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Abstract: We prove the perturbative renormalizability of Euclidean QED4 using
flow equations, i.e. with the aid of the Wilson renormalization group adapted to
perturbation theory. As compared to Φ\ the additional difficulty to overcome is
that the regularization violates gauge invariance. We prove that there exists a class
of renormalization conditions such that the renormalized Green functions satisfy
the QED Ward identities and such that they are infrared finite at nonexceptional
momenta. We give bounds on the singular behaviour at exceptional momenta (due to
the massless photon) and comment on the adaptation to the case when the fermions
are also massless.

1. Introduction

About twenty years ago Wilson and his collaborators published their ideas on the
renormalization group and effective Lagrangians [1], which have stimulated the
progress of quantum field theory and statistical mechanics ever since. In 1984
Polchinski [2] showed that these ideas are suited for a treatment of the renor-
malization problem of perturbative field theory which does not make any use of
Feynman diagrams and in particular sidesteps the complicated analysis of the diver-
gence/convergence properties of the general bare or renormalized Feynman diagram.
Instead he showed that the problem can be solved by bounding the solutions of a
system of first order differential equations, the flow equations, which are a reduction
of the Wilson flow equations to their perturbative content.

The present paper is part of a programme of the authors with the aim to show
that the Polchinski method is suited to prove (in the sense of mathematical physics)
the perturbative renormalizability of any (by naive power counting) renormalizable
theory of physical interest. Polchinski's original proof for Euclidean massive Φ\ was
restricted to unphysical renormalization conditions (because they were imposed on
the Green functions with an additional (large) infrared cutoff), and it was achieved
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by estimating the solutions of three types of flow equations for different quantities
successively. In our first paper we redid Polchinski's proof with two essential mod-
ifications: By showing the effective Lagrangian to be the generating functional of
the perturbative connected amputated Green functions (CAG) we could include any
renormalization conditions (r.c). Recently the construction of the analytical minimal
subtraction scheme was performed explicitly [8]. By improving Polchinski's induc-
tion hypothesis for bounding the solutions of the flow equations we could reduce the
proof to one type of flow equations (FE) only [3]. The method was then applied to
prove the renormalization of composite operators, the Zimmermann identities, and
the existence of the short distance expansion [4,5]. It turned out particularly suited
for studying questions of convergence of the regularized theory to the renormalized
one which go under the name of Symanzik's improvement programme [6]; see also
[7], where the same question is analyzed in Polchinski's original framework. A
recent proof by one of the authors also established a de Calan-Rivasseau bound
for the large orders of perturbation theory - i.e. local Borel summability - for
massive Φ\, which shows that the FE method works beyond questions of perturba-
tive finiteness [9]. In recent years there has also been increasing interest in the FE
method from a more phenomenological point of view, i.e. with the aim to find new
approximation schemes for the system of FE which differ from standard perturba-
tion theory. In this case the FE are mostly presented and analysed in different form,
namely for one particle irreducible Green functions. For example critical exponents
for Φ^-type theories have been calculated in [10]. It has also been applied to the
problem of bound states and vacuum condensates [11], see also [12].

If the FE are supposed to be suited for a renormalizability proof of, say, the
standard model, it is necessary to cope with gauge theories. Gauge symmetries con-
stitute a particular problem, since our framework crucially makes use of momentum
space cutoffs, which necessarily violate gauge invariance, or - on the level of Green
functions - the Ward identities (WIs). The problem is less severe for an Abelian
gauge theory as QED due to the absence of photon self-interactions. Nevertheless
it necessitates the introduction of new counterterms to render the Green functions
finite. The theory including these new counterterms will be called a fermion-photon
theory in the following. It contains more free parameters than QED. We studied
the renormalizability of QED in a recent letter [13]. There it was shown that there
is a unique choice for the r.c. corresponding to the new counterterms such that the
WIs are restored in the renormalized theory. This proves the renormalizability of
perturbative Euclidean QED. In this paper we want to give a complete and fully
rigorous proof of the renormalizability of perturbative QED. In particular we shall
not make use of the nonexistent path integral measures to derive the WIs and their
violation. And we want to go beyond the previous letter in that we do not restrict
any more to a theory with a massive photon. The method of dealing with theories
with massless particles has been developed previously for massless Φ\ [14] and
shall be applied to QED now, where we still restrict to the Euclidean framework,
however.

The renormalization of Euclidean QED using noninvariant regularizations has
also been studied rigorously by Feldman, Hurd, Rosen and Wright [15], and Rosen
and Wright [17]. These papers are based on the Gallavotti-Nicolό tree-formalism
and they also include de Calan-Rivasseau type bounds on the large orders of per-
turbation theory and certain statements on Minkowski-space theory. Their method
is closer to Feynman diagram based proofs than Polchinski's method. Another dif-
ference from our approach is that they work in position space and consequently
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do not make explicit statements on the IR singularities for exceptional momentum
configurations. They also restrict to special renormalization conditions in position
space. Our method permits to regard a large class of renormalization conditions
and to analyze infrared singularities (see Proposition 6). Whereas in [15,17] the
verification of the Ward identities requires the introduction of a second regulariza-
tion (Pauli-Villars resp. dimensional) Hurd achieved in [16] a modification of [15]
which allowed to prove the renormalizability of QED with a massive photon using
one single momentum space regularization. The WIs are shown to be restored in the
renormalized theory by deriving bounds on the violating terms. In this respect our
procedure is a translation of these ideas to the FE context. Note however that a large
part of the difficulties treated in this paper arise due to infrared problems which
are excluded in [16]. Hurd has also extended [15] to include the case of massless
fermions [19]. The renormalization conditions in [15] are such that in momentum
space they correspond to conditions imposed at zero momentum. This is forbidden
in the massless case for some renormalization terms (see Sect. 5). The way out cho-
sen in [19] is that rather implicit conditions are imposed for intermediate, infrared
regulated quantities.

In this paper we proceed as follows. In Sect. 2 we introduce the FE frame-
work and the Lagrangian which for a special choice of counterterms will be proven
later on to define perturbative QED in a general covariant gauge. In Sect. 3 we
prove the renormalizability of our 0(4)- and charge conjugation invariant fermion
photon theory, in which however for general counterterms or r.c. the WIs are
violated. In papers [3] or [4], and [14] we describe this procedure more exten-
sively. There the line of thought is not burdened by the heavy notation required
due to the QED symmetry structure. In Sect. 4 we derive the violated WIs (vWIs)
for the regularized theory as relations between CAGs. We show that there is a
unique choice for the r.c. corresponding to those counterterms which manifestly
vanish in invariantly regularized QED such that - for cutoff to infinity - the
QED WΓs are restored. In the last section we comment on the modifications ne-
cessitated when one regards massless fermions or does not renormalize at zero
momentum.

2. Fermion-Photon Theory and Flow Equations

As usual in the FE framework we start by defining the regularized propagators, here
for photon and fermion, in Euclidean space. We set for m > 0,

(D^(k))aβ := - Iδaβ - 'ψ. ) + jη^ I (R(Λ0,k)-R(Λ,k)),

7(
f+m

(1)

with y = pμyμ, {yμ,yv} — —2δμv for the Euclidean Dirac matrices. The functions
Ra for a ^ 0 are characterized as follows:

Ra{ΛΛ) = K ( ^ ^ λ , R(Λ,k) := R0(Λ,k), (Λ,k)Φ(0,0) for a = 0 . (2)
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Here 0 ^ A ^ Λo ^ oo, and ^ satisfies

K ec°°[θ,oo), o ^ £ ^ l,

A:(JC) = 1 for JC g 1, £ ( * ) = 0 for x ^ 4 . (3)

From (2),(3) we find R € C°°(R+ x R 4 ) and Rm e C°°([0,oc) x R4) . We also
have for A > 0 and for 0 g \k2 + a2| ^ Λ2 or 4Λ2 ^ |A:2 + a\

dwRa(A,k) = 0, wφO, δwdΛRa(A,k) = 0, (4)

where the multiindex w indicates momentum derivatives

for Λ = (*,,...,*4), w; e N 0 .

Replacing i? by i?w (which is an improved version of the R used in [5]) for the
massive fermions allows to obtain better statements on the IR behaviour later on,
but Rm does not serve as an IR regulator and therefore it should not be used for
the massless photon.

As can be seen in (1) we restrict to a general covariant gauge. The regularization
breaks gauge invariance and consequently the WΓs, but not O(4)-invariance. Due to
this breaking of the WΓs our interaction Lagrangian will also have to contain terms
of dimension :g 4 which for invariant regularization need not be introduced-due
to the WΓs. We define LΛo(A,ψ,ψ) as

+ A

-ziφijlψ + δmϊj/ψ + e(l + zi )^ ty i . (5)

The notation is rather standard (including the summation convention), but we set

Zi := Zi - 1, 1 ^ * g 3 (6)

as compared to standard textbooks. The WΓs for invariantly regularized QED would
then imply z\ = z2, δλ — 0, z4 = 0, δμ2 — 0. The parameters zί5 δλ, δμ2 are formal
power series in the coupling e. Apart from z\ they have to be assumed to be of
at least first order in e. For standard r.c. all constants are even of second order
in e (see below (33)). The perturbative Green functions are obtained from (5) by
the standard rules which imply that ψ^ψ are viewed as independent elements of
an infinite-dimensional (formal) Grassmann-algebra; Aμ(x) may be viewed as an
element of ^ ( R 4 ) .

As regards their transformation properties under (9(4) and charge conjugation
C, we impose

0(4): ψ'(x') = S(Λ)ψ(x), ψ'(x') = φ(x)S(Λ),

A'μ(x') = ΛμvAv(x) with x'μ = Λμvxv , (7)

C:ψ'(x)=-C-ψ(x), ψ'(x) = ψτ(x)C, A'μ(x)=-Aμ(x), (8)
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where the charge conjugation matrix C fulfills

CyμC~x = -γτ

μ (e.g. C = γ0y2) . (9)

A and S(Λ) are the vector and spinor representations of 0(4) respectively. Using
(8), (9) and |det/L| = 1 as well as the canonical assignments dim^ί = 1, dim^ =
άimφ = 3/2 we find

Lemma 1. LΛ° is the integral of the most general local polynomial of dimension
^ 4 in the fields A,φ,φ and their derivatives which are 0(4) and charge conju-
gation invariant.

The procedure to derive the FE's is analogous to that employed for Φ\ [3,4]. We
introduce the source functions

Jμ(x), η(x), rj(x) (10)

for the A, φ, ̂ -fields and find for the generating functional of the perturbative reg-
ularized Green functions formally given by

fDADψDφe-^A>DΛ°Aϊ e(Φ,sΛ

Λ°Φ) e ~ L Λ o ^ J j A+ψ . η + φ . j j

the following rigorous formula:

Z*>(J,η,η) := e"^^-*-.*?) e

λ^ J 'D> e^s> . (11)

We assume Jμ G 5^(1R4) and η,η to be Grassmann variables and we demand that
all sources have the same 0(4) and C transformation properties as the respective
fields. We employed the usual notation

=Jd4xd4yJμ(x)(D^)μv(x - y)Jv(y)

^ A ) (12)

and similarly for (η^sfη). We set Jμ(x) = J-^eikxJμ(k).

Then we introduce the functional Laplace operator

Δ'(Λ,Λ0)=(δA,DJ°δA),

A"(Λ,Λ0)=(δφ,S^δj), (13)

and find

Proposition 2.

Proof In the proof we omit Λ,Λ$ in D,S,A. It may be performed in two steps. In
the first step one shows

e-LΛO(δj,-δη,δ-) e\/2(J,DΛ/j) =
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We omit the proof of (15) here since it is analogous to the proof of the correspond-
ing statement for Φ\ [3,4]. The way of proceeding may also be inferred from the
treatment of the fermionic part, which is performed explicitly now. Equation (14)
follows immediately using (15), if we can show that

{eΛ" e-LΛ°^%=Sηj=-ηS = e~^ e - ^ ' - M ^ < ^ > . (16)

So we want to prove (16). We write in the proof for the r th order perturbative
contribution to LΛ°

with suitable local ^-dependent Mr(x). Br contains the ψ, ^-independent terms and
is not of importance here. The first step is to derive a commutation relation for the
functional differential operator A",

[A"9L*>] = ar, [(Δ"f,Lfo] = 2arΔ" + br,

and by induction

[ ( Δ " T , L ? ° ] = n a r { Δ " ) n - χ + n ( n - l ) b r ( Δ " ) " - 2 , n ^ 2 , (17)

where

ar = ~{δφ,SMrφ) + (φ,MrSδφ, br = -(δφ,SMrSδψ) .

Equation (17) implies

[eA",L*>] = (ar + br)eA" . (18)

Now we may get rid of ar,br using essentially the same mechanism by which they
were produced, namely we find

a>. + br)\ψ=s^=TjS , (19)

so that (18), (19) together give

>Π(Iίί + or, + br,)\φ=SηΓφ=Jjs

from which (16) immediately follows on expanding e~L °. (Note that a factor eΔ"
on the r.h.s. of the second equation is replaced by 1, when we regard the equations
as equations for functionals, not operators.) D

We may then introduce the generating functionals WΛ'Λ°(J,η,η) of the (non-
trivial, regularized) connected Green functions, and LΛ>Λ°(A,ιl/, ψ) of the (nontrivial,
regularized) connected amputated Green functions (CAG), given by

e-(LΛ Λ0{A,ψ,ψ)+f.i.) _
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where f.i. (for field-independent) is defined such that

WΛ>Λ°(0Λ0) = Z/Mo(O,O,O) = o .

Thus f.i. also depends on Λ9Λo, and the volume has to be kept finite as long as we
deal with f.i. Since we are not interested in f.i. we spare ourselves being precise
here and refer to [3,4] instead. Note that

The FE is then obtained by taking derivatives w.r.t. A on both sides of (20), 2n d

equation. We obtain

dΛL
Λ'Λ° = (dΛΔ(Λ, Λ0))LΛ'Λ° - l/2(δAL

Λ'Λ»,(δΛD*°)δAL
Λ'Λ°)

+ {δψLΛ'Λ°, {dΛsf)δjLΛ'Λ°) - δΛ f.i. (22)

To proceed further we expand L in terms of powers of external fields and orders
of perturbation theory in momentum space

LΛ,Λ0 = γ^erLΛ,Λ0

and

τΛ,Λ0 _ v^ n d k\ djP2n-±, φΛ,Λ0,rΛ „ , .
^r — 2-j J r^ λAr - - / 0 x 4 K^ m,2n )μ\-μmh ~inj\.. jn\li\, - Km, p\,... P2n-\

m+n>0 \ Δ π ) l z π ;

X Aμι(Jtι). . .A^kmWi^pi). • Ψin(Pn)Ψjι(Pn+l) Φjn(P2n) , (24)

where for «4=0 we set p2n := —k\ — km — p\ — — p2n-\ We did not write
explicitly the case # = 0 where by momentum conservation km — — k\ — — km-\.

The following symmetry properties of the ^^^r follow from the properties
of L and Δ:

(i) ^tan" = °' i f m + 2n > 4r (connectedness),

(ii) &f2m+uo = ^ ( c n a r g^ conjugation symmetry, Furry's theorem).

(iii) ^^2n'r m a y (an<^ w^) ^ e c n o s e n fully symmetric under permutations of
(k\,μι),.'..,(km,μm) and fully antisymmetric under permutations of (p\,i\),...,
(PnJn) and (pn+i9jι), -,(P2nJn) since only an integrand having these properties
contributes to (24).

(iv) The 0(4^transformation properties of ^^^r are indicated through the vector
and spinor indices μ\ ...i\ ...j\ ....

(v) <£A

m^r is in C°°(((Mo] x R 4 ^ 2 " - 1 ) ) as a function of AM . . .p 2 n -u due to
the smoothness of the regularized propagators.
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The FE for the coefficient functions Se^^r i s t n e n obtained from (22), (23)
by identifying the coefficients of m photon and n fermion and antifermion fields in
(22). We obtain:

. d4k ,

x I 2« )μvμi ...μmi\ -Wl -jn (^' ~^> k\,. . ,kn, p\, . . . P2n—\

(2π)4

; m,2n+2 )μ\ -μmϋ\ -injji -jn
X {^m,2n+2)μ\-βmii\-injjι-jn{k\, • • K, -p, pU • • • Pn, P, • • •, Pln~\ )

m'+m"=m+2, n'+n"=n, r'+r"=r Z

X ^mf,2n' W i - V - l ' Ί V i l V ^ J ^ I J ^w ;-l> P\> J Pn''•> A I + I J Pn+n1-l)

/ a?Λ,ΛQ,r'f\

(—&', kmf,... km, pn'+ι,. . ,Pn, Pn+nΊ ^2«-l )]sAS

"=m, nr+n"=n+l, rr+r"=r

t,pu...9 pnt9 p\ Pn+U Pn+n'-\)

( * m / + l , . ^m? —p\ Pn' + U- --iPn, Pn+nf> P2n-l)]sAS (25)

The momenta k', p' are determined by momentum conservation. SAS indicates sym-
metrization w.r.t. photon and antisymmetrization w.r.t. i) fermion and ii) antifermion
momenta and indices. Many of the details of (25) are not important for us. The
important points are the following:

(i) The r.h.s. contains only ££ terms for which either r is of smaller value
than that of the l.h.s. or, if not, m + n is of larger value than that of the l.h.s.
This together with (i) after (24) fixes the induction scheme through which we will
estimate the solutions of (25).

(ii) The induction Ansatz will be determined by the power counting w.r.t. A for
the differentiated regularized propagators. For a complete estimate of the solutions
we will (as always) need the equations generated from (25) by taking \w\ e N
momentum derivatives. As regards notation, we set

P)m+2n\A

ϊ (26)
°P2n-l,4
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3. UV- and IR-Finiteness of the Γermion-Photon Theory

3.1. UV-Finiteness. The proof of UV- and IR-finiteness proceeds similarly as in Φ\
[3,4,14]. We start with the UV-problem. That means we choose a scale A\ > 0,
for simplicity Λ\ = 1, and want to show that rimyi0_>oo j£?w' 2°'r exists for all
m + n > 0, r ^ l and arbitrary (bounded) momenta. The proof requires that we
fix all terms of (mass) dimension ^ 4 which are not automatically zero due to
the symmetry structure of the theory, through renormalization conditions (r.c.) at
Λ\. The symmetry structure, i.e. invariance under the Euclidean group and charge
conjugation-has been fixed through the structure of LΛ° (the particular values of
the zu δλ,δμ2,δm are not yet fixed) and through A. Since we are dealing with a
partially massless theory, the CAG without IR regularization can generally be ex-
pected to exist in momentum space only, if certain restrictions on the r.c. are obeyed
and if the momentum configuration is nonexceptional (see [14,18]). More precise
statements will follow. As long as we keep A ^ 1 we need not care about these
restrictions, but we will choose the renormalization points such that the notation is
as simple as possible and such that we need not change them when we go down to
A = 0, namely it turns out that all renormalizations for the photon Green functions
<^Vo? m ^ 4 should be performed at zero momentum in order to obtain reason-
ably simple IR bounds. The photon mass term has to vanish at 0 momentum and
A — 0 for the theory to exist. In massless QED the renormalization conditions for
the dwJ£m,2n with m + 3n + |w| = 4 have to be imposed at nonvanishing momenta,
however (Ch. 5). We noted already that due to C-invariance

^m,o°'r = ° f o r m o d d > i n Particular for m = 1,3 . (27)

From 0(4), C-invariance of LΛ>Λ° and permutation (anti)symmetry of ^min^ w e

obtain for the remaining terms at zero momentum and for given A,A0,r (which we
suppress)

(-S?2,θ)μv(O) ~ δμv, dp(J?2,0)μv(0) = 0 ,

(O) = c δμvδpσ + c'(δμpδvσ + δμσδvp), (28)

(•#4,0 Wσ(O) ~ fμvpσ '= l/3(<5μv<V + δμpδvσ + δμσδvp) , (29)

- δij9 3μ(JSfb,2)ί7 (0) - (yμ)υ , (30)

(where ~ means "constant times").
Thus 7 independent constants fix the terms of dimension rg 4. The structure of

LΛ° determines the b.c. for A = Ao. Lemma 1 tells us that at

u .,P2n-i) = 0, if m + 3 « + | w | ^ 5 . (32)

W e impose at

Λ=h r ^ 2:

(so that Ẑ3 corresponds to c, and jδλ corresponds to cf + I/2c in (28)).
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μvpσ

(33)

We assume (and this is standard) that all renormalization constants apart from z\
vanish for r — 1. This somewhat simplifies the notation. Leaving out this restriction
is possible, but not of much interest. It is easy to see from the FE (and obvious to

anyone acquainted with QED) that the i ^ ' ^ 0 ' 1 t n e n a * s o v a n i s n for Λ φ 1 for mφ 1
or wφl . Apart from this restriction all constants are completely arbitrary numbers
which later on will be uniquely fixed by the r.c. which we impose at A — 0. They
are of course assumed to be independent of AQ.

To prove the UV finiteness of the fermion-photon theory we introduce the (by
now standard) (semi-)norms || | | ( α ^ defined as

x\,...,xn,w,i\,...,//,\XΪI

where z = \w\, z s No, a,b ^ 0 and for any system of sufficiently smooth functions
fih...,i,: R" —> C with ij running through some finite set. We find for 1 ;£ A :§ Λ§
and any fixed B > 0 and a Ξ; 0:

Hδ'ΛΛΛ, ) \ \ ( 2 Λ t B ) g Φ M " Z ,

lia^ΛΛΛ, ) | | ( 2 Λ i , ) ^ φ M " ' - 1 , (35)

WRa(Λ, )fΛ(2Λ,B) £ Φ M " 2 " ' . z > o,

WdΛRa{Λ, )A\\{2Λ,B) £ Φ)Λ-3~Z , (36)

\\dzRa(A ) / 2 | | ( 2 Λ 5 ) ύ Φ M - ' - 1 , 2 > o ,

P z ^i? α (yl, ) / 2 | | ( 2 i i β ) ^ Φ M - 2 " , (37)

where f\(k) — k"1, fz,tj(p) = (-j^)ij, c(z) is some suitable constant. (38)

For 0 < A 5Ξ 1 we also find

\dwdΛR(A,k)\ £

\dwRm(Λ,p)\ SΦ),

\dwdΛRm(Λ,p)\^φ). . (39)

(c(z) also depends on the mass m, which we do not indicate since m is fixed).
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Now we may state the UV-renormalizability of the fermion-photon theory through

Proposition 3. For 1 ^ A ^ Λo < oo we have the following estimates:

(0 W&tl&Xiw) ^ Λ*-m-^PlogΛ (UV-boundedness).

(ii) \\dΛod
z^tr\\(2Λ,B) ^ (i)2 Λ^-^-zP\ogΛ0 (UW-renormalizability),

where we denote {as usual) by P log A a polynomial in log A with nonnegative
coefficients independent of Λ,ΛQ, but depending on m,n,r,z,B.

Proof We proceed in the standard way [3,4] by induction on r. For given r we
descend in the values of m -f 2n (remember (i) after (24)) and then in the values
of z for fixed m + 2n starting from some arbitrary zm a x.
r= 1:

(a) m + 3n -f |w| ^ 5: dw&*'$'1 ~ 0 from the b.c. (32) and the FE.

(b) m + 3« + |w| ^ 4 : The r.c. (33) (plus subsequent comments) and the FE
tell us that

Using (a) and Taylor's theorem we find (=^'2 °' )μij(Kp) — O v V Equation (33)

and the FE also tell us that all other ^ ^ vanish. Thus (i), (ii) are true for
r= 1.

r — 1 —> r:

We assume to have verified the bound (i) for any m,n,z and r' ^ r — 1 for r ^ 2
and for r and all m\n\zf with m' -\-2nf > rn + 2n or with m; + 2n' — m + 2« and
zx > z. We prove it now for r and (m,n,z) and start with

(a) m + 3« + z ^ 5: As for Φ^ we may write an estimated FE which is in
shorthand notation (leaving out indices and collecting all A, ylo-independent con-
stants into one c)

\\ <

(40)

The sums are over the same values as in (25) and additionally over all z',z" ,z'" ^ 0
with zf +z" +zm = z. We used (35)-(37). The bound (i) then follows from (32)
and on integration of (40) from Λ$ to Λ9 since the r.h.s of (40) is bounded using
(i), by induction.

(b) rn + 3n+z ^ 4:
(bl) m + 3/ϊ + z = 4: Use the r.c (33), the FE and (a) to verify

for any choice of indices.
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Once this has been achieved we may pass on to arbitrary momenta using the
Schlόmilch formula as in Φ\\

f(p) = f(O) + pμfdλdkμf(k), k = λp. (41)
0

The integrated derivative has m + 3n + z = 5 and is thus already bounded by in-
duction for bounded momenta. So (i) can again be verified.

(b2) m + 3n + z = 3, m + 3n+z = 2 are then subsequently verified in the same
manner. Note that we have to proceed in this order to be able to estimate the
integrated derivative on the r.h.s. of (41) by induction.

For (ii) we do not give an explicit proof, but refer to Φ\. The essential points
are the following:

1. Differentiate both sides of the FE w.r.t. Λo and write again an estimated form
of this equation corresponding to (40).

2. Use the same induction scheme as before to estimate the r.h.s. of this
estimated FE.

3. Use the Λo -independence of the r.c. to realize that the boundary terms
δyi03

w^f^2«Γ vanish for m + 3w -f- \w\ ^ 4 at zero momentum. This is the impor-
tant change as compared to the proof of (i). (At Λ = ΛQ we use as before the
b.c. (32).) Use again (41) to go away from zero momentum. From this it is then
straightforward to verify the bound (ii). D

Referring to earlier paper [3,6] we note in passing that a statement like (ii) also
holds if we soften the requirements of Λo -independent r.c. and/or <3wJ2fw°2W

0'r = 0
for m + 3n + \w\ ^ 5 to only requiring that these terms are suppressed by powers
of Λo according to their power counting dimension. This freedom may also be used
to improve on the rate of convergence in (ii), see [6].

3.2. IR-Finίteness. Now we turn to the IR part of the problem. Proposition 3 tells
us that for Λ ^ 1 the Sέ?

m'2«'r exist for Λo —> oo and for arbitrary indices and
momenta bounded in modulus by B. Looking at 0 ^ Λ ^ 1 we want to show that
for suitable b.c. the ̂ f f l 2 ; J

> r exist for Λ —> 0, if the external momenta are chosen
nonexceptional, i.e. no partial sums vanish. We again proceed in analogy to Φ\ [14].
I.e. we first define an IR index g for any configuration of m photon and In fermion
momenta, taylored such that we can prove inductively with the help of the FE,

iKfte Pϊ\ ^ Λ~2βp\ogΛ-\ if A - 0 , (42)

for any exceptional momentum configuration. Afterwards we can prove finiteness for
nonexceptional momenta. All momenta are from now on supposed to be bounded
by B.

The proof of a formula as (42) with the use of the FE can work only if the
IR indices of the momentum sets on the r.h.s. of the FE obey sufficiently strong
bounds in terms of the index of the momentum set appearing on the l.h.s. We need
the following definitions to proceed in this direction:
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Definition 1. A set of photon and fermion-antifermion momenta {k\,..., km, p\,...,
p2n} denoted also as {q\,...,qm+2n}1 is called admissible w.r.t. QED, if

(i) m + 3n > 2
(ii) m even, if n = 0

(ϋi) Σ Λ + Σy/>; = <>•

Definition 2. An admissible momentum set (a.m.s.) Q is called exceptional, if

there exists Q\ C Q, 9 + Qι + β, such that ΣQX qι = 0. Otherwise it is called non-

exceptional ΣQι : = Σ ^ € ρ r

Definition 3. A partition Z(Q) of an a.m.s. Q is a system of nonempty subsets
Ev Cφ β, v = 1,...,N with

(i) Q = Ut A
= 0, if vφμ.

(iv) £"v contains the same number of fermion and antifermion (fe-afe) momenta.
For any partition Z(Q) we define the subsets and numbers

A(Z) = {Ev e Z\EV consists of a single photon momentum}, a := \A\ ,

2?(Z) = {Ev e Z\EV contains only photon momenta and \EV\ ^ 2}, b := |J9| ,

D(Z) = Z \ μ ( Z ) U 5(Z)), d=\D\. (43)

Definition 4. 7%e IR index gz(Q) of a partition Z(Q) is defined as follows:

ΰz(Q) = su

The IR-index g of an a.m.s. Q is defined to be

Q(Q) — 0, if no Z(Q) exists and #(g) = max #z(β) otherwise .

So in particular g(Q) = 0, if £) is nonexceptional. As a motivation for Definition 4
note that by naive power counting one photon contributes one power in the IR
cutoff to the IR singularity. This explains | , b. The momenta in D contribute more
since they may flow across a subdiagram into one one-particle-reducible photon
line and then contribute again via this line. On inspecting examples one finds that
a constant ( = 2 ) may be subtracted. Using Definition 5 below we will obtain better
IR bounds than with Definition 4 which is not optimal in this respect, but this
requires additional effort. For an a.m.s. Q and pairs {&,—&}, {p, — p} of photon
and fermion-antifermion momenta we finally define the sets

QA = {K-k} U β, QF = {p,-p} U β .

1 We regard qι and qj (ίφj) as different entities, even if qx — q} as elements of R 4 , since they
belong to different fields or external lines, qt may be thought of as a mapping i y-+ qt; we do not
develop this point explicitly, however.
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And for 0 Φ β ! C Φ β, Q2 := Q\Qχ we set

ΰΛ = QχΌ {k'}, Q'F = QiU {/},

Q'A
f = Q2U {*"}, Qϊ = Q2U {/'} , (44)

where the new momenta k',k",p',pπ have values

k" = ~k\ p" = - / .

After these definitions we can now prove

Lemma 4. Let Q be an a.m.s. Suppose QA,QΆ>QA>QF>QF>QF (44) are also a.m.s.
7 we have

(al) 0(β*) ^ 0(β) + 1, Ϊ/ΛW #/ t αnwA or-for sup |#z |
η > 0 is defined as

\iψηj, (45)

ίΛe inf is over all sets J with J C φ {l,...,/w + 2π
> 0.
( a 2 ) 0 ( f i , ) ! g 0 ( β ) + § ,

(bl) ^(βji) + ^(βj?) + 1 ^ flf(β), if k' = 0.

Remarks. In the proof we will denote the IR indices of QA>QF>QΆ*- by
9A>QFIQΆ> - a r κ * suitable partitions of these sets maximizing # z will be denoted
by ZA,ZF,Z'A,....

Proof.

(al) gA ^ 1: trivial. ^ ^ 1:
(1) Assume there exists E e ZA with is D {&,—&}, and set Z := (ZA\{E})U

{E\{k,-k}}9 and verify that gz(Q) ^ ^ - 1, whether {£I\{^,-A:}} is empty or
not.

(2) If E as in (1) does not exist, then for suitable v,v;, k e £ v , —A: G^v/,
and we set Z := (Z^\{EV,^V/}) U {(£ v\{*», (^vA{-^})} Again gz(Q) ^gA-l,
whatever Ev,Evt are. Note that the sum over the momenta in Ev\{k} still vanishes
due to the supplementary condition on k which here implies k = 0.

(a2): The proof is as for (al) except for the last case, where we have to set

Z := (ZA\{EV,EV,}) U { ( M W ) U ( M { - * } ) > s o t h a t fc(β) ^ ^ - 3/2.
(bl) If < 4 ^ ' = 0, set Z - {βi,β2} (44), so that gz(Q) = 1. Now observe

that for any a.m.s. a partition Z maximizing gz may always be chosen such
that a = \A(Z)\ is maximal. For the rest of the proof we shall assume a to
be maximal in any maximizing partition to appear. Now if gA > 0, gA — 0, set
Z = (Z^\{{k'}}) U {Q2}, which gives gz = g'A- 1/2 + 3/2. Finally for Q'A,Q"A > 0,
set Z := (ZA\{{k'}}) U (Z^\{{k"}}) so that 3 z = g'A - 1/2 + g'i - 1/2 + 2.

(b2) qA,q"A = 0 is trivial. For g'A > 0, ^ = 0 take away form Z'A the set E'
containing k' and replace it by (E'\{k'}) U {Q2} to verify (b2). For g'A,g^ > 0 (b2)
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is verified on defining Z := {Z'A\{E'}) U(Z%\{E"}) U {(E'\{k'}) U(E"\{k"})}.
Whatever E\E" are, we even find gz ^ gA + gA + 1/2.

(c) One easily convinces oneself that a maximizing partition ZF of QF may
be chosen such that for some v:Ev = {/?,—/?}. Then gzF(QF) S #(β) + 3/2 is
obvious.

(d) The proof is the same as for (b2) replacing k -* p, A —* F. D

The IR index of Definition 4 is slightly more crude than that of [14], which
however facilitated the proof of Lemma 4 considerably. Since we want to show that
all renormalizations may be performed at zero momentum (for massive fermions)
we need a somewhat sharper version.

Definition 5. For an a.m.s. Q = {k\,...,km,pι,...,p2n} set

-\, if (46)

(i) Q contains at most one fe-afe pair, and
(ii) Q is such that g(Q) > 0 and such that g(Q) takes the maximal value possible
for the given number of photon and fe-afe momenta in Q.
Otherwise set

gi(Q) = g(Q). (47)

Now we can prove

Lemma 5. With the assumptions of Lemma 4 and the additional requirement that
none of the a.m.s. QA,QΆ>QA>Q appearing below consist of four photon momenta
only we have

(al) Q\{QA) ύ g\(Q) + 1, if all qt vanish or-for sup | # | > 0 if \k\ ^ η9

(c) 01(0,0 ^
(di) gi(QF) + gi(Qf;) £ gi(QX ifp' = o.

(d2) gλ{Q'F) + 0 i ( 0 ) g 0i(β) + 1/2.

/ The notation is as in the proof of Lemma 4. We have only to look at the
cases where g\{Q) < g(Q) for the a.m.s Q appearing on the r.h.s.:

(al),(a2): If Q is such as in (46) (i), (ii), then QA also fulfills these conditions
and (a) follows from Lemma 4.

(bl),(b2): Due to our restrictions on the sets Qf

A,QA,Q we find gfi(β) ^ 3/2
(= 3/2 for the case of one fe-afe pair and 5 photons), if g\(Q) < g(Q): Thus
9u> g'\A — 0 ^s trivial. If g\A + g"A > 0, we only have to verify the case where
g\(Q) < g(Q), but g\A + g"A = gA+ gA. Going through the cases as in Lemma 4
and using the fact that g(Q) is maximal whereas gA and/or gA are not, produces
the required inequalities.

(c), (d2) follow trivially from Lemma 4. (They are however not sufficient to
prove IR finiteness, if massless fermions are present.)

(dl) follows by the same line of arguments as (b2). D
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With the aid of Lemmas 4 and 5 we can prove the existence of the IR limit,
provided we use the following class of r.c. (see also (33)) at
A ^ O , r ^ 2: (i? 2 ° ;^ '%(0) = 0, dσdp(J?°2^>r)(0) = 0, ( J ^ ° ' r ) μ v p σ ( 0 ) = 0,

(<'20/),;(0) = i-l(^)y. (48)

A ^ 0 , r = 1: ( J ^ 0 ' 1 ) , ^ ) = (yμ)ij .
A special case of (48) are the following r.c: Take the r.c. (48) with

0, zf,Γ = O, zf?r = O. (49)

It is also possible to impose r.c. at nonvanishing or nonexceptional momenta. In

the presence of massless fermions this is even necessary (see Ch. 5). Note how-

ever that j£?2Ό°r always has to vanish at 0 momentum. We cannot prove IR

convergence if we impose r.c. with nonvanishing values of dσdp(J£%Q°'r)μv(O),

(&0

4[β0'r)μvPσ(0). We could perform the proof on renormalizing all <£^A^r at

nonexceptional momenta (where however S£\^r always has to be tuned such that
it vanishes at 0 momentum). This introduces new technicalities and the statements
obtained on the IR behaviour are in general not stronger than in massless QED
(Ch. 5). What is crucial for us however is that the r.c. (48) will turn out such that
the QED WΓs are restored for the respective theory in the limits A —• 0, AQ —> oo
(Ch. 4). But they are not the most general r.c. with this property since the WΓs
leave free the r.c. for the transverse photon propagator.

Before we prove our statement on the existence of the IR limit we want to
remind the reader of two facts about exceptional momentum sets stated already in
[14]. The first is: For any a.m.s. Q = {qi,. .,qm+2n} there exists s(Q) > 0 and a
neighbourhood

Γ - m+2n Ί
U£(Q)={{qι,...,qm+2n}\(qi-qi)

2 ^ ε\ 1 g i g *i + 2/i, g q{ = 0J , (50)

such that for any Q = {q\,- ,qm+2n} ^ Uε(Q) : g(Q) ^ g(Q). This holds since for
all partitions of Q all subsets S Cφ Q which are not an element of any Z(Q) have
ΣL e s Φ ^ O Take ε so small that all these inequalities still hold in Uε(Q).

The second is on the sets of nonexceptional momenta Mm+2n> as subsets of
( 2 l )

Mm+2n := \ (q\,""»qm+2n-l) £

(as usual qm+2n — ~9\ — — qm+2n-\)> The sets Mm+2n are obviously open in

\ (51)
J C + {l,...,m + 2n})

Proposition 6. Let A ^ 1 ̂  Λ§ ^ oo and r ^ 1. All (independent) momenta are
assumed to be bounded by β > 0 {arbitrarily fixed).
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(a) The {connected amputated) renormalized Green functions of the perturba-
tive fermίon photon theory, defined through (32) and the renormalίzation condi-
tions (48), which are given as

%£\qu,qm+2ni),
Λ—+0

inpartίcular ^r

m2n(qu...,qmΛ.2n-\) '•= ^2n(qu...,qm+2n-\\ exist in C°°(Mm+2n)
(see (51)), and in C°°(Mm+2«) we may interchange the limits:

lim lim JS?£ί?'Γ = lim lim <£A

m2f = £?r

m2n
A—>0 ΛQ—>Ό AQ—HX> A—>Q

Furthermore &%£°'r e C2([0,oo) x IR4), &%£»'r G C°([0, oo) x IR12) and

&ti*'V e C l ( [ θ ' ° ° ) x R 4 ) ' &ti*'r e ^ ( t 0 ' 0 0 ] x R 8 ) as functions of A and the
{independent) momenta.

(b) Let Q = {qu...,qm+2n} be an a.m.s. (Def 1).

(bl) If Q is nonexceptional or-for m = 2, n = 0, if q\ή=0-we have

dWK%n(<ll>- '><lrn+2n-l)= ψnd" <?£%>'(qU.. .,qm+2n-l)
A—+Q

uniformly in Uε(Q).

(b2) Assume the a.m.s. Q is such that Q — QaU Qb, where β α φ 0 and Qt,
has the form Qb = {q(f)

9-q¥\...,qf\-q(l))}, and such that for any E C Q with
ΣEQi = ° either QaCE or QaΠE = 9. Let Qa = {qu...,qs}; we denote by Qa{

some (arbitrary) subset of s — 1 momenta of Qa and by d™ any sequence of
\w\ derivatives w.r.t. to momenta in Qay Finally we denote by Nε(Qb) the set
{^(

1

ό),-^),...,gf),-^f)} with \qf] -qf]\ < ε. Then we claim

K K ι -1 . (52)
The statement is uniform in Uε(Qa) U Nε(Qb). The constants in Plog depend on
ε,Q9r,m,n,\w\. The notation in (52) is slightly abusive in that it requires that
we parametrize ^^^r possibly in terms of momenta differing from the standard
choice (24), and in different order.

(b3) For a general a.m.s. Q we have (for A > 0),

uniformly for Q e UC(Q), the constants in Plog depend on ε,Q,r,m,n,\w\.

(c) For m + 3n + \w\ ̂  4 we obtain the bounds (for given r and A > 0),

^ , (54)

and for the r.c. (49) and r ^ 2 (second inequ.) also

w&f^'r(k, p)\ S Λχ-^P\ogΛ-1 . (55)
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Those statements in (54), (55) for which the r.h.s. vanishes for A —> 0 hold
uniformly only for \k\,\ki\,\p\ ^ A {or 0(1)A), the others hold uniformly for
1*1, |*i|> \p\ ύ B. In case of the r.c. (48) the statement (55) holds only for \w\ ^ 2
(first inequ.) resp. \w\ ^ 1 (second inequ.).

All statements in (b), (c) #r£ uniform in AQ.

Remarks. We left and leave out indices on the ^fm'2/J(^i,...,^w+2«-i) whenever

possible, and we abbreviate (in slightly abusive shorthand notation) &^2n(Q) =

^m,2n(^^"^am+2n-ιX etc. For a given momentum set Q = {qu ..,qm+2n} we

denote by Q = {q\,. Άm+2n\ a momentum set such that {#i,...,tfm+2«} i s i n

Uε(Q) and by QA(k) or shortly QA the set {k,-k,qι,...,qm+2n} etc. (cf. Lemma
4). The symbol s will always denote a positive number, chosen sufficiently small
case per case (we do not introduce ε',8",...) such that the respective estimate holds
uniformly in Uε(...). ε depends in particular on the respective η(Q) (45). c,c\9...
denote positive A, Λo-independent constants. The proof of Proposition 6 is in many
aspects analogous to that of Theorem 1 in [14]. Here we are slightly shorter.

Proof. We use the standard FE induction scheme which proceeds upwards in r and
for given r downwards in / = m-\-3n using (i) after (24) (see also Proposition 3).

(A) r = 1: The b.c. (32) and the r.c. (48) give vanishing & ^ Λ apart from

iff;/0'1 (see also Proposition 3). The r.h.s. of the FE for dA&£f°'1 vanishes iden-
tically in A, AQ, k, p. Thus

) OV)</> ^t[t' Ξ 0, m + 1 or nΦ1.

So the proposition is true for r — 1.
(B) r > 1: We assume the proposition to be true for r', V with / < r, ί ' e N

and for r, V with /; > /. We prove it now for r, /. We start with proving (b), (a)
for

(Bl) m -f 3n + |w| ^ 5, m + 3n > 2: First we prove

(b3): Bounding the i f ' s on the r.h.s. of the FE for dA&%$r with the aid of
the induction hypothesis and using Lemma 5 c), a) we obtain

if IkI ^ η(Q) or if all momenta vanish, and generally

The sums on the r.h.s. of (25) can be bounded-using Lemma 5 b),d), (4), (39)
and the induction assumption-by A~29ι^~ι~\w'iPlogA~ι. Here we note that in the
cases where Lemma 5 bl) cannot be applied the corresponding contributions vanish
for A < l/2η(Q) due to (4), since \k'\9\p'\ ^ 2η - O(ε) in Q. For A ^ l/2η(Q)
they can be absorbed in the constants of P log. All previous bounds are by induction
assumption uniform in the respective C/e's. By a standard compactness argument
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the first two thus hold uniformly in {(p, — p)\ \p\ ^ η} x Uε(Q) respectively in
{(K-k)\ \k\ Sη}x Uε(Q). From (l)-(4),(25) we thus obtain in Uε(Q),

2Λ

t fdtt3[Γ29^4-
A

+ θ(t - η)η-3-2g

Here Q\ — g\(Q), η — η(Q). Integrating now from 1 to A < 1 shows

(56)

The last term is independent of A and uniformly bounded in AQ by Proposition 3.
So it may be absorbed in the first. Proposition 3 was proven for r.c. imposed at
A — 1. Now we impose them at A — 0. So we have to show that both classes of
r.c. are in one-to-one relation. That this is true indeed can be seen from the FE
when integrating from A = 1 to A = 0. Imposing the r.c. at A = 0 one then finds
that ^^n ftdfill r.c. at A — 1 of the form (33). The way of proceeding can also
be inferred from (B2) below. Strictly speaking this uniqueness statement is also
part of the induction hypothesis.

(b2) If Q is as in (b2), then QF = (Qb U {p, -p}) U Qa, QA = (Qb U {*, -*}) U
Qa also fulfill the assumptions of (b2), if 0 < |/>|, |fc| ^ ηiQ)- The important point
to note is that if the intermediate momenta //, k' appearing on the r.h.s. of the
FE fulfill |//1,1 A:'I ^ η(Q) then the derivatives ^ ( w φ O ) applied to k' (and p')
give zero by our assumptions. (Note that k\ p' need not vanish in this case if the
external momenta are taken in Uε(Qa)U Nε(Qt).) Using these facts the verification
of (b2) proceeds as that of (b3). We again have to use Lemma 5 and the induction
assumption to bound separately the regions where A > η/2 and A ^ η/2, and we
also have to use again the compactness argument from the proof of (b3).

(bl) For Q nonexceptional, the sets QF := {p,-p} U β, QA := {k,-k} U β,
0 < \p\, \k\ ^ η(Q), fulfill the assumptions of (b2), furthermore the momenta k\ pf

appearing on the r.h.s. of (25) fulfill \k'\, \p'\ ^ η(Q) in Q. This implies as in (b2)
(since Q\(QF\ 9\{QA) = 0)

Integrating from 1 to A proves the existence of lim^-^o ^w^Λ^m\^r(β^ uniformly
in Uε(Q) and therefore (bl).

(a) now follows (for m -f 3n + |w| ^ 5, m + 3n > 2) from the proof of (bl),
since \w\ may take any (finite) value. In particular we may interchange the limits
using a standard ε/4-argument for:

&?δ-^0,oo (^?0,ΛQ—+oo Q?δ—>0,oo g?b,oo _ι_ c/?b,oo a?b,A§ _ι_ c/?δ,ΛQ

OP0,ΛQ I ς^?O,ylo _ g?§, oo

and our knowledge on the IR and UV-limits.
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(B2): Now we prove (b3), (b2), ( b l ) , (a) for m + 3/i + |w| ^ 4 o r m + 3« = 2

as well as (54), (55). We start from m + 3n = 4, m = 4: The r.c. fix the value of

J S ^ o ^ ί O ) , w h i c h i s i n one-to-one relation to ̂ \^r(0) through

because the integrand is independent of the r.c. for i f j o°'r(O) to order r: It is
given by the r.h.s of the FE. Noting that for m + 3w = 4 and any β we have
0i(β) — 0, gι(QA) S 1/2, Q\(QF) ίk 1 we find by induction, also using (c) to lower
order

uniformly in UJjQ\ including the case where all qt vanish.
Using a compactness argument and integrating over A we then deduce

&°4'£>'r e C°(R12) and J?tJ°>\Q) = J?l^r(Q) + O(ΛPlogΛ~ι)

uniformly in Q = {{q\,qi,q3}\ \qi\ S B} The statements in (a),(bl),(c) follow
from the previous estimates and (Bl) (where \w\ ^ 1 is included), the uniformity
of the limit A —> 0 and the Schlόmilch formula together with the r.c. The treatment
of JS?f;^°'r in case of the r.c. (49) is analogous to that of S£^$'r and we do

not repeat the argument. In case of the r.c. (48) J^?

1'2°'r(0,0) may be nonzero
for A —» 0. But the regularity properties in (a),(c) are verified as before using in
particular the fact that Rm vanishes for A < m/2 to bound the ]Γ]-terms in the
FE. Note that the statements on &f^r for the r.c. (48) could not be verified
with our method if we regularized the fermions in the same way as the photons
using R instead of Rm. Now we come to m = 2, n — 0. The statements on JS?2,o i n

(a),(bl),(c) are again proven by bounding the r.h.s. of the FE by induction for any
k. We obtain

\dwδΛ^^\k)\ S A2-MpiogA~l . (57)

The bounds are as usual uniform in the respective Uε. Equation (57) for \w\ ^ 1
only holds for \k\ ̂  cA. Integration over A and the r.c.-or for m + |w| ̂ 5 the
b.c. at A — 1 (or at A — AQ, cf. the remark in (Bl))-the usual uniformity and
compactness arguments and Taylor expansion around zero momentum then provide
the estimates in (c) and the statements of (a). The last case to treat is m = 0, n = 1.
We again have to distinguish between the r.c. (49) and (48). But the way of
proceeding is as previously for JSfî  To verify the statements we again need the
regularity of Rm around 0. D

We have seen in the end of the previous proof that our techniques really require
different regularizations R,Rm to prove the proposition. Using R throughout we can
only prove results as sketched in Sect. 5 which also hold in massless QED. It is a
straightforward exercise to show that replacing Rm by different smoothed versions
of R (see e.g. [5]) produces the same results on taking the limits (one estimates
the difference of the two regularized versions).
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4. Violation and Restoration of the Ward Identities

We start with a few introductory remarks forgetting about regularization, A, /to, etc.
The standard QED Ward Identity (WI) may be expressed in terms of the generating
functional Z (11), (14) as

{λΠdμδJμix) - ieηδη{x) + ieηδ^ + dμJμ(x)}Z(J,η, η) = 0 (58)

(λ is the gauge fixing parameter from (1)).
In terms of W with Z = e-(w+fΛ ) w e obtain

{-λΠdμδJμ{x) + ieηδη{x) - ieηδ^x)}W{J,rj9η) = ~dμJμ(x) (59)

(δχix)W(Jμ - dv(D-ι)vμLηe-ie\e^η))\χ^ = ~dμJμ(x) . (60)

D~ι is the inverse photon propagator and χ describes the gauge transformations,
we assume χ G ^ ( R 4 ) :

Aμ-+Aμ + dμχ, ψ-*e-ie*φ, φ -> eie*ψ. (61)

Now we look at the regularized theory (see (11), (20)). For safety we keep
0 < A ^ ΛL0 < oo. Due to the violation of gauge invariance implied by the mo-
mentum cutoff the WΓs will also be violated. Equation (60) leads us to define

Jμ(χ)=Jμ-dv(D-1)vμχ, η(χ) = rje~ie\ η(χ) = e**η (62)

(position space arguments are suppressed), and we set

Z*>(J,η,η; χ) = zio(J(χ),η(x)Mx)) ,

,η,η) = WΛ'A«(J(χ),rj(χ),η(χ)), (63)

so that

(65)

In deriving the violated WΓs (vWΓs) we are only interested in contributions of
first order in χ. We find

, -δη, δη) = LΛ° + ez2(χ, dμδηy
μδ^) (exactly), (66)

l/2(J(χ),DΛ

Λ°J(χ)) = l/2(J,DΛ

Λ°J) + {χ,dD~ιDΛ

Λ"J) + O(χ2), (67)

f (η,S*>η) + ie({η,sfχη) - {ή,XS*>η)) + O(χ2). (68)
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We thus may rewrite (65) to first order in χ

f.i.)|z=0)) = e-<\-ez2(hdμδ

- ie{{η,χδ,) + {δn,χn)'Wl2^D>+^s> , (69)

where (δψχη)r means that we subtract the contribution where δη applies to the η

in (•••). Now we find

(z3 - δλ)dμdv)δJμ) - 4z4fμvpσ(L(dD-ιDf)μδjvδJβδjσ)

e{\ +zλ){χ9(dD-ιD/j«)μδn'fδϊ) . (70)

Note that the commutator commutes with LQ°. For the last term we write

(χ, dμR^δηt&n) = (X, WifSϋ) + (χ, (dD'ιD^ - d)μδηy^) , (71)

where R^Λ(p) := Ra(Λ0,p) - Ra(Λ,p), R^° := R$>A. Taking the first term on the
r.h.s. of (71) together with the two terms in curly brackets in (69) we find on
application of derivatives

+ (δψχηY}]e{^°η)

£ ' ^ ^ * , (72)

where we used S$ = -i\ + imS, $S = i\ - imS. Using (70)-(72) in (69) and com-

muting e o through (70) (trivial), and the curly brackets in (72), finally gives

[-(χ,δχ(Wχ +f . i . ) | z = 0 ) - {X

inχ , (73)

with the following explanations:
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2. OΛ^ collects the outcome of the commutators. In (73) it carries the arguments

OΛ

Λ\δj,-δη,δη) (as LQ°). It has the form

[dμR
Λ

Λ\δμ\-z3Ώ + δμ2) + (z3 -

4z4fμvpσ[dμR^°AvApAσ](x)

ie {iz2Jd4z[ψ(z)^Λ(z - x)ψ(x) - ψ(x)r£Λ(x - z)#zψ(z)]

- x)ψ(x) - Ux)ri%(x - z)ψ(z)]

4(z)r^Λ(z - x)ψ(x)

(74)

The curly brackets correspond to the contribution of those in (72), on commuting
through as in (70).

3. The term {χ,O) has been raised to the exponent. This is allowed since we
regard only the first order in χ.

As can be seen from (74), all terms in O vanish, if we formally let A —> 0,
ΛQ —>• oo and require z\ — Z2, Z4 = 0, δλ — 0, δμ2 = 0. Thus OΛ° collects the gauge
symmetry violating contributions, and (73) has been derived to control them, again
using flow equations. Equation (73) is to be understood as usual in the sense of
perturbation theory, i.e. as a relation between r th order terms of the perturbative
expansion. Furthermore we are dealing only with the coefficient functions for a
given number of external J9 η,η or χ-fields. The coefficient functions ^m\^r e χ ist
for any positive values of A at arbitrary momenta. The same is then obviously true
for the i^^^ ( s e e below) which appear on the l.h.s. of (73). Eliminating the
exponential in (73) we may write this equation as

— (χ,(δχWχ>Λ°)\χ=o) — (χ,dR^°J) -f ie{(η,r^°Λχδη) + (δη,χr^°ΛηY}W^{Λo

= -W{if° . (75)

Here Wn\ ° is defined as follows. We set

= e 0 A e A 'A . (76)

Thus Wo is the generating functional of the connected unamputated Green functions
with insertions of O and we expand
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Therefore W(\) generates those with one O-insertion. In the same way as for the
//Mo w e expand

ffi A^ ^ ^ r , (78)

λs Wm,2n > ^(1) - 2-u
m+2n>0 m+2n>0

and finally

d4a d4h

TJ/A,A0,r _ r a q a κx ( 2 π)4

-. •J(km)η(pι)...η(p2n) , (80)

and similarly for ^^'^°' r. For shortness we left out indices. The IV'% are assumed
to have the same symmetry and antisymmetry properties as the J£?' s. We know

already from Ch. 3 that the i^^n^ a r e ^ m t e m m e ^m^ ^ ~~* ® ^ o r m o s e m o ~
mentum configurations for which the ^ w ' 2 n

0 ' r a r e finite in the same limit and for
which no external photon momentum vanishes, since the external lines are no more
amputated in W.

With these definitions we get from (75) (remembering (62), (63)) for r ^ 1:

(m + \)iqpD-^(qW^^n{q,ku. ..,km,pu... pln-\ )μμι..jn

~ Rt°,Λ(Pn+aWm,2n^~\k^ -, *m, Pi, , Pn+a + ?,..., P2n-l)μv..,jn}

+ <ίί(?,*i t-,,̂ 1 Λ»-iW^=0. (81)

In the derivation of (81) we used l+r^Λ=R*°Λ. Equation (81) for r = 0

is realized to be trivially fulfilled. Since R^°Λ has a well-defined limit for A —> 0,

IR-finiteness of ̂ ' ^ ί for A -> 0 may be inferred from that of W ^ r (see also
Proposition 7). We can pass from unamputated to amputated quantities. We define
the generating functional of the UV- and IR-regularized CAG with O^° -insertions
in analogy with (11), (14), (20), (76) as

( ^ ' Λ (DJ9Sη9ηS) + fl)}
(x,oΛ°)

i η) (82)

with
LΛ° λ :=LΛ° - (Ύ,0Λ

Λ

Q) . (83)

From these definitions we will be able to derive a FE for the Lm,2n,i defined as
in (78)-(80) with W -> L,1V -> if. The aim to arrive at such a FE was the reason
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for raising (χ,θf) to the exponent in (73), (76). The vWΓs (81) in terms of the
<&m,2n> ^m,2n,\ take the form for r ^ 2:

i(m -f l ) q μ R Λ ° ( q ) £ >

m + l 2 n ( q , k u . . . , k m 9 p u . . . 9 p 2 n - \ ) μ μ ι . . . j n

a=\ a Λ a

X =^m,2« v 1 J 5 % 5 P\ >' - - •> Pa ~f" # j > P2n—\ )μ^ ...i'a...jn

~ &ty2nr~l(kl> - >km,PU..., Pn+a + tf,. . . , P2n-l)μι...j>a...jn

+ ^i^(q9ku...9km9pl9...9p2n^)μi.Jn=0. (84)

The unviolated WΓs, which we want to recover for A —> 0, /lo —•> oo are obtained
from (84) on replacing i?^0 by 1, ^ ° by 5 and JS?£^ΐ by 0. The first two
replacements are true for A —> 0, v40 -» oo and finite nonvanishing momenta. That
the last is also true on taking limits is a consequence of the FE for J ^ ' ^ f and
the boundary conditions at A = AQ (see (83), (74)) and at A — 0. The latter will
follow from (84) and the r.c. for the 3?^^". FE's for Green functions with operator
insertions have been studied extensively in [4] in the Φ\ -context. For the present
case they have already been presented in [13]. In the same way as in Proposition
2 we find

and

^ ( A , ^ ) + m\A^D>φ__s>^-sf (86)

for the generating functional of the regularized CAG with OΛ° -insertions. The
FE is obtained as (22) by taking a /l-derivative on both sides (replace L by
L Λ0 in (22)). If we were to apply the yl-derivative also to the /t-dependent

term O^° we would obtain a much more complicated equation than (22), how-

ever. We therefore fix the Λ-parameter in O*° to be equal to δ: O^° -» θf°. We

choose 0 < <5 C m. The respective ^-dependent Lm'2®^ or ^m'2n'\ a r e ^ n e n ^ e "
, j τδ,Λ,Λo,r r/7δ,Λ,Λr\,r Λ i n τδ,Λ,Λo,r τΛ,Λr\,r ^ ς A Λ

noted as Lm^{ , 2 ^ and we define I m 2 ; := Lm2°> . For δ = A obvi-

ously ^2nΛ\°'r = ̂ m ̂ ' ί W e a r e interested in the limit δ = Λ-+0. Following

these remarks we thus take a /l-derivative of the following equation (cf. (85)):

(A,ψ,ψ) + f.i.)} = e ^
)
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Expanding in powers of e and of the external fields A,ι//,ψ we obtain to zeroth
order in χ the FE (25) and for the first order terms we find

where Σ i is over r' + r" — r, m! -f- m" = m + 2, n' + n" — n, s'+ s" = 1 and ] ζ 2

is over r' + r" — r, m1 + w/; = m, ̂  + «;/ = n + 1, s/ + s" — 1 and we denote
Lm,2n,o — Lm^n The equation analogous to (25) is then

, , Jμι.Jiι...inj.. jnW>kU ' " > k™> ~ P> P\,.. ., Pn, P, - -, Pln-X

+ Σ m'm"(-1 r^" [(3,1 R(Λ, kf))Dμv(kf)
1

',2n' W l - V (*'> *!»•••' ̂ m'- l ί ^ I J > Pn+n'-l )

Σ (-irv'+*Vfl"[(^m(Λ p'))sβ(P')
2

x ^tfA2n"

X ( ^ A w / + i , . . . , Aw,, ~ y , Pn' + U- "9Pn, Pn+nΊ
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1)"'""+"" "'""WARJA, p'))Sβ(pr)

λ A Λ f

m'Jln'Λ )μi---μm>h.- in'Jh. jAy>kl> ' ' * * ' ' Pl> > P»'> P'> ' Pn+n'-\)

(a,Λ,Λ0,r'\
Λ ^ m",2n" ^/V + Γ W V + Γ ^ V -̂

X

Σ i ' Σ 2 a r e defined a s m (87) with the exception that we do not sum over s',s".
Otherwise the notation corresponds to that of (25). Flow equations of the same
structure as (88) have been considered in [4] when renormalizing composite op-
erators in the Φ\ context. The solutions of (88) may again be bounded using the

inductive scheme described after (25). Since the ^^n^ n a v e already been bounded
the analysis of (88) is even simpler than that of (25), at least in principle, since
both sides of (88) are linear in the ^ t u ' " .

To bound the solutions of (88) we have again to look at the b.c. For Λ = Λo
they follow from (83),(74) (with A = δ in (83),(74)). We find at
A = ΛQ for r §: 1:

^δ{Λ0ΛA^)μ{q) = -ίqμR
A

δ\q\q2δλr + δμ2

r) ,

(&δ

3'£{A°'r)vpσ(q,kuk2) = -4ίqμR
Λo(q)fμvpσz4r, (q = -kx - k2 - k3) ,

p))

i&ΐ^ΊwiqΛp) = Kδ^+zh^2)(r^δ(p) - rΛJδ{q + p)) . (89)

Remember r^°δ(p) = rA°δ(-p), zis := 0 for s ^ 1 and note that r^δ(p) = Rm(A0,

p) - 1, since δ < m/2 (see (4), (74)). All other ^ ^ f ° ' r vanish. The coefficients

zir, δmr, δμl, δλr obey the bounds

\zir\Λδλr\ ^PlogΛo, (90)

\δmr\ ^ ΛoPlogΛo, \δμ2

r\ ^ A2

0P\ogA0 (91)

due to Proposition 3. We also have to look at the boundary conditions at A = δ.
Since the 5£m ^\r are given in terms of the vWΓs (84) we can calculate the
boundary values using (84). Looking first at zero momenta we realize that these
boundary values for the terms with m + 3« + |w| ̂  4 often vanish due to the 0(4)
and C symmetries of the theory which simplifies our task considerably. As can
be seen from (61) and (8), χ has to transform as a scalar (trivially) under 0(4),
whereas χ —> —χ under charge conjugation. From this and (74) we then deduce
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0(4) and charge conjugation invariance of L ' °Λ . Using also the invariance of

the theory without insertions this implies

(i) Sή^-r Ξ 0 for m even ( C ) ,

(ii) (JSfJJfWO) = 0 (0(4)),

(iii) ^(JSfiJ^MO) = clδμv (0(4)),

(iv) dμdv(J?ϊδ

o>fo'r)p(O) = 0 ( 0 ( 4 ) ) ,

(v) dμdvdp(<e δ{f0[f °'r)σ(0) = 4rfμvpσ (0(4) and permutation symmetry for μ, v, p),

(vi) ( J S f g ^ M O ) = 0 (0(4) and C),

(vii) δίμ(JSf5Jf° Γ)y(0) = cfΓ(y^)ιy = -3ftl(JS?J£ίlo Γ)//(0) (0(4) and C),

(viii) (^δ

3'yoyt°'
r)μvP(O) = 0 (0(4) and Bose symmetry),

(lx) Vqμ(^3\θ[l ' )vp<τ(«) = c4rJμvpσ = ~^kjιμK^3yot\ ' )vpσ(«) >

(x) (<'2,'f°'rVy(O) = 0 (C) . (92)

In the derivation of (ix) it was not sufficient to use the symmetries, which also allow
for a term cfr(δμvδpσ + δμpδvσ — δμσδvp). This term is excluded however using the
vWI (84) which gives

(J?tiΐ°>r)vpσ(q,kuk2) = -4iqX\q)(^r)μvpσ(q,kuk2l \q\9 |* f | < vi0 . (93)

We remark that the existence of the derivatives in (92) for δ = 0 can be inferred
from (84). For \q\ between δ and 2δ the functions dwR.f*(q) change rapidly and have
large derivatives ~ O(δ~^). The task of finding suitable bounds for the JSf̂  ^n Γ x%

therefore considerably simplified by restricting to the region \q\ > 2δ (see below).
This is compatible with our way of inductively estimating the solutions of the FE
since q appears as a fixed parameter on both sides of (88). Such restricted bounds
are sufficient for our purposes since we let δ —*• 0 in the end. In this case we also
have to use boundary conditions for the FE in which the value of q fulfills \q\ > 2δ.
To be definite we choose some q with \q\ = 3δ, and the second momentum argument
appearing in S£^^r is then chosen as — q, the others being 0. Using (92), (93)
and (48) as well as (54) we find

MA . (94)

Using again the vWI (84) we also find from (48) and (54),

\dμdvdp{<?\^'r)σ(q) - (-6iδλffμvpσ)\ ^ δPlogδ-1 . (95)
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For m = 0, n = 1, r ^ 2, (84) takes the form

(-0 (96)

where we used the fact that all Ra°δ

9s equal 1 for the chosen momentum arguments.
Using the continuity of 5£ 1>2 and the continuous differentiability of «5?o,2 we obtain
from (96),

(97)

For r=\ one realizes on going back to (81) that ^^Λ{q,p) = 0 for

M, b l ^ Λ0/2, which implies ^δ

o[
δ

2]foΛ(q, p) = 0 for |$|, |/?| g Λ0/2. All other

^w 2Λ I a ^ s o v a n i s n by inspection of the vWΓs (trivially). Similar considerations
finally show

fr 1 . (98)

Equations (93), (94), (95),(97),(98) now tell us that all terms of dimension ^ 4
which do not vanish a priori by symmetry, are explicitly given in terms of the
renormalization constants from (48)-up to corrections bounded by ^ P l o g ^ " 1 . The
aforementioned restriction on the values of q is implemented by adapting the norms
(34), with the aid of which we estimated the solutions of the FE, to the present
situation:

For a system of functions fμw..,iu...,j1,.Xq,kι9...,pι,...,p2n-i) depending on q
and on photon momenta k\,...,km and fermion and antifermion momenta pi,...,p2n

we define

as in (34) with the additional restriction that we only take the sup over the momenta
fulfilling \q\ > 2δ.

We also need an adaptation of Def. 1-5 in Sect. 3.2. The following changes are
necessary: Q is now the set {q9k\9...9pι9...9p2n}. In Def. 1 we replace (ii) by:
(ii7) m odd if n = 0. In Def. 3 one of the sets Ev now contains q. This set is then
counted as if it were Ev\{q] in all subsequent definitions, and we find immediately
that Lemmas 4,5 may be restated for the new situation without change. Now we
prove:

Proposition 7. Let B > 0 be any fixed constant, \w\ ^ 4, 0 < δ <C m, \q\ > 2δ,
δ ^ A ^ Λ§ < oo. For the r.c. (48) together with the following restriction:

, r * \ , (99)



222 G. Keller, C. Kopper

(which corresponds to a condition of the type z\ — zi in case of r.c. for one particle
irreducible functions), in particular for the r.c. (49), we obtain the following bounds
for A ^ 1:

t ( ^ 1) ̂ 3 H (loo)
The constants in Plog depend on m, n, r, \w\, B.

Now let δ 5̂  A ^ 1 and all momenta q,k\,..., pin-x be bounded by B. We find
for nonexceptional momentum configurations Q (or for {q,—q} if m— 1, n = 0)

\dw^%Λχr(q,kχ, .,P2n-x)\ ύ A-ιP\ogA, + δP\ogδ-λ . (101)

The constants in Plog now also depend on η (45), but (101) holds uniformly in
UB({q,..., P2n}) (see Proposition 6).

Furthermore we find in the same sense as in Proposition 6 for exceptional
momentum sets Q — {q,k\,...,/>2«}>

l ^ < t t Γ ( ^ i ' 'fe-i)l ^ Λ-WV-MiΛϊ'PlogΛo + δPlogδ-1) (102)

uniformly in Uε(Q). The statement analogous to (b2) in Proposition 6 is the
following: Let Q — {q,k\,..., p2n} be such that Q = Qa^ Qb and q G Qa-> where
Qb is of the form Qb = {qf\ -q[b\... ,$(/° - ^ } } . And let Qa be such that for any
ECQ with ΣEqi = ° e i t h e r QaCE or EΓ)Qa = Q). Write Qa = {q9qi,...9qs};
we denote by Qaχ any strict subset of Qa and by dw

aχ any sequence ofw derivatives
w.r.t. to qi G Qaχ. Then we claim

2 ^ e \ ^ ), (103)

where the statement is uniform in Uε(Qa) (see Proposition 6).
For m -\- 3n -\- \w\ ̂  4 we obtain the bounds

(104)

P log A1

1 . (105)

Equations (104), (105) are uniform in δ, AQ. AS in Prop. 6, (c) those statements
for which the r.h.s. vanishes for A —> 0 hold uniformly only for momenta bounded
by O(\) A, otherwise they hold for momenta :§ B.

Proof The proof is in many aspects similar to that of Propositions 3 and 6. We
will concentrate on those aspects which are new. The two contributions appearing
on the r.h.s. of (100)-(103) enter through the boundary conditions at large and
small A. We use the standard inductive scheme. The statements for r — 1 are im-
mediately verified, since all JSf̂  {nV v a n i s n For r > 1 we go down in m + 2n
and for given m-\-2n down in |w|. We start with m -\- 3n + \w\ ̂  5. At A = AQ the
bound (100) is verified using (89)—(91). Using the induction assumption and the
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bounds from Proposition 3 on the r.h.s. of the FE (88) we also verify (100) down
to Λ= 1.

Now we may integrate further down to A ^ δ. At A — 1 (101) to (105) for
7w + 3« + |w| ^ 5 are true since (100) has been verified for A — 1. We start verify-
ing (102) by estimating the r.h.s. of the FE with the aid of the induction hypothesis
and Prop. 6. The proof proceeds then as that of (53), Prop. 6. As there we also
need the statements (104) to lower order in the respective estimates. Having veri-
fied (102) we may also prove (103) and (101),(104) and (105).

Coming now to m + 3n -f- |w| ^ 4 we have as usual to integrate the FE from the
lower end, here from A = δ upwards, with the momenta fixed at some renormaliza-
tion point. It follows from (92)-(98), (99) that all dw^δ

m

δ^{r with m + 3n + |w| ^ 4
fulfill the estimates (101) to (105) for the momentum arguments imposed in
(94)-(96). Integrating then the FE from δ to A > δ at these arguments and us-
ing the induction hypothesis on the r.h.s. we verify (104), (105) also for A > δ.
The next step is then to go from renormalization points to arbitrary momenta
q, p,k\,k2,k ( ^ B) via the Schlomilch formula (41), starting from m + 3n = 4 and
treating then m + 3n = 3, |w| = 1,0 and m = 1, |w| = 3,2,1. Using the induction
hypothesis allows then to verify all statements (100) to (105) for arbitrary momenta
bounded by B. D

An immediate consequence of Proposition 7 and (84) is now

Proposition 8. (Restoration of the Ward Identities). Sending the UV-cutoff Ao to oo
and δ to 0 (in arbitrary order) the connected amputated Green functions 5£r

m 2n

fulfill the standard QED Ward identities. That means-for momenta for which
they are well-defined- they satisfy the equations (for r > 1),

(m + l)qμ(Jίer

m+l}2n)μμ1...jn(q9kι,... 9 p2n-ι)

n

— —ΣWβ( — Pa))~ S( — Pa — (ύ^m^n^lT 'iPa + G,. . ., /?2«-l ))μh...Jn

~ (&rnΪ2n(h>' ' ' > Pn+a + ?,..., P2n-l)S(pn+a + q)(S(Pn+a)~l ))μi,...,yJ -(106)

5. On Massless QED

In this paper we have treated Euclidean QED with massive fermions. In view of
physical reality one should also find a way to pass to the Minkowski metric which
we intend to do. The case of massless fermions is less important from this point
of view, still there are massless fermions in the standard model (and maybe in
nature). So we briefly indicate the modifications necessary in this case without
giving a proof. In massless QED we have to regularize the fermion propagator by
R(Λ, p) instead of Rm(A, p), since Rm is not an infrared regulator. This change
induces a deterioration in the IR estimates (see (39)).

The definition of the index g (Def. 4) has to be changed as follows:

(i) Momentum sets Q consisting of two fermion momenta only are no more
admissible.

(ii) Assume a momentum subset Ev (43) or Q itself can be subdivided into two
subsets Ev\, EV2 such that the sum over the momenta in both vanishes and such
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that both contain an odd number of momenta from {p\,..., p2n}- In this case Q is
called exceptional and the set Ev contributes 3/2 to gz(Q) (as before) if it consists
of two single momenta, it contributes 2 if one subset Evi consists of more than one
momentum, and it contributes 5/2 otherwise.

These changes are then sufficient to prove g(Q'F) 4- g(Qp) + 1/2 ^ g(Q), if
p' = 0 instead of Lemma 4 (d). We need this sharpened inequality to prove Propo-
sition 6 in the massless case. The improved index g\ is of no use any more since
Lemma 5 (c), (dl) are no more sufficient to bound the S£^ 2n(Q) by Λ~2gιP log Λ~ι.

The new index g is then such that &%£», ^f;2°
 a n d dμ&ti°> dμd^to° a r e

allowed to be logarithmically divergent for A —* 0 at zero momentum, when esti-
mated with the aid of the FE. All these terms therefore have to be renormalized
at nonexceptional momenta whereas the undifferentiated two point functions have
to be renormalized at zero momentum. Renormalization at nonexceptional momenta
induces notational complications. Regard e.g. 5£\^ (leaving out upper indices). We
find from symmetry considerations

^J2(KP)

+ kμfcjhik, P) + PμjJsfo P)

(to be compared with (31)), where the // depend on k, p only through 0(4)-invariant
combinations. The function l\ is then fixed by a r.c. at some nonexceptional momen-
tum configuration {k,p,—k — p}, whereas h,3,4,5 a r e to be calculated from terms
with m + 3n -f |w| ^ 5. To solve for l2 choose e.g. kyp nonexceptional such that
p = (09p2, 0,0), k = (0,0,*3,0). Then

and similar expressions for 73,4,5. Arbitrary nonexceptional momenta can now be
reached on application of the Schlomilch formula.

Observing these changes and imposing r.c. as described above it is then straight-
forward to rewrite Proposition 6. In part (a) the degree of smoothness is generally
reduced by 1 ( C 2 ( R 4 ) -> C^IR4), Cι(WL4) -> C°(R 4)), whereas &%*>, iff;/0

may diverge logarithmically at exceptional momenta for A —> 0. In (b3) we have
to replace g\ by the new g. In (c) we claim

% ^ Aι~WplogA~ι ,

in the same sense as in Proposition 6.
These changes in the IR behaviour and the corresponding modifications of the

r.c. have to be taken into account in Ch. IV, i.e. in the relations between the JSf ̂  2n

and 3?n2n 1 f° r Λ = 0 (92),.... These then also have to be exploited at the new
renormalization points. This does not change the statement on the restoration of the
WΓs at nonexceptional momenta. But the proof of the statement corresponding to
Proposition 7 becomes more complicated. This is due to the fact that on the r.h.s.
of (89) all r^°δ are to be replaced by rf° which have large derivatives for small
δ. A restriction as \q\ > 2δ is no more sufficient to exclude their appearance since
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the rf° also carry arguments p which in turn appear as integration variables on

the r.h.s. of the FE. Therefore we have to make a new induction hypothesis. The

first step is again to adapt the norms (34) to the new situation by the following

definition:

F o r a s y s t e m o f f u n c t i o n s fμι,...,iι,...jι,...(q,k\,..., p\9...,pin-i) d e p e n d i n g o n q
and on photon momenta k\,...,km and fermion and antifermion momenta p\9...,pm
we define

as in (34) with the additional restriction that we only take the sup over the momenta

fulfilling

\q\ > 2δ and also: |/?, |, \q 4- Pi + St\ > 2δ or

\Pi\,\<l + P i + S i \ <δ, / = 1 , . . . , / i , (107)

where Sj denotes any (possibly empty) subsum over momenta from {#,...,... P2n}\

{q, Pi} which contains as many fermion as antifermion momenta (for n = 0 only q

is restricted, as in the massive case).

The bounds of Prop. 7 now hold again if the conditions (107) are satisfied. If

they are not satisfied we claim weaker bounds to hold which are obtained from

those of Prop. 7 on multiplication by <5~lwl Since the volume of those regions in

/7,-space where (107) is violated is O(δ4), the factor <5~~'wl is compensated by the

integration volume on performing the momentum integral on the r.h.s. of the FE,

as long as we restrict to |w| ^ 4 (which is sufficient for us). The restoration of the

WI's is then obtained letting <5 —> 0, ΛQ -> oo as before.
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