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Abstract: The recently introduced Galois symmetries of rational conformal field
theory are generalized, for the case of WZW theories, to "quasi-Galois symmetries."
These symmetries can be used to derive a large number of equalities and sum
rules for entries of the modular matrix S, including some that previously had been
observed empirically. In addition, quasi-Galois symmetries allow us to construct
modular invariants and to relate ^-matrices as well as modular invariants at different
levels. They also lead us to a convenient closed expression for the branching rules
of the conformal embeddings g c-̂  sb(dim g).

1. Introduction

In the study of rational conformal field theories, modular transformations play an
essential role. They turn the set of the characters of all primary fields into a unitary
module of SL(2,7L\ the twofold covering of the modular group of the torus. Via
the Verlinde formula, they are also closely related to the fusion rules.

In all cases where the modular matrix S is explicitly known, one observes
that it contains surprisingly few different numbers, and that among the distinct
numbers there are linear relations. While it has been known for a long time that
simple currents lead to relations between individual S-matrix elements [1—3], many
other relations, in particular sum rules, have remained so far somewhat mysterious.
Recently it has become clear that Galois symmetries [4,5] are an independent source
for relations between individual elements of S [6,7]. Both simple current and Galois
symmetries exist for arbitrary rational conformal field theories, independent of the
structure of the chiral algebra.

In this paper we will show that in the special case of WZW theories, Galois
symmetries can be generalized to what we will call quasi-Galois symmetries. A
crucial ingredient of our construction (which is not available for other conformal
field theories than WZW theories) is the Kac-Peterson formula for the ^-matrix.
These new symmetries turn out to be rather powerful and allow us to derive three
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new types of relations between the entries of S: first, a sum rule which relates
signed sums of /S-matrix elements, see (3.4); second, the equality, modulo signs,
of certain specific S-matrix elements, see (4.1); third, a new systematic reason for
S-matrix elements to vanish, see the remarks after (2.9).

Just as in the case of Galois symmetries, the relations we find can be employed
to construct elements of the commutant of S, and therefore to generate modular
invariants. Moreover, they can be used to obtain relations between invariants at dif-
ferent values of the level, i.e. between different WZW theories. Finally, we show that
our results allow to determine the branching rules of certain conformal embeddings.

The rest of the paper is organized as follows. In Sect. 2 we recall the basic facts
about Galois symmetries of rational conformal field theories, and of WZW theories
in particular, and show how in the WZW case they can be generalized to quasi-
Galois symmetries. Also, as a first application, we describe how these symmetries
force certain ^-matrix elements to vanish. In Sect. 3 we construct integral-valued
matrices that commute with the S-matrix; as a by-product we obtain an interesting
sum rule (3.4) for the entries of S. In Sect. 4 we obtain another symmetry, (4.1), of
S as well as relations (see (4.8), (4.9)) between the S-matrices for WZW theories
at different heights h\,h2, where h\ is a multiple of fe. Again, these results lead to a
prescription for constructing S-matrix invariants, now both at the smaller and at the
larger height (see (4.16) and (4.20), respectively). Finally, in Sect. 5 we consider
a special case of the latter invariants, which leads us to a closed formula for the
branching rules of the conformal embeddings g -̂» sb(dim g), which can easily be
evaluated explicitly.

2. Quasi-Galois Scalίngs

When analyzing the mathematical structure of a WZW theory, we are dealing with
integrable highest weight representations of an untwisted affine Lie algebra g at a
fixed integral level kv'. As the level is fixed, the g-weights are already fully de-
termined by their horizontal part, i.e. by the weight with respect to the horizontal
subalgebra g of g. In the following it will be convenient to shift all weights ac-
cording to a = λa -\- p by the Weyl vector p. Note that if the non-shifted weight λa

is at level &v, the shifted weight a is at level h, where

h:=kv+gv , (2.1)

with gy the dual Coxeter number of g; we will call h the height of the weight a.
The set of (shifted) integrable weights of the affine Lie algebra g at height h is

Ph:={a<ΞLw\0 < cί ^ ky + 1 for / = 0, !,...,/•}. (2.2)

Here Lw denotes the weight lattice, i.e. the Z-span of the fundamental weights. In
other words, the weights (2.2) are precisely the integral weights in the interior of
the dominant affine Weyl chamber at level kv + gv.

An important tool for studying the modular properties of WZW theories is the
Kac-Peterson formula [8],
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for the modular matrix S. Here the summation is over the Weyl group W of the
finite-dimensional horizontal subalgebra g of g. Some immediate consequences of
this formula are the following. First, the fact that according to (2.3) Sa^ depends
on a and b only via the inner products (w(a\b) and the identity (w(/α), b) =
l(w(a),b) = (w(a),lb) imply that

Sia,b=SaJb; (2.4)

and second, for any element w of the affine Weyl group W (i.e. the horizontal
projection of the Weyl group of the affine algebra g), one has

$w(a),b = sigfl(w)Sa,b - (2.5)

This implies in particular that Sa^ = 0 whenever a or b lies on the boundary of an
affine Weyl chamber. Note that in (2.4) and (2.5) it is implicit that the quantity
$a,b given by (2.3) can be considered also for weights which are not integrable.
This is possible because we are free to take the formula (2.3) (which for integrable
weights yields the entries of the actual S-matrix, i.e. of the matrix which realizes
the modular transformation τ ι-» — 1/τ on the characters) for arbitrary weights a,b
as the definition of Sa^. Analogously, these weights need not even be integral, and
hence (2.4) is valid for arbitrary numbers /, not just for integers.

To apply Galois theory to conformal field theory, one considers the number field
that is obtained as the extension of the rationals Q by all ^-matrix elements. One
can show [5] that this extension is a Galois extension and that its Galois group is
abelian, implying that the number field is contained in some cyclotomic field Q(CW).
The Galois group of the extension Q((«)/Q is isomorphic to Z*, the multiplicative
group of all elements of Zn that are coprime with n. The Galois automorphism
corresponding to an element / E Z* acts as ζn f — » ( ζ n ) 1 -

In the special case of the WZW theory based on the untwisted affine Lie algebra
g at height /z, the relevant root of unity is given by CM//? with M the smallest positive
integer for which the M-fold of all entries of the metric on the weight space of g is
integral.1 A Galois transformation labeled by / G TL*m then induces the permutation
A i—>• w(l(Λ -\- p ) ) — p of the highest weights carried by the primary WZW fields,
or equivalently, the permutation

σ = (j(/): a ι—» σa := wα(/α) (2.6)

of shifted highest weights. Here wα is an element of the affine Weyl group at
level h, i.e.

wa(b) = wa(b) + hta , (2.7)

where wα is some element of the finite Weyl group W and ta some weight
which belongs to the coroot lattice Lv of g. They are defined by the condition
that wa(la) e PH, which determines wa and ta uniquely. Substituting (2.6) into
the formula for WZW conformal dimensions one easily obtains a condition for
Γ-invariance, namely /2 = 1 mod 2Mh (or mod Mh if all integers M(a,a) are
even).2

1 Actually the cyclotomic field Q(CMΛ) does not yet always contain the normalization Ji ap-
pearing in (2.3); rather, sometimes a slightly larger cyclotomic field must be used [5]. However,
the permutation σ can already be determined from the generalized quantum dimensions, which do
not depend on JΛ Accordingly, the correct Galois treatment of JV* just amounts to an overall sign
factor which is irrelevant for our purposes.

2 For more details, see in particular Appendix A of [7].
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The key idea in the present paper is to allow in the transformation (2.6) for
arbitrary integers / rather than only elements of Z^h. As we will show, these
generalized transformations lead to interesting new information. Note that if / φ Z^,
then in order for the map (2.6) of the integrable weights to be still well-defined,
we must slightly extend the prescription for the Weyl group element wa. Namely,
wa is now determined by the condition that either la lies on the boundary of
some affine Weyl chamber (in which case wa can simply be taken to be the identity),
or else that wα(/α) G Ph. In the latter case, wa is the unique element of W with
this property, and we write

sign(wα) = sign(wfl) =: ε/(α) , (2.8)

while in the former case we put ε/(α) = 0. While the map (2.6) is thus still well-
defined for / φ %Mh9 it can no longer be induced by a mapping ζ^h h-> (ζMh)1 of
the number field, and hence in particular it no longer corresponds to a Galois
transformation. Nevertheless the similarity with Galois transformations is still so
close that we call the map a »-> la, with / not coprime with M/z, a quasί-Galois
scaling and the associated map σ (2.6) a quasi-Galois transformation.

Note that it is not true that an arbitrary integral weight b can be mapped into
Ph by an appropriate affine Weyl transformation. However, if b is of the special
form b = la with a G PH and / coprime with Lh, this is indeed possible [7]; here
L denotes the "lacedness" of g, i.e. L = 2 for g of type B or C or F^ L = 3 for
g = G2, and L=\ else. The condition that / is coprime with Lh is in particular
fulfilled whenever the scaling corresponds to an element of the Galois group, and
hence in the case of genuine Galois transformations a suitable unique wa G W exists
for any a G Ph, implying that the map σ is indeed a permutation of the weights in
Ph. In contrast, for a quasi-Galois scaling there will in general exist some a e Ph
for which la lies on the boundary of an affine Weyl chamber, so that σ is not even
an endomorphism of the set of integrable weights. However, in terms of WZW
primary fields the latter situation corresponds to mapping the primary field with
highest weight a to zero, so that σ can still be interpreted as a linear map on
the fusion ring that is spanned by the primary fields. Moreover, this can also be
translated back to the language of weights by adding to the set Ph a single element
& which stands for the union of all boundaries of affine Weyl chambers. In this
setting, the map (2.6) supplemented by σ(3$) = ̂  is an endomorphism of the set
Ph U {̂ }, though it is no longer a permutation.

Consider now an arbitrary scaling a ι-> la, / G ̂ \{0}, with associated (quasi-)
Galois transformation given by (2.6). As follows immediately by applying the iden-
tities (2.4) and (2.5) to Sσa,b, we tnen have the identity

*l(<l)Saa9b = ei(b)Sa,tb. (2.9)

For genuine Galois scalings, this result was already obtained in [5]. In the
quasi-Galois case, the two sides of (2.9) are not necessarily non-vanishing, and
this provides us with an explanation for the vanishing of certain S-matrix ele-
ments. Namely, if for the quasi-Galois scaling / the weights b and c := σa are
contained in Ph, but σb is not (i.e. Ib lies on the boundary of an affine Weyl
chamber), then (2.9) tells us that SCιb = 0. (Another systematic reason for S-matrix
elements to be zero is provided by simple current symmetries: Sa,b — 0 if a is a fixed
point of the simple current J and b has non-vanishing monodromy charge [2] with
respect to J.)
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3. Quasi-Galois Modular Invariants

Consider for a given quasi-Galois scaling / the matrix Π with entries in {0, ±1}
that describes the mapping induced by the scaling on the primary fields, i.e.

Πafb = Π(^b:=εl(a)δbί<ίa. (3.1)

Equation (2.9) can then be written as

)a,b = e,(a)Sda,b = ε,(b)Sβl<ib = (SΠ'\b . (3.2)

Multiplying this equation from both the left and the right with S+ , the hermitian
conjugate of S, using the unitarity of S and taking the hermitian conjugate of this
equation, we see that

(Π'S)a,b = (SΠ)a,b . (3.3)

This relation describes in fact a rather remarkable sum rule for S-matrix elements:
writing the matrix multiplication in (3.3) explicitly, it reads

ει(c)δatdcSCfb = Σ β/(<0<5ft,*A,c . (3.4)

Generically the sums appearing in (3.4) contain more than one non- vanishing term;
to our knowledge it is the first time that a relation of this type between S-matrix
elements has been established in a general framework.

By introducing the pre-images of a quasi-Galois transformation,

Σ-l(a):={c€Pk\σ(c) = a} (3.5)

for any a G Ph, we may rewrite the sum rule (3.4) in the more suggestive manner

Σ ει(c)SCtb= £ ε,(c)Sa,c. (3.6)
ceΓ-l(α) c€Σ-'(6)

If the map (2.6) is invertible, then (3.6) reduces to the relation

b , (3.7)

which is equivalent to the identity (2.9) applied to the map σ~l.
Combining the two relations (3.2) and (3.3), it follows that the matrix

=77 + 77' (3.8)

commutes with the modular matrix S,

[Z(/),S] = 0. (3.9)

Typically the S-matrix invariant Z^ obtained this way is not positive, nor does it
commute with Γ. This pattern already arises for ordinary Galois scalings. However,
just as in the Galois case [6,7], it is still possible to construct physical modular
invariants, because one can get rid of the minus signs and achieve Γ-invariance by
suitably adding up various invariants of the type above and possibly combining with
other methods such as simple currents. Note that in the invariant (3.8) typically some
of the fields are projected out, and hence when using quasi-Galois transformations
it is in fact easier to obtain Γ-invariance than in the Galois case.
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To give an example for a matrix that commutes with the ^-matrix and that is
obtained by the above prescription, let us consider the scaling / = 3 for the A\
WZW theory at height h = 6. In terms of non-shifted highest weights, this scaling
maps A = 0 and Λ = 4 with a positive sign β/ on A = 2, the weight A = 2 with
a negative sign on itself, and the weights A = 1,3 on the boundary 3d. Thus the
matrix Z(3) defined by (3.8) reads

/O 0 1 0 0\
0 0 0 0 0
1 0 - 2 0 1
0 0 0 0 0

\0 0 1 0 O/

(3.10)

While this matrix has negative entries and is hence unphysical, the combination

Z = (Z(3))2 + 2Z(3) (3.11)

is a physical invariant, namely the £>-type invariant of the height 6 A\ theory. As
the number of primary fields is rapidly increasing with the rank and level, most
applications of our prescription which lead to physical invariants involve rather
complex expressions; therefore we will not display more complicated examples
explicitly.

Actually the invariant (3.11) can also be obtained from genuine Galois trans-
formations [7]. An example for a physical modular invariant which cannot be ex-
plained that way, but which is obtainable as a linear combination of quasi-Galois
invariants is the exceptional Eη-type invariant of A\ at level 16. However, the con-
crete expression is rather lengthy so that we refrain from presenting it here. As
we shall see later, also for the £7-type invariant there exists a close relation to
the matrix Z(3) displayed in (3.10) even though they are invariants at different
heights.

4. S-Matrix Invariants: Increasing and Lowering the Height

In this section we consider the special case where the scaling factor / G Z>o is a
divisor of the height; to simplify notation, we will make this explicit by denoting
the height of the theory to which the scaling is applied by Ih. As we will see, in
this situation there exist intimate relations between the WZW theories at height Ih
and at height h} As we are now dealing with weights at two distinct heights, we
find it convenient to denote the elements of P^ by lower case and the elements of
Pih by upper case roman letters, respectively. Similarly, we use the capital letter
"S" for the ^-matrix of the height Ih theory and the symbol "s" for the ^-matrix
of the height h theory.

Before describing the relationship between height h and height Ih theories, let us
first prove another new symmetry property of the iS-matrix: if the height is divisible
by /, then for any B G Pih the signed S-matήx elements

β/(C) S/β,c (4.1)

are identical for all C G Σ~l(B). To check this statement, take any fixed B G Pih
and any C G Σ~l(B). Then considering weights of the form A = la with a G Ph,

We are grateful to T. Gannon for remarks that triggered the work presented in this section.
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and using the fact that σC — wc(/C) + lhtc with wc £ W and tc £ £v, as well as
ε/(C) = sign(wc), we find

[-
sign(w)exp -^-(

= sign(wc) - Ji Σ sign(w)exp - ( w ( α ) , / - 1 ^ ) . (4.2)
wer L " J

The only dependence of the right-hand side on the weight C is thus via the
signε/(C) = sign(wc), and hence we have established the symmetry (4.1).

The primary WZW fields φa and ΦA which are associated to the weights in Ph

and in PM, respectively, can be viewed as the generators of the fusion rings ̂  and
$ih of the height h and height Ih WZW theories, respectively. Let us introduce the
mappings

P: @ih^@h

ΦA ^ P(ΦA) = Σ PA,bΨb, ?A,b := Bt(A)δάAJb , (4.3)

and

D: @h-^@ιh

φa ̂  D(φa} = Σ Da,BφB, £>a,B := διa,B (4.4)

between these two fusion rings. Note that because of

ΓlσA = Γl(wA(lA) + lhtλ) = wA(A) + A^ (4.5)

with wA G ̂ F and ̂  e Iv for any ^4 E P/Λ, the weight Z"1^ is integral and either
an element of Ph or else on the boundary of an affine Weyl chamber at height
Λ. Also, Pbtb = \ (here the first label b is to be considered as an element of P//0
which shows that the map P is always non-zero.

The relation (4.5) implies that there is a close connection, which will prove to
be useful later on, between the conformal dimensions A mod TL of all those fields
which belong to the same pre-image under the map σ. Namely, from the definition
Δa = [(α,α) — (p,p)]/2A of the conformal dimensions at height h (and the fact that
any Weyl group element w G W is an isometry), it follows that

l(Δb - Δc) = (2hiγl[(a + htb9a + htb) - (a + htC9a + htc)]

= Γl(a,tb - tc) + ̂ hΓl[(tb9tb) - (tc,tc)] (4.6)

for b,c G Γ-1(β); we will use this equation only modulo TL. Since tb,tc £ Lv, we
have (a9th) £ Z, (tb,tb) E 2Z, and analogously for ίc, and hence the right-hand side
of (4.6) is an integral multiple of l~l. If in addition the height is divisible by /,
then according to (4.5) this is also true for the Dynkin components of any a for
which Σ~l(a) is non-empty, and hence in this case the right-hand side is in fact
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an integer, so that Ab — Ac e 1~1Z forh = lh' and b,c € Σ~l(a). In the notation
appropriate to the height lh theory we thus have, for all A G P/Λ,

ΔB - AC G ΓλTL for B, C G Σ~l(A) . (4.7)

The relevance of the maps P and D that we introduced in (4.3) and (4.4) conies
from the fact that they provide direct relations between the two modular matrices
S and s. Namely, we find

S/y = Γr/2Ps, (4.8)

P'S - Γ/2sD . (4.9)

Equivalently, by taking the transpose, we can write these identities as

DS = Γr/2sPf , (4.10)

C p — ]rl2Γfc (A 1 }\&Γ — I LJ t> . \^.LL)

To prove (4.8), we first separate the height-independent part of the normalization
factor jV* in the Kac-Peterson formula (2.3) from the rest,

i^"' )/2 |Zw/I vΓ1A- r/2 =: h~r/2W , (4.12)

where d is the dimension of g. Then we compute

(SD')A,b = SA,,b = (lhΓr/2^ Σ sign(W)exp -(
w€W I In

/2^ Σ sign(w)exp Γ-?Ξ(W(^),6) (4.13)

and, once again making use of σA = wA(lA) -f lh tA with v^ G W and tA G Lv, and
of β/(^) = sign(w^),

[ o * Ί
— ̂ (w(^),6) . (4.14)

h \

Comparing (4.13) and (4.14), we obtain (4.8).
The relation (4.9) can now be proven by multiplying (4.8) from the left with

the hermitian conjugate S+ of S and from the right with s+. Using the unitarity of
S and s and taking the hermitian conjugate yields (4.9).

We can now apply the results just proven to the construction of S-matrix
invariants, both at height h and at height lh. Namely, assume first that the ma-
trix Z belongs to the commutant of the ^-matrix of the height lh theory, i.e. that

[Z,S] = 0. (4.15)
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Further, define
z—P'ZD* +DZP . (4.16)

Explicitly, we have

**,* = Σ Bι(A)ZAtlb+ Σ Bι(B)ZlaίB. (4.17)
AeΣ~l(la)

Using (4.15) as well as the relations (4.8)-(4.11) proven above, we can then
derive that

zs = P*ZDf s + DZPs = Γr/2P'ZSP + lr/2DZSDf

= Γ'Pp'SZP + rPDSZD* = sDZP + sP'ZDt = sz. (4.18)

Similarly, let z be an S-matrix invariant of the height h theory,

fes] = 0, (4.19)

and define
Z :=DtzPt +PzD . (4.20)

Using the convention that za^ = 0 whenever a or b is not in P^9 the matrix elements
of Z read

ZA,B = e/ί^)*/-!^,/-!* + ε/CB)*/-UMσ* (4 21)

By employing (4.19) and again (4.8)-(4.11), we obtain

' = SZ. (4.22)

We have thus proven the following remarkable facts: Given an S-matrix invariant
Z at height //z, the formula (4.16) provides us with an ^-matrix invariant z at
height h,

fcs] = 0; (4.23)

and conversely, given an ^-matrix invariant z at height /z, the formula (4.20) defines
an ^-matrix invariant Z at height Ih,

[Z, S] - 0 . (4.24)

Not surprisingly, the prescriptions (4.16) and (4.20) do not respect positivity, i.e.
even if Z (respectively z) is a positive invariant, this need not hold for z (Z).

As an example, let us take for Z the exceptional invariants of A\ which all occur
at heights of a multiple of 6, namely for h = 12, 18,30, and obtain from them by
(4.16) invariants of A\ at height 6. For h — 12 and h — 30 the prescription (4.16)
yields the zero matrix. More interesting is the E7 -type invariant at h= 18; in this
case z is precisely the quasi-Galois invariant (3.10) obtained in the previous section.

Note that the maps (4.3) and (4.4) are related to the map Π introduced in (3.1)
by Π = PD:

ΠA,B = εl(A)δBίάA = Σ ει(A)διC90AδBjc - Σ PA,cDCtB - (4.25)
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The prescription (4.20) actually provides a generalization of the quasi-Galois
^-matrix invariant (3.8). Namely, according to (4.25), when considering the di-
agonal invariant z — 1, (4.20) yields

Z - P D + Dl Pl = Π + If , (4.26)

i.e. reproduces the invariant (3.8). A still more special case is obtained by perform-
ing the scaling by the factor / at height lgv . Then the smaller level is in fact zero,
so that there is a single primary field with shifted weight a — p, and hence a single
nontrivial invariant za^b — δatpδb,p. In this situation, (4.21) reads

c. (4.27)

In applications (see in particular Sect. 5 below) it is often not the matrix (4.27)
that is directly relevant, but rather the combination

Z:=Z2 -2e/(/p)Z (4.28)

(compare the similar formula (3.11)). The entries of (4.28) read

ZA,B = \Γ\lp)\ δAJpδBJp + Σ β/(C)fi/(Z>)^,c<5*,D , (4.29)

where

ίΓ\lp) := Σ-\lp)\{lp] . (4.30)

Note that in the invariant Z only fields belonging to Σ~l(lp) get mixed; by (4.7)
this implies that Z is not only 5-invariant, but also invariant under Tl . It is also

Λ2 Λ, _ 1 ^ *
easily checked that Z = \Σ (/p)|Z, so that by taking powers of Z we cannot
produce any new invariants.

We can also apply the constructions (4.20) and (4.16) consecutively to a height h
S-matrix invariant, or in the opposite order to a height Ih invariant. The computation
then involves the identities PD = Π, DD1 = 1, P1P = Π, as well as DP = π and
D*D = Q with

to) (4.31)

and
QA,B:=δAfB Σ δAtlb. (4.32)

We find
z = 2Γz + nzn + n*z π1 , (4.33)

and a similar formula for Z. The result (4.33) means that whenever z commutes
with s, then so does the matrix πzπ + π'zπ'. Also note that in (4.31) the map σ
is the quasi-Galois transformation with scale factor / at height Ih. This implies that
σ(lά) = l(wιa(la) + htia), and hence the (5-symbol in (4.31) imposes the constraint
that the weight b is related to a by a quasi-Galois transformation with the same
scale factor /, but now at height h. In other words, as already anticipated in the
notation, the map π — DP implements the same quasi-Galois scaling for the height
h theory as the map Π = PD (4.25) implements for the height Ih theory.
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5. Conformal Embeddings

Conformal embeddings are embeddings g ̂  h of untwisted affine Lie algebras for
which the irreducible highest weight modules possess finite branching rules. The
explicit form of these branching rules has been determined for various cases (see
e.g. [9-15]), but a general formula is not known, and there are still many conformal
embeddings for which all known methods are inapplicable.

The list of conformal embeddings [16, 17] contains several infinite series. Here
we are interested in a particular infinite series, namely the embedding g^v -̂> sb(d)\,

i.e. of g at level #v (with g an arbitrary untwisted affine Lie algebra) into so(d),
with d = dimg, at level one. In terms of the horizontal algebras, the embedding
is the one for which the vector representation of so(d) branches to the adjoint
representation of the smaller algebra g. Such embeddings are of particular interest
because they are connected with the "fermionization" of WZW models with level
#v, which is due to the fact that sb(d) can be written in terms of free fermions.
This will play a role in the following.

The diagonal level one sb(d) partition function is

^8o(rf)(τ,τ) - |^o|2 + |^v|2 + |^s|2 + |^c|2 for d even , (5.1)

and
for d odd , (5.2)

where o, v, s and c refer to the singlet, vector, spinor, and conjugate spinor repre-
sentation of so(d), respectively. Our objective is to write each of these characters
in terms of the characters χΛ of g at level gv .

The branching rule for the sb(d) spinor(s) is already known explicitly ([18], see
also [19, 10,20]). Up to a multiplicity, they branch to a single irreducible represen-
tation, namely the one whose (unshifted) highest weight is the Weyl vector p. We
will denote this irreducible representation by Lp. The dimension of the analogous
irreducible representation of the horizontal algebra g is 2N+, where N+ — (d — r)/2
is the number of positive roots (and r is the rank of g); hence the multiplicity with
which Lp is contained in the so(d) spinors is 2r/2-1 if d is even, and 2^~^/2 if d
is odd. A closed formula for the branching rules of the sδ(rf) singlet and vector is
also known [10], but (see (5.20) below) it involves the image W(p) of the Weyl
vector under the affine Weyl group and hence is not convenient for explicit calcu-
lations. (As a matter of fact, only in very few cases, such as for g = G2 [12], the
branching has already been determined explicitly). Accordingly, we will not employ
this formula, but rather prove an equivalent formula which allows for an immediate
evaluation on a computer. To start, we make the following general ansatz for the
relation between level one so(rf) and g^v characters:

#Ό= Σ <XΛ, ^v= Σ *4*A, SΪ* = SCc = 2r/2-lχP (5.3)

for d even, and

^o= Σ mϊXΛ, #v= Σ ™ΪXΛ, « s = 2(r-1)/2ip (5.4)

for d odd. Here and below we label the integrable g^v representations by their
unshifted highest weights (in particular we will use A = p in place of a — 2p);
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accordingly, the summations in (5.3) and (5.4) are over the unshifted fundamental
chamber P^v(g); also, m0 and mv are non-negative integral vectors in the space of
all characters. The equality of the decomposition of the two sb(d) spinor characters
for even d implies that these representations will appear as a fixed point of order
2 in the g^v modular invariant. Hence the invariant will have the form

Σ |2*

for d even, and

Σ Σ

(5.5)

(5.6)

for d odd.
The identity and vector characters of sό(J) branch to distinct g^v characters,

since the difference of conformal dimensions of identity and vector is non-integral.
Thus the vectors m0 and mv are orthogonal. We will focus first on the cases where
also the spinor(s) have different conformal weights modulo integers than identity
and vector, which holds if dφO mod 8. Then by the same argument the spinor(s)
branch to different g^v characters than identity and vector characters, and hence
we have m£ = mζ = 0. This situation is covered by the following simple theorem.
Consider any ^-invariant (such as (5.5), (5.6)) that is a sum of squares, i.e. of the
form

Σ (5.7)

This can be written as f, where M is the matrix with entries

(5.8)

Further, suppose that the vectors mp are orthogonal,

Σ (5.9)

Let us also impose the physical requirement that there is a unique vacuum, i.e.
that M satisfies MOO — 1; then among the vectors m^ there must be precisely one,
conventionally labeled by p = 0, which contains the identity character, i.e. we must
have NQ = I and m[j = 1. Next consider the matrix M2; it has entries (M2)^>yl/ —

Σp^pRpmp nip in particular, (M2)0o = Ro Thus the matrix M2 — R0M has entries

(M2 -RQM)AtAf = ΣP(
NpRp-NPRQ*)mpmp' Finally, the square Z of the latter

matrix has entries

ZΛ,Λ> = ([M2-R0M]2)ΛιΛ, = (5.10)

This is a manifestly non-negative matrix, it obeys Z0o = 0, and because it is a
polynomial in M it commutes with S. Thus 0 = Zoo = Σ/i Λ'ep ySθΛZΛ,Λ'SθΛ' = 0>
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with equality only if ZAtΛι =0 for all A, A' ^Pgv\ i.e., any such matrix must
vanish. By (5.10), the vanishing of Z implies that for any p the sum rule

Np Σ (mff=NpRp=RQ (5.11)
^V

holds. This is equivalent to the property M2 = R^M, so that M is idempotent up
to a normalization.

In the situation of our interest, these sum rules give useful information because
we know Np and m^ for the spinor characters. For even d, the spinors have N = 2,
and hence (5.11) tells us that

R0 = NVRV = 2 (2r/2~1)2 = 2r~l , (5.12)

and for d odd we get

R0 = NVRV = (2(Γ~1)/2)2 = 2r~l . (5.13)

Since for dΦ8 mod 16 the vector representation of level one so(rf) has differ-
ent conformal dimension modulo integers than the other representations, we have
Nv = 1 . As we will see below, the matrix M has all entries except the spinor entries
equal to 0 or 1, and in that case the sum rule (5.11) tells us that the identity and
the vector of so(rf) each branch to 2r~l different irreducible representations of the
conformal subalgebra g.

For the following argument it is convenient to summarize the spinor branching
rules in (5.3) and (5.4) as &s — 2^2^χp9 where [n] stands for the integer part of

n, and where &s = &s for odd d and #"s = (£ΓS + &c )/2 for even d. Then by
performing the modular transformation τ ι-> — 1/τ and using the explicit form of the
^-matrix of the sb(d) theory, we have

2m -- = 2w Σ W
V τJ Λ^PgV

(5.14)

This formula holds in fact for the full characters, not just for the Virasoro specialized
ones. Since the full characters form a basis of the relevant module of SL(2,Z), and
since in the expansions of ΘCQ and ̂ v into powers of q = exp(2πiτ) the fractional
powers of q are different, it follows that (5.14) already determines the branching
rules of the singlet and vector characters uniquely. In particular the knowledge that
χo must appear with multiplicity one in the branching rule for ^0 implies that
GSg)p,o = 2~r/2, and that for any A G /^v, (Sg)p?yι must be an integral multiple of
this number.

All the properties of the conformal embedding invariants that were obtained
above follow by rather general arguments. We will now discuss how one can obtain
these invariants (i.e. the form of the vectors m0 and mv) in a much more explicit
manner by employing a quasi-Galois scaling by a factor 2. Thus consider g at height
h — 2#v, and the quasi-Galois scaling 1 = 2. Applying the prescription (4.20), we
obtain the special case 1 = 2 of the ^-matrix invariant (4.29). In terms of unshifted
weights, (4.29) reads

ZΛtΛf = \Σ~ (ρ)\δΛ9pδΛfίp -h Σ e(μ)εOO<U/A',/ (5 15)
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As it turns out, the sign ε is not constant on Σ~l(p), so that (unlike in the, otherwise
similar, situation of (3.10)) the invariant Z (5.15) is not positive. By the remark
after (4.30) it follows, however, that it does commute with Γ2.

Furthermore, according to (2.9) we have

o,σΛ (5.16)

for any A E P^v, and hence the observation after (5.14) implies that ε(0) — 1 and

(5.17)

for all A G Pgv . Combining this information with (5.14) and the fact that the full
characters form a basis, we learn that

Σ y Λ or — V ΎΛ (5 18ΪJ^Λt ^ v — / ^ hA \^.LOJ

Λ£Γ~l(p) Λ£Σ~l(p)
ε(Λ)=l ε(Λ)=—l

This is the announced closed formula for the branching rules of the embed-
ding g^sb(dimg). Note that in terms of unshifted weights the explicit form
of the quasi-Galois transformation reads 2p = p -h p = a A + p = WΛ(2(Λ + p)) =
2wΛ(Λ -h p) + 2gvβΛ with WΛ G W and ̂  G Lv, which can be rewritten as

A = w^(p) - p - gyw^l(βΛ) = u(p) - p , (5.19)

where the last equality defines a unique element u of the aίfine Weyl group W at
level gv. Thus our result (5.18) can be rewritten as

Φ — V* ΎΛ Of — V^ v . (* 9fl\5X7 O / ^ A/L? V / y f^A \J.ί*\J)
/ ΓΊR+ ΛeP_v ΠR_

with
R± := (w(p) - p I w G W, sign(w) - ±1} . (5.21)

The formula (5.20) has already been obtained in [10]. It is equivalent to (5.18),
but for explicit calculations has the disadvantage that it involves the sets R±; these
sets are infinite due to the fact that all elements of the aίfine Weyl group must be
taken into account.

Let us describe some aspects of the formula (5.18) in more detail. First, for all
simple g except g = Ar with r even, we observe the following. A certain number
K of representations with integer conformal weight is mapped via the quasi-Galois
transformation to Lp with a positive sign; an equal number of representations with
half-integer conformal weight flows to Lp with a negative sign; all other represen-
tations as well as Lp itself flow to the boundary. (This has been checked explicitly
for rank less than 9; the continuation of this specific result to higher rank is only a
conjecture.) For Ar with r even, there are two differences with respect to the fore-
going. First of all the numbers K and K' of fields with integral and half-integral
conformal weight, respectively, that flow to Lp are different, and secondly Lp does
not flow to the boundary, but to itself. In this case d = r(r + 2), which is a multiple
of 8, implying that the sδ(J) spinor has integral or half-integral conformal weight.
The sign associated with the flow of Lp to itself is plus or minus for these two
cases respectively.
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In matrix notation, we thus have Z = Π + Π*, with

Π

' 0 0 e
0 0 -e 0
0 0 ε(p) 0

, 0 0 0 0 ,

461

(5.22)

for the matrix (4.20) that underlies (4.28), and hence

/ E -E 0 0

Z =
0

\ 0

E

0

0

0 0

K + K' 0

0 O/

(5.23)

Here the third column/row corresponds to Lp, the first one to all K fields with
integral conformal weight which flow to Lp under the quasi-Galois transformation,
the second to the K' fields with half-integral weight flowing to Lp, and the fourth to
all remaining fields. The symbol e* stands for a K, respectively K f , component vector
with all entries equal to 1, and E = Q®e* denotes the matrix of appropriate size
(i.e., K x K,K x K',K' x K, and K' x K f , respectively) each of whose entries is
equal to 1; the O's indicate matrices of zeroes of the proper size. Thus in particular
for all cases except Ar with even rank, (5.23) can also be written as

Z =

E -E 0 0

-E E 0 0

0 0 2K 0

0 0 0 O/

(5.24)

with all matrices E of size K x K. Also recall that if Lp flows to the boundary,
then ε(p) = 0 so that the entry Πp^p of the matrix (5.22) vanishes. Further, if d is
a multiple of 8, then not only the matrix (5.23), but also

Z :=
-E

\ 0

-E

E

-ε(p)e'

0

β(p)e

-e(p)e

0

o\
0

0

O/

(5.25)

commutes with both S and Γ2.
These results can be related to the conformal embedding invariant in the fol-

lowing way. Consider first the case of even d. The diagonal so(d) invariant can be
written in terms of Jacobi theta functions and the Dedekind eta function, using

= l-η~d/2(θd

2

/2 - i (5.26)

where the arguments τ and z are suppressed ((5.26) reflects the possible description
of the so(d) theory by free fermions). We are only considering Virasoro specialized
characters here, i.e. these functions are in fact 0/(z — 0,τ). Since θ\(z — 0,τ) = 0, in
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this setting the partition function (5.1) reads &so(d} = ^\η\~d[\θ3\
d + \θ4\

d + \θ2\
d].

This is modular invariant because S interchanges 84 and 63, while T interchanges
64 and 62, and all overall factors cancel.

This diagonal partition function is however not the one we obtain from quasi-
Galois transformations. Using the modular transformation properties of the
^-functions one can write down another partition function that is only invariant
under S and Γ2, namely (fixing the normalization such as to make the square of

the identity character appear exactly once) &SO(d) = |*?Γ^2[|04 d + \Θ2

 d], or, re-
expressed in terms of the so(d) characters (5.26),

Λ 0 9
&y (W* (fir *• I fir i (fir ^ sr 97Λ

Both the diagonal modular invariant (5.1) and the partition function (5.27) con-
tain more information than one strictly gets from specialized characters; one may
check explicitly that both are ^-invariant if the spinor characters are distributed
symmetrically, as indicated.

If we write the matrix M corresponding to (5.27) in terms of g-representations
we get

-Eov 0 0\

E0V 2' 0° ' (5 28)'

0 0 07

where (Epp/ )Λ,Λ' — m^ m/l/ The result (5.18) implies that E00 = Eov = Evo =
EW = E, or in other words, that m0 = mv = e*. Thus (5.28) can be identified with
(5.24). There is also an independent consistency check of this identification. Namely,
we find that K = 2r~1, so that both m0 and mv have 2r~l components, each equal
to 1. Hence they do satisfy the sum rule (5.12), so this rather nontrivial requirement
for the matrix

Έ 0 0 0^

0 E 0 0

0 0 2r~l 0

, 0 0 0 0 ,

to commute with S is fulfilled. The matrix (5.29) is the modular invariant that
corresponds to the branching rules (5.18). Note that the quasi-Galois symmetries
imply that (5.24) commutes with S and Γ2, while the step from (5.24) to (5.29)
does not follow from any symmetry we know.

If d is a multiple of 8, then the above argument has to be slightly extended.
Since in this case both (5.23) and (5.25) are S-T2-invariants, we have in addition
to (5.29) another matrix Zc'e, and hence any physical linear combination Z(u,v) :=
wZc.e. -f uZ£e>, as candidates for the conformal embedding invariant. Explicitly, the
matrix Z' reads-'c.e.

E 0

(5.30)
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for d — 0 mod 16 and

/E 0

7' •-A .e. • —

0

0

\0

'-'

0

0

e"

+1

0

°\
0

0

o/
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(5.31)

for d = 8 mod 16, respectively. Fortunately, it is easy to eliminate all but one of
the candidates, namely by imposing the "quantum dimension" sum rule

θ, 0 = Σ θ, A (5.32)

(here the summation is over all fields that are combined with the identity field).
Inserting the ansatz Z(u, υ)9 we find that for the case of Ar with even r, this yields
the unique solution u = 0, v = 1, so that (5.30), respectively (5.31), is the correct
solution (and we also have ε2(p) =1). In contrast, for all other cases where d is
a multiple of 8 (such as g = E%\ the unique solution is given by u — 1, v = 0,
i.e. only (5.29) survives the constraint (5.32). Thus in all cases except Ar with
r even, the situation is the same as in the general case where d is not divisible
by 8.

For odd d the use of theta functions is somewhat awkward, but it suffices to
observe that the matrix

I -1 0

(5.33)

commutes with the ^-matrix

Sso(d) = 2

' 1 1 V2

1 1 ->/2

,Λ/2 -V2 0

(5.34)

Written in terms of g-characters, (5.33) becomes identical to (5.28), and the rest of
the argument is as before.

In the notation of (5.15), the conformal embedding invariant (5.29) reads

:ce)^ ,̂ =2r~lδΛ δλι + Σ Σ Λ, μ Λ' , μ'

ε(μ)=ε(μ')=\

(5.35)

while (5.30) and (5.31) with ε(p) = ±1 can be summarized as

(5.36)

(By inspection one easily verifies that these matrices commute with Γ, that the
correct number dim(so(d)) — dim(g) = d(d — 3)/2 of spin one currents are com-
bined with the identity field, and that the "quantum dimension" sum rule (5.32)
is satisfied also for d not a multiple of 8.) Note that in the summations in (5.35)
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and (5.36) (and also in those for the branching rules (5.18) of 3£0 and ίFv) the
weight μ = p does not contribute, except for Ar with even r, in which case it
contributes to 3Γ0 (if d = r(r + 2) = 0 mod 16) and to %v (if </ = 8 mod 16),
respectively.

Let us finally present some examples for the explicit form of the conformal
embedding invariants. The most interesting cases are those with exceptional g. We
will display the result for the algebras g = F$ and g = E& (in the E j and Eg cases
the invariants require too much space, therefore they will be presented elsewhere
[21]). The primary fields are again labeled by their unshifted highest weights. We
find

^c.e.(^4,9) = I (0, 0, 0, 0) + (0, 0, 1, 6) + (0, 0, 2, 1) + (0, 1, 0, 0)

+ (0, 1, 1, 2) + (0, 3, 0, 0) + (1, 0, 0, 5) + (1, 1, 0, 4) |2

+ I (0, 0, 0, 7) + (0, 0, 2, 0) + (0, 0, 3, 0) + (0, 1, 0, 3)

+ (0, 1, 0, 6) + (0, 2, 0, 2) + (1, 0, 0, 0) + (1, 0, 1, 4) |2

+ 2 - 2(1, 1,1, 1) |2, (5.37)

and

= I (0, 0, 0, 0, 0, 0) + (0, 0, 0, 0, 12, 0) + (0, 0, 1, 0, 0, 0) + (0, 0, 1, 0, 9, 0)

+ (0, 0, 2, 0, 3, 0) + (0, 1, 0, 0, 5, 2) + (0, 1, 0, 2, 1, 0) + (0, 2, 0, 0, 1, 0)

+ (0, 2, 0, 0, 7, 0) + (1, 0, 0, 0, 7, 2) + (1, 0, 0, 2, 0, 0) + (1, 0, 3, 0, 1, 0)

+ (1, 1, 1,0,3, !) + (!, 1, 1, 1, 1, 0) + (1,2, 0,0, 5, !) + (!, 2,0, 1,0,0)

+ (2, 0, 0, 1, 3, 1) + (2, 0, 1, 0, 2, 0) + (2, 0, 1, 0, 5, 0) + (3, 0, 2, 0, 0, 0)

+ (3, 0, 2, 0, 3, 0) + (3, 0, 1, 1, 1, 1) + (3, 1, 0, 0, 2, 1) + (3, 1, 0, 1, 3, 0)

+ (4, 0, 0, 0, 4, 0) + (5, 0, 0, 2, 1, 1) + (5, 0, 0, 1, 0, 2) + (5, 0, 1, 0, 2, 0)

+ (7, 0, 0, 2, 0, 0) + (7, 0, 0, 0, 1, 2) + (9, 0, 1, 0, 0, 0) + (12, 0, 0, 0, 0, 0)|2

+ I (0, 0, 0, 0, 0, 1) + (0, 0, 0, 0, 6, 3) + (0, 0, 0, 1, 10, 0) + (0, 0, 0, 3, 0, 0)

+ (0, 0, 4, 0, 0, 0) + (0, 1, 0, 0, 8, 1) + (0, 1, 0, 1, 0, 0) + (0, 1, 2, 0, 2, 0)

+ (0, 2, 0, 0, 4, 2) + (0, 2, 0, 2, 0, 0) + (0, 3, 0, 0, 0, 0) + (0, 3, 0, 0, 6, 0)

+ (1,0, 1,0,4, 1) + (1,0, 1, 1, 2, 0) + (1, 1,0,0,6, !) + (!, 1,0, 1, 1,0)

+ (2,0,2,0,2, l) + (2, 0, 2, 1,0, 0) + (2, 1,0, 1,2, l) + (2, 1, 1,0, 1,0)

+ (2, 1, 1, 0, 4, 0) + (3, 0, 0, 0, 3, 1) + (3, 0, 0, 1, 4, 0) + (4, 0, 0, 2, 0, 2)

+ (4, 0, 1, 0, 1, 1) + (4, 0, 1, 1, 2, 0) + (4, 1, 0, 0, 3, 0) + (6, 0, 0, 0, 0, 3)

+ (6,0,0,1, 1,1) + (6, 0,0, 3, 0,0) + (8, 0,0, 1,0, 1) + (10, 1, 0, 0, 0, 0)|2

+ 2 - |4(1,1,1,1, 1,1) |2 . (5.38)

These results demonstrate the power of quasi-Galois symmetries quite convincingly.
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