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Abstract: We construct a fully supersymmetric biHamiltonian theory in four super-
fields, admitting zero curvature and Lax formulation. This theory is an extension
of the classical AKNS, which can be recovered as a reduction. Other supersym-
metric theories are obtained as reductions of the susy AKNS, namely a non-
linear Schrόdinger, a modified KdV and the Manin-Radul KdV. The susy nonlinear
Schrodinger hierarchy is related to the one of Roelofs and Kersten; we determine
its biHamiltonian and Lax formulation. Finally, we show that the susy KdV's
mentioned before are related through a susy Miura map.

1. Introduction and Preliminaries

In the last decade there has been increasing interest in superextensions of the soliton
evolution equations. The earlier results concerned the construction of field theories
with fermionic and bosonic fields depending on time and one space variable x
[Kup]. Next, the susy (—supersymmetric) soliton equations were investigated. In
the so-called N = 1 susy extensions [MR], in which we are mainly interested, the
field variables depend, apart from time, on the superspace variables Λ:, 0, with x
even and θ odd; the field equations are formulated in terms of the superderivative
D — θd/dx + d/dθ, with the property D2 — d/dx. Also, the N = 2 susy extensions
were introduced, with one even and two odd superspace variables x,θι,θ2 [Mat]; in
this case, two superderivatives Di = θid/dx -f d/dθi are employed.

The best known methods for constructing soliton equations can be appropriately
generalized to the susy framework. The Lax formalism in terms of fractional powers
was extended by introducing an algebra of pseudodifferential operators in D (or D\
and Z)2); in this way, some susy KdV equations were constructed [MR,Mat,LM],
and the corresponding biHamiltonian structures were obtained via 7?-matrix theory
[OP,FMR].

Moreover, the connections between the susy soliton equations and the theory of
Lie superalgebras were analyzed in [IK1-4,MP1], in order to obtain a superanalogue
of the classical Drinfeld-Sokolov theory [DS].
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Recently, the method of prolongation structures [EW] was extended to field
theories with fermionic variables [RH]; as a byproduct, a super nonlinear Schrόdinger
(NLS) hierarchy was obtained by Roelofs and Kersten [RK], involving a bosonic
field q = q(x) and a fermionic field ω = ω(x). The vector fields and the conservation
laws of this hierarchy were written in terms of q, ω and their jc-derivatives; more-
over, it was found that the super NLS equation admits an N = 1 susy formulation
in terms of the superfield ψ(x,θ):= ω(x) + θq(x) and its superderivatives. (This
super NLS equation is different from the one proposed previously in [Kul, CN], for
which a susy formulation in the above sense was not given).

In our previous works [MP1-4], we discussed the susy KdV equations from a
biHamiltonian and Lie superalgebraic viewpoint. Following this approach, in this
paper we propose an N = 1 susy extension of the AKNS theory, involving two
even superfields b = b(x,θ), a = a(x,θ) and two odd superfields \ls=ψ(x,θ\
φ = φ(jc, θ). This theory consists of a hierarchy of commuting vector fields, pos-
sessing infinitely many conservation laws; we explicitly construct the biHamiltonian
formulation, giving a pair of compatible Poisson structures for which all the vec-
tor fields of the hierarchy are Hamiltonian. Moreover, we give the zero curvature
representation and the Lax formulation. The classical AKNS hierarchy in two field
variables tq = q(x), r — r(x) can be recovered through the reduction

b = a = 0, \l/(x, θ) = θq(x), φ(x, θ) = θr(x) . (1.1)

Both the biHamiltonian structure and the spectral problem of the susy AKNS can
be reduced to the classical ones via Eq. (1.1).

On the other side, if we put the constraints

6 = α = 0, φ(x9θ) = ψ(x,θ)9 (1.2)

we get a susy extension of the ordinary NLS theory; by inspection of the first
vector fields and conservation laws, it is found that they can be converted into the
homologous objects of the Roelofs-Kersten super NLS hierarchy. The advantages
of our approach are:

i) the intrinsically supersymmetric formulation of the hierarchy, which is con-
structed directly in terms of the superfield ψ(x,θ) and its superderivatives;

ii) the fact that we give a biHamiltonian and a Lax formalism.

We also consider two alternative reductions of the susy AKNS, which are defined
by the constraints

a = b, φ = ψ and 6 =-1, ^ = 0 , (1.3)

respectively. The first reduction gives rise to a modified susy KdV theory; the
second one generates the susy KdV of Manin and Radul [MR]. By comparing the
associated Lax formulations, we obtain a susy Miura map relating the two theories.
(As is known, the classical AKNS theory contains the NLS, modified KdV and KdV
theories as reductions; so, the susy extension considered in this paper possesses the
counterparts of these classical features).

We now illustrate the plan of the paper and the theoretical setting from which
the results came about.

In Sect. 2, we present the main results about the susy AKNS, giving the first
vector fields and conservation laws, the biHamiltonian structure (Table la) and
the zero curvature/Lax formulation (Table Ib). The reductions mentioned above are
discussed in Sect. 3 and the main results are summarized in Tables 2-4.
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Subsequently, we illustrate the method we have employed to generate the susy
AKNS; in Sect. 4, we consider in particular the biHamiltonian structure and in
Sect. 5 we derive the zero curvature/Lax formalism. Most of the computations in
the paper have been carried out using the MATHEMATICA symbolic manipulation
system; in order to save space, only the essential part of the computational results
has been reported in the tables.

As for the theoretical setting, we refer to the methods discussed in gen-
eral in the previous papers [MP1-2]; different applications of these techniques
were also presented in [MP3-4]. As anticipated above, our approach is essen-
tially Lie superalgebraic and biHamiltonian; it is based on a geometrical viewpoint
which was widely developed for the classical soliton equations (see, in particular,
[FF, MMR, DS, CMP, CP]).

The main geometrical objects in our setting are the loop superalgebras, i.e.
Lie superalgebras of maps V = V(x, θ\ taking values in some finite-dimensional
Lie superalgebra. The odd part <&\ of a loop superalgebra ^ is a biHamiltonian
manifold, i.e., it carries two compatible Poisson tensors Q and P; at any point V
we have

Qv(δV) = [A,δV] , Pv(δV) = D(δV) + [V,δV] (1.4)

for each covector δV (identified with an element in the even part ^o of the loop
superalgebra). In the above equation, A denotes a fixed element of ^i, whose
choice is in principle arbitrary. The susy AKNS theory discussed in this paper
is derived working with the loop superalgebra <& = gl(2,2){x, θ}; the elements
of ^ are 4 x 4 matrices, the entries being scalar superfields. A is the (constant)

( o o o

o o o o

- 1 0 0 0

0 1 0 0 ,

The biHamiltonian structure (1.4) can be reduced using a technique proposed
recently in [CMP,CP], where the Marsden-Ratiu reduction theorem for general
Poisson manifolds [MaR] was specialized to the biHamiltonian case. In these papers,
it was shown that the Poisson tensors of a general biHamiltonian manifold can be
reduced to a conveniently defined quotient manifold, and this result was applied
to loop algebras in connection with the classical KdV-type equations. The method
also works in a susy framework [MP1]; in our previous papers, it was applied to
the loop superalgebra ^ = gl(292){x,θ}, giving rise on the quotient space to the
biHamiltonian structure of the Manin-Radul susy KdV.

Here, we are working with the same loop algebra, but the matrix A defining
the first Poisson tensor in Eq. (1.4) is different from the one considered in previ-
ous works. The choice of A related to the Manin-Radul theory was made on the
grounds of a natural susy extension of the Drinfeld-Sokolov "lowest root criterion"
[DS], also considered in [IK2]; here, we explore a different possibility, which is
suggested by the analogy with the classical AKNS case. With this new choice, the
quotient manifold of the reduction turns out to be a space of quadruples (b,a,ψ,φ),
where the two first components are even superfields b = b(x,θ), a = a(x,θ), and
the other two are odd superfields ψ =ψ(x,θ), φ = φ(x,θ). Using the reduced
biHamiltonian structure, we generate with a standard procedure a hierarchy of
vector fields and Hamiltonian functions: this is the susy AKNS.

The next steps in our construction are the zero curvature and the Lax formal-
ism of the hierarchy, which are natural outcomes of the biHamiltonian reduction
[MP2]. The zero curvature representation can be seen as a Lax formulation with
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parameter, the Lax operator being a 4 x 4 matrix first order differential operator
in the superderivative D. From here, it is possible to derive a reduced, parameter
independent Lax formalism, where the Lax operator is a 2 x 2 matrix differen-

tial operator acting on a space of pairs ί Ψl ) , each component being a superfield

Ψi = Ψj(x,θ). The eigenvalue equation for this operator is

- bΨ2 = λΨλ

which appears to be a natural susy extension of the classical AKNS spectral problem.
The biHamiltonian and Lax formalism of the susy AKNS can be carried over to

the reductions mentioned before, i.e., the susy NLS, modified KdV and Manin-Radul
KdV. In the case of the two KdV's, it is also possible to derive in a geometrical
fashion the scalar Lax formulation in terms of fractional powers.

This is, summing up, the content of the paper. Before going into the details
of the susy AKNS, we add some (very short and informal) preliminaries about
the basic supermathematics employed in the paper; this is useful for uniformity of
language. Also, we recall the definition of the Lie superalgebra 0 7(2,2) and the
associated loop algebra.

7.7. Linear superalgebra. We extensively refer to the framework of the previous
work [MP1]. The "numbers" or "scalars" we employ are the elements of a super
(= 2^2 -graded) algebra. More precisely, we have a real associative superalgebra with
unit L = LQ®L\, whose elements commute in the graded sense (i.e., elements in
the even part LQ commute with every element of L, and elements in the odd part L\
mutually anticommute). The complexification of L is the complex superalgebra A =
ΛQ Θ A\9 where, for k = 0, 1, A^ := {u + iυ \ u, v £ Lk }; we define complex conju-
gation setting u + ίv \=u — iv for each u, v G L. The whole L (or its even part LQ)
plays a role similar to the real numbers, while A (or AQ) plays the role of com-
plex numbers. Throughout the paper, we employ the language of linear algebra
consistently with these choices for the basic sets of scalars. In particular, the
term "space" generally means a module over AQ or a Z2-graded module over A;
a "linear map" between two spaces means a AQ or Λ-linear map. In dealing with
Z2-graded structures, we always denote with deg((7) the degree, i.e., the parity of an
object C7; deg(C7) G Z2.

7.2. Superanalysis. Setting up superanalysis requires that the superalgebra L be topo-
logical (in an appropriate sense). We are mainly interested in calculus for functions
of one even variable x and one odd variable θ: x ranges over LQ (or the torus
LQ/%) and θ over L\. The set of pairs (x, θ) is called the ( 1 1 1 )-dimensional su-
perspace. A superfield is a differentiable function of c and (9, with values in the
complex superalgebra A; we say that a superfield is even (resp. odd) if it takes
values in AQ (resp. Λ\). Apart from superfields, that are scalar valued functions,
we also consider vector or matrix valued functions of x and θ. We employ the odd
superderivative D := θd/dx + d/dθ9 satisfying the identity D2 = d/dx9 and we denote
by f dxdθ the integration over superspace. All functions are assumed to satisfy
appropriate boundary conditions in the x variable, so that one can integrate by parts
without introducing boundary terms.
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The action of D is denoted with a prime, and the action of d/dx with a sub-
script x'9 so, for example, the third superderivative of a superfield / = f(x, θ) is
///; = f'x. For the sake of clarity, we recall a standard notational convention for
superdifferential operators: if / is a superfield, and k an integer, the operator Dk f
is the composition of Dk with the multiplication operator by /; this should not
be confused with the &th superderivative of /, which is a superfield. The context
allows to distinguish the operator from the superfield; in Tables 1-4, notations like
Df, D~lf, (or dxf, d"1/, etc.) always stand for operators. A general yl0-linear
operator A mapping superfields into superfields is said to be even (resp. odd) if it
preserves (resp. changes) the parity of superfields; so, dx is even, D is odd, and the
multiplication operator by a superfield / has the same parity as /. The adjoint of
A is the unique operator, denoted with A*, such that

fdxdθ f(Ag) = (-l)*5*/) de^) f dxdθ (A*f)g (1.6)

for each pair of superfields / and g. For the product of operators, it is found
that (AB)* = (-l)deg(Λ)deg(S)£*^*? implying that (A~1)* = (-l)^^*)-1 if A is
invertible. Moreover, D* = —D, d* — — dx\ if / is a superfield of any parity, for
the corresponding multiplication operator we have f* = f.

1.3. Super manifolds and tensors. The introductory remarks about supermanifolds
and tensor fields given in [MP1] are also useful for our present purposes. If Jί is
a supermanifold, and m G Jί, we denote by TmJί the (even) tangent space, and by
T^Jί the (even) cotangent space (both of them are Λ0-modules). Tangent vectors
and covectors will often be indicated, respectively, by m and δm, and the pairing by
(δm, m) . A vector, or covector field is a section of the (even) tangent, or cotangent
bundle.

The phase spaces of the susy AKNS theory and the other systems considered
in this paper are infinite-dimensional supermanifolds of maps, where each point is
a function on ( 1 1 1 )-dimensional superspace. Several types of tensors are considered
on these manifolds. As is usual, the term (2,0) tensor means a map m ι— » Pm where,
for each m G Jί, Pm is a linear operator from T^Jί into TmJί. A (1,1) tensor
is a map m ι-» Nm, where Nm is a linear operator of TmJί into itself. A (0,2)
tensor is a map m ι— > Ωm, where Ωm is a linear operator from TmJί to T^Jί. In
the sequel, we will extensively work with Poisson tensors, recursion operators and
(pre)symρlectic tensors on Jί . As usually, a Poisson tensor means a skew-symmetric
(2,0) tensor P such that the bracket {/, /} := (df,Pdl) (/, / even functions on Jl)
satisfies the Jacobi identity. A recursion operator is a (1,1) tensor N with vanishing
Nijenhuis torsion and a (pre)symplectic tensor is a skew-symmetric (0,2) tensor Ω
with vanishing exterior derivative [FF,MMR,LiM].

1.4. Lie super algebra gl(2,2) and associated loop super algebra. The Lie super-
algebra g 1(2,2, Λ) (denoted for brevity with g 1(2,2)) consists of 4 x 4 matrices with
entries in the set of scalars A. Any such matrix can be written in block form as

U = (x

z

 Ύ

w ) , where each block is a 2 x 2 matrix. The even part of gl(2, 2), denoted

by #/(2,2)o, consists of matrices with even entries in the blocks X, W and odd entries
in 7,Z; similarly, the odd part gl(2,2)\ consists of matrices with the parities of the
blocks interchanged, g 7(2,2) can be regarded as a Z2-graded vl-module, and it is a
Lie superalgebra with the supercommutator [U, V] := UV - (-l
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The loop superalgebra ^ = 0/(2,2){;c, θ} consists of g7(2,2) valued functions
of the superspace variables x and θ. An element of ^ can be represented as
a 4 x 4 matrix where each entry is a superfield depending on x and θ. & is
a Lie superalgebra; the even and odd parts ^o> ^ι> as well as the supercom-
mutator [ , ], are defined pointwisely in terms of the omologous structures of
g/(2,2). If U = U(x,θ) is an element of <&9 written in terms of 2 x 2 blocks, we

define DU := (_^z _^)* ^or ^urtner details about the topic of this subsection,

see [Lei, Cor].

2. The susy AKNS: Main Results

2.1. The susy AKNS from the biHamίltonίan viewpoint. Let us consider a (flat)
supermanifold J(9 whose points are quadruples m = (b9a9ψ9φ)9 where b = b(x,θ)
and a = a(x,θ) are even superfields, ψ = ιj/(x9θ) and φ = φ(x9θ) are odd super-
fields. A tangent vector and a covector at any point m are written, respectively, as
m = (b9ά9ιj/9φ) and δm = (δb,δa,δψ,δφ), where b,ά,δψ,δφ are even superfields
and \l/,φ,δb,δa are odd; we have the pairing (δm, m) := J dxdθ (δb b + δa ά +

δ\j/ φ + δφ φ) .
The manifold Jί carries a pair of Poisson tensors Q, P9 which are compatible

in the sense of [Mai]; so, the triple (Jί,Q,P) is a biHamiltonian supermanifold.
The explicit expressions for Q and P are given in Table la, which also contains
the expression of the symplectic tensor Ω := Q~l .

We remark that Q and P are skew symmetric in the ordinary sense, i.e.,
(δm,QmδmfJ = — (δm',Qmδm} and similarly for P. If we introduce the matrix
elements g#> as in Table la (with / and k ranging through the symbols b9a9ψ9φ)9

from the skew-symmetry of Q we infer

where the r.h.s. contains the adjoint of Q& defined according to Subsect. 1.2; the
same holds for the matrix elements of P.

Similarly, the skew-symmetry property (m,Ωmm) = —(rh',Ωmm) implies

Ok- = (-l^OdegW+iφ^)* . (2.1.2)

We now describe the susy AKNS hierarchy. Let us consider the vector field
K()(m) = mX9 i.e., the generator of translations in the even variable x. It turns
out that KQ is Hamiltonian with respect to both Poisson tensors Q and P; indeed,
if we define the Hamiltonian functions ho(m) := — f dxdθ (bφ + aψ+ψφf),
h\(m):=\ f dxdθ (bφx + ψ'φx — aψx)9 we find that K^—PdhQ = Qdh\ (d denoting
the differential). The general theory of biHamiltonian manifolds implies that there
exists a hierarchy of vector fields K} and Hamiltonian functions hj satisfying the
recursion relations

Kj = Pdhj = Qdhj+ί, (7=0,1,2,...). (2.1.3)

This is, by definition, the susy AKNS hierarchy(see the summary in Table la, where
we also include the vector field K-\ := Qdho). In spite of the nonlocal character
of the Poisson tensors, the vector fields and the Hamiltonians appear to be local.
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As is known from the theory of biHamiltonian systems, the vector fields Kj
mutually commute and each Hamiltonian function is a constant of motion for all the
vector fields of the hierarchy; also, the Hamiltonians are in involution with respect
to both Poisson brackets induced by Q and P: (dhj.Qdhj/) — (dhj.Pdhjf) = 0 for
each y,/.

Equation (2.1.3) implies

Kj^=NKj (7 = 0,1,2,...), (2.1.4)

where N:=PoQ~l. This is a recursion operator, i.e., a (1,1) type tensor with
vanishing Nijenhuis torsion. The (0,2) type tensor Ω = Q~l is symplectic; Ω and
N are compatible, i.e., the (0,2) tensor ΩoN is itself (pre)symplectic.

Equation (2.1.3) also implies

dhj^=N*dhj (7 = 0,1,2,...), (2.1.5)

where N* is the adjoint of N. At each point m, N£ sends T^Jί into itself and is
defined by the condition (δm,Nmm) = (N£δm,m).

The explicit expression of N is given in Table la; here we report all matrix
elements Nik for i,k ranging within the symbols b,a,ψ,φ. The adjoint TV* can be
described similarly, specifying a list of matrix elements C/V*)&; on account of the
previous definition, we find

(N*)ti = (-l)***WWM(N*) , (2.1.6)

where the r.h.s contains the adjoint of Nik defined according to Subsect. 1.2.
As will be shown in Subsect. 3.1, the classical AKNS theory can be obtained by

restriction of the susy theory to the "classical" submanifold Jίc\ := {(6, a9ψ,φ)e^\
b = 0, a = 0, ψ(x9 θ) = θq(x), φ(x, θ) = θr(x)} (q, r arbitrary even functions of c).

Remark. Equations (2.1.4-5) provide an efficient scheme for practical computation
of the hierarchy. Let us illustrate this fact by considering, for example, the recursion
relation for the Hamiltonians. In order to apply it, we need the explicit expression
for TV*, which can be obtained from Table la and from the adjunction rules given
above. If δm = (δb,δa,δψ,δφ) is any covector at m, it is found that the covector

δm := N^δm has components

δb = \(—δbx + ψφδb + as + φ'ε + aη + φs) ,

δa = \(δax + \l/φδa + +bε -j- ψ'η + bη + ψs) ,

δ\// = ^(-δψx + ψφδφ + a'η + ag + φ'g + φp) ,

δφ = \(δφx + ψφδφ + b'ε + bg + ψfg + ψσ) , (2.1.7)

where the odd superfields ε, η, p9 σ and the even superfields s, g are such that:

sx = (b + ψf)δb — ψδbf — aδa + ψδψ — φδφ ,

ηx = bδb — (a + φ')δa + φδa' + ι//δψ — φδφ ,

px = -bxδb - a'δa' - (φx + b')δ\l/ - bδψ' + a'δφ + (a + φ'}δφr ,

σx := b'δb' + axδa - b'δψ - (b + ψ')δψ' + (φx + a')δφ + aδφ1 ,

sx = -bδb' + aδa1 + (26 + \l/')δ\l/ - (2a + φ7)^ ,

^ = b'δb - a'δa + 2(6 + ̂ )<ty - <A^ ~ 2(a + φ'^Φ + φδφ' . (2.1.8)
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We are interested in the application of these formulas for constructing the
Hamiltonian functions of the hierarchy. To this purpose, let us consider the covector
field do = dho, which is the differential of the first Hamiltonian; at any point m we
have do(m) — (—φ, —ψ, —a — φ', —b — ψf). The covector field d\ := N*dQ is the
differential of the Hamiltonian h\. Consider the sequence of covector fields defined
by dj+\ = N*dj\ by a general property of recursion operators, the covector fields
constructed in this way are exact, i.e., there exist functions hj such that dj — dhj.

For constructing the covectors dj(m) at a point, one computes, at each step of
the iteration, the functions ε,η9...,g whose Jt-derivatives are given by Eqs. (2.1.8);
for j = 0,1,2,... it is found that the right-hand sides of these equations are total
derivatives, so the covector fields and the Hamiltonians determined in this way
are local functions of m. An analysis of this kind can be carried out also for the
recursion relation (2.1.4) of the vector fields.

2.2. The zero curvature I Lax formulation for the susy AKNS. Let us consider
the loop superalgebra ^ — #/(2,2){.x, #}, already introduced in Subsect. 1.4; the
elements of ^ are 4 x 4 matrices, whose entries are superfields. We denote by ̂ λ,
&Q and 3?j the sets of polynomials in one (even) parameter λ and coefficients in &,
in the even part ^0 and in the odd part ^i, respectively; each of these polynomials
can be represented as a matrix where the entries depend on λ. We exhibit a family
of maps Jt -> <S\, m ι-> Σλ(m) and Jf -> &%, m^-> <gj(m) (j = -1,0,1,...) such
that, for each vector field Kj of the susy AKNS, the following holds:

dΣλ(m)
(2.2.1)

(d/dtj denoting the derivative along Kj). We call this equation the zero curvature
representation of the susy AKNS hierarchy. Explicitly, we have

λ(b,a,ψ,φ):=

0

-a-\φ'

0

Iφψ-λ -b-\

-1

0

0

0

(2.2.2)

(note that the time derivative of Σλ(m) is independent of λ). The matrices
for the lowest values of j are reported in Table Ib. In principle, each of these
matrices can be computed requiring that:

i) it is a polynomial of degree y -f 1 in λ with leading term (—i
where ^ is the constant diagonal matrix Diag(— 1, 1,— 1, 1);

ii) the sum D<#j(m) + [Σλ(m)^j(m)] is independent of λ.

One could interpret Eq. (2.2.1) as an alternative definition of the susy AKNS hier-
archy. According to this viewpoint, after constructing the matrices ^ with the re-
quirements i) and ii), one defines Kj as the unique vector field such that Eq. (2.2.1)
holds. On the contrary, in our approach the hierarchy is defined by the biHamiltonian
recursion scheme of Subsect. 2.1 and the zero curvature formulation is a supple-
mentary output.
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The biHamiltonian approach allows a geometrical interpretation for the matrices
Ήj [MP2] and provides the following formula for their construction:

(2.2.3)
k=Q

Here, Σ*λ is a map, reported in Table Ib, which associates to each covector on
the phase space Jί an element of ^J; the covector fields dj, which are computed
recursively using the tensor TV*, are the differentials of the Hamiltonian functions hj.

As is usual in the classical framework [DS], we can interpret the zero curvature
representation as a Lax formulation, where the Lax operator is a matrix first order
differential operator. To this purpose, let us introduce a space if of quadruples Φ =

¥/1 λΨ

ξ

2 j , where the components Ψi = Ψi(x,θ) and ξ/ = ξi(x9θ) are superfields. An

element of if is defined to be even if the superfields Ψi are even and the & are odd;
the odd elements of if are defined similarly, interchanging the parities of Ψi, ξi. The

/ DΨ, \

superderivative D acts on if according to the rule DΦ := ^ we also observe
V -Dξ\ J

that the elements of the loop algebra ^ act naturally on if by matrix multiplication.

Let Lin(^) denote the set of linear operators on if, and Lmλ(if) the set of
polynomials in one variable λ, whose coefficients belong to Lin(l^); each element

stfλ of Lmλ(if) is in fact an operator on if, depending polynomially on the para-
meter λ: s$λ — j3/o + λA\ -\ h λnsfn, where j/0? , ̂ n are operators. We define
a map Jί -> Lm(i^\ m H-> ^(m) setting

&λ(b, fl, ιA, φ) := £> + Σλ(m) =

/

V

D -±ψ

-\φ D

\φψ - λ -b-\ψ'

—a — \φ' —\φψ + ^

-1

0

-D

-\v

0 \

-1

-jψ
-D)

(2.2.4)

It is straightforward to check that the zero curvature representation (2.2.1) is equiv-
alent to the Lax formulation

^ S Γ Cpλ(ΊΛΛ\ (β^(wi\\ (^ 0 ^Λ— L=z^ v " ^ / ? ^ / v " ^ / J 5 iz-.z^.j)
dtj

containing the ordinary commutator between ^λ(m) and %>j(m) as A-dependent
operators on if.

The spectral problem associated to the Lax operator £>λ(m) is the equation

(
ψ\ \

;

2 is a vector of 'W, depending on the parameter

11
λ. Using Eq. (2.2.4), we find that the spectral problem is equivalent to

'=λΨ\, Ψlx + (a + φD)Ψl

λ = λΨ2

λ,

ξ$ = DΨ2

λ - ϊ-φΨi . (2.2.6)
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The first two equations define an eigenvalue problem

-d*
L(m)

ψλ
= λ

ψλ

L(m) :=
2 / V a + φD

-b-ι//D\
(2.2.7)

The operator L(m) acts on a space J f of pairs (jp[*'m); it can employed to set up

a reduced, parameter independent Lax formulation of the susy AKNS in terms of
2 x 2 matrix differential operators. In fact, we have

dl_

dΓj
(2.2.8)

where the operators C7 (m) are constructed as explained in Table Ib.
Finally, we recall a general property of the Lax formalism, which will be use-

ful in Sect. 3: each power of the operators ϊ£λ(m) and L(m) can be as well em-
ployed to set up a Lax formulation. In particular, if we consider the squares we
get

*" ^ ^— = [(^λ)2(m)^(m)] , (2.2.9)
Ulj

d^l^[L\m\Cj(m)}. (2.2.10)

Table la. The susy AKNS: biHamiltonian formulation

First Poisson tensor Qm : TmJt and its inverse Ωm := Qm

 l at a point m = (b,α, φ,φ):

= 2

Qbb
Qbα

Qb*
Qbφ

Qαα

Qαψ

Qαφ

ft

= D- φd~l(α + Dφ) -

= —φd~lα + αd~lφ,

= -φd~lφ,

Qαb = (Qbα)*, etc.

Qba Qbφ Qbφ\ /δb\

Qab Qaa Qaφ Qaφ

, Qφa 0 0

,Qφb Qφa 0 0 /

0 0 Ωbψ

0 0 Ωaύ

Ωbψ := φd~lφ ,

Ωb := 1 - φd~l

Ωψψ := -φd~l(a + φ') + (a + φ')d~lφ ,

Ωψφ :— D — φd~l(b + φD) — (a + φf)d~

Ωφφ := φd~l(b + φ') -(b + φ')d~lφ ,
)*, Ωφψ = (Ω^φ)*, etc.
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Second Poisson tensor at a point w:

(
δb\ / Pbb Pba Pbφ Pbφ \ / δb^

δa\_l Pab Paa Paφ Paφ δa

w ] ~ \ p^ p*« p** JV* I I ^ Γ
δφ/ \Pφb Pφa Pφφ Pφ

Pbb := 2b\l/ — bd~l(2bφ + 2aψ + ψφf + φψ')d~lb — bd~l(bφ + aψ -

+bd~l(b' — ψx + 2bD) — ψD~l(bφ + aψ + y

Pba ;= Ddx — 2φ\l/D — 2(bφ + aψ + ψφf) + 6d~1(26φ + 2αι/

+bd~l(bφ + aψ + ψ'φ)D~lφ + bd~l(φx -a1 -2aD) + ψD~l(a' + φΛ

+ψD~l(bφ -\- aψ + \fjφ')d~λ(a + Dφ) — (b' -

Pbψ := —bdx~^(2bφ + 2αι/^ + i/^φ7 + φ\l/')d~lψ — bd

—ψD~*b — ψD~^(bφ + flψ + φφf)d~^\l/ ,

Pόφ := -^ + 2φι^ + bd~l(2a + φD) + bd~l(2bφ + 2αι/f + ̂ φ7 + φψ')d~lφ

Paa := 2aφ — adx

 l(2bφ + 2αι^ + i/^φ7 + φψ')dx

 la — adx

 l(bφ + αι/f

+α571(α7 — φx + 2<zD) — φD~l(bφ + aψ + φψ')d~la + (α7 H

I + ad~l(2bφ + 2α^ + ι/^(

Pαφ — —ad~l(2bφ + 2<2^ 4- ψφ7 + φψf)d~lφ — ad~l(2a + φD) + (V + φx)d~lφ

—φD~la — φD~λ(bφ + «i/^ + φψ')d~lφ ,

/^^ ;= —ψd~(2bφ -j- 2<2i^ + Άφ 7 + φΆ7)^χ~ Ά ~~ Ά^^ (26 + ι/^7) — (26 + \j/f)d~^ψ ,

p^ ^ ψd~ (2bφ + 2ίzι/^ + ι/^φ7 + φi/^7)^^ φ + ψd~ (2a + φ7) + (26 + \J/f)d~^φ ,

P^ ;= —φd~l(2bφ + 2αι/ί + i/^φ7 + φψ')d~lφ — φd~l(2a + φ7) — (2α + φ')d~lφ ,
— /'P, , \* P , — —(P, }* ptp1 — \*b\l/J 5 <PΆ — \*ψφ) •> eΐc

"Λ^i 7V6fl 7V^ 7Vόφ

ΛU Λ^αα ΛΓa^ A/"flφ

<A J 2 | ^ό ^fl ^^ Λ^φv.TV^fc 7Vφα ^^ Λ^φφ

A/66 := dx + ψφ-bd-l(2a + φD) + b'd~lφ-ψD-{(a + φ') ,

^ :=67a71(β + φ/) + 6571α7-6xa-1φ ,

Nbφ :— bd~^b' 4- bfd~l(b + ι/^D) + ψD~lbf + bxd~lψ ,

JVα^ := α5~1(2ίz + φD) — afd~lφ + φD~la ,

Naψ := -φD~laf - a1 d~\a + φD) - ad~laf - axd~lφ ,

Recursion operator Nm : TmJi —>• Γw^, A/^ ( ^ | — 2 I

:= -ψd~l(2a + φ7) - (26 + ψ')d~lφ, Nψa := -ψd~l(2b + ι^7) - (26 + ψ')d~

f := dx -{- ψφ — bd~l(2a + φ7 + φD) — \j/'d~^(a + φ7) — ψd~l(φx + aD + φ7D) — ̂

ψd-l(ψx+bD + \l/fD) + ψxd-lψ ,

- φdx

 l(φx + «D + φ7D) — φ^^ !φ ,

Recursion schemes: K-\ :— QdtiQ, Kj = Pdhj = Qdhj+ι (j — 0,1,2...), or
dhj+i =N*dhj (j = 0,1,2...), Kj+l = NKj (j = -1,0,1,...).



364 C. Morosi, L. Pizzocchero

2b

-2a
'V

axFirst vector fields: K_\(m) = \ , Ko(m) = .
2<A I \Ψχ

. —2φ / \φx

bxx - 2φψbx - 2ψb'φ' - 2bψa' - 2bφb' - 2aψbf - 2ab2

-axx - 2φψax + 2φafψ' + 2bφa' + 2a\l/a' + 2aφb' + 2a2b

— 2φι//\//x — 2\l/φfψ' — 2bψφ' — 2bφψ' — 2aψψ/ — 2b2φ — *

^ —φxx — 2φ\l/φx + 2φ φ'ψ' -f 2bφ φ' + 2aψφ' + 2aφψf + 4abφ + 2a2ψ /

\^ΛTJCΛ: ~~ 3φψbxx — 3φbxψx + 3bfφfψx — 3ψa'bx — 3φb'bx

-\-3ab'\j/x — 3bφbx — 3aψbx — 3\l/φ'b'x — 6abbx

QXX — ̂ ^xφx + 3a'ψ'φx — 3>ψa'ax — 3φb'ax + 3ba'φx

+3ab'φx — 3bφax — 3aψax — 3φψ/ax — 6abax

— 3φ/\l/'ψx — 3ψφ'bx — 3φψ'bx — 6abψx — 3bφ'ψx

p'ψx — 6bφbx — 6aψbx

K2(m) = I

fax — 6abφx — 3bφ'φ_

\ —3aψ'φx — 3bφφx — 3aψφx — 3φψ'φ'x — 6bφax — 6aψax /

First Hamiltonian functions: /zo(tfί) = —fdxdθ (bφ + aψ + ψφ'),

h\(m) = ^ fdxdθ (bφx + ψ1'φx — aψx) ,

h2(m) = \fdxdθ (2ab2φ + 2a2bψ + b2φψ' + 2ab\l/φ' + 2abφψ' + cf ψψ' + 2bφφ'ψ'

-\-2a\l/φfψf + φφfψf — bφ\l/φx — φιf/φfφx + aφ\J/ψx + ψxφx + bxφx + axψx} .

Table Ib. The susy AKNS: Lax formalism

Parameter dependent Lax formulation: d^>A(m)/dtJ = j

D -±ψ -1 0

-\φ D 0 - 1

φψ — λ —b—^ψf —D —^Ψ

a — 4 φ' — i φι]/ + λ ~^φ ~D

k=Q

], (/ = -1,0,1,...)

, where:

d0(m) = (-φ, -ψ, -a - φ', -b - ψ'), dj+l(m) = N*dj(m\ (j = 0,1,2,...).

/ w 0 0 0\

0 w 0 0
-λ

032 σ 33 #34 J w' - η 0 w 0

\ #41 σ42 #43 σ44 / \ 0 2wx — η 0 w /
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σ\\ := / + 2(δaφ + δbψ) - 4η', σ12 '•= ~4δφ - 2ηψ + 4δa'', σ ί3 := 4ίy, σH := -4&* ,

<τ21 := -4δψ + 2φ(w' - η) + 4δbf, σ22 := A σ23 := -4δb,

03\ '•= —4aδa — 2δφφ -f 2δψψ — ηφψ -f f + 4φδa' — 4δaφf — 2δbψ' -f- φψwf — 4ηx ,

σ32 := —2ψη' — 2ψηf — 2ψφδa — 4δφf + 2η\l/f + 2bw' + 2δax ,

η' + 2φ?/ - 4<5ι^/ + 2φ'(w' — η) + 2a\v' + 2δbx ,

- 2δφ φ — 2δψψ — ηφψ — 2φδar -

σ44 := 2δaφ -\-p-\-'.

The odd superfield η and the even superfields w, / and p are given by:

ηx = bδb — (β + φ'^δa + φδa' + ι/f<5ι/f — φδφ, wx = —ψδb — φδa ,

/c = 2(2bf + ^)^ό — 2ψδbx + 4(6 + \j/')δ\l/ — 4(a + φ')δφ + 4φδφ'
—4(bφ + aψ + ψφ')(w' — η) + 4φψηf.

—4(bφ -\- aψ + φfφ)η + 4φψη'.

In particular:

' - 1 0 0 0

0 1 0 0

C\2

CΊ\

C22

C23

C24

C32

C34

C41

C42

C43

C44

= bψφ + 2bx - 4λb,

= 2Z>φ + 2<2i/

= aψφ — 2ax — 4λa,

= -2ab - 2φb' + ψφx+4λ2,

= —2φx — 4λφ,

= 2ba' + 2ab' + 2α/ι// — ^αx + φ^ + 2aφx + φι/^ ,

= 2ψφbf — bψφ' — aψψ' — ψφ'ψ' — φψψx + 2b'x + ̂  — 4λbf — 2λψx ,

- 2ab - 2φb' + 26^' + 2aψ' + 2φ/ιA/ - ψφx - 2φψx - 4λ2 ,

= bψφ - φψψf + 2bx + 2^ - 4λb - 4λψf ,

= 2ψφa' + bφφ1 + βφi/^' + φφ'Ψ' ~ φψφx — 2ax — φ^ — 4λa' — 2λφx ,

= —2baf — 2ab' — 2b' φr — ψax + φ^ — 26φx — ψφx ,

= α^φ — φϊAφ7 — 2^ — 2φx — 4λa — 4λφf ,

= —2ab + 2iAax — 2Z?ψ/ — 2αι/^x — 2φfψf + 2ψφx + φi/*^ + 4/12 .
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Parameter independent Lax formulation: dL(m)/dtj — [L(m\C/(w)] (7 = —1,0, !,...)•

-dx -b-ψ
L(m) = .

^ } i - ~- dx

Cj(m) = H(m,dj(m)) + ΣJ

k^(H(m,dj-k(m)) + G(dj+l-k(m)))Lk(m)

2ff\2 ~h ψ(J\3 -f 2(j\^D \ / 4w 0
I , G(m, <5τw) — I Λ

(w and σra are defined as functions of m, δm in the first page of this table). In particular:

o i)' Co(m^'

d2 := -21/^a, - 2W* - ιfc£> - bx ,

C2i := 2φDdx + 2adx + φ*/) + ax ,

022 •— 25χχ + φψdx — (bφ ~h 0^1 + φψ'^D — ob — φb' .

3. Reductions of the susy AKNS

We briefly recall some notions about the reduction of different tensor objects, that
we are using in this section. Let M be an ordinary manifold or supermanifold and
Jί' a submanifold.

It is obvious that every function h on Jί can be restricted to M*'. A vector field
K on Jί can be restricted to Jί' if K(m} G TmJί' for each m G Jί' (here, we use
the natural inclusion TmJί' C TmJί). In this case, K gives rise to a vector field
K' on Jί'.

A (2,0) tensor P on ̂  can be restricted if the following two conditions are
satisfied for each m G Ji' and each covector δm' G T^Jί'\

a) there is at least one covector δm G 7^^ extending δm' ((δm,m} = (δm',m)
for each m G TmJ/f) and such that Pm(Sm ^TmJί'\

b) the vector /^όw G Γmty/f; depends only on δm' and not on the particular
extension δm considered.

Under the above two conditions, there is a unique (2,0) tensor P' on M' such
that P'mδmr = Pmδm for each δm' and each extension δm as in (a). P' is called the
restriction of P to Jί'\ the term "Dirac reduction" is also used in the literature.

A (0,2) tensor Ω on Jί can always be restricted to a (0,2) tensor Q! on Jί'\ the
latter is defined by (Ω'mm\m"} := (Ωmm',m") for each m G Jί' and w', w" G Γm^.

Finally, a (1,1) tensor TV on Jί can be restricted if Nm(TmJί') C TmJί' for
each m G «/^'. If this condition is satisfied, we can define on Ji' the restriction JV7,
given by A/^m7 := Nmm' for each m G M1', m7 G TmJί'.

The restriction operation preserves:

i) the conserved quantities and the commutativity of vector fields;
ii) the Poisson property and the (pre)symplectic character for, respectively,

(2,0) and (0,2) tensors;
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iii) the vanishing of the Nijenhuis torsion for (1,1) tensors;
iv) the compatibility for a pair Q,P of Poisson tensors, or a pair Ω,N formed

by a (pre)symplectic tensor and a recursion operator;
v) the Lax formulation for vector fields.

We briefly explain the meaning of statement v). Assume a vector field K on
Jί admits a Lax formulation with parameter as in Eq. (2.2.5), or, alternatively, a
parameter independent formulation as in Eq. (2.2.8); the linear operators giving the
Lax pair act on some conveniently chosen vector space. Futhermore, suppose that
K can be restricted to a vector field K' on some submanifold Jί' C M. Then K'
also admits a Lax formulation, which is obtained simply by evaluating the Lax pair
of K at the points of Jί'.

In the sequel of this section, Ji will be the phase space of the susy AKNS
theory, introduced in Sect. 2. We will discuss the restrictions of the theory to some
significant submanifolds.

3.1. The classical reduction. Let us consider the submanifold

JfΛ:={(b,a,ψ,φ)e^f\b = Q, a = 0, ψ(x,θ) = θq(x), φ(x,θ) = θr(x)}, (3.1.1)

q and r being arbitrary even functions of the c variable. Mc\ can be identified with
a space of pairs (q,r). For m = (q,r) G M^ we represent a tangent vector and a
covector at m as pairs m = (q,f) and δm = (δq,δr), where all the components are
even functions of x. We have the pairing (δm,m) — / dx(δqq + δrr).

The Poisson tensors Q,P, the recursion operator N and the hierarchy hj,Kj of
Sect. 2 can be restricted to Jί^ giving the classical AKNS theory; in particular,
by restricting the Poisson tensors Q and P we find the biHamiltonian structure
known from the literature [Ma2, MP2]. The restriction of the susy hierarchy
of Subsect. 2.1 gives the classical AKNS hierarchy formed by the vector

fields K.l(q9r)= (_2fr), K*(q9r) = (£), Kλ(q9r) = K-"Γ+V>)> etc' and bv the

Hamiltonians h0(q,r) = f dxqr,hι(q,r)=± f dxqxr, h2(q,r) = -\ f dx(qxrx + tfV),
etc.

Let us now discuss the reduction of the susy Lax formalism of Subsect. 2.2. Of
course, the reduced theory on Jίc\ admits Lax formulations as in Eqs. (2.2.5), (2.2.8),
(2.2.9) and (2.2.10), where JS?λ,#,-,/, and C/ are evaluated at points m = (Q,Q9θq9θr).
We would like to recover from here the classical Lax formalism of the AKNS the-
ory. To this purpose, we fix attention on Eq. (2.2.9); a straightforward computation
shows that, at each point of Jίc\, the operator (&λ)2(m) leaves invariant the sub-
space ^ci C *W formed by quadruples

where f\ = f\(x) and /2 = /2θO are even functions. We have

0 \ / 0

v, H ά ' ' (3 L2)

,0/2 / \^2,
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where
7 \ + >l q

r Sx-λ

The operator ^^(m) appearing here acts on a space of pairs (^S), and is easily

recognized as the Lax operator of the classical AKNS theory. By inspection, it
is seen that the subspace ifc\ is invariant not only for (J5?A)2(/w), but also for
the operators ^j(m); so, working as in Eqs. (3.1.2), (3.1.3) we can construct from

^j(m) an operator Cjcl(m) and we have a Lax formulation d^^/dtj = [JSfcΊ[,CJ cl].
For the lowest values of y, we find

λ \ f r(lχ- <lrχ ~ 2λqr + 4Λ ^* - 2#r - 2/1^ + 4 Λ # \
2'c ~ 4 V rxx - 2qr2 + 2λτr + 412r ^ - r^ + 2λqr - 4λ3 ) '

These operators are known in the framework of the classical AKNS theory.

3.2. The susy nonlinear Schrδdinger theory. Let us consider the submanifold

^0 : = { ( £ , a , \ l / , φ ) e J ί ( \b = 0, α = 0} . (3.2.1)

J^Q can be identified with a space of pairs (ψ,φ), where both superfields are odd.
The Poisson tensors Q9P, the recursion operator TV and all vector fields of

the susy AKNS theory can be restricted to J^Q. It is easy to obtain the explicit
expressions for the restrictions of the recursion operator and the symplectic tensor
Ω = Q~l; they are reported in Table 2a, together with the first vector fields and
Hamiltonian functions; for simplicity, in the Table and in the sequel the restrictions
of Ω, N9 KJ, etc. are denoted again by the same symbols.

The reduced theory admits Lax formulations in terms of 4 x 4 or 2 x 2 matrix
superdiίferential operators, which are obtained evaluating the operators of Sect. 2 at
the points of Jί§\ in particular, the associated spectral problem is as in Eq. (1.5)
with b = a = 0.

By performing a further reduction one obtains a theory in one odd superfield ψ,
which can be viewed as a susy extension of the classical nonlinear Schrδdinger
(NLS) theory. Consider the submanifold Jί\ C Ji§ formed by pairs (ψ, ψ) (where
the bar denotes complex conjugation as in Subsect. 1.1). Any such pair is uniquely
determined by the first component, so we can identify M\ with a set of odd super-
fields ψ. We represent a tangent vector as an odd superfield ψ, and a covector as

an even superfield δψ; the pairing is (δψ,ιί/) := f dxdθ(δψ\ί/ + δψψ). We remark
that {, } is a real bilinear map; more generally, all tensors on Jt\ appearing in our
constructions are real multilinear maps.1

1 This means that we are considering LQ -bilinear or multilinear maps, where LQ is the set of
"real" even scalars as in Subsect. 1.1.
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We consider the recursion operator N, the symplectic tensor Ω and the hierarchy
appearing in Table 2a. One checks that iN can be restricted to Jί\, as well as the
vector field iK-\\ this implies that all vector fields ίjKj (j — —1,0,1,...) can be
restricted.

Let us consider the restrictions of —/TV, —iΩ, —VKj and of the Hamiltonian
functions —ij'hf9 for simplicity, in the sequel and in Table 2b they will be denoted,
respectively, by N9Ω9Kj and hj. These objects give rise to a hierarchy, satisfying
a recursion scheme: the explicit expressions for N9 Ω and the first vector fields and
Hamiltonians are given in the table. This theory is a susy extension of the ordinary
NLS theory; the latter can be obtained putting the constraint ψ(x9 θ) = θq(x). In
particular, the evolution equation corresponding to the vector field K\ of Table 2b
gives rise to the NLS equation idq/dt = \qxx — q2q. The Lax formalism for the

susy NLS is obtained from the susy (ψ,φ) theory putting φ = ψ. (The formalism
becomes closer to the classical NLS, if the spectral parameter is written as λ = iμ,
with μ real.)

Remark. As anticipated in the Introduction, the superextensions of the NLS equation
were recently investigated by Roelofs and Kersten [RK] using the theory of cov-
erings [RH], an analogue of the prolongation method of Estabrook and Wahlquist
[EW]. The authors obtained two super equations, indicated as "case A" and "case
B," extending the classical NLS. The complete integrability in both cases was in-
ferred via the construction of an infinite-dimensional coverings algebra and an auto-
Backlund transformation. The phase space considered in [RK] is a set of pairs (#,ω),
where q = q(x) is an even field, and ω = ω(x) is odd. The NLS superequations,
their symmetries and conserved quantities are written in terms of the variables q, ω;
moreover, a superfield Φ(x, θ) := ω(x) -f θq(x) is introduced, and it is shown that
both super NLS equations admit a susy formulation in terms of the superderiva-
tion DΘ := θdx + \dg. We have checked that the first vector fields and Hamiltonian
functions of our formulation correspond to homologous objects constructed in [RK]
for the case A. In particular, the evolution equation dψ/dt = K\(ψ)9 with K\ as in
Table 2b, can be identified (up to some rescalings) with the case A super NLS equa-

tion, setting \l/(x9 θ) = V2Φ(x, -4=) — y/2ω(x) -f θq(x). The main difference with the

results of [RK] is that we have a manifestly supersymmetric construction of the
hierarchy, a biHamiltonian structure and an explicit Lax formulation.

Note added in proof. In order to update the list of references about the susy nonlinear Schrόdinger
equation, we mention a preprint of Popowicz [Pop], which appeared after submission of this paper.
In this preprint, an extended supersymmetrization of the NLS equation is presented, admitting a
Lax formulation; according to the author, this model is different from the one of Roelofs-Kersten.

Table 2a. The (ψ,φ) susy theory

(Pre)symplectic tensor at point m = (φ,φ):

o T a -^ τ*j{ o [ ^ » - 1 ' ^^ β|A

m Φ

Ωψψ =φ'd-lφ-φd-λφ', Ω^φ := D - φ'd~lψ -

Ωφl(, := -D + ψ'd-lφ + φd~lφD, Ωφφ := -ι//fd~{
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Recursion operator at a point m:

i (NM NψφNm : m m , m i . , o
2

:= dx-φψ- <A'd-y - \l/D-lφ' - ψxd~lφ ,

Nφtfr := φ'd~lφD + φD~lφ' - φxd~lφ ,

%¥> := -^ - φψ + φ'd-l\l/' + φD~{ψf + φxd~l\l/ .

Recursion schemes:
dhJ+ι=N*dhj(j = 0,1,2,...), Kj+l=NKj and dhj+ι=ΩKj (j = -1,0,1,...) .

First vector fields: ALι(ro) - ( ̂  V KQ(m) = ( ̂  ) ,

-φxx + 2ψφφx + 2φφ'ψ' J

K2(m) = \ ( xx x

f f f J .

First Hamiltonian functions: ho(m) = — f dxdθψφ', h\(m) = ^ J dxdθ φxψ' ,

Parameter dependent Lax formulation: d^λ(m)/dtj = [^λ(m)^j(m)] (j = -1,0,1,...):
/ D -^ψ -1 0 \

The operators ^j(m) are obtained evaluating the homologous operators of Table Ib with b = a = 0.
Parameter independent Lax formulation: dL(m)/dtj = [L(m),Cj(m)](j = —1,0,1,...):

Ίί . (-dx -ψD\
L(m) := I rί Γv J \φD dx )
The operators Cj(m) are obtained evaluating the homologous operators of Table Ib with b — a = 0.

Table 2b. The susy NLS theory

(Pre)symplectic tensor at a point ψ:

Ωψψ := ψd~l~ψ - ψd-ψ, Ω^ :=D- ψd~1

Recursion operator and its adjoint at a point \jι\

V ,

- -h +
*- := -\jj'd-\2\l/' - ψD) + \l/d~lψ'D .
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Recursion schemes:
dhj+i = N*dhj (y = 0,1,2,...), KJ+I = NKj and dhj+l = ΩKj (7 = -1,0,1,...) .
First vector fields: K-ι(ψ) = 2iψ, Ko(ψ) = ψx,

First Hamiltonian functions: ho(ψ) = — f dxdθψψ', h\ (ψ) = — ^ J dx dθ ψx ψ' ,

Parameter dependent Lax formulation: d^μ(m)/dtj = [&μ(m\(-iy<β*(m)] (j = -1,0,1,...)

/ D -±ψ -1 0 \

-\ύ D 0 - 1

The operators ^(m) are obtained evaluating the operators <#j(m) of Table Ib with

b = a = 0, φ = i/r, λ = iμ.

Parameter independent Lax formulation: dL(m)/dtj = [L(m),(—i) *Cj(m)] (j = — 1,0, 1 ...)

The operators C/(/w) are obtained evaluating the homologous operators of Table Ib with
6 = a = 0, φ = ψ.

3.3. A susy modified KdV theory. Let us consider the submanifold

^2 :={(M,^,<p)eΛT| « = *, Φ = ̂ } (33.1)

This phase space can be identified with a set of pairs (b,ψ). The square J := N2 of
the recursion operator in Table la and the even order vector fields KΊJ of the susy
AKNS hierarchy can be restricted to ̂ 2 Also, we can restrict to this submanifold
the symplectic tensor Ω of Table la, but the restrictions of the vector fields KΊJ
fail to be Hamiltonian with respect to the reduced tensor. In order to recover a
Hamiltonian scheme on ^2? we consider the (0,2) type tensor Θ := ΩoN (which
is a (pre)symplectic tensor on the susy AKNS phase space). The restrictions of
J,Θ,K2j and h^j to ^2 will be denoted for simplicity with the same symbols.
We can set up from these objects a biHamiltonian recursion scheme; the explicit
expressions for J, Θ are reported in Table 3, together with the first vector fields
and Hamiltonian functions. In this way, we obtain a susy mKdV (modified KdV)
theory. Indeed, it will be shown in the next subsection that this theory is related via
a susy Miura transformation to the Manin-Radul susy KdV. Moreover, the classical
mKdV theory can be obtained as a reduction of the susy mKdV, corresponding to
the constraints

b = 09 \l/(x9θ) = θv(x) (3.3.2)

(v an arbitrary even function of x). Under these constraints, the evolution equation
associated to the vector field KI becomes dv/dt = \vxxx — \v2vx.

The susy mKdV hierarchy admits matrix Lax formulations as in Eqs. (2.2.5),
(2.2.8), (2.2.9) and (2.2.10), where the involved linear operators are obtained eval-
uating the operators 5eλ^^L and C2J of Table Ib at m = (b9b,\l/9ψ). There is
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also another Lax formulation in terms of scalar operators acting on a space of
superfields χ = χ(:c, Θ\ This formulation can be inferred from Eq. (2.2.10); in fact,
for each m 6 ^2? the operator L2(m) leaves invariant the subspace J^Q C ffl formed
by pairs Φ — (*) with equal components. It is found that

Λ(m) := dxx + (ife - ΨΨ' ~ 2bψ)D + bx - b2 + b'ψ . (3.3.3)

By inspection, this subspace appears to be invariant also for the operators

so it is possible to define scalar operators /2/(#0 suc^ that C2/(#0(*) =

The first ones of these operators are reported in Table 3; they appear to be
related to the fractional powers of A. (The existence of a scalar Lax formulation in
terms of fractional powers could also be inferred a posteriori comparing the susy
mKdV with the Manin-Radul susy KdV theory, which is known to admit such a
Lax formulation; see the next subsection).

Table 3. The susy mKdV theory

(Pre)symplectic tensor at a point m — (b, ψ):

®bb

Θbb := -4\lιd-l(2bψ + ̂ ')3Γ V + 2<R~10/'/ + 2b) + 2(ψ' + 2b)d~l\l/ ,

-l(2b + ψf + ψD) + 2φd~l(b + ̂ ')D

' + ψD) ,
lψ - 4(b + ψ f )

-2(0 - \l/')d

+2(6 + \l/'}d-\ψx + 267 + 26£> + 2^'D) + 2(6 - i/O

c + 36/)^1(26 + ̂  + ̂ D) + lAD-HΆx + 360

Recursion operator at a point m:

r T w TJm : Γm^2 -> Tm

- 462 -

/Ό 4-

+ 4bxd~l(2b^ + φι//f)d~lιl/ - 2bxd~l(2b 4- ^') ,

:= 466' + 26>x - 2^ + 2ψD~166/a-1(26 + ̂  + Ά^>) - 2ψ D~l bψ' D~l (b + ι//)

-lb' + 2ψD~lb(b + i/OΆ + ̂ ~!^ - 6'̂ " V,

d-l(ψ' + 26 + ̂ D) + 2bxd~\b' + ψx)

+2bxd~\2b\l/ + \l/ψf)d-1(2b + ̂ ' + ̂ D) + b'xd~l(2b + ̂

:= -4(26ιA + ι
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')D - 4b(b +

- 2bxd~l(2b + f

Recursion schemes: dh^j+2 =J*dti2j = 0^ and £27+2 =J&2j(j = 0, 1, 2, . . .).

First vector fields: AΌ(w) :=

_ X Λ X x ' b ί - 6bb'xψ + 66Z/ιfc + 6b'bxψ-6b2bx
2(m)~ 4 V^ _ Iψψ'^-βbψφx - 6bψfψx - 3ψ'2ψx - 6b2ψx-6ψ\l/'bx - I2bbxψ

First Hamiltonian functions: ho(m) ~ — J dxdθ(2bψ + ψψ') ,

Parameter dependent Lax formulation: d^λ(m)/dt2j = [J^/l(m),^2 (m)] (y = 0,1,2,...):

D -\\l/ -1 0

-\ψ D 0 - 1

-b — ^ψ' λ ~\Ψ ~D J

The operators ^27(w) are obtained evaluating the homologous operators of Table Ib with
a = b, φ = \jj.

Parameter independent Lax formulation: dL(m)ldt2j = [L(m),C2j(m)] (j = 0,1,2,...):

dx ~b-\l/D^

The operators C2/(m) are obtained evaluating the homologous operators of Table Ib with
a = b, φ = ψ.

Scalar Lax formulation: dA(m)/dt2j = [Λ(m\ Γ2j(m)} (j = 0, 1, 2, . . .):

A(m) := dxx + (ψx - ψψ* - 2bψ)D + bx - b2 + b'ψ ,

Γ2(m) := -axjcjc + |(2^ + ψψ' - ψx)Dθx + \(b2 + ψb' - bx)d

b2 - b'ψ - bx)x = -(Λ )+(m) .

(+ denotes projection on the purely differential part of scalar super pseudo-differential operators
in D.)

3.4. The susy KdV theory of Manίn-Radul The Manin-Radul theory is well known
from the literature [MR,OP,MP1]; here, we show that it can also be obtained from
the susy AKNS by reduction to the submanifold

^3 := { ( b , a 9 \ l / 9 φ ) G Jί\ b = -1, ψ = 0} . (3.4.1)

This submanifold can be identified with a set of pairs (α,φ). The square J :=
N2 of the recursion operator in Table la and the even order vector fields K2j of
the susy AKNS hierarchy can be restricted to Jί^\ the first Poisson tensor Q of
Table la cannot be restricted and its inverse Ω is reduced to zero on M-$. For our
purposes, it is convenient to consider the (0,2) type tensor Θ := ΩoN (which is a
(pre)symplectic tensor on the susy AKNS phase space). The restrictions of Θ, J,
K2j and h2j to Jί^ will be denoted for brevity with the same symbols. We can set
up from these objects a recursion scheme; the explicit expressions for Θ and J are
reported in Table 4, together with the first vector fields and Hamiltonian functions.
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One recognizes the already known biHamiltonian framework of the Manin-Radul
theory.2

The ordinary KdV theory can be obtained from the present one via the reduction

a = Q, φ(x,θ) = θu(x) (3.4.2)

(u an arbitrary even function of x). In particular, under this constraint the evolution
equation associated to the vector field KΊ becomes du/dt = \uxxx + \uux.

The Manin-Radul susy KdV admits matrix Lax formulations as in Eqs. (2.2.5),
(2.2.8), (2.2.9) and (2.2.10), where the involved linear operators are obtained eval-
uating the operators «3?\ ^y, L anc^ Qj °f Table Ib at m = (— 1,0,0, φ). There
is also another Lax formulation in terms of scalar operators acting on a space of
superfields χ — χ(x,θ). This formulation can be inferred from Eq. (2.2.10); in fact,
for each m G Jί^ the operator L2(m) leaves invariant the subspace Jfo C #F formed
by pairs Φ = ( * ). It is found that

m
(3.4.3)

By inspection, Jf0 also appears to be invariant for the operators C2j(m\ so it is

possible to define scalar operators Γ2J(m) such that C2y(/w)(£) = ((r
2J(m)χ)}' The

first ones of these operators are reported in Table 4. They are related to the fractional
powers of A; the scalar Lax formalism obtained in this way is familiar in the
literature on the Manin-Radul theory.

We conclude discussing the connections between this theory and the susy mKdV
of the previous subsection. By comparing the operators A(m) in Eqs. (3.3.3) and
(3.4.3) we are led to introduce the transformation J^ : Jί^ — » =^3, (b,ψ) ι— > (a,φ),
where

a = bx - b2 + b'ψ , φ = ψx - ψψ' - 2bψ . (3.4.4)

The (pre)symplectic tensor Θ and the recursion operator J of Table 3 are converted
via 3F into the corresponding objects of Table 4. Also, the vector fields and the
Hamiltonian functions of the susy mKdV are transformed via 2F into the ones of
the Manin-Radul theory. For this reason, we call 2F a susy Miura map. Under
the constraints (3.3.2) and (3.4.2), we obtain from 3F the classical Miura map
u = vx- v2.

The map (3.4.4) contains a supersymmetric transformation known from the
literature. Indeed, (3.4.4) is compatible with the constraints a = 0, b = 0, and
induces in this way the map ψ H-> φ = ψx — ψψ', appearing in [RH]. As it was
shown in the quoted paper, this transformation relates a susy mKdV theory in one
superfield ψ with a susy KdV theory in φ. In the present framework, the ψ theory
can be obtained from Table 3 putting the constraint 6 = 0; the φ theory can be
deduced from the Manin-Radul KdV of Table 4 putting a = 0, and corresponds to
the well known susy KdV of Mathieu [Mat].

2 In order to compare Table 4 with the description of the Manin-Radul theory given in our
previous works [MP1,MP4], it is necessary to perform a reflection φ h-> — φ. In the quoted papers,
we present a biHamiltonian scheme based on a pair of Poisson tensors β, P; the pair 0, J of
Table 4 is related to Q9P by Θ = 2Q~l and J = -PoQ~l.
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Table 4. Manin-Radul theory

(Pre)symplectic tensor at a point m = (a, φ):

Recursion operator at a point m:

Joφ := -2a' + (α<p - a'x)d~l - a'D^φd'1 - φD~laD~l + 2

Jφφ := &JC + 2φD + 4α + 2φ' + φ'D^φd'1 + (2αx + O^"

Recursion schemes: dh^j+2 = N*dti2j — ΘK^j and ^27+2 = JKj (j ' = 0, 1,2, . . .)•
„. , , Λ ! j is ί \ ί aχ\ is ( \ i a ( fljtx + 3#2 + 3φαx λ
First vector fields: ^o('w) = I ) , K2(m) = jdx [ . ~ , , ^

\9χJ 4 \φxx + 3φφ ' + 6aφ J

First Hamiltonian functions: ho(m) = J dxdθ φ ,h2(m) = | J dxdθ(φφf + 2αφ) .

Parameter dependent Lax formulation: d^^m)/dtj = [^(m),^j(m)] (y = 0, 1,2,...):

( D 0 -1 0

-A' ? i -»'
-β-ifl/ Λ 0 -0

The operators ̂  (m) are obtained evaluating the homologous operators of Table Ib with b = — 1,

ψ = 0.

Parameter independent Lax formulation: dL(m)/dt2j = [L(m\ C2/(/w)] (7 = 0, 1,2,...):

The operators Cij(m) are obtained evaluating the homologous operators of Table Ib with
b = -l, ψ = 0.

Scalar Lax formulation: dΛ(m)/dt2j = [Λ(m)9 Γ2j(m)] (j = 0,1,2,...):

Λ(m) := dxx + φD + α, Γ0(m) := -dx - -(yli )+(m) ,

Γ2(m) := -axjcx - § φDdx - \adx - |φΛD - \ax = -(Λ\ )+(m) .

4. Description of the Method: The BiHamiltonian Reduction

The method employed to construct the susy AKNS theory of Sect. 2 is strictly
related to the general framework of [MP1-2]. The main points are:

i) the loop superalgebras and their biHamiltonian structures;
ii) a reduction theorem holding for general biHamiltonian manifolds [CMP,CP],

which can also be used in the susy case and can be applied in particular to loop
superalgebras.

The phase space of the susy AKNS theory is the quotient biHamiltonian
manifold arising from the reduction of the loop superalgebra ^ associated to the
Lie superalgebra g 1(2,2). As explained in Subsect. 1.4, the elements of ^ are 4 x 4
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matrices, whose entries are superfields depending on x and θ\ we have a grading
^ = < 0̂ 0 <gl and a structure of Lie superalgebra given by the supercommutator [, ].

We consider <&\ as a supermanifold. At every point V G ̂ i, the tangent space is
identified with ^i itself, and the cotangent space with ^o As usually, we typically
denote tangent vectors and covectors with V and δV, respectively; the pairing is

(δV9 V} := fdxdθ ττ(δVV). (4.1)

*&\ is a biHamiltonian supermanifold; the Poisson tensors Q, P at a point V are
given by

Qv : T;%λ «#<>-> Tvyλ w #!, βK5F) := [A,δV] , (4.2)

Pv(δV) := [K, (4.3)

susy AKNS theory is A := Λ § g g

Here, ^ is an odd supermatrix with constant entries; for any choice of A, the above
equations define a pair of compatible Poisson tensors. The choice giving rise to the

0 0 0 0 \

1, as anticipated in the Introduction.
0 1 0 0 /

The biHamiltonian manifold ($\,Q,P) can be reduced using the technique of
[CMP,CP]. Essentially, one has to choose a symplectic leaf £f of Q (i.e., an
integral leaf of the distribution Imβ); £f carries a structure of fibered space,
the fibers being the integral leaves of the distribution $ \— T£f Π ̂ , where & :—
P(Ker Q). Both Poisson tensors Q and P can be reduced on the quotient space
Jt :— &*!$> in an appropriate sense which is specified in the sequel. Let us sum-
marize the main steps in this construction.

of Q passing through the pointi) We choose the symplectic leaf'
o o - i o
o o o - i
0 0 0 0
0 0 0 0

. It is found that

se := < s S = (4.4)

σ —τ

where d(x,θ), e(x,θ), g(x,θ), n(x,θ) are even superfields, and μ(x,θ\ v(jt,0),
σ(;c, θ), T(JC, θ) are odd superfields. As well as for A, the choice of B is suggested
by the form that we expect for the spectral problem of the susy AKNS (see the
discussion in the following section).

ii) The distributions Q) and $ at any point S of ̂  are given by

s=

I q' + p'-ε
+/σ - sv

σq-ξ-s'
+s(μ - τ)

-εx -ef -gs
+vξ - pσ

ση + eq - ξf ε'

-vq-p- f

p' + ε - η
+sv — fσ

vη-gq- p'
+p(μ - τ)

- η1 + vξ + σp
-gs - ef

0

-2s

+sv - fσ

σq + ξ-sf

+s(μ - τ)

-2f

0

p-f-

(j-ε-
+σf-

\

- vq
μ)

P'
VS

ί

, (4.5)
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s =
σq

-ε'

eq + ση

-vq

p' + ε - η

vη — gq ε — q' — p'

ε' -η' σq

(4.6)

where p, q, /, s are arbitrary even superfields, and ε, η, p, ξ are arbitrary and odd;
these superfields play the role of arbitrary parameters.

/ μ v o o \
A tangent vector to ̂  can be written as S = ί σ

d

 τ

g ! _°μ °v 1 by comparing with
\ e n σ -τ /

Eq. (4.6), we find that S G δ$ iff

v + v(d~\n - d) + D~l(μ - τ)) = 0 ,

σ - σ^Oi - d) -f D~\μ - τ)) = 0 ,

£ + ̂ (/i - J) + D-](/i - τ)) + vD~\n + rf) = 0 ,

έ - K^'1^ -d) + D~\μ ~ τ)) + σZ)"1^ + rf) = 0 . (4.7)

iii) We now integrate the distribution $ . It is found that the quotient space
Ji = £/>!$ can be identified with a space of quadruples m = (b,a, ψ,φ), where
6, α are even superfields, and ψ , φ are odd; the quotient map is π : 5̂  — » ̂ , S ι-»

= (b,a,ψ,φ), where

/), α := 2(λ - / + ?Λ)exp(/) ,

ιA := )8exp(-/), φ := 4yexp(/) , (4.8)

and β,y,/z,/ are expressed as follows in terms of the elements of the matrix S:

2vσexp -f ( - + - )
V V ^ 07

(4.9)

For each m G M, the corresponding fiber π λ(m) contains an element of the form

/ 0 -\ψ -1 0 \

-\φ 0 0 - 1

-a — ̂ φ' \ψφ ~\9 ^

The map m \—> Σ(m) is a cross section of the fibration £f —» ^

(4.10)
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iv) The final step in our construction is the reduction to the quotient mani-
fold Ji of the Poisson tensors (4.2) and (4.3) carried by the loop superalgebra.
For simplicity, the reduced tensors are indicated again by Q and P\ according to
[CMP, CP], they are defined as follows at any point m of the quotient space:

Qmδm = (TsπKQsδV), Pmδm = (Tsn}(PsδV) . (4.11)

Here, S is any point of the fiber n~l(m) and T$π : TS^ —> TmJί is the tangent map
to the projection; δV £ ^o is any covector which annihilates the distribution 2s and
projects on δm in the following sense: (δV9S) = (δm,(Tsπ)S) for each S £ TS&*.

Applying Eq. (4.11), we find for the Poisson tensors Qm and Pm the explicit
expressions given in Table la of Sect. 2. In conclusion, we have obtained a
biHamiltonian structure on the quotient space Jt\ now, if we look for the
biHamiltonian hierarchies engendered by this structure, we are led to the susy AKNS
theory of Sect. 2.

5. Description of the Method: The Lax Formalism

In the biHamiltonian strategy, the Lax formalism is a supplementary outcome of
the reduction of loop algebras; the general procedure was discussed in [MP2], and
here we will apply it to the susy AKNS theory.

Consider the loop superalgebra <8 introduced in the previous section. The
elements of ^ are 4 x 4 matrices where each entry is a superfield; so, they act

/ ΨiM \

naturally by multiplication on the quadruples of superfields I Ψ

ξ

2^ 1 . Following

Subsect. 2.2, let us introduce a space H^ of such quadruples, and a space Li
of linear operators on *W, depending polynomially on the parameter λ. Further-
more, let us fix attention on the section Σ : Ji — > tf C ^\ defined by Eq. (4.10),
and introduce the map

£λ\Jl^> LinA(τT), m •-> &λ(m) := D + Σ(m) + λA (5.1)

(A is the matrix in Eq. (4.2)). The biHamiltonian reduction scheme from which
the map Σ arises implies that <£λ(m) is a matrix Lax operator for the susy
AKNS hierarchy. The explicit expression of this operator was anticipated in Sect. 2
(see Table Ib).

We now explain how to construct maps #j : Ji — » Lin*(if), m ι-> ^j(m) such

that the Lax formulation d^λ(m)/dtj > = [&λ(m)9<g}(m)] holds. First of all, one
checks by direct computation that this equation is satisfied for j = — 1, setting
«'i1(m) = S', with 3r:=Diag(-l,l,-l,l). The biHamiltonian reduction theory
ensures that all the other vector fields of the hierarchy admit a Lax representation
and also allows the following geometrical construction for the operators Ήj.

Let m £ Ji, δm G T^Jί, S = Σ(m). Then there exist two covectors δV.δV £
Tg&\ & ^o, such that the linear combination δVλ = δV + λδV' has the following
properties, identically in λ:

i) δVλ annihilates 2S\
ii) δVλ projects on δm, i.e., (δV\S) = (δm,(Tsπ)S) for each S G Ts^\

iii) (Ps+λQs)δVλ£lm(TmΣ) (i.e., this vector is tangent to the cross section Σ).
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The A-dependent covector δVλ is uniquely determined by the above conditions;
putting

:= δVλ , (5.2)

we define a map Σ*λ from T*J{ to T*&\[λ] (the bundle whose fiber at a
point V is the space Ty^\[λ\ « ^oM, formed by the covectors depending poly-
nomially on the parameter λ). The explicit expression of this map is reported
in Table Ib; according to the terminology introduced in [MP2], Σ*λ is the
(/l-dependent) lift map corresponding to the cross section Σ. Let us now put
^j(m) = ΣJ

k=Q(—l)kλkΣ*λ(m,dj-k(m)) + ( — l ) J + l λ J + l £ f , where dj denotes, as

before, the differential of the yth Hamiltonian function. The maps Ήj, together with

J£?A, give the Lax representation of the hierarchy .
This representation is realized in terms of 4 x 4 matrix superdifferential

operators; we now infer some "reduced" Lax formulations in terms of 2 x 2 matrix
operators, applying a reduction theory for parameter-dependent Lax pairs discussed
in [MP2]. Let us examine the spectral problem ^λ(m)Φλ — 0; this problem was
considered in Sect. 2, where we found that it is equivalent to the linear system
(2.2.6).

We now reformulate this fact in a more geometrical fashion. The Lax operator

&λ(m) acts on a space i^ of quadruples Φ = I p J , where each component is a

superfield. Let us identify W with a direct sum:

τr = J fθJ f ' , (5.3)

where the space 3tf consists of pairs Ψ := ( ̂  ) and Jtf" consists of pairs

(f λξ := ί γ \ Due to this decomposition, we can represent a linear operator from W

into itself as a matrix (y ^)> where T maps 2C into itself, X sends 3?' into Jf7, etc..
The linear system (2.2.6) can be written as

L(m) + λ 0\ (Ψ
-R(m) ' > (5'4)

with L(m) as in Table Ib and R(m)Ψ :=

Note that the matrix appearing in Eq. (5.4) is lower triangular. In fact, the
operator ^λ(m) admits a triangular decomposition, in the sense of [MP2]; this
implies that the Lax formulation (2.2.5) can be reduced to a parameter independent
formulation of the form (2.2.8), in terms of linear operators acting on Jf . To this
purpose, we define two linear maps

ψ
E : W -» tf, E , \ := Ψ,

(5.5)

Let us write down each of the operators ^j(m) G Lin^(^) as a polynomial in

λ: Ήj(m) = Σ/I^Q ^jk(m)λk, and define as follows the operators C/(w), acting
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on Jf:

Cj(m) := ΣE%jk(mW(m)Lk(m) (5.6)
k=Q

(i.e., multiply ^j(m) by E on the left, ^(m) on the right and replace λk with the

&th power of L(m)). We can employ L(m) and the above operators to set up a Lax
formulation as in Eq. (2.2.8); also, from the definitions of %?j(m), E, ^(m\ R(m\
it follows that the operators C/(m) can be expressed as in Table Ib.
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