We will then study
the perturbative spectrum about each such state to find its contribution to the in-
dex. Summing these contributions from all the classical ground states will then give
the index. One important feature of this perturbative method is that the perturba-
tive contribution from the expansion about each ground state depends only on the
properties of the potential in the neighborhood of that minimum of the potential;
the other vacua have no effect on the index contribution. Tunneling between vacua
is a higher order correction, and so does not change the value of the index. Note
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that in the functional language, this method of expanding about the perturbative
zeroes is essentially equivalent to taking the ultralocal limit, in which the fields
are taken to be constant, and hence the functional integral becomes an ordinary
integral.

The heart of this paper lies in the application of this method, and as such it
is important to understand the level of rigor of this method. Indeed, one way to
present this paper is simply to say that it is a derivation of the fundamental theorem
of algebra based on the assumption that the various supersymmetric physical the-
ories employed exist and that perturbative (equivalently, ultralocal) calculation of
the Witten index of such theories is valid. Of course, in the case of the supersym-
metric field theories we use, it is not established that such theories exist rigorously
from a mathematical point of view. And, even if they do exist, the validity of the
perturbative or ultralocal approximation for calculating the index is still an open
question - one can argue that such an approximation is plausible via Fourier ex-
pansions, for example, but such arguments are formal, relying on such requirements
as various functional integrals being well-defined, various limits being non-singular
and commuting with other operations, etc. In the case of non-relativistic quantum
mechanics, the perturbative or ultralocal approximation rests on a better footing, and
although there is no general proof of its applicability, at least in particular theories,
with care, one can show its validity, although proper treatment of this requires care-
ful analytical work (e.g., showing that the Hubert space of states does not change as
one includes perturbative and non-perturbative corrections). And, obviously, prov-
ing rigorously the validity of these methods in the case of field theories is an open
question that will not be answered in the near future, barring dramatic progress in
constructive field theory.

Note that if I removed all references to field theories in this paper, by speak-
ing only of non-relativistic quantum mechanics and its complex generalization, this
would enhance the rigor of the argument. I have nonetheless opted against this
choice, favoring instead to seek greater insight into the interplay of physics and
mathematics that occurs in supersymmetric theories. By using field theories, I am
able to explore the behavior of perturbative ground states of supersymmetric theo-
ries, and to use this behavior to understand the behavior of the zeroes of polyno-
mials, provided of course the physical theories in question (or at least very similar
theories) exist. After all, my main goal is to use supersymmetry to enhance the un-
derstanding of the fundamental theorem of algebra. As we know, technically sound
proofs of the fundamental theorem of algebra already exist; but new insights into
why the theorem is true nonetheless further our understanding of the physical and
mathematical structures in question. Thus the reader is urged to remember through-
out this paper that the arguments presented are valuable for the insights they provide
and compelling for the structures they suggest, but that the arguments from which
these results are obtained are not mathematically rigorous.

Having set this context, let us return to a consideration of the perturbative
calculation of the index. Suppose one considers a theory with superpotential W(φ).
Let P(φ) = dw

dΨ''. The supersymmetric vacuum states classically are given by the
zeroes of P(φ) since the scalar potential is V(φ) = \P(φ)\2. These zeroes fall into
two categories. Either the perturbative excitation spectrum around the zero has no
massless particles or it does have massless particles. If the classical vacuum has
no massless particles in its excitation spectrum, this classical vacuum contributes
either +1 or —1 to the Witten index. If the classical zero energy state does have
massless particles in its perturbative spectrum, the situation needs to be studied
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more carefully. It is the connection between the Witten index and the zeroes of
P(φ) that will form the basis of our interpretation of the fundamental theorem of
algebra. By choosing P(φ) to be a polynomial of degree n, we can address the
questions we wish to address, establishing results regarding the number of zeroes
of an nth-degree polynomial.

Note that any two nth-degree polynomials P(φ) must produce the same Witten
index (modulo the possibility in the real case for two polynomials to produce in-
dices of the same magnitude but opposite sign; I discuss this in the next section).
Changing the sub-leading coefficients in P(φ) does not change the asymptotic be-
havior of the potential, and hence does not change the index. Likewise, changing
the leading coefficient does not change the index, as long as this leading coefficient
is not made to vanish. We will use the equality of the index associated with all
nth-degree polynomials P(φ) within particular classes of theories (keeping track of
the possible sign flip mentioned above) to relate the number of zeroes of various
7zth-degree polynomials.

Finally, it is worth making the rather obvious remark that an nth -degree poly-
nomial cannot have more than n roots. The easiest way to see this is by observing
first that if φ — φo is a solution to P(φ) = 0, then φ — φ0 is a factor of P(φ)
(which is obvious once one shifts variables by φ = φ — φo), and observing that an
nth-degree polynomial cannot have more than n linear factors.

2. Polynomials Over the Reals

In this section, we consider the use of the index to study the zeroes of polynomials
over the reals. We will first discuss this case in general terms, and then look at our
results in the context of a specific model. We will use the language of field theory
in the general discussion because of the useful insights one obtains, and then move
on to the mathematically less precarious case of non-relativistic quantum mechanics
when we turn to a specific model.

Let us consider a supersymmetric theory in which the superpotential W{φ) is a
real-valued function of the real-valued field φ, as occurs, for example, in supersym-
metric quantum mechanics and in 2 + 1 dimensional supersymmetric scalar field
theory. As in the previous section, define P(φ) = | ? . To calculate the index using
perturbative methods, one must identify the zeroes of P(φ), since the potential is
V(φ) = (P(φ))2. We are interested in the case that P(φ) is a polynomial in φ.

We now wish to find the index for a theory in which P(φ) is an «th-degree
polynomial. Since all polynomials of a given degree have the same index, we pro-
ceed by first considering a representative polynomial of given degree n; from this,
we will learn the index associated with and gain insight into the number of zeroes
of any «th-degree polynomial P(φ). It turns out that we only need to consider two
representative polynomials, one of even degree, and one of odd degree.

First, consider as a representative even degree polynomial P(φ) = φn + 1, where
n is even. This polynomial manifestly has no real roots. As a consequence, the
Witten index for the corresponding theory (in which W(φ) = JP(φ)dφ is an odd
degree polynomial) is zero. From this we can conclude that the Witten index of
any theory for which P{φ) is an even degree polynomial is zero. Ignoring for the
moment the situation when there are zeroes of P(φ) about which there is no mass
gap, we see that, since each zero of P(φ) generically contributes either +1 or —1
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to the Witten index, P(φ) must have an even number of zeroes (an equal number
of bosonic and fermionic ones) when P(φ) is a real polynomial of even degree.

Now, as our representative odd degree polynomial, consider P(φ) = (φ + 1)
(φn~x + 1), where n is odd. This polynomial manifestly has only one real root,
about which the perturbative spectrum has a mass gap. As a consequence, the
Witten index for the corresponding theory is either +1 or — 1. (The actual sign
does not matter for our purposes.) This means that any odd degree polynomial has
Witten index ± 1 . Hence (excepting for the moment the situation in which there are
zeroes with no mass gap), an odd degree polynomial has an odd number of zeroes.

Note, incidentally, that the statement that any nth -degree polynomial can be de-
formed continuously into any other nth -degree polynomial comes with a caveat.
Remember that as long as the leading asymptotic behavior of the potential does not
change (keeping a canonical kinetic term throughout, of course), the index does not
change. Now for a real polynomial, the leading coefficient cannot change from pos-
itive to negative without passing through zero, at which point the leading behavior
of the potential is different. Thus it is possible that an «th-degree polynomial will
produce a different index depending on whether its leading coefficient is positive or
negative. However, modifying our examples above by multiplying each representa-
tive polynomial by —1, we see that the only possible difference in the index value
in the case of positive versus negative leading coefficient is a difference in sign.
For even polynomials, this leaves the index as zero; for odd polynomials, we again
conclude that the index is ± 1 . Thus this possible change in sign, while relevant in
other contexts, has no actual bearing on the arguments presented in his paper, and
so we will not pursue it further here.

What happens if there are classical vacua for which there is no mass gap in the
perturbative spectrum? Performing a Taylor expansion about some root, say φo, tells
us that in the neighborhood of such a root, P(φ) ~ C(φ — φo)r'. This is sufficient
for studying the contribution to the index from the perturbative expansion about the
classical vacuum point φ = φ0. Note that if r = 1, there is a mass gap, and we have
the case considered previously; if r > 1, there is no perturbative mass gap. At this
point, the system looks like one in which dW/dφ is an rth-degree polynomial, and
so we see that the contribution to the index from the perturbative expansion about
this vacuum state is simply r mod 2. Also, as is easily seen by shifting variables to
φ — φ — φo, if a polynomial P(φ) ~ C(φ — φo)r in the neighborhood of φ = φo,
then (φ — φoY is a factor of P(φ).

This means that if we introduce the familiar notion of a multiple zero (i.e., count-
ing it as r zeroes of P{φ) if (φ — φoY is a factor of P(φ)), our previous statements
regarding the number of zeroes of P remain unchanged. Since an r-fold zero con-
tributes ±(r mod 2) to the index, in order for a polynomial of degree n to produce
the required index, namely n mod 2, that polynomial must have an even or odd num-
ber of real zeroes, respectively, according to whether n is even or odd, provided we
count multiplicities when we enumerate the roots. (Of course, the total number of
zeroes - indeed, of linear factors - can never exceed the degree of the polynomial.)

It is worth noting that our result for real polynomials says that, as the parameters
of a real polynomial change, the number of zeroes of that polynomial can only
change by two (or a multiple of two) at a time, so as to preserve the value of the
index. In the physical interpretation of this result, this is the statement that classical
vacua can only appear or disappear in bose-fermi pairs. There is a standard algebraic
interpretation of this result, too. We can view a real polynomial as a special example
of a complex polynomial (which must, as we will see below, have n complex roots).
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Since the complex roots of a real polynomial must occur in complex conjugate
pairs, we have recovered physically the familiar algebraic result that the only way
for the number of real roots of a real polynomial to change is for its complex roots
to appear or disappear in complex conjugate pairs.

As an explicit example of our construction for real polynomials, we can consider
supersymmetric quantum mechanics in one spatial dimension [4]. Including the ^'s,
the Hamiltonian is given by

w * £ + f W . + . » ψ . (2,>
2m ax1 v 2m dx

The operator (—l)F is simply σ3. The classical zero energy states are given by the
solutions of

P(x) = 0 . (2.2)

Some of these solutions may be bosonic and some fermionic, depending on whether
they are eigenstates of σ3 with eigenvalue +1 or —1, respectively. As Witten
showed, the exact quantum theory has either no zero energy states or exactly one
zero energy state. Thus, the index is either 0 or ± 1 , respectively, in accord with
what we found based on general arguments; in fact, when P(x) goes as xw, Witten
showed in [4] that there is no zero energy state when n is even, and that there is
one zero energy state when n is odd.

In perturbation theory, these index results arise by expanding about each point
where P(x) vanishes. Suppose XQ corresponds to a zero of P(x) and hence to a
classical vacuum state. The Hamiltonian near this point to leading order is

H * ~ £ έ + ( ( x " x o ) p / ( x ° ) ) 2 + σ 3 i p / ( x o ) (2 3)

This is a harmonic oscillator potential; calculating, we see that if P'(xo) is posi-
tive (respectively, negative), this Hamiltonian has a single fermionic (respectively,
bosonic) zero energy state. Hence the classical vacuum contributes an amount to
the index equal to — sign(P'(xo)). Thus, depending on this sign, the classical vac-
uum is associated with either a bosonic or fermionic perturbative zero energy state.
Since the fermion number is given by minus the sign of P(xo), it therefore follows
that, as one proceeds along the spatial axis, the vacua one encounters are alternately
bosonic and fermionic. (If P(x) has vanishing slope at the classical vacuum point,
we simply need to refine the argument to include the notion of multiple zeroes, just
as we did earlier. There is little to be gained by doing that here, so we leave it as
an exercise for any interested readers.)

Incidentally, this alternation of the fermion number of the classical vacua can be
derived from more abstract index arguments. Since we can deform the location of
the zeroes of the superpotential without changing the index, we can choose all but
a pair of zeroes to be very far from each other, so that the physical effect of those
faraway zeroes is negligible. Perturbatively, then, this theory looks just like a theory
in which P(x) is quadratic, plus the contributions of the faraway zeroes. Since the
index in a theory with quadratic P(x) is zero, the statistics of these two nearby
zeroes must cancel each other. Any pair of adjacent zeroes of P(x) can be isolated
in the way just described above, but the order of the zeroes of P(x) cannot change
under smooth, non-singular deformations. Thus any pair of adjacent zeroes of P(x)
must have opposite fermion number, which in turn means that the classical vacua
correspond, in alternating fashion, to bosonic and fermionic states. Note, too, that
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this gives us another way to understand the contribution to the index at a root of
P(φ) which is also a point of inflection. We can model the perturbative situation of
P(x) ~ C(x — xoY as the coalescence of r adjacent zeroes, all deformed to the point
x = *o If r is even, then this coalescence will always involve an equal number of
bosonic and fermionic vacua (since the fermion number alternates), producing index
0; if r is odd, by a similar argument, we see that this coalescence will produce index
±1 about this classical vacuum.

3. Polynomials Over the Complex Numbers

The consideration of the zeroes of polynomials over the complex numbers proceeds
in a way similar to what we have already done for polynomials over the reals,
although the results are quite different. In short, we will see that every nth -degree
complex polynomial has n complex roots. In this section, I will use the language of
field theory; the reader has already been alerted to the ways in which this undercuts
the rigor of the argument, but we expect that the reader will nonetheless find the
results instructive and insightful.

Let us consider a supersymmetric theory with complex superfields, such as super-
symmetric scalar field theory in 3 + 1 dimensions. As in the, real case, we define
P(φ) = ! ? , where the superpotential W(φ) is now a complex-valued function of the

complex field φ. The potential is V(φ) = | P(φ) | 2 . The perturbative computation of
the index can thus be achieved by determining all solutions of P(φ) — 0, and then
expanding about each of these. Note that any two «th-degree complex polynomials
P(φ) will produce the same value for the index. This result is slightly stronger
than in the real case. In the complex case, the leading coefficient of P(φ) can be
changed continuously from a positive to a negative number without ever passing
through zero. Thus all nth-degree polynomials yield exactly the same index, with
the same magnitude and sign. This contrasts with the real case in which changing
the sign of the leading coefficient could change the sign, but not the magnitude, of
the index.

One additional simplification in the complex case is that we will not need
to distinguish between even and odd degree polynomials, as will readily become
apparent.

To proceed, then, we first pick a representative «th-degree complex polynomial
and calculate the index associated with it. We then will use this result to find the
index associated with any nth -degree polynomial, which we will then use to show
that an arbitrary rcth-degree polynomial has exactly n roots.

As our representative nth -degree polynomial, let us consider

Po(φ) = (φ-cι)(φ-C2)'-(φ-cn)9 (3.1)

with the complex constants Cj all distinct from each other. Clearly, this polynomial
has n complex roots, with non-zero mass gap in the perturbative spectrum about
each of these classical vacua. We must now determine which of these classical
vacua correspond to bosonic states and which to fermionic states, so that we can
compute the index.

Under continuous non-singular deformations of the parameters of the theory, the
statistics of each individual vacuum cannot change, as the eigenvalues of (— \)F can
take on only the discrete values +1 and —1. Let us concentrate for the moment on
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two of the vacuum say φ = c\ and φ = c2, as we undertake certain deformations
in the parameters of the theory.

Note that one can vary φ — c2 smoothly to φ — c\9 while varying φ — c\
smoothly to φ — c2. To do this, consider

X(φ-c3)...(φ-cn). (3.2)

As σ varies from 0 to 1, Pσ continuously deforms so that the vacua at φ = c2 and
φ = c\ smoothly switch locations. Thus, by the fixed value of the statistics of each
vacuum individually under continuous changes of the parameters of a theory, the
statistics at φ — c\ when σ = 0 must be identical to the statistics at φ = c2 when
σ = 1 and the statistics at φ = c2 when σ = 0 must be identical to the statistics
at φ = c\ when σ = 1. On the other hand, the polynomial is exactly the same at
σ = 0 and σ = 1. Thus the statistics of the vacuum at φ = c\ is the same whether
a — 0 or σ = 1, and the statistics of the vacuum at φ = c2 is the same whether
σ = 0 or σ = 1. Putting this all together, we see that in our original polynomial,
the vacua at φ = c\ and φ = c2 must have the same statistics.

Now there was nothing special about these two particular vacua. Hence we see
that all the classical vacuum solutions for this polynomial have the same fermion
number, and thus the Witten index is ib«. (We do not need to determine the sign.)

So, in this particular theory, the index has value ±n. This is a theory, however,
in which P(φ) is an nth-degree polynomial. As we have argued above, any two
theories in which P(φ) is an rcth-degree polynomial over the complex numbers
must produce the same index. This means that any other theory in which P(φ) is
an nth-degree polynomial must have a Witten index of value ±«, whether we know
how to write the polynomial in the factorized form in (3.1) or not.

What are the further implications of this result for general nth-degree polynomials
P(φ)Ί Since the index for such a theory is ±«, and since generically the zeroes
of P(φ) will all exhibit mass gaps in their respective perturbative spectra, we see
that a generic nth-degree polynomial must have n zeroes. Since achieving an index
of ±n requires at least n zeroes, and since an nth -degree polynomial can have at
most n zeroes, we can conclude that an «th-degree complex polynomial has exactly
n zeroes.

Note further that since the index is ±n and all the classical vacua where
P / ( φ ) φ 0 can be deformed into each other and hence have the same statistics,
we can rule out on index grounds alone the possibility that there are more than n
zeroes for an «th-degree polynomial P{φ). (In fact, using the observations developed
below regarding zeroes which are also points of inflection, one can extend this to
use index arguments alone to show that there are no more than n zeroes even when
some are located at points where P'{φ) vanishes.)

What if there are zeroes of P(φ) about which there is perturbatively no mass
gap (i.e., the first term in the Taylor series for the potential about that point is
higher than quadratic)? What happens at such a point?

As in the real case, we can understand such a point independent of what is
happening elsewhere in the potential. If the polynomial P(φ) « C(φ — c)r to lowest
order near the zero φ = c, then, calculating the contribution to the index from this
point perturbatively, we see that the contribution to the index at this point is the
index associated with an rth-degree polynomial. Consequently, such a point can
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contribute an amount to the index of ±r, only. Since we have ultimately to reach
a total index of n, and the polynomial can have no more than n linear factors, one
can infer that the sign of this index contribution must be the same as the sign of
all the other index contributions from all the other perturbative vacua. (Recall that
for a polynomial, if P(φ) ~ C(φ — c)r near φ = c, then (φ — cj is a factor of

Alternatively, we can see that the sign is the same directly. We can obtain a
function which is perturbatively identical to the C(φ — c)r considered above by
considering the coalescence of r vacua which have mass gaps. Since all the vacua
with mass gaps contribute to the index with the same sign (the same not only
among the r vacua that are coalescing, but among all the vacua), the coalescence
of r such vacua must give a contribution with the same sign as all these other
vacua, too (although larger in magnitude by a factor of r\

Thus, if we introduce the familiar notion of the multiplicity of a zero, we have
just concluded, subject to the limitations of rigor pointed out above, that all complex
πth-degree polynomials have n complex roots. What the work above demonstrates is
that an rth-degree zero contributes an amount r to the index; all the zeroes contribute
to the index with the same sign; and the total index is n for a polynomial of degree
n. This means that, counting multiplicities, a complex polynomial of degree n has
exactly n roots. This is the fundamental theorem of algebra. Our argument rested
on our determination that any «th-degree polynomial P{φ) leads to a theory with
the same value for the Witten index, namely ±«, which in turn implies that P(φ)
has n linear factors.

Note that we have found some essential differences between the complex and real
cases. The most significant is that in the complex case, the locations of the vacua
in field space could be interchanged smoothly, without colliding, by a continuous
change in the parameters of the theory. This is what led to an index of value ±n,
which in turn led to the fundamental theorem of algebra by forcing the number of
zeroes to be n. In the real case, this smooth type of interchange is not possible,
which makes it possible for the vacua not all to have the same fermion number.
Indeed, this occurs; as we have seen, the real case always has vacua of alternating
fermion number.

Before closing, it is worth noting that one approach to showing that a complex
polynomial of degree n has n complex roots is first to show that any complex
polynomial has at least one complex root. From this, one can proceed by induction
to show that an #th-degree polynomial has n roots, by pulling out a linear factor for
the first root one knows about, and then studying the polynomial of degree n — 1
this leaves behind. We could have used the above index arguments to recognize
immediately that, since any complex polynomial is associated with non-zero index, it
must have at least one zero, in order for the perturbative index calculation to yield
a non-zero result. One could then proceed via induction to show mathematically
that such a polynomial has n complex roots. Our goal here, however, has been
to show the rich set of relationships that exist between the physical properties of
supersymmetric quantum theories and the mathematical results regarding the zeroes
of polynomials, and thus we have chosen instead to seek an understanding of the
broader behavior of these zeroes from a physical perspective.
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Appendix A. Invariance of the Index

In this appendix, I derive the topological invariance of the Witten index

A = tr(-lfe~βH , (A.I)

by which I mean that I show the index to be unchanged under parameter defor-
mations and to be calculable exactly using approximation methods. The reason for
doing this is that typically discussions of the invariance of the index invoke diago-
nalization of the Hamiltonian along the way, and some treatments of the diagonal-
ization of operators implicitly use the fundamental theorem of algebra (invoked for
finite dimensional matrices, followed by the taking of an appropriate limit), some-
thing we must avoid if we are to use the invariance of the Witten index to derive
the fundamental theorem of algebra. Thus, in this appendix, I establish explicitly
that the fundamental theorem of algebra is not in this appendix, is not necessary to
derive the topological invariance of the index.

Let the Hamiltonian H and the supercharge Q be Hermitian operators related
by H = Q2. They act on a Hubert space Jf\ There is also an operator (— l)F

which anticommutes with Q and squares to the identity. Note that the operator H
is positive semi-definite, and so in any state, the expectation value of H is non-
negative, and it can only be zero for a state in the kernel of H. In addition, let us
let Jtf" = coker H; this is a subspace of Jf.

Note first that ker Q = ker//.
Second, note that we can choose as a basis for Jf states which are eigenstates

of (—1)F. To do this, given some basis of kets \n), we define a new basis using
the kets

|/i)±(-l)», (A.2)

which have eigenvalues ± 1 , respectively, under (—1)F.
From now on, I use such a basis. Let B and F denote, respectively, the bosonic

and fermionic subspaces of f̂, and let B' and F' denote, respectively, the bosonic
and fermionic subspaces of 3tf"'.

It is straightforward to see that, given \f) e F'9Q\f) G B'. Clearly, Q\f) e B.
Let \bs) be a bosonic state in ker H. Then (bs\Q\f) = 0, and thus we see that
QF' c B'. In an entirely analogous fashion, we see that QB' c F1.

The next step is to show that, in fact, QF' = B' and QB' = F'. This can be
obtained in one of two ways.

Method 1: We start from the existence of an inverse H~x on #t'. Then given
a bosonic ket \b'), we can write it in the form \b') = Q\f), by defining the
fermionic ket \f) =H~λQ\b'). This establishes that B' C QF'. Since we have
both QF' c B' (see above) and B' c QF\ we see that QF' = B'. Likewise,
QB' = F'.

Method 2: We start from the (physically motivated) statement that the range of
H is Jtf". Now we already know that Q\f) eB'. Applying Q to this, we find

Q2F' CQB' CF' . (A.3)

But in order that the range of the Hamiltonian be the full Jf', we see that Q2F' =
F'. Thus it follows that QB' = F' and, likewise, that QF' = B'.
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Moving on, I now consider

f^^ f ^ , . (A.4)

(Note: If the sum is not absolutely convergent, one should take the sum in the order
implicit in the bose-fermi grouping of states I use below.) Now let the kets \bj)
form a basis for B'. Define

W) (A5)

Clearly, since QB' — F\ the set of vectors in (A. 5) spans Ff. Do they in fact form
a basis for F'Ί The answer is that they do. Otherwise, there would be constants Cj
such that

Σcj\fj) = 0. (A.6)
j

This would mean then that

( ; ) 0 , (A.7)

(where α7 = Cj/(bj\H\bj}ι/2), which cannot be, since the \bj) form a basis for jtf",
and so a linear combination of them cannot belong to ker H.

Thus we can set up a one-to-one correspondence between the basis vectors of
B1 and the basis vectors of F'. It is a simple exercise to show that each member of
a pairing of bosonic and fermionic basis vectors (as paired above) yields the same
expectation value of H or any function of H; that is,

%\H\b'j) = {fj\H\fj) . (A.8)

Thus,
(b'j\(-ιfH\b'j) + {ή\{-\fH\r;) = o. (A.9)

Consequently, the Witten index receives a net vanishing contribution from all the
states in J»f, and thus

tr(-lf e~eH=\I(-\f\)ΰaH . (A.10)

Note further that we have shown that the basis for Jtf" can be organized in
bose-fermi pairs with common values for the expectation value of the Hamiltonian.
(We will refer to such pairs as degenerate because they give the same expectation
value for the Hamiltonian, even though they are not necessarily eigenstates of the
Hamiltonian.) If an approximation scheme erroneously determines whether a state
is in ker H or jf', it can do so only in degenerate bose-fermi pairs, as long
as the approximation scheme respects supersymmetry. Thus using an approximate
method to calculate the Witten index yields an exact result. Also, if we deform the
parameters of the Hamiltonian, as long as this leaves the Hubert space unchanged
(which will happen genetically when the asymptotic behavior of the potential is
unchanged), it leaves the Witten index unchanged, as states can only move between
ker H and M" in degenerate bose-fermi pairs.

Thus we have shown that the Witten index is indeed invariant and is indeed
exactly calculable when treating the system approximately, and we have shown
this without reference to diagonalizing H. This makes clear that the topological
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invariance of the Witten index does not depend, explicitly or implicitly, on the
fundamental theorem of algebra.
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