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Abstract: Transverse-tracefree (TT-) tensors on (R3,^), with gah an asymptotically
flat metric of fast decay at infinity, are studied. When the source tensor from which
these TT tensors are constructed has fast fall-off at infinity, TT tensors allow a
multipole-type expansion. When gab has no conformal Killing vectors (CKV's) it is
proven that any finite but otherwise arbitrary set of moments can be realized by a
suitable TT tensor. When CKV's exist there are obstructions - certain (combinations
of) moments have to vanish-which we study.

1. Introduction

In this paper we consider transverse-tracefree (TT-) tensors on R3 with an asymp-
totically flat metric gab, i.e. tensors Pab satisfying

DaPab = 0, trace P = Q on (R3,^u), (1.1)

where D is the covariant derivative associated with g. The interest in this problem
comes first of all from (vacuum) general relativity, where Eq. (1.1) is the momentum

constraint for an initial data set (R3,^,/^)

Da(Pab - gab trace P) = 0 (1.2)

in the maximal (i.e. trace P — 0) case. As is well-known, Eq. (1.2) is just the
expression of the invariance of the theory under diffeomorphisms of three space.
Thus our study of Eq. (1.1) is relevant to a much larger class of theories than
Einstein's.

In the standard conformal approach to solving the constraints [13], Eq. (1.1) is
not solved on the physical metric gab, but a conformally related metric gr

ab having
faster decay at infinity than gab. One is here using the fact that Pab being TT is
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invariant under g'ab = ω2gab, P'ab = ω~lPab, ω > 0. We call g'ab, P'ab again gab, Pab.
Our assumptions on gab are that gab is smooth and, in standard coordinates xa on
R3, satisfies

9ab - δab = 0°° ί^τ^ j , 0 < ε < 1 (1.3)

for some £=1,2,. . . , where r = (xaxbδab)
l/2 and F = <9°°(/(r)) means that

F = <9(|/(r)|), 3F = 0(|/'(r)|), ddF = 0(|/"(r)IX a.s.o. In addition we require
a condition of conformal smoothness for gab, as follows: there are functions

/"(*) = oc

^-2+ε

such that, with xa =xa + fa(x\ Ω~l = δ^bx'ax'\ the tensor field gab = Ω2gab ad-
mits a smooth extension in coordinates xa = xa/Ω to xa — 0. For example, these
assumptions will be valid for all K when gab equals the flat metric outside a com-
pact subset of R3 . For Pab we require that

o 4>
We shall impose one more condition on Pab which arises as follows. Any smooth,
trace-free tensor Qab satisfying (1.4) can be written as (York [13] and
Chaljub-Simon [3])

Qab=Pab + (LW)ab, (1.5)

where

(LW\b := DaWb + DbWa - ^-gabDcW
c , (1.6)

i.e. the conformal Killing operator associated with the vector field Wa satisfying

(1.7)

and Pab being TT. Thus

Db(LW\b = AWa + \Da(DbWb) + $>aWb = DbQab , (1.8)

where ̂  is the Ricci tensor of gab. Given Qab, Wa and whence Pab is unique. Thus
the decomposition (1.5) can be used to find ΓΓ-tensors and, clearly, all ΓΓ-tensors
arise this way (just take Qab = Pab, Wa = 0!). We call Qab a "source tensor" for
Pab. It now seems natural to restrict Pab further by imposing asymptotic conditions
on the source tensor from which it arises. We assume

where ε and K are the same numbers as the ones appearing in (1.3). As AT increases
we shall obtain more detailed information on the multipole behaviour of Wa, and
whence Pab, near infinity. We will then ask and answer the question whether, given
arbitrary values for the relevant multipole moments, whose number depends on
K, a source tensor Qab satisfying (1.9) can be found, yielding a Pab having pre-
cisely these moments. Since the map sending Qab to Pab is many-to-one: Qab and
Qab + (Ls)ab for any sa satisfying sa = <9°°(l/(r1+^+ε)) give the same ΓΓ-tensor,
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one wonders what, if anything, condition (1.9) means in terms of Pab. The answer
is that (1.3,5,7,9) imply

AD[apb]c = or (-LΛ , (i . io)

and we state without proof that the converse also holds. (The appearance of third
derivatives in Eq. (1.10) is no accident. If we viewed Pab as a linearization of the
metric gab, the left-hand side in (1.10) is essentially the linearization of the Cotton
tensor, whose vanishing is equivalent to conformal flatness of a metric. The con-
nection between TT-tensors and the linearized Cotton tensor will be further studied
in forthcoming work by one of us (R.B.).) Conditions such as (1.9), while natu-
ral from the viewpoint of the York decomposition (1.5), do not have an obvious
physical inteφretation. As a model one could look at the GauB constraint of elec-
trodynamics

DaEa = 0 on(R\δab) (1.11)

with the ansatz
Ea = qa+Daφ, (1.12)

where qa has fast fall-off, say compact support. Thus D[aEb] has compact support
too. If the same assumption is made for the magnetic fields Ba one would find that
(Ea,Ba] are data for an electromagnetic field which is stationary in the domain of
dependence of a neighbourhood of infinity. Presumably, in some approximate sense,
a similar inteφretation could be given for (1.9), when supplemented by some ad-
ditional conditions on the metric gab (see e.g. Reula [10]).

2. The Asymptotic Expansion

Let, first, gab be the flat metric δab on R3 and consider the elliptic equation

&Wa+\da(dbWb)=ja, (2.1)

where ja is smooth and ja = O°°(l/(r2+/c+ε)), K = 1,2,... . The unique solution
Wa to (2.1) going to zero at infinity is given by

Wa(x) = -~ f Fab(x - /)y V>/V , (2.2)
71 R 3

where
Z7 / \ - a . a /0 ~,
Fab(x) = β 7 — + — 3- (2-3)

8 \ r r3 )

It is straightforward to see from (2.1,2,3) that Wa(x) admits an expansion

k k
where ωa are smooth on S2 (na =: xa/r). Instead of computing the vectors ωa in
terms of ja directly from (2.2,3) we prefer an apparently more roundabout but

k
actually more efficient way, as follows. The vectors ωa can be decomposed into
parts orthogonal and tangential to S2, i.e.

k k k
ωa = naσ+μa. (2.5)
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k
The tangential parts μα, in turn, can be expanded as

k = VaV+εb

aVbΨ, (2.6)

where V is the derivative on S2 and εab the volume element on S2. The scalars σ,
k k

φ and ψ can now be expanded in terms of spherical harmonics, e.g.

', (2.7)

£

where maι...aι are symmetric, trace-free tensors. Putting all this back into ωα we
see that

k °° k , , k , ,
ωα = E (naMby b^ bb> + Oab^b^1 - ^

/=0

+ £<!* nbLcb^ b,^ •••**'), I ^k ^K, (2.8)

£ £ &
where all of M, (9, Z are symmetric and trace-free. We now insert (2.4, 8) into
(2.1). It follows that the first term in Eq. (2.4) has to satisfy (2.1) with ja = 0.
This results in a coupling between the number k in (2.8) and the /-values which
can give a contribution. More precisely, we find after a straightforward computation

k k k

that Lab\ bι — 0, except for k = I 4- 2. We also find that Mbr bι and Oabr~bl both
= 0 except for £ = / in which case

(8 - *)A/6l...6jt - (2t - l)bbl~ bk = 0, * ^ 1 (2.9)

or /: = / + 2 in which case

(* - 2)Mbr..bk_2 + (2A: - 3)bbl.. bk_2 = 0 . (2.10)

K
Thus fFα can be written as a sum of three terms plus a remainder, i.e.

(2.11)

where

K (2*- l)/ιaM6l...ίX' •••«** +(8-

(2.13)

(3,/0 _
0 "

(2.14)
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We now show, using a simple bootstrap argument, that the estimates (2.11-14)
remain valid, when the l.h. side of (2.1) is replaced by (1.8), where the flat metric
is replaced by one satisfying (1.3) and all of (2.12,13,14) is understood with respect
to the flat background metric at infinity.

Theorem 1. Let Wa be a solution of

ΔWa + \Da(Dt>Wb) + φrb =ja , (2.15)

and a =

with Wa going to zero at infinity. Then there is a string of "multipole moments"
Z,, M and N, such that Eqs. (2.11-14) are valid.

Proof. From the work [3] it follows that the (unique) solution Wa to (2.15) has

Wa — O°°(l/rε ) for all 0 < ε' < 1. Putting the terms coming from gab — δab in
Eq. (2.15) to the r.h. side, this implies that (2.15) can be written as the flat-space

equation (2.1) with source j'a = O°°(l/rκ+{+κ+ε/). Taking ε' > 1 - c and using
again the representation (2.2,3) this yields that Wa = O°°(l/r), and inserting this
back into fa that j'a is in fact O°°(l/r2+κ+Γ'). Now the above computation gives
Theorem 1.

At this stage it is important to remark that the source ja in Eq. (2.1) does not
necessarily come from a Qab, s. th. ja — DbQab satisfying (1.9) for the respective K.
As an example consider Qab of the form (Fabc are symmetric, trace-free constants)

- 2Fabcn
c - 6n(aFb}cdn

cnd + 3(δab - nanb)Fcden
cndne

Qab = -2 (2 16)

for r > R > 0, and extended smoothly as a tracefree tensor to all of R3. Qab

so chosen satisfies the flat-space equation daQab = 0 for r > R. Thus ja — Dbζ)ab

is <9°°(l/(r2+^+β)) and Pab = Qab + (LW\b satisfies the momentum constraints

together with (1.4). But it is not of the form (LW)ab + <9°°(l/(r1+A:+ε)) for
AT =1,2, . . . , since Qab is only O°°(l/r2). Thus neither Pab, nor Qab, satisfy
(1.10) for any K, and this can of course also be checked by direct computa-
tion.

There is a second and more fundamental way in which (2.1) can fail to solve
our original problem. This can occur when ja is such that we have difficulty in
finding a trace-free Qab for which ja =DbQab. This can occur when (M,gab} has
conformal isometries, i.e. conformal Killing vectors (CKV's) ξa:

(Lξ)ab = Daξh + Dbξa - lgabDcξ
c = 0 . (2.17)

Let ξa be any such vector field. Then

-/ ξaDbQabdV + § ξaQabdSb = / (Dfξ")QabdV . (2.18)
R 3 r=co R 3
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Thus, from Eq. (2.17), the left-hand side of (2.18) is zero. If we were to do this
analysis on a compact manifold without boundary, the surface term in Eq. (2.18)
would not appear and we get the immediate restriction that ja must be L2 -orthogonal
to ξa. In the asymptotically flat case this restriction gets softened to the requirement
that if ja is not orthogonal to ξa then the falloff of Qab must be slow enough that
the surface integral in (2.18) does not vanish.

Equation (2.18) has a second use. If Qab is source-free, i.e., is a TT-tensor, we
see that the surface integral in Eq. (2.18) must vanish, irrespective of the decay rate
of Qah This will have further consequences.

The possible existence of CKV's will be important in our next goal, which
is trying to find β^'s, for which the moments appearing in (2.11,12,13) assume
arbitrary values. To see this we write out the lowest two orders in this expansion,
i.e. for K = 2,

(1,2) p be r
- £c HbLc 0

lnaMbcn
bnc + 6Mabn

b

a c a _
~r 9 -r U I ? I , (Z.ZUJ1 2+κ

(2.2,)
rz y rz

Let ξa

τ be an asymptotic translation, i.e. a vector field of the form

ξaτ = μa + 0™ , (2.22)

where the μα 's are constants. Then, using the decay of

Pabξ
a

τdSb = § (LW\bξ
a

τdSb = -32πMaμ
a . (2.23)

Thus Ma is essentially the (conserved) ADM 3-momenrum. (In order to compare
with the standard definition one has to check that the same value is obtained, when
one takes Pab in (2.23) to be the physical extrinsic curvature Pab related to Pab by
pab — φ~2Pab> where φ is the solution to the Lichnerowicz equation.) If ξa

τ happens
to be a CKV and if we have no source-current, the l.h. side of (2.22) is zero, and

i
we obtain the obstruction Maμ

a — 0.
Suppose, next, that we have an asymptotic rotation vector ξa

R, i.e.

ξ"R = Bacxbκc + 0~ . (2.24)

Then

§ Pabξ
a

RdSb = / (LW))abξa

RdSb = -8πLaκ" . (2.25)
r=oo r=oc

2

Thus La is essentially the conserved ADM 3 -angular momentum. When ξa

R is a
2

CKV and the matter is at rest, we have the obstruction Laκ
a = 0.
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1 2 2 3
We will show in the next section that the quantities Ma, La > N and Na appearing

(3,3)
in Wa are the only ones which can possibly not be specified arbitrarily. The essential
step will be a description of all moments in terms of surface integrals like (2.23),
which will however not be expressible just in terms of Pab, but will involve both
Pab and Wa.

3. The A-Fields

Define the following collections of vector fields:

( I k ] k

) = Γ X K A Xb\ Xbk—2 ]r > 9 f λ 1 )

o^-α = ^obr bk_}^
 l ' ' 'X k~l, k ^ 1 , (3.2)

(3,*) k
Λ O/ 'T/ 1 1 Λ CM k; 9

o'L Q ""— ^ V y ̂ β £> i bi *) ̂  ' ' ' X

— (k — 2)(A: + 7)r2v *, A %^' xbk~^ k > 2 (33)

where, again, the flat background metric is used and all of /c, μ, v are constants
which are symmetric and trace-free with respect to that metric. These fields have the
following properties: they are globally regular (although they blow up at infinity)
and they are annihilated by the flat space operator (2.1). Thus

D\L0λ)ah = 0~^~ J (3.4)

for oί = 1,2,3, provided that K ^ k. Thus, using [3], we can uniquely solve the
equations

Δδλa + \DaD
b δλ b + &b δλ b = -Db(L \ )ab (3.5)

with δλa = O°°(l/r( ). Calling λa = Oλa +(δλ)a, we obtain

Theorem 2. For any non-zero choice of symmetric, trace-free constants in (3.1,2,3)
(y,k)

there exist unique non-zero vector fields λa with

1 ' (3.6)

satisfying

(3.7)

(2,1) (1,2) (3,2) (3,3)
Particularly interesting in this list are the "special" fields λ , λ , λ , A
we call-in this order-asymptotic translations, rotations, dilations and conformal
boosts.
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Lemma 1. If the manifold has a CKV and if K g; 3, it must be a linear combi-
(oU)

nation of λa .

Proof. We know that CKV's cannot go to zero at infinity (Christodoulou and

0 Murchadha [4]). The CKV, call it ξ, since it satisfies Lξ = 0, must satisfy
D(Lξ) — 0. A decomposition such as used in the proof of Theorem 1 shows that

(y,k)
the leading part of ξ must be a Oλa . If we now demand that the first order condition
(Lξ = 0) be satisfied, we find that only the "special" fields listed above can survive.
The lemma follows.

An alternative way of saying this is:

K κ (α,A:)

Lemma 2. Let us have a linear combination /, = Σk=ι c(α,&) λ , k ^ K, c(oί,k) =
K

const, which, in addition to (3.7), satisfies the stronger condition (L/,)ab — 0, i>e
is a CKV. Then, trivially, for K = 1 it is an asymptotic translation. For K = 2,
c(2,2) = 0 and, for K Ξ> 3, all further c(a,k), k ^ K, vanish except c(3,3). In

K
other words, / can only be a linear combination of the special vector fields.

The proof of this lemma is a straightforward computation. Clearly, when gab is
conformally flat, the special /Ufields are all CKV's. When gab is not conformally
flat, almost the opposite is true. We cannot have either the translation or the dilation
CKV's. We can have (at most) one rotation CKV and up to three conformal boosts.
Namely, we have

(2,1)
Theorem 3. Let gab not be conformally flat. Then none of the / 's are CKV's.

(2,1) (1,2) (3,2)
For K ^ 2, there is at most one linear combination of λ , λ , λ which can

>
be a CKV, and this has to satisfy v = 0 (which means X ~ 0) and there exists

1

b c

c

asymptotic rotation, possibly after a shift of origin.
a vector da, such that εa

bcd
bκc = μa. In other words this CKV has to be an

Proof. Let us assume that there exists a CKV which blows up like r at infinity. From
our conformal smoothness assumption on gab it follows (Geroch [6]) that this CKV

λa extends to a smooth CKV λa for some smooth metric ^gab on R3 U {r = 00} = S3.

From the asymptotic condition we have that λa vanishes at the point-at-infinity A,

i.e. λa\A = 0. Furthermore

Ifl =72μa - 2xa(xbμ
b) + εa

b(5
bκc + 6vF + O°°(72+ί:) . (3.8)

Invariantly, we have that

__ , __ , ^
(Daλb)\Λ = ^ab Kc =' Fab ,

(DabbΊ
b)\A = -2μa . (3.9)

Now we recall the notion of an inessential (resp. essential) CKV. A CKV is called
inessential, if there exists a metric y'ab = ω2^, ω > 0, so that it is a Killing

vector w.r. to y'ab. Otherwise the CKV is called essential. Suppose the CKV λa was
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inessential. This would imply that

D'aJ
a

A=0, (D'aD'bλ
h)\A=0 (3.10)

for some suitable conformal metric g1 '. But under conformal rescalings, using

>U = o, „
D'aλ

a

 A=Daλ
a\A (3.11)

and _ _ _ _ _
(D'aD'bλ

b)\A = (DaDbλ
b)\A + 3Fb(ω'lDbω)\A . (3.12)

Thus, if /α is inessential, we would have that v is zero and μ is of the form

Aα = εa

bcd
hκc for some vector da. The only alternative is that λa is essential. But

it is shown in Appendix A that this is impossible except if (M^ab) is conformally
diffeomorphic to S3 with the standard metric. This also follows from a famous result
of Obata [9], and Appendix A goes some way towards giving an independent proof
of the full Obata theorem in 3 dimensions.

In order to show the "at most one"-statement in Theorem 3, suppose there was a

second CKV λa vanishing at A. By taking the commutator between the two, we
obtain a third such CKV. Now, using (the full force of) the Obata theorem, their
action, when ̂  is not conformal to the standard metric on S3, would again have
to be inessential, i.e. isometric after a conformal rescaling. Since A is fixed, this
would have to be an action under SO(3) with S2 principal orbits and thus (Fis-
cher [5]) a standard spherical action on S3 with all orbits S2 except for two fixed
points. Consequently, 'gab would have the standard rotational symmetry and thus be
conformal to the standard metric. This contradiction ends the proof of Theorem 3.

(1,2)
We add the following remark: When λ (a rotation) is a CKV and, in addition,

satisfies

&v,i)Pab = -(Dc(λλ\)Pab , (3.13)
/

it follows that for the physical initial-data set Pab — φ~2Pab, gab = φ4gab, with

O'2)
φ being the Lichnerowicz conformal factor, / is an isometry, i.e. ̂ (\^Qab —

λ
. 1 2

<y?(\,2)Pab — 0. But (3.13) implies that κa is parallel to La in the center of energy,
λ

2 1 . 2
whereas, from (2.25), we have that Laκ

a is zero. Thus La vanishes. It is in fact a
known result, although we are not aware of a place in the literature where this is
explicitly stated, that an asymptotically flat, topologically trivial vacuum spacetime
with a U( 1 )-isometry has zero angular momentum in the centre of energy.

4. The Product (λ\W)

We now use the /-vector fields to obtain a useful description of the moments of Wa

in terms of surface integrals. Consider the following antisymmetric scalar product:

K „ OΌ K K (α,/)
):= § [λa (LW)ab - W\L λ )ab]dSb (4.1)
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for / ^ K. Using (2.14) and (3.7) we see that

(α,/) K (*>0
( λ \W) = I λa jadV . (4.2)

R3

In particular, since ja = O°°(l/(r2+κ+ε)) ana /,(α'7) - O°°(r1-1), the surface inte-
grals in (4.1) converge. The remainder terms in (2.10) and (3.6) do not contribute
to these integrals so that they can be evaluated explicitly in terms of the constants

(*,*) («,*)
entering W and / . This is a somewhat tedious exercise. We need the following
crucial facts. Any integral of the form

I(A9B)=fAαι...αkn
α^"nα^Bbl...bln

b^"nb'd2S (4.3)
s2

is zero for k φ /, by virtue of orthogonality of spherical harmonics (A and B are
symmetric and trace-free). For k = /, (4.3) can be computed (Appendix B), to give

2/(7!)2

I(A9B) = 4π ( 2 / + 1 ) ! Λ ' * < * * / , (4 4)

where Λ 5 := Aαr..αιB
αi'"αι. It is furthermore easy to see that an integral of the

form
J(A,B) = f 8αbcAααι...αkn

α^ ...ΛS^...,/' ...*V</2S (4.5)

(α,/) (£*)
is zero for all (£,/). It follows from the last remark that { λ \ W ) is zero, when
one of (α,/?) is equal to one and the other is not. Using (4.4) we find for α = 2,
β — 3 and for α = 3, /? = 2 that all terms which remain after using orthogonality
of spherical harmonics in fact cancel. Thus

(«,/) (β,K)
( λ I W ) = δΛβF(z, /), I £K, (4.6)

where for F(x, /) we finally obtain

(L h, 1^2, (4.7)

2/+2Γ(7- 1)Π2 / /
M /^, / 2 ϊ l , (4.8)

(4.9)

F(3,2) = -4π 367V v .

In particular, F(α, /) are all non-zero. Thus the product (λ\W} gives rise to a pairing
(«,/) (/W

between the moments contained in / and those contained in W . So we can
take two sets of basis vectors for the two sets of symmetric, trace-free tensors
involved, which are dual with respect to this pairing. The dimension of each set
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can be computed e.g. from (3.1, 2, 3): any symmetric, trace-free tensor with k indices
contributes 2k + 1 dimensions. This gives

Σ[2(£-l)+l] = ̂ 2 -l for ( Y } ,
k=2

K Ί (2,k)
Σ(2k+l) = K2 + 2K for λ
k=\

and

Σ [2(k -2)+\]=K2-2K+\ for ^f ,
k=2

adding up to 3K2 dimensions. This is of course consistent with the three linear
momentum components at order 1/r and the nine independent moments at order

1/r2 in Eqs. (2.19,20,21). We thus have /-fields λa, with 1 ^ A g 3K2. The 3K2

moments M encoded by the terms of order 1/r up to order \/rκ in W, in the above
basis, are

M = ( λ \ W ) , (4.10)

provided^ in (2.14) is O°°(\/(r2+κ+ε)).
A

We now ask the question. Given a set of moments M' does there exist a source
ja having the required fall-off, so that the unique W solving Eq. (2.14) has exactly
these moments? The answer is affirmative, as the following consideration shows.
Take, for ja, the linear combination

1 3K

(4.11)

This is clearly <9°°(l/(r2+^+ε)). Inserting (4.11) into (4.10), using (4.2), we are
now left with the finite-dimensional linear equation

, (4.12)
5=1

with DAB = D(AB) given by

rv

The matrix D is clearly positive definite: ΣA B^^B^c8 ' = 0 would imply
and this, by using (3.1,2,3) at increasing orders in 1/r and using the orthogonality of
spherical harmonics, can only happen when CA = 0. Thus Eq. (4.12) can be uniquely
solved for c4, given arbitrary MA .

We now come to the question of existence of Qab, so that Wa, solving (2.14)
with ja = DbQab has arbitrary moments up to some finite order. The answer is
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afforded by

Theorem 4.
1 2 2

a) All moments other than the "exceptional moments" Mα, La, N for K ^ 2,
3 (3,3)

plus Na appearing in W for K ^ 3 can be prescribed by a suitable choice of Qab
a

satisfying (1.9).
b) When gab is conformally flat, the exceptional moments are constrained to

vanish.
c) Suppose gab is not conformally flat and K ^ 2: when there are no conformal

1 7 9 1

isometrics, all of Ma, La, N and Na can be prescribed. Otherwise, by Theorem 3,

there is at most one CKV which has va — 0. This has v — 0 and, possibly after
1 1 2 2

a shift of coordinates, μa = 0. In these coordinates Ma, La and N can still be
2 2

prescribed with the only condition that La κ
a = 0.

Proof. Again we start from

M = (λ\W) = f ίa jadV . (4.14)
R3

But, since ja = DbQab, one more integration by parts yields

A A
M = -/ (LλJ QabdV . (4.15)

R3

When gab is conformally flat, using the ,4-values corresponding to the special
/l-fields, we find that all exceptional moments are zero, which proves b). To prove
a) and c), we make the ansatz

1 3/c2 A A

Q°» = ό+,2^0/2 g C(^)<** K'^Z>C = C°nSt ' (4 16)

and try to solve

3K2

M = ΣEABc
B , (4.17)

5=1

where EAB = E(AB^ is defined by

(4.18)

Equation (4.17) can be solved provided ΣMAfA = 0, where ^EABf
B = 0. But the

A

latter condition, by (4.18), implies that Σ fλ ^ ^s a CKV. Choosing, successively,
A

for }, all possibilities except for the special /l-fields and using the pairing (4.6-
9) and Lemma 2, we see that a) is true. Using Theorem 3 statement c) follows
similarly.
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Remark. If we insist on prescribing a non-zero value for 7Vα, we have to take into

account the possibility of CKV's with va φO. Such cases do in fact exist (see Beig,
Husa [2]), and give rise to more conditions on the exceptional moments.

We end this paper with a "compact-support version" of Theorem 4, namely

Theorem 4'. Lei gab be a metric on R3 which is flat outside a compact set. Then
all statements on arbitrariness of moments in Theorem 4 remain valid, when Qab

is constrained to have compact support, rather than the fall- off of Eq. (1.9).

Proof. The ansatz (4.16) is now replaced by

(4-19)
A=\

where p G C^°(R3), p ^ 0 and p > 0 in a region J* strictly containing the sup-
port of gab — δafj. Then the null space of EAB consists of vectors fA such that

A

Σ fA /-a — λa satisfies (Lλ)ab = 0 in •%. But, outside ,̂ λa satisfies the flat- space
version of Da(Lλ)ab — 0. Taking one more divergence of this equation we see that
Daλ

a is harmonic and, inserting back, that each component λa is harmonic. Thus
λa, whence (Lλ)ab is analytic outside $. It follows that (Lλ)ab = 0 everywhere, and
λa is a CKV. Now the statements of Theorem 4 follow, again, from Lemma 2 and
Theorem 3.

Appendix A

Let M be a connected 3 dimensional compact manifold without boundary, with a

smooth metric l)ab. Let ξa be a CKV on (M^ab). For discussing whether ξa can
be essential, we distinguish between two cases, based on the sign of λ\(y\ the
lowest eigenvalue of the conformal Laplacian L~ = ~^7+ \3&\$\ where ^ is the

scalar curvature of #. The first case is, from our present viewpoint, the unphysical
case, since the Hamiltonian constraint cannot be solved for maximal data, when
the background metric is conformally extendable to a metric 0 on the compactified

manifold M with λ\(g) ^ 0.

Theorem A.I. Let λ\(g) ^ 0. Then ξa is inessential.

Proof. Let g be a metric conformal to 0 with 3$[g] = const. This exists by the
easier part of the solution to the Yamabe problem (Trudinger [12]). The rest is an
argument due to Lichnerowicz [8]. By straightforward computation we find from

= ^9abDcξ
c (A.I)

and $ = $Q = const, that

(ΔS + ̂ ] Daξ
a = 0 . (A.2)

Thus .̂ o = 0 and the maximum principle implies that Daξ
a = const and ^o — 0.

Integrating Daξ
a over (M,g) gives zero, by the Gauβ theorem. Thus Daξ

a = 0, and
ξa is a Killing vector of gab.
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It is well known that the sign of M(g) is the same as the sign of the constant
scalar curvature one can conformally transform to.

Theorem A.2. Let λ\(g} > 0 and ξa be a CKV vanishing at A <G M. Then, either

a) (M,0) is conformally dίffeomorphic to S3 with the standard metric 9ab. Or b)

— 3α := Daξ
a\A = 0 and —6ca := DaDbξ

b A ties in the image of the linear map Fa

b

with Fab \=D[aξb\\Λ'

Proof. Since λ\(g) > 0, the operator L[ϊj] has a positive Green function (see [7]),
which we take to be centered at A, i.e.

LjG = 4πδΛ. (A.3)

G has the asymptotic expansion [7]

where ||#|| is geodesic distance from A and m is the ADM mass of the asymptoti-
cally flat metric

g'ab = Gbgab onM = M\Λ. (A.5)

By virtue of (A.3) the metric g'ab has vanishing scalar curvature, i.e. &[gf] = 0.

The expansion (A. 4) can be improved: under conformal rescalings gab = ω2gab,

ω > 0, G changes according to G = ω"1/2 ^ω~l^2G. Now ω > 0 can be found
so that $ab[_y] is zero at Λl. Thus, in this conformal gauge, gab = δab + O(||;c||3)
in Riemannian normal coordinates xa centered at A. Expanding Lg accordingly

o
and using standard estimates for the flat-space Green function G(x,x') = (x — x' ,
x - jt')~1/2, where (x,y) = δabx

ayb, it follows that (|jc = 0,;c)1/2)

G= — + - +(i/,A:) + O0 0(W2), da = const. (A.6)

For ξa we have the expansion

ξa = -%xa + Fa

bx
b + cax2 - 2xa(c,x) + O°°(\x 4) . (A.7)

2 2

(Note that, in the notation of (3.9), α = — 6v, ca = ^ μa.) The uniqueness of the
Green function implies (see Beig [1]) that ξa is a homothetic vector field for the
metric g'ab. Equivalently,

&ξG + \(aξ
a)G = yG, 7 = const . (A.8)

Evaluating the l.h. side of Eq. (A. 8) using (A.6,7), we find that

x\
(A.9)

(A.10)
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Comparing coefficients in (A.8), there results α = 2y at order —1 in Λ Γ | and
am = -2ym at order 0. Thus, either

a) m = 0: Then, since $[$'] = 0, the positive mass theorem [11] applies and

yields that (M, </) is diffeomorphic to R3 with the standard metric, or (M,2/) con-
formally diffeomorphic to the standard S3. Or,

b) m > 0: Then α = y — 0. The order 1 in (A.8) now gives

Fb

adb = j c a . (A. l l )

This ends the proof of Theorem (A.2): Clearly, transforming to asymptotically flat
coordinates x'a = xa/\x\2, we see that α corresponds to the dilation part, Fah the

rotation part and ca the translation part of the CKV on R3 associated with ξ.

Appendix B

To prove (4.4) it suffices to consider A — B,

I(B,B) = Baι'"^Ba^'"a2k fnaι - -na2kd
2S . (B.I)

52

The integral in (B.I) is proportional to

Using the formula (a G R3)

££. ou)
^2 ^.Λ -r 1

the proportionality constant is found to 4π/(2k -f 1). It remains to evaluate

4π _..

2k + I

Of the (2&)1 terms in this expression, due to the vanishing trace of B, only those
terms contribute for which, in each Kronecker delta, there is one // with 1 ^ / g k
and one im with k -f 1 ^ m ^ 2k, of which there are 2k(k\)2. Thus

Γ5βl...,.#"-"* . (B.3)
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