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Abstract: Let us consider a family of maps Qa(x) = ax{\ - x) from the unit interval
[0,1] to itself, where a e [0,4] is the parameter. We show that, for any β < 2, there
exists a subset E 3 4 in [0,4] with the properties

(1) Leb([4 -ε,4]-E)< εβ for sufficiently small ε > 0,
(2) Qa admits an absolutely continuous BRS measure μa when a e E, and
(3) μa converges to the measure μ$ as a tends to 4 on the set E.

Also we give some generalization of this results.

1. Introduction

We consider (real) one dimensional dynamical systems, that is, iterations of smooth
maps / from a closed interval (or a circle) to itself. The orbit of a point JC is a
sequence of points

In describing the distribution of the orbit, we use a sequence of probability measures

I n-\

μ«CO = - Σ <W>> w = 1,2,. . . ,
n 7=0

and, if this sequence converges to a probability measure μ as n —> oo, we call μ
the asymptotic distribution of the orbit of x. Here the convergence is that in the
sense of weak topology, that is,

1 n~\
Jφdμn(x) = - £ φ{f\x)) -• fφdμ as n -> oo

n i=o

for every continuous function φ on the interval. So the statistical properties of the
orbit are given by the asymptotic distribution μ, if it exists.
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We call a probability measure μ on the interval the Bowen-Ruelle-Sinai measure
for / if the asymptotic distribution of the orbit exists and equals μ for almost every
point in the interval with respect to the Lebesgue measure.

The problem we shall consider in this article is how the BRS measure depends
on the parameter in families of maps. To fix our idea, let us consider the quadratic
family Qa(x) = ax(\ - x) : [0,1] -> [0,1], where a G [0,4]. There are two typical
classes of dynamics in this family. The first one is the so-called hyperbolic sys-
tems, that is, the class of Qa which has a hyperbolic attracting periodic orbit. In
this case, the attracting periodic orbit is unique and the invariant probability mea-
sure on it is the BRS measure for Qa. The second is the class of maps which
admits an absolutely continuous invariant probability measure (acim). In this case
the acim is unique and it is the BRS measure for Qa[l]. For example, Q4 admits
an absolutely continuous BRS measure μ$ = l/(πy/x(l — x))dx. The set of parame-
ters corresponding to hyperbolic systems are open and hence has positive Lebesgue
measure. On the other hand, Jakobson's theorem [3] tells that the set of parameters
corresponding to the systems with acim has positive Lebesgue measure. It remains
unknown whether the union of these two subsets of parameters has full Lebesgue
measure in the parameter space [0,4] or not.

Let us denote, by μa, the BRS measure for Qa if it exists. If Qb is hyperbolic
for some parameter b, the nearby systems in the family are also hyperbolic and the
BRS measure μa depends on a continuously in a neighborhood of b, because the
attracting periodic orbit for Qb survives under small perturbations. However, when
the case Qb admits an acim, the situation is quite different. Let us consider the case
b = 4 where Qb = QA admits an acim μ4. Though some numerical experiments
seem to show that the distributions of the orbits for Qa converge to μ^ as a —» 4,
the dependence of the BRS measure μa on the parameter a is quite irregular. For
example we have

Theorem 1.1. There exists a subset F c [0,4] of parameters with the properties:

(1) Leb(F Π [4 — ε,4]) > cε2 for some constant c,
(2) Qa is hyperbolic when a e F9 and
(3) the BRS measure μa for Qa converges to the Dirac measure at the point 0

when a approaches to 4 on the set F.

The proof is simple. Let an be a (unique) parameter with the kneading data

β J 0 ) > 0 , 2 i ( 0 ) < 0 for 7 = 2,3,. . . ,/ i-l , and 62,(0) = 0 .

Then we can see that 4 — an ~ 4~n as n goes to infinity. Let Fn be the interval
containing an on which the attracting orbit for Qan survives. Easy calculations show
that \Fn\ rsj 4~2n. So if we put F = UFm F satisfies the conditions in the theorem.

Remark 1.2. Similarly, we can show that there exists a subset F' of parameters
satisfying the conditions (1) and (3) in the above theorem, with F replaced by F',
and

(2') Qa admits absolutely continuous BRS measure μa when a G F'.

In fact, the system Qa with a G Fn is once renormalizable and thus there is an
interval F" Z> Fn which consists of parameters such that Qa admits the same type
of renormalization. Let F'n c F" be the set of parameters a G F'ή such that Qa

admits an acim. Then applying Jakobson's theorem to the renormalized family, we
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can see that Leb(F^)/Leb(FjJ') is bounded away from 0 uniformly for n. F" = UF"
is required.

Remark 1.3. See the work [2] of Hofbauer and Keller for more interesting results
on the singular phenomena in families of unimodal maps. For example, they showed
that there exists uncountable parameters for which Qa has no BRS measure.

Now our result is

Theorem 1.4. For any given β < 2, there exists a subset E 3 4 of parameter space
[0,4] with the properties:

(1) Leb([4 -ε,4]-E)< εβ for sufficiently small ε > 0,

(2) Qa admits an absolutely continuous BRS measure μa when a £ E, and

(3) μa converges to the measure μ$ as a tends to 4 on the set E.

This result means that, though the BRS measure does not depend on the
parameter continuously at a = 4, the set which gives the discontinuity such as F in
Theorem 1.1 is relatively small. Actually this theorem follows from a more general
result which we will state in the next section. We will see that similar results hold
for many families and at many parameters.

The author learned from Hans Thunberg that the BRS measures for hyperbolic
systems can behave regularly at most points in the parameter set constructed in the
proof of Jakobson's theorem [6]. Also the author learned from him that M. Rychlik
has already obtained a result similar to Theorem 1.4 [5, Proposition 1]. A result
in [5] gives the continuity in Lp(p ^ 1) topology on the density functions of BRS
measure, which is much finer than weak topology, and Theorem 1.4 follows from
Rychlik's result except for the claim (1).

2. Main Result

Let /o be a C2 map from M = [0,1] (or M = Sι := IR/Z) to itself and let C(/ o)
be the set of its critical points. We assume that /o satisfies the following four
conditions:

(ND) All critical points of /o are non-degenerate.

(CE) There exist κ$ > 0 and ΓQ > 0 such that, for any critical point c and
w^O.

(0 K(/o(c)) |>exp(r o / i- iCo),

(ii) |d/o(/oO))l > expOo« - κ0) for any z e fo~
n(c).

(Hyp) All periodic points of / 0 are hyperbolic repelling.

(W) liminf^oo £ log \dfo(fQ(a))\ = 0 for any critical value a.

Let F : M x [ 0 , l ] - > M b e a one-parameter family of class C2 with F(x,0) =
/o(x). We denote f( ) = F( ,t) for parameters t e [0,1]. Assume that the family
F satisfies the condition

—F( fJ(c) 0)
(NV) Σ ° ! o

 dt γ° Φ0 for any critical point c G C(/o).
3 dfo(fo(c))



4 M. Tsujii

The following is the main result in this paper.

Main Theorem. For any given β < 2, there exists a subset E 3 0 of parameter
space with the properties:

(1) Leb([0,ε] -E)<εβ for small ε.
(2) Each map f with t G E admits a finite number of ergodic acίm's. For

Lebesgue almost every point on M, the asymptotic distribution of the orbit exists
and coincides with one of the ergodic acim's.

(3) If t(p) e E, p = 1,2,..., approaches to 0 and if μp, an acim for ft^9

converges to a measure μ as p —> oo, then μ is an acim for /Q.

Since β 4 has a unique acim μ4, Theorem 1.4 follows from the main theorem.
Moreover, for a subset of a G [0,4] with positive Lebesgue measure, the families
f := Qt_a and f := Qa-t satisfy the assumptions of the Main Theorem and a result
similar to Theorem 1.4 holds for such families. (See [7, Theorem 1].)

The support of each ergodic acim for / 0 , which is a union of finite number
of closed intervals [4], contains at least one critical point, because if otherwise,
the return map on a component of the support would be monotone and have a
nonrepelling periodic point. So, if /o in the Main Theorem has only one critical
point, /o admits a unique acim and, hence, a result similar to Theorem 1.4 holds
for the family in the Main Theorem.

If each critical point of /o is not eventually periodic in the Main Theorem, it
is not difficult to see that the support of each ergodic acim for /o has an absorbing
neighborhood. So, under this additional assumption, we can obtain a result similar
to Theorem 1.4 by restricting ourselves to one of the absorbing neighborhoods.

In [7], we have proved that there exists a subset of parameters satisfying the
conditions (1) and (2) in the Main Theorem. Here we shall prove that the additional
condition (8) holds for the parameter set constructed in [7]. We shall summarize
some results in [7] which we will use in this article. But before mentioning it, let
me explain the idea of the proof. The idea of the proof is similar to that in [8].

Let μp be the sequence of measures in (3) of the Main Theorem. Then each of
them satisfies the entropy formula

hμP(ft(p)) = / l o g Wt{p)(x)\dμp .

See [4]. Also we can prove easily that

(2.1)

A proof of (2.1) will be given in the appendix at the end of this paper.
Suppose that we have proved

lim inf / log \dft{p)(x)\dμp ^ f log \dfo(x)\dμ . (2.2)

It follows
hμ(f0)^J\og\df0(x)\dμ.

Since the inequality in the converse direction (Ruelle inequality) holds for any
invariant probability measures, we obtain the entropy formula for μ,

hμ(f0) = Jϊog\df0(x)\dμ.
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Since the (upper) Lyapunov exponent for f0 is positive at all points but the
preimages of critical points [7, Corollary 4.4], this implies that μ is an acim
[4, Theorem 3].

Therefore it is sufficient to prove (2.2) in order to prove the claim (3) of the
Main Theorem. Equation (2.2) is equivalent to the condition

lήnliininf / log \dfKp)(x)\dμp = 0, (2.3)

where C(f,δ) is the open ^-neighborhood of the set C(f) of critical points of / .
This is what we shall prove in the next section.

In the next section, we need the following fact which follows from the argument
in [7] immediately. (See Remark 2.1 below.)

Fact. For any given β<2, there exists a subset E of parameters satisfying (1)
and (2) in the Main Theorem. In addition, there exist η > 0 and δo > 0 such that
the following hold for ft with t £ E:

(A) Ifx £ C(/ί?(5o), there exists a positive integer q = q(x,t) < —η~ι log \dft(x)\
such that

log \dff{x)\ £ -2η log \dft(x)\ +ηq + κo+l,

where KQ is that in the condition (CE) on /Q. Also we have

d(ft'(x), C(/,)) > d(ft

m(x),

and

ψ !#(*)! < i (24)
h \dft{f}(χ))\ \dft{x)\ ' l Z > }

(B) I/O < δ ^ δ0, f!(x) $C{fuδ)for ί = 0 , l , 2 , . . . , / i - 1 and f»(x) E C(/,,<5),
then

log \df?{x)\ ^nn-Kv-l.

Remark 2.1. Let me explain briefly how we can get the Fact from [7]. Note that
E and η are not those in [7]. We put E — [jL>L ZL-, where Zι is the set of parameters
defined in [7] and let L$ be sufficiently large. Then, from Proposition 6.1 and
6.2 in [7], the properties (1) and (2) in the Main Theorem hold for E (under
an appropriate choice of constants). The first, second and third claim of (A) for
small η follow from claims (c), (d) and (e) of [7, Proposition 7.2] and their proof
respectively. Actually, the proof of [7, Proposition 7.2] is given only for x which
belongs to the orbits of critical points but, clearly, it holds for every point sufficiently
close to the critical points. The property (B) in the case δ = <5o follows from [7,
Lemma 5.1 (2)] if δo and η are sufficiently small. But once we have the property (B)
for δ = δo, one can combine it with (A) and get (B) in the case 0 < δ ^ <5o

In the proof of the Main Theorem, we shall assume M — Sι. This does not
violate the generality because, in the case M = [0,1], we can extend the maps
ft as maps from a circle to itself in an appropriate way. (See [7, Sect. 2].) By
changing the parameter if necessary, we assume, as in [7], that f with t G [0,1]
has a constant number of non-degenerate critical points. Let κ\ be a large constant
such that

\dft(x)\ < κx and fcf1 < \dft(x)\/d(x, C(ft)) <κx for x e M and t e [0,1],
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where d(x,C(ft)) denotes the distance from a point x to the set C(ft) of critical
points.

3. Proof of the Main Theorem

Let η, δo and E be those in the Fact in the previous section. For t £ E, δ > 0, h> 0
and a positive integer n, we define

Bn(h,δ,t) ={xeM Σ log \df(f!(x))\ χcuMfiW) < ~hn\ >

where Xc(ft,δ) is the indicator function of the set C(ft,δ). Note that we have

Bn(h,δ,t) C Bn(h,δ',t) if δ < δf < κ~x. We shall prove

Proposition 3.1. For any given ho > 0, there exist positive numbers δ < fcj"1, ε and
M such that

Leb(Bn(h, δ, t)) < M exp(-εhn)

for any h^ho, n^l and t e E.

We indicate first how (2.3) follows from Proposition 3.1. Suppose that t belongs
to E and that v is an ergodic acim for ft. Let X be the set of points for which the
distribution of the orbit exists and equals v. Then X has positive Lebesgue measure.
Let λo be a measure defined by λo(Y) — (Leb(X)) - 1Leb(7 i l l ) for any measurable
set Y, and put λn = (l/n)Σ"~Q

ι fι(λo). For any given ho > 0, we can choose ε,
δ and M as in Proposition 3.1 and obtain

/ Σ log \dft(fί(x))\ . χc{ft,δ){fi{x))dλo(x) = J + J
*=0 Bn(h0,δ,t)c Bn(h0,δ,t)

oo

^ — hon — (Leb(X)) - 1 J M Qxp(—εs)ds .

For sufficiently large n, we have

/ Σ log|^(//(x))| χcσtMf!(x))dλo(x)>-2hon.
i=Q

Since λn converges to v as « goes to infinity, we have

Hm I {din) Σ log\df(fl(x))\ χCUiMfl'

Ί Xc{ft,δ)(*)dλn{x)

Therefore
0 ^ /log | ^ ( x ) | . χc(/^)(x)^v(x) Z -2h0.

Since every acim is a convex combination of ergodic acim's and since we can take
ho arbitrarily small, this implies (2.3).
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Let us begin the proof of Proposition 3.1. For a C1 map φ from an interval
[a,b] to R, put

Dtat(φ,[*,6])= sup lo

χ,ye[a,b]

Then we have

Lemma 3.2 (cf Lemma 3.1 in [7]). There exists K > 0 swcλ /Aα/ // we put

[0, 1 ] W X G M - UΓj/ΓXQ/O), ί*

Λ [x - α,x + α]) ^ Σ Dist(/,,//([x - a,x + a])) < 1 .
/=o

If x G U"ΓQ ft~\C(ft)\ we regard α(jt,M) = 0. Put α(jc,0,0 = K:"1 for x e M
and ί G [0,1].

Remark 3.3. From this lemma and the definition of α( ), we have a(y,n, t) >
e~ι a(x,n9t) for ye [x — a(x9n,t)9x + a(x9n,t)].

Remark 3.4. The length of the interval f?([x — a(x9n,t)9x + a(x9n9t)]) is smaller
than 2e\dft

n(x)\a(x,n,t) ^ 2eκ\κ~x from the lemma above. So, taking K large, we
assume that the interval f?([x — a(x,n,t),x + a(x9n9t)]) is shorter than half of the
smallest distance between the critical points of ft for any x G [0,1],« ^ 0 and
ί G [0,1]. (We will use this in the proof of Lemma 3.6.) Also we assume
a(x9n9t) ^ 1 by taking K larger if necessary.

From now on, we consider the maps ft with t G E and choose (5 and other con-
stants uniformly for t G is. For simplicity of notation, we will write f,q(x),a(x,n),
Bn(h, δ) instead of /„ q(x, t\ a(x, n, t\ Bn(h, δ91).

The following is the main step of the proof of Proposition 3.1.

Lemma 3.5. For any given K > 1, we can take δ > 0 (uniformly for t G E) so
small that, for every point x G Bn(h,δ) with n §; 1 α«ί/ A > 0, there exist a se-
quence of positive integers

0 ^ wi < n2 < - < nd < n

and points zz e M with fni(zj) G C(f) satisfying

\*-zi\

and

where ε' = {4(1 +*Γ1)(1 + η~ι logκι)}~ιη.

Σ(ki-l)>ε'hn,

~ι logκι)}~ι
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First we show that this lemma proves Proposition 3.1. Let us put

Jm,k = U ίz — exp(—k)a(z,m)9z + exp(—k)a(z,m)] for m,k ^ 0 .

Then, from Remark 3.4, the right side is a disjoint union.

Lemma 3.6. If 0 ^ n\ ^ n2 < * * < n<i and h > 1 for i = 1,2,..., d, it holds

Leb ( Q Λ/ Λ) < ̂  exp f - g (*,- -

Let 1 ^ ί ^ d — I and consider two points w\ G / W /(C(/)) and
W2 G f~nί+ι(C(f)). Put «i = α(wi,n, ) and #2 = 0(W25WΪ+I) From Lemma 3.2, wi
is not contained in [w2 — 02,^2 + ̂ 2]- So, if [w2 — e~k2a2,w2 + e~k2a2] has non-
empty intersection with [w\ — e~kιa\,w\ + e~kχa\\ we can see that [W2 — «2?>̂ 2 +
^2] is contained in [w\ — e~kι+ιa\,w\ +e~kχ+ιa\\.

Let us denote, by J* k, the union of connected components of Jnuki m a t intersect

ΠI=I^«IΛ Also we denote, by J*. k, the union of connected components of JHlik
that intersect J£iik. From the above argument, J^ i 0 C J^ki-i- Hence we have

Applying this for ί — d — \,d — 2,... in turn, we obtain the claim. D

Now, let δ be that taken in Lemma 3.5 for some K > 0. Then, taking the
combinations of wz and ̂  into account, we get, from Lemma 3.5,

λ(Bn(h,δ))< Σ Σ C(

We can get Proposition 3.1 by using the approximation log C(p, q) = q( 1 + log(/?/#))
-h(P(l), which follows from log«! = nlogn — n + ^(1), and by taking A" sufficiently
large.

Let us prove Lemma 3.5. Let x be a point in Bn(h,δ). From the definition of
Bn(h9δ), the set ΛQ := {0 ^ /w < n;fm(x) e C(f,δ)} is not empty. The point in
the proof is to choose the numbers rii with the required properties from JVQ. We will
do this in two steps. First let us define a sequence 0 ^ n\ < n'2 < < n'd, < n
by

n[ — minimum element of J^o ,

n'i+ι — minimum element of (J^Q Π {m G N;«/ + q(fni(x)) < m < n})

and

/ O n{/«G N /î , + q(fn'd'(x)) < m < n} = 0 .

Let us put ^^{/i 7 ! ,/ !^ . . . ,/ !^}, Ii = [n'i + hnf

i + \
and / = U/i. Let us denote Z{m) = - log \df(fm(x))\.

Claim 1. Y™ ,~VΊ•, -- , . ,
^ ι = l i' 1 + 1 , - 1 log Ki
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Proof. Since \df«(fnl(x))\ > 1 for q = q(fn'(x)) < -η~ι log \df(fni(x))\ from
(A) of the Fact, it holds

0<\og\df\fni{x))\= Σ log\df(f\x))\ < - E Z(m)+ ?logici.
j=n'. m

This implies

Σ Z(m)<(η-}logκι)Z(n'i).

Since Jf§ = yFiU(/ΠyKo), we obtain the claim from the definition of Bn(h,δ). D

For 0 ^ m < n, let us put

X(m) = - log \df(fm(x))\ + log \dfm(x)\ - ίjm .

Let J^2 = {0 ^ n\ < «2 < * < ft^} be the set of m G Jί\ satisfying

X{m) - ηZ(m) > maxX(j)
j<m

Then we have

Claim 2. Σ m € ^ ) > ( 1 + , - l χ i + , - , ^ ^ y

Proo/ Let l\ < h be two adjacent elements in JV2 U {«} and let /i < m\ < <
mr < 12 be the elements of Jί\ between them. Then since mz φΛ^j we have

^ ι/Z(mr) + maxΛΓ(y) ^

j<mr

On the other hand we have

X{mr) - X{h) = log I J / ^ - ' ί/'1 (*))| + Zίm,) - 2(/i) - η(mr -

nt) + Z(mr) - Z(h)

because

log \dfm^(fι^(x))\ ^ Σ 2ηZ(mi) + η(mr - h)
i=\

from (A) and (B) in the Fact. Therefore we obtain

r

Z{lχ) ^ ηY^Zijni).
/=i

This and Claim 1 prove Claim 2. D

Claim 3. There exists a constant C (which does not depend on the choice of δ)
such that, for each m G Λ^, it holds

- < Cexp(—ηZ(m)).
a(x,m)\df»(x)
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Proof. The left side is written as

Σ exp(X(i)-X(m)-η(m-i)).
i<m

We estimate this sum. Consider the following cases for 0 5Ξ i < m:

(2) / e I,
(3) otherwise.

Let us denote, by Σ\,Σ2,Σi, the sum of exp(X(i) —X(m) — η(m — /)) over 0 ^
/ < w satisfying (1),(2),(3) respectively.

In case (1), we have

X(i)-X(m) <-ηZ(m).

Hence
Σι < Cx exp(-ηZ(m))

for some constant C\ which depends only on η. From (2.4), we can see that Σ2 <Σ\.
Consider case (3). Note that / '(JC) φC(/,<5) and \df{f{x))\ > κ~2\df(fm(x))\ in
this case. If f(x) G C(f,δ0), we have, from (A) and (B) of the Fact,

X(i) - X(m) < - log \df{f\x))\ + log \df(fm(x))\ + 2^ log \df(f{x))\

<2\ogκx+2η\og\df{fm{x))\.

If / ( x ) φ C ( / , ^ 0 ) , we have

X ( 0 - ^ ( m ) < -log(κΓ^o) + log|c//(/w(x))|-/co-l < 2ι,log \df(fm(x))\ ,

provided ^ is much smaller than (S0 So we have

Σ3 < C2\df(fm(x))\2^ = C2Qχp(-2ηZ(m))

for some constant C2 which does not depend on the choice of δ, provided that δ
is sufficiently small. From all these, we obtain Claim 4. D

Now we finish the proof of Lemma 3.5. From Claim 4, we have

» for each l S , S r f ,

where C is a constant which does not depend on the choice of δ. If the right side
is smaller than e~ι, we can find a point z* G f~ni(C(f)) such that

x-Zi\ < eCf exp(

from Lemma 3.2.
We have [ηZ(rii)/2] > K for given K if we take δ sufficiently small. From

Claim 5 and the inequality above, we have
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and
x — zt\ < Qxp(—[ηZ(ni)/2])a(zi,Πi) (cf. Remark 3.3)

when δ is sufficiently small. These show Lemma 3.5.

Appendix: Proof of the Inequality (2.1)

Let ζp be the partition of M by the critical points of ft^py Then on each element of

Vί=o f7(p)ζp> f™p) * s monotone. Let ζf be any partition of M into intervals. Then the

partition V/=o /?(/?)(£/? V O divides each element of V!=o ft(p)^P *n*° a * m o s ^ Nm

parts, where N is the number of the elements of ζf. So we obtain hμp(ft(P)9ζp) ^
hμp(ft(p),C) and hμp(ft(p)) = hμp(fKp),ζp). Similarly we get hμ(f0) = hμ(fθ9ζo),

where Co is the partition of M by the critical points of /o Since μp converges to
μ, we have

fm-\ \ (m-\ ^
l i m RΛ V fUM=HΛ V /"'Co

P^°° \i=Q KF) J \ί=0

for each m. Therefore we obtain (2.1) from the definition of the metric entropy:

hμ(f9ζ) = inf^m-^^VΓo1/-^).
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