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Abstract: An exactly integrable symplectic correspondence is derived which in a
continuum limit leads to the equations of motion of the relativistic generalization of
the Calogero-Moser system, that was introduced for the first time by Ruijsenaars
and Schneider. For the discrete-time model the equations of motion take the form of
Bethe Ansatz equations for the inhomogeneous spin-^ XYZ Heisenberg magnet. We
present a Lax pair, the symplectic structure and prove the involutivity of the invari-
ants. Exact solutions are investigated in the rational and hyperbolic (trigonometric)
limits of the system that is given in terms of elliptic functions. These solutions are
connected with discrete soliton equations. The results obtained allow us to consider
the Bethe Ansatz equations as ones giving an integrable symplectic correspondence
mixing the parameters of the quantum integrable system and the parameters of the
corresponding Bethe wavefunction.

1. Introduction

In some previous papers, [1,2], cf also [3], an exact time-discretization of the
famous Calogero-Moser (CM) model, [4-7], was introduced and investigated. The
discrete model is an integrable symplectic correspondence, (for a definition cf [8]),
that in a well-defined continuum limit yields the classical equations of motion of the
CM system.4 A few years ago Ruijsenaars and Schneider introduced in [10], cf. also
[11, 12], a relativistic variant of the CM model, which is a parameter-deformation of
the original model. The equations of motion of this system in its generic (elliptic)
form read

tit = Σ<ii<ijv(<ii-qjl / = !,...,#, (i.ia)
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4 It should be noted that the discrete CM model can be inferred also from the Backlund trans-
formations for the continuous CM model, that were presented in [9],



682 F.W. Nijhoff, O. Ragnisco, V.B. Kuznetsov

where the potential v(x) is given by

in which @(x) = p(x|ωι,ω2) is the Weierstrass P-function, 2ω\^ being a pair of
periods. (These are the equations of motion in the form given by Bruschi and
Calogero in [13].) This multi-particle model is also integrable, and carries a repre-
sentation of the Poincare algebra in two dimensions. Moreover, a large number of
the characteristics of the CM model are generalized in a natural way to the rela-
tivistic case, such as the existence of a Lax pair, a sufficient number of integrals of
the motion in involution, and exact solution schemes in special cases.

In view of the results in [1-3], a natural question to ask is whether there exists
a time-discrete version of the model (1.1). We have to remark that on the quantum
level the transition from the usual CM system to its relativistic counterpart already
amounts to a discretization (or g-deformation). In fact, the relevant operators in the
quantum relativistic model are commuting difference operators, rather than differen-
tial operators, cf. [14, 15]. In view of the importance of quantum Calogero-Moser
type of models in the context of representation theory, and in particular in connec-
tion with the Knizhnik-Zamolodchikov (KZ) equations as has been revealed by a
large amount of recent work, cf. e.g. [16-18], these difference operators yield new
interesting connections with ^-special functions.

In this paper we will introduce a discrete-time version of the model (1.1), in the
form of an integrable symplectic correspondence (i.e. multi-valued map) which goes
in a continuum limit to the original model. This amounts to one more parameter-
deformation of the CM model: apart from the "spatial" discretisation (encoded in
the parameter Λ), the discretisation of time constitutes another deformation where
the finite step-size in time enters as the new parameter. The construction is based
on an Ansatz for a Lax pair, together with an elliptic version of the Lagrange
interpolation formula. We will demonstrate the integrability of this mapping along
the lines of ref. [8,19], i.e. integrability in the sense of Liouville. In contrast to
the previous paper, [2], where the particle model is related to pole solutions of
discrete soliton equations, in particular of the lattice Kadomtsev-Petviashvili (KP)
equation, the relativistic case is related to soliton solutions of this type of discrete
equations. Finally, we point out the intriguing resemblance between the equations
of motion of the discrete particle model and Bethe Ansatz equations for integrable
spin-^ quantum chains of the XYZ Heisenberg model (see [36,39]).

2. Derivation of the Model

We will start from an Ansatz for a Lax pair of the form

N

Lκ = Σ hιhjφκ(qι ~qj + λ}eij , (2. la)
/,/=!

In (2.1) the ql denote the particle positions, and the ht are auxiliary variables which
we specify later. The tilde is a shorthand notation for the discrete-time shift, i.e.
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for q^n) — g/, we write qι(n + 1) = #,, and qr(n — 1) = g/ The variable K is the

additional spectral parameter, whereas / is a parameter of the system. The matrices
eη are the standard elementary matrices whose entries are given by (e//)&r = δί,kδj,s
The function Φκ is defined as

where σ(x) is the Weierstrass sigma-function, given by

x \
σ(x) =x Π 1 exP

ωw / .

1 / \ ^

COM 2 \ωuj
(2.3)

with CUM — 2kω\ + 2/ω2 and 2ωι?2 being a fixed pair of the primitive periods, see
e.g. [20]. The relations between the Weierstrass elliptic functions are given by

'

where σ(jc) and £(jt) are odd functions and £?(*) is an even function of its argument.
We recall also that the σ(x) is an entire function, and ζ(x) is a meromorphic function
having simple poles at ω^/, both being quasi-periodic, obeying

ζ(x 4- 2ω,,2) - C(*) + 2f/i,2, σ(jc + 2ω,,2) = -σ^)^^2^^^^ ,

in which 17^2 satisfy ?7ιω2 — 772^1 = y , whereas $p(x) is periodic. From an alge-
braic point of view, the most important property of these elliptic functions is the
existence of a number of functional relations, the most fundamental being

From this relation, one can basically derive all important identities for the
Weierstrass elliptic functions. For our purpose it can be recast into the form

Φκ(x)Φκ(y) - Φκ(x + y)[ζ(*) + C(^) + ζ(y) -ζ(κ + x + y)] . (2.6)

The Ansatz for the Lax pair (2.1) is a natural one, in view of the fact that the
matrix Lκ corresponds to the Lax matrix of the continuum Ruijsenaars-Schneider
(RS) model, cf. [13], whereas the matrix Mκ is a natural choice by compari-
son with the earlier results obtained in [2], cf. also [3], for the discrete elliptic
CM model.

Let us now consider the compatibility of the system (2.1). Assuming the Lax
equation _

LKMK=MKLK , (2.7)

which implies the isospectrality of the discrete flow of the Lax matrix LK9 we have
from (2.6) that

Oc) + ζ(qt - q, + λ) + ζ(qf - qj + /) - ζ(κ + 2λ + qt - <?/)]

= Σ A?K (K) + ί(?, - ̂  + Λ) + f(^ - ί/ + '0 - «κ + 2λ + qt -
f
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Noting that the conservation law trZ = trL implies:

ΣA? = Σ A ? , (2.8)
£ f

we have the identity

Σ [*?£(?,• - q< + A) - /££(£ - ̂  + /)]
f

q, + λ)} , (2.9)

for all /, 7 = 1, . . . ,7V: consequently, both sides of (2.9) must be independent of the
(external) particle label. Thus, we find a coupled system of equations in terms of
the variables /*/,#/ of the form

Σ [A?Cto - qe - V - h%(qt - q( - λ)} = -p , (2.10a)
(

Σ [A? ίfe - <U +Λ) - A?C(ϊ/ ~qι+λ)} = p, (2.10b)

where /> does not carry a particle label. In principle p can still depend on the
discrete time-variable, but we will mostly consider it to be constant: a different
choice will be taken only in Sect. 6. In that case, by eliminating the variables /z/
from (2.9), we get a closed set of equations in terms of the qt.

In order to derive this closed set of equations for the variables #/ we will make
use of an elliptic version of the Lagrange interpolation formula, that was derived
in [2]. In fact, we have the following statement:

Lemma. Consider 2N noncoincidίng complex numbers *ι,y\ (I = 1 , . . . ,7V) Then,
the following formula holds true:

where ΣCw-*/) = 0, (2.11)
ι=\

and where x stands for any one of the zeroes xι of the function on the left-hand
side.

Equation (2.11) can be derived from an elliptic version of the Cauchy identity
for the determinants of the matrix (Φκ(xι - >>7)). This Cauchy identity was proven
and used in [12] to establish the commutativity of the quantum integrals for the
continuum RS model. Actually, this identity goes back to Frobenius, [21], and can
be proven also by purely combinatoric means starting from the fundamental identity
(2.5). A statement similar to the one in the lemma was formulated in [22].

What is essential in (2.11) is the independence of the choice of x, which can
be easily demonstrated by using the identity

(2.12)

which can be found e.g. in [23], p. 451.
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Using now Eq. (2.11) and applying the lemma to the elliptic fractional
"polynomial"

and taking ξ — q} - λ, respectively x = q, + λ , we can by comparing with Eq.
(2.9) make the identifications

A2, = -p ψ=^<-*+λW9<-*-» , (2.13a)

(2.13b)

from which we obtain the following system of equations:

P *(fr-g* + Λ) **-* **-* ,= !,...,#. (2.14)
P k=\ σ(qf - qk ~ λ) k=l σ(qt - qk) σ(q/> - qk - /)'
— k^ί —

Equations (2.14) can be considered to be a product version of (2.9), and is a
system of N equations for N + 1 unknowns, q\9...,qN and p. There is no equation
for p separately, and thus it should be a priori given in order to get a closed
set of equations. The most natural choice is the one for which p is constant, i.e.
independent of the discrete time-variable. For convenience we will take it equal to
the fixed value p = — σ(A)~ 1, but if we are interested in a continuum limit from
(2.10) we should take it of the order of the reciprocal of the discrete-time step. As
already mentioned, a dynamical choice of p arises at the end of Sect. 6 from the
application of (2.14) to the Bethe Ansatz equations for the XYZ Heisenberg chain.

Thus, taking p/p to be equal to unity in (2.14), we obtain the equations of

motion of what we would like to call the discrete Ruijsenaars-Schneider model. It
is given by a coupled set of algebraic equations, which, in fact, resemble closely
the Bethe Ansatz equations (BAE's) for certain integrable quantum chains with
impurities. We will make this connection more precise in Sect. 6. Here, we look at
Eqs. (2.14) as defining a discrete dynamical system, which amounts to an integrable
symplectic correspondence, i.e. a multi-valued map in the sense of ref. [8].

Before proving the symplecticity and integrability of the correspondence, let
us show first that the interpretation of (2.14) as a discrete version of the RS
model is justified, by showing that an appropriate continuum limit will give us back
Eqs. (1.1) of the continuum model. In fact, taking

1 ?

and developing with respect to the small parameter ε, we obtain for the leading
term

- - ft) - ζ(qt ~ ft + λ) - ζ(qf -qk- /)] , (2.15)
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from which we recover Eqs. (1.1) using the relation

. .
2 p(/) - p(x)

Let us finally remark that the non-relativistic limit is obtained by letting the
parameter λ go to zero. In fact, in this limit the variables h] will behave as

- qk) - iW - qk)] + 0(A2) . (2.17)
A:=l /

As λ — > 0, we will obtain the matrix Mκ of the non-relativistic case immediately,
whereas for Lκ we thus find

Lκ H+ Λ" 1 + Σ/Wi + ΣΦκ(?ι - qj)eij + 0(λ) , (2.18)
/ ϊ φ y

where the /?/ are the expressions between brackets on the right-hand side of the
arrow in (2.17). Thus, we recover the Lax representation of the non-relativistic case
as given in [2].

3. Symplectic Structure and Integrability

In order to demonstrate the integrability of the discrete-time RS model, given by the
equations of motion (2.14) together with p = p, we need to establish an invariant

symplectic structure. Following the philosophy of previous papers, (cf. e.g. [24]
and references therein), this can be assessed on the basis of an action principle, cf.
also [8,19].

It is easy to note that an action for the discrete equations (2.14) is given by

in which

,q) = Σ \J(qe - ?*) - f(qe -qk~ λy\ - Σ

with the function f(x) given by

f(x) = flogσ(ξ)\dξ. (3.2)

Let us point out that the function / appearing here can be considered to be an ellip-
tic version of the Euler dilogarithm function. The discrete Euler-Lagrange equations

=0, t=\9...9N, (3.3)
q( q{

are easily seen to lead to Eq. (2.14). The canonical momenta p^ are found from

_ fijg N _ _

Pf = -^- = Σ(- l ogl σ(^-tf*)l +log|σ(^ -qk + λ ) \ ) . (3.4)
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As a consequence we have that the symplectic form Ω = Σk dpk Λ dqk is invariant
under the correspondence, which implies that any branch of the correspondence
defines a canonical transformation with respect to the standard Poisson brackets
given by

{pk,qs} = 4,Λ {pk,pt} = {qk,qt} = o . (3.5)

We will now show that in terms of the canonical variables, the Lax matrix Lκ in
(2. 1 ) has the same form as the one of the continuum RS model. In fact, expressing
the variables hj> in terms of the canonical variables, we obtain

(3.6)

which we will refer to as the Ruijsenaars variables, [10]. In terms of these variables
we have the Poisson brackets

{qk,qf} = 0,

{log hi , log Aj} - ζ(qk - qf + λ) + ζ(qk - qf - λ) - 2ζ(qk - qf\ k*t . (3.7)

Now, there remains not so much work left to establish the integrability. In fact,
having expressed the Lax matrix Lκ in terms of the original variables, and having
verified that it takes the same form as in the continuous case, we can rely on the
proof of involutivity that was produced by Ruijsenaars (in Appendix A of [10]) to
assess the involutivity of the invariants of the discrete model as well. Naturally, the
invariants of the correspondence, given by

4 = t r L * = 7 * , k= l,...,N , (3.8)

as functions of the canonical variables are the same as in the continuum model.
Thus, we obtain the statement of involutivity of the invariants, i.e.,

{/*,/,} = {Tr(L*),Tr(//)} = 0 for all k, £ = 1,2,... . (3.9)

It is a theorem by Veselov that the involutivity of the invariants lead to the lineariza-
tion of the discrete flow on tori, similar to the continuous-time situation, cf. [8].
(For a simple argument see also [19].)

4. Exact Solutions

Let us now consider exact solutions of the discrete RS model in two special cases:
i) the rational limit, ii) the hyperbolic (trigonometric) limit. Here, again, we re-
strict ourselves to the case p — p, which will then lead to an explicit integration

scheme from the Lax pair, as we shall demonstrate below. If, more generally, we
do not fix p, the initial value problem becomes implicit, having to take into ac-
count initial values for the p also. We shall not pursue this latter case in this
paper.

The main line of reasoning in both limiting cases is very similar to the one
followed in [1,2] for the non-relativistic discrete CM model. In the discrete situa-
tion the initial value problem is posed by asking to find {#/(«)} for given initial
data {<//(0)| and {#/(!) = #/(0)}9 where #/(«) denotes the position of the particles
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qι at the nih time-step. The solution to this problem is obtained for both the ratio-
nal as well as the hyperbolic (trigonometric) limits by solving a secular problem,
namely by determining the eigenvalues of an N x N matrix which can be explicitly
calculated from the initial data for any discrete-time value n. However, one may
ask the legitimate question what one has gained from this, as one has reduced the
problem of solving one set of algebraic equations (given by the discrete equations
of motion (2.14)) to another problem of solving an algebraic equation (namely the
factorization of a characteristic determinant). In the first case, nonetheless, we have
to solve the system step by step at each iteration of the map, whence the issue of
the complexity of the solution (i.e. the growth of the number of iterates) becomes
imminent. In view of the integrability of the correspondence, one can at most have
only polynomial growth, as Veselov has proven in [25], and this is immediately
clear from the exact solution, because the only growth comes from the permuta-
tions of eigenvalues. In fact, there are N\ permutations at each iteration of the map,
but whatever the permutation chosen at a certain step, it will end in one of the N\
possible permutations at the following step: the branches will "cross" each other
with no divergence.

i) Rational Case. This is the limit that both periods tend to infinity, i.e. 2ω\ — » oo ,
2o)2 —> zoo, in which case we can make the substitutions

σ(x) -» x, ζ(x) -> -, p(x) -> ̂  .

Then, the Lax matrices take the form

Lκ = -Λ 'A+Lo, Mκ = - A ' A + Λ / o , (4.1)
K K

where h denotes the (column- )vector with entries A z , the (row-)vector % being its
transposition, and in which

(4.2)

From the form of the Lax matrices (4.2), we can then derive the following relations:

λMQ + <2M0 - M0β = A Ά , (4.3a)

1L0 + QLo ~ L0Q = h % , (4.3b)

where we have set

Q = ίqteu. (4.4)
l=\

On the other hand, from the Lax equation (2.7) and inserting (4.1), we obtain the
relations

Z0M0 = M0Lo , (4.5a)

L0h~Moh = -ph , (4.5b)

ΆZo- %Mo = -p*h , (4.5c)
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together with the conservation law % h = % h. Consequently, we can put

1, (4.6)

where UQ is an invertible N x N matrix, and where the matrix A is constant, A =
A, as a consequence of (4.5a). We assume that A can be chosen to be a diagonal
matrix, but this is not essential for what follows. Then, introducing

r=Uo.h, ' * = % • £ / < , , (4.7)

we obtain from (4.5) and (4.6),

(pI + Λ) 7 = r, ίs (/?/ + Λ) = 7 , (4.8)

in which / denotes the TV x TV unit matrix, as well as from (4.3a) and (4.3b),

λ+V -7=7*5, λΛ + [V,Λ] = r's, (4.9)

together with the conservation law r*s — rls. Eliminating the dyadic r *s from
Eq. (4.9) by making use of (4.8), we find the linear equation

Λ)-—I , (4.10)

which can be immediately solved to give

V(n) = (pi + AΓn V(0) - n-rr-7 (Λ + />/)" . (4.11)
L pt + A\

Thus, the solution of the discrete RS model in the rational case is given by the
following statement: the position coordinates {#/(«)} of the particles at the discrete
time n, evolving under the discrete equations of motion (2.14) (in the rational limit
σ(x) i— » *), are given by the eigenvalues of the matrix:

Q(0) - npλ(pl + L0(0)Γ] , (4.12)

where p can be chosen equal to unity without loss of generality.
The choice of p only affects a scaling of the variables /zz in (2.1), which enter

the initial value of the matrix Z/o(0).

ii) Hyperbolic (Trigonometric) Case. In the hyperbolic limit 2ω\ -^ oo , 2ω^ =
\τιi, in which case we can make the substitutions

σ(x) — >• sinh(jc), ζ(x) -^ coth( c), fc>(x) — » sinh~2(^:) ,

(after an appropriate gauge transformation of the Lax matrix with a diagonal matrix),
leading to

Φκ(x) -^ coth(κ ) + coth( c) . (4.13)

In this case we obtain for the Lax matrices (2.1),

LK=LQ + (cothfc + y)h*h, Mκ = M0 + (coth/c + y ) A % , (4.14)
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where y can be chosen at our convenience. In this case the reduced Lax matrices
LQ and MQ are given by

N
gry + /) - y)βij , (4.15a)

qj + A) - y)e/7 . (4.15b)

For them, as a consequence of the "splitting off" of the terms with the spectral
parameter cothκ, we get again the system of equations (4.5). From Eqs. (4.15) we
derive that

e2λe2Q(LQ + yh 7z) - (L0 + yh *h)e2Q = e2λe2Qh fh + h lhe2Q , (4.16a)

yhth)- (M0 + yhlh)e2Q - e2λ^hlh +7ιthe1Q , (4.16b)

in which Q, h and % are given as before. We again make the identifications (4.6),
and introduce V9r,s as in (4.7), for which we subsequently derive the relations

e2λe2V(Λ + (y - l)r *s) = (A + (y + l)rίφ2F , (4.17a)

e2λe2V(I + (y - 1)7 *s) = (/ + (y + l)7ίs)β2F . (4.17b)

Choosing now y = 19 and using (4.8) we can again eliminate the dyadic rls and
explicitly solve for exp(2F). We obtain

e2V = (p + Λyle2V(pe~2λ + A) , (4.18)

which can be immediately integrated to yield

the K(0) and t/(0) as well as /I being determined from the initial data β(0) and
g(l). Thus, rewriting (4.19) we obtain the following result: the exponentials of the
position coordinates {e2qi^} of the particles at the discrete time n, evolving under
the discrete equations of motion (2.14) (in the hyperbolic limit σ(x) \—> sinh( c)),
are given by the eigenvalues of the matrix:

(Z,0(0) + pIΓneL0(0) + pe~l)n , (4.20)

where p can be chosen equal to unity without loss of generality.
The choice of p only affects a scaling of the variables /z/ in (2.1), which can be

accounted for in the calculation of the /z/(0) from Eq. (2.13). We note again that
at each discrete-time value the positions of the particles is uniquely determined up
to a permutation.

We finally remark that the trigonometric limit of the elliptic functions 2ω\ — ^π,
2ω2 — > /oo is integrated along similar lines after doing the replacements

σ( c) — > sin*, ζ(x) — > cotx .

We shall omit the details.
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In [1,3], the discrete CM model was obtained from pole-solutions of a lattice ver-
sion of the Kadomtsev-Petviashvili (KP) equation. The idea that integrable particle
models of CM type are connected with soliton equations goes back already to the
late seventies, cf. [26] and also [27,28], but had never been applied to discrete
soliton equations. In [10], but maybe a bit more transparently in [29], a connection
between the relativistic particle model and soliton solutions of nonlinear integrable
PDE's was established. It is a natural question to ask whether such a connection
also exists on the discrete level.

In order to establish such a connection, let us investigate more closely the
trigonometric solution of the previous section. After a gauge transformation with
a diagonal matrix of the form P = [(A + pI)(A + e ~ 2 A p I ) ] 1 / 2 , we can transform

(5.1)
Λ, - OM

in which ρl = (Pn r\ — (*s e
crete (time-)variable is given by

2V ~ n)^ and ω = e2/\ The dependence on the dis-

leading to the equations for W

AW - ωWΛ = -2ptp ,

PW - ωWP = -2plp .

We can then introduce the characteristic polynomial

<0 = Π (ξ + e2q/ ) = det(ς7 + W) ,

(5.3a)

(5.3b)

(5.4)

and show that τ(ς) plays the role of the tau-function of a discrete soliton system.
In fact, W is the kernel of the integral operator in the soliton sector that stands as
the basis of the so-called direct linearization approach, cf. e.g. [30-32].

To derive the relevant equations directly from the resolvent of the matrix W,
we proceed as follows. First, using Eq. (5.3b), we can perform the following simple
calculation:

τ(ως)
- = det ((ωξl + WYl(ξl + W))

p'p)]

= ω~N det (/ + (ωξl + W)~\Λ + pl}~1 ' p ' p ) ,

leading to

v(ωξ) = WΓ\A pi)-1 P = - - ,
τ(ωξ)

(5.5)
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which will turn out to be one of the variables governed by the soliton system.
In order to derive discrete soliton equations for τ(ξ) or v9 we introduce the N-
component vectors

Ui(ξ) = (ξl + WTλΛ> p, VO = 'p AJ(ξI + WΓ1 , (5.6a)

as well as the scalar variables

Utj(ξ) = 2'p ΛJ(ξI + WΓ'Λ' p , (5.6b)

(ί,j G Z). Making use of the relations (5.3), we can deme the following set of
recursive relations between the different vectors Uj(ξ) and Ίij(ξ):

ωP Uj(ξ) = pUj(ω~lξ) + Uj+l(ω-lξ) + Ut3(ξJύo(ω-}ξ), (5.7a)

'uj(ξ) P = ωtuj+l(ωξ) + ptu/(ωξ)- V^O^/ίO - (5.7b)

Using the definition (5.6b) as well as (5.2), we can derive also

pϋij(ξ) + Ui+lJ(ξ) = pUt,(ωξ) + ωUίt,+l(ωξ) - UitQ(ωξ)UQJ(ξ) . (5.7c)

At this point we need to reflect a moment on the role of the discrete-time shift.

The shift £/z/(0 ι— » ^/y(0 is "labeled" by the variable p, which can be identified
as the (reciprocal) of the lattice parameter. Let us assume that the variables UlJ(ξ)
do not depend on only one discrete time-variable «, but on a number of them,
say «α, (α = 1,2,3,...), and that the corresponding discrete flows are compatible,
each associated with its own parameter p, i.e. p\9p2, p3,-~ This means that U
is a function of these independent time-variables, i.e. £///(ς) = (/zy (ξ;«ι,«2 5 ) m

that case we have for instance that £///(£; «ι,«2> •) — Uij(ξ',n\ + 1,«2 + !,...) =

Uij(ξ\n\,n2,.. ), etc., the ^ corresponding to the translation in the second dis-
crete variable. Of course, this puts extra compatibility conditions on the eigenvalues
e2qι of the kernel W given in (5.1) of the soliton solutions. In fact, the particle-
coordinates q} can be shown to obey some two-dimensional lattice equations in
terms of the shifts ~ and ,̂ and the compatibility of such equations were investi-
gated in [2] for the non-relativistic situation. Here, we restrict ourselves to obtaining
from (5.7c) closed- form nonlinear partial difference equations for special elements
or combinations of elements of t//7, i.e. partial difference versions of the well-known
soliton systems. These difference systems were investigated in detail in a number
of earlier papers, (cf. [33] for a review, and references therein), on the basis of
the system of equations (5.7a)-(5.7c). Thus here we will only present the results,
referring to those papers for their derivation.

In fact, for the special element w n i j Λ 2 ) W 3 = UQjQ(ω~^nι+n2+n^ξ;n\,n2,n^), we can
derive the partial difference equation

( p i ~ P2 +wΛ l+u 2,/!3 -Unι,n2+\,n3)(p3 + w Λ l +ι, Λ 2 +ι,/ι 3 ) + cycl. perm. = 0, (5.8)

which is a lattice version of the Kadomtsev-Petviashvili (KP) equation, cf. [30,31].
In [2, 3] pole solutions of this equation were investigated associated with a dis-
cretization of the non-relativistic Calogero-Moser model. The relation to the
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τ-function τW M 2,W 3 = τ(ω~(n^n2+n^ξ'9n\,nι,n^) is given by

, , , τ/7 1+1, ;?2 + M3^« ],«?,«! ,f n\
p\- P2 + M M l , n 2 +ι, n 3 - HW l + ι,Λ2,n3 = (p\ - p-i) - -^—^ , (5.9)

tn \ +• 1 , «2 5

 ;73 ̂ ;? 1 < M2 + 1- M3

from which one can derive the bilinear equation

(Pi - p2)τ W l +ι, W 2 4i, W 3 τ W ] , Λ 2 . n 3+ι(O -f cycl. perm. = 0 , (5.10)

which was first presented in [34], cf. also [35]. Equation (5.10) is related also to
the following version of the lattice (modified) KP equation, [35]:

( ^(P\ - Pi)

( 5_π )

in terms of the variable uΛ l,M 2,« 3 = ι;(ω~(/?1+/72+"3)ξ; «], ̂ 2^3), with i; being defined
in (5.5), (taking ^ = /?).

Finally, we mention that special reductions of the above equations arising by
imposing additional symmetries on the soliίon solutions, will lead to the lattice
soliton systems of Gel'fand-Dikii type that were introduced in [32]. In fact, taking
the parameter ω equal to a root of unity, we can derive additional constraints on
the system of equations given by (5.7a)-(5.7c). Thus, we find in the particular case
of o) = — 1 for u the following lattice version of the Korteweg-de Vries equation:

(Pi - P2+ Unι,n2 + l ~ Un}+l,n2)(pl + P2 + Unλ,n2 ~ Unλ + l,n2^-l) = P\ ~ P\ •>

(5.12)

cf. [32], which is related to the following bilinear equation in terms of the τ-function:

(p\ + /?2)τ W l ~ι, /7 2 +ιτ/7 1 +ι,f l 2 +(Pι — / ? 2)τ W l - ι , W 2 τ W l + ι,W 2 +ι = 2 / ? ι τ W b W 2 τ W l > W 2 + ι .

(5.13)

It is this equation that corresponds in the continuum limit exactly to the special case
considered in [29]. Similar equations can be derived for other values of ω when
ω| = 1, starting from the results presented in [32].

6. Connection with Bethe Ansatz Equations

We already remarked above that the equations of motion of the discrete Ruijsenaars-
Schneider model, (2.14), resemble closely the form of Bethe Ansatz equations
(BAE's) for certain integrable quantum models. In this section we will make this
connection more precise. Let us first focus on the hyperbolic limit of Eqs. (2.14),
and connect it to the BAE's for the XXZ spin - ^ Heisenberg magnet, cf. e.g.
[36-38] and references therein. After that, we will show that the general form of
(2.14) in the elliptic case is connected to the generalized Bethe Ansatz (BA) for
the Heisenberg XYZ model, proposed first in [39] and developed further in [40].
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We will not treat the correspondence in the rational (or XXX) case since it can be
obtained by a simple limit from the hyperbolic case.

Let us, thus, consider the quadratic ^-matrix algebra

R(U\u - v)T(l\u)T(2\v) = T(2\υ)T(l\u)R(n\u - v) , (6.1)

which is one of the central relations in the quantum inverse scattering method
(QISM), (cf. [37] for an early, and [38,41] for more recent reviews), and let us
consider the ^-matrix for the spin - ^ XXZ Heisenberg magnet,

C I ( 6 2 )
0 ' (° }

in which

a — sinh(w + η\ b = sinh u, c = sinh η .

The quantum L-operator on each site k of the spin chain has the form

sinh(w -h iτ/σ?) $
Lk(u)= . j , (6.3)

smh(w—

where σ^ = \(o\ it /σjr), σ|' '3 being the Pauli matrices on site k, (i.e. σ% =

l(g) (g)σα0 Cg)l with σα on the ^lh entry of the tensor product). Let us now
construct the following monodromy matrix:

T(u) = LM(u -δM) L2(u - δ2)L,(u - δ,) = , (6.4)
\C(M) D(u)J

where M is the length of the spin chain, and in which the δk, k = 1,...,M are
impurity parameters. Both the Lk(u) as well as T(u) obey the relation (6.1). Let us
now recall the standard algebraic Bethe Ansatz construction, [37-41], i.e. there is
a vacuum state QM, which is an eigenvector of the diagonal entries A(u\D(u) of
the monodromy matrix, and which is annihilated by the operator C(u)

A(u)ΩM = a(u)ΩM, D(u)ΩM = d(u)ΩM, C(u)ΩM = 0 . (6.5)

As the monodromy matrix is a comultiplication of the L-operators along the sites
of the chain, we have that

M M

a(ύ) = Π <*k(u\ d(u} - Π dk(u) , (6.6)
k=\ k=l

where the functions a^(u) and dk(u) are the eigenvalues of the vacuum for the
diagonal entries of the corresponding L-operator on site k. The algebraic Bethe
Ansatz amounts to the creation of an eigenstate of the form

Ψ(qι,...,qN)= l\B(qj)ΩM (6.7)
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of the trace of the monodromy matrix A(u} + D(u),

(A(u) -f D(u))Ψ = t(u)Ψ , (6.8)

with t(u) being the corresponding eigenvalue. We have then the following
proposition:

Proposition. Ψ is an eίgenfunctίon of the trace of the monodromy matrix iff the
numbers q} satisfy the Bethe Ansatz equations

FT sinh(^-^ + ιy) = g(g£) ,= 1 N

k=l smh(qt-qk - η) d(qf)

In the case of the monodromy matrix (6.4), the functions a(u), d(u) take
the form

M / I \ M / i \

a(u) = Π sinh l u - δ k + -η}9 d(u) = Π sinh (u - δk - -η) , (6.10)
k=\ \ λ J *=ι \ 2 /

which in the special case that M = 2N lead to the BAE's

* sinh(qy - gk + λ) _ » sinh(^ - qk) sinh(^ - φ, + λ)

k==} sinh(^/ - qk- λ) k=l sinh(g/ - qk) sinh(^ -qk-λ)'
A - Φ / ~

(6.11)

i.e. Eq. (2.14) in the hyperbolic limit ( σ ( x ) ^ sinh(Λ:)) with the identifications
λ = η, qk = δk - 1 77, ^/t = ^+ΛA + ,̂ (A: = 1, . . . ,7V). Thus, the discrete RS sys-

tem in the hyperbolic limit can be reinterpreted as the BAE's for the spin-^ XXZ
Heisenberg chain with the number of spins (impurities) equal to twice the excitation
number of the eigenstate. We should stress that within such an identification the
impurities play the role of the N particle coordinates at times n ~ 1 and n + 1 (q

resp. q), which means that the integrable correspondence mixes the parameters of
the quantum model (i.e. the impurities) and the parameters of a solution given by
the Bethe wavefunction.

To make the connection with the elliptic case we have to consider the QISM
for the XYZ Heisenberg model that was treated in [39] for the spin-^ situation. For
arbitrary spin one needs to consider the algebras introduced by Sklyanin in [42].
However, we are interested here in the inhomogeneous spin-^ chain, i.e. includ-
ing arbitrary impurities. Both extensions were treated in a recent paper by Takebe
[40]. It was shown that the generalized Bethe Ansatz of Takhtajan and Faddeev is
applicable to this model. The corresponding ^-matrix is given by

*'"<'>-
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in which

a = sn(u + 2/7; k\ b = sn(u; k\ c = sn(2η; k) ,

d = ksn(2η; &)sn(w; k)sn(u + 2η; k) .

The quantum L-operator on each site k of the spin chain now has the form

where

- r\\ k\ WQ — W3 = sn(w — γ\\ k),

w j -f W2 = sn(2/7; A:), wi — M/2 = k$n(2η; k)sn(u + 77; &)sn(w — 77; &) .

The monodromy matrix takes again the form (6.4). The generalization of the alge-
braic Bethe Ansatz to the model described in (6.12),(6.13) is known only for the
special eigenfunctions for which the number of excitations is half the number of
spins in the chain. Of course, this constitutes only a special class within the total
set of eigenfunctions, but no further results exist to date. Curiously, this is precisely
the case in which we have a connection with the discrete RS model!

To be more precise, the generalized BA, developed in [39,40], consists of con-
structing eigenfunctions of the trace of the monodromy matrix A(u) + D(u) after
performing a gauge transformation of the form

T(u) -* T,,,m,(u) = S,n(uΓίnu)Sm,(u) =: (A^m'(u\ ^»<'(MΛ ? ((U4)

where Sm(u) is an appropriate scalar matrix. (Note that we deviate from the notations
in [39, 40] to be consistent with the notations used in earlier sections of the present
paper.) Instead of a single vacuum there is now a set of generating (vacuum) vectors
ΩMH for which one has

=Q. (6.15)

The generalized Bethe eigenfunctions are linear combinations of the vectors

Ψn(qλ,...,qN) = Bn+ιtn-ι(qι) -Bn+Ntn-N(qN)ΩM,n-N •> (6.16)

of the form
oo

Ψ0(qι,...,qN)= Σ e2π'"°Ψn(qι,...,qN ), (6.17)

where θ is a free parameter. As it was pointed out in [39], it is possible that the se-
ries (6.17) is summable to zero for all θ except for a finite number of values θj. (The
results of Baxter [36] show that among the θj there is also the value 0 = 0.) Then
for such values of θ one can produce the corresponding eigenfunctions, provided
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that the excitation numbers q\,...,qN obey the following BAE's (cf. [40]):

» σ(ge-gk+2η) ™ σ(qt-δk+2η)

X = exp -4π/0 + 2η— ί Σ(2qk + 2η)-Σδk}\ (6.19)

in the special case5 that M = 27V, and re-expressing the equations derived in [40]
in terms of σ-function. Equations (6.18) correspond to Eqs. (2.14) for the discrete
RS model in the elliptic case by the following identifications: λ = 2η, qk = δk,

qk = δk+N — 2η, (k = 1, . . . ,7V), together with

P _ \ . m ~ 1 _ Λ
p L ^ω2 J ' k=\

The sum of the particle positions B plays the role of the boost generator of the
underlying Poincare algebra, cf. [10]. So, the generalized Bethe Ansatz equations
correspond to the discrete-time system with the dynamics of p given in terms of
the dynamics of ^'s. The results of Sect. 3 can be generalized to incorporate this
case. In fact, we need to add now the term

ΛπiθB - —λ(B-B)2 , (6.21)

to the Lagrangian (3.1b) in order to get the correct factor from the Euler-Lagrange
equations. If we now calculate the canonical momenta from (3.1b) we get an extra

term -^-λ(B - B) on the right-hand side in (3.4), but this factor cancels again when

we express the tίj in terms of the canonical momenta, because of the p entering

into Eqs. (2.13). Thus, the final result (3.6) remains unaltered.6 Consequently, we
still have the same integrals in terms of the canonical variables, and the Ruijsenaars
variables do not change, hence they are in involution and we have the integrable
correspondence.

It is amazing that exactly in the restricted case where the generalized BA is
known to apply, i.e. the case that the number of impurities is equal to twice the
number of excitations, we have a connection with an integrable correspondence
of RS type. This might also suggest that there exists a deeper relation between
integrable quantum models solvable by the QISM on the one hand and classical
integrable multiparticle models on the other hand. The connection provided here
might yield an explanation for the existence conditions of the generalized BA of
Faddeev and Takhtajan and of Baxter's solution of the eight-vertex model.

7. Discussion

The connection exhibited in the previous section between the BAE's for the XXZ
and XYZ model with impurities and the discrete relativistic multi-particle model is

5 The relation M = 2N follows because of the spin-^ situation, while becoming N = £M for

the arbitrary spin f (cf. [40]).
6 This effect can be viewed as a consequence of the relativistic invariance of the model.
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very remarkable. A similar connection seems to exist also in the non-relativistic case
studied in [1,2], which yields a link between the equations of motion of the discrete
CM model and BAE's for the Gaudin model. In both cases, we thus obtain a new
interpretation of the BAE's for a quantum solvable model, namely as a classical
integrable dynamical model with discrete time. Such interpretations, together with
the exact solutions of the discrete equations of motion that were derived in Sect. 4,
might lead to possible ways of "solving" the BAE's, (which in principle constitutes
a set of transcendental equations), without having to perform some thermodynamic
limit, cf. [38]. This, however, requires a reformulation of the initial value problem
for the discrete model rather as a boundary value problem on the discrete-time
chain. Although it is not clear at this stage that such boundary value problems
are explicitly solvable as was the case in Sect. 4, we nevertheless conjecture that
this intriguing dynamical interpretation of the Bethe Ansatz equations will shed
new light on the solvability of the corresponding quantum models. Furthermore,
it would be interesting to study generalizations of our results, for instance in the
directions of finding discrete particle models associated with higher-spin models and
higher-rank associated Lie algebras (nested Bethe Ansatz), as well as investigating
in this light the quadratic algebras associated with boundary conditions for quantum
integrable systems (reflection equation algebras), cf. [43]. The latter might lead to
time-discretizations of BC^ type of RS models, which were investigated in [14,15].
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