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Abstract: The structure of the constraint set in the Yang-Mills-Dirac theory in a
contractible bounded domain is analysed under the bag boundary conditions. The
gauge symmetry group is identified, and it is proved that its action on the phase
space is proper and admits slices. The reduced phase space is shown to be the
union of symplectic manifolds, each of which corresponds to a definite mode of
symmetry breaking.

1. Introduction

In a previous paper we have proved the existence and uniqueness theorems for
minimally interacting Yang-Mills and Dirac fields in a bounded contractible do-
main M C R 3 , [1]. The aim of this paper is to study the structure of the space of
solutions.

Our results were obtained for Cauchy data A e H2(M), EeHι(M), and
Ψ e H2(M), where Hk(M) is the Sobolev space of fields on M which are square
integrable together with their derivatives up to the order k, satisfying the boundary
conditions

τiE = 0, /B = 0, injy

JΨ\δM = Ψ\dM9 (1.1a)

/zA - 0, inrf{yotfdk + im)Ψ}\δM = y\ykdh + im)Ψ\δM . (Lib)

Here we use the notation established in [1]. In particular, nΈ denotes the normal
component of the "electric" part, tB the tangential component of the "magnetic"
part of the field strength on the boundary dM of M. Thus, the extended phase
space of the theory under consideration is

P = {(A,E, Ψ) e H2{M) x H\M) x H2(M)\ satisfying (l.la,b)} . (1.2)
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The variational principle underlying the theory gives rise to a (weak) symplectic
structure on P. Let θ be a 1-form on P such that, for every p = (A,E, Ψ) e P and

a he \-ψ— ) = J(E a + ΨΊφ)d3x, (1.3)

δA δE δΨ I M

The symplectic form ω of P is the exterior differential of θ,

ω = dθ. (1.4)

Let G be the structure group of the theory, presented as a matrix group, and
g be the Lie algebra of G. We assume that G is compact, and that g admits
an ad-invariant metric. The group GS(P) of gauge symmetries consists of maps
φ : M —> G such that their action on the variables (A,E, Ψ), given by

A i—>• φAφ~ + φ grad φ~ , E ι—> φTLφ~ , Ψ = φψ , O 5)

leaves the extended phase space P invariant. The infinitesimal action of an element
ξ of the Lie algebra gs(P) of GS(P) is given by

E-*E-[E,ξ] , Ψ = Ψ + ξΨ, (1.6)

where
(1.7)

is the covariant derivative of ξ with respect to the connection defined by A. It gives
rise to a vector field ξ? on P such that

ξP(A,E, ψ) = " Φ A O ^ - [E, ξ]^ + ξ ^ ^ . (1.8)

The action of GS(P) preserves the 1-form θ. Hence, it is Hamiltonian with the
equivariant momentum map J : P —> gs(T?)* such that

(J(A,E, Ψ)\ξ) = (θ|ξP(A,E, y)> = / { - E DAξ + f ^ n ^ (1.9)

Here gf^(P)* denotes the L2 dual of gs(P), that is the space of square integrable
maps from M to the dual g* of the Lie algebra g of the structure group G. For
each ξ e gs(P), the function Jξ : P —> IR given by

y { (A,E,y) = (y(A,E,y)|ξ) ( u o )

is called the momentum associated to ξ. The vector field ξp is the Hamiltonian
vector field of Jξ, i.e.

ξFJω = dJξ. (1.11)

Integrating by parts on the right-hand side of Eq. (1.9), and taking into account the
boundary condition nΈ — 0, we obtain

(J(A,E, Ψ)\ξ) = /{(divE + [A; Έ])ξ + Ψ^ξψ}d3x. (1.12)
u

For every ξ G gs(P),
ϊ (1.13)
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where j is the source term in the Yang-Mills-Dirac theory. Hence, the constraint
equation of the theory

divE + [ A ; E ] = y , (1.14)

is equivalent to the vanishing of the momentum map J.

The presentation of the constraint set as the zero level J~\θ) of the momentum
map J, enables one to study its structure in terms of the action of the group of
gauge symmetries. It was first done by Arms [2], who discussed the structure of
the constraint set for pure Yang-Mills fields in compact spaces (no boundary) in
general terms, without specifying the topology of the function spaces under consid-
eration. The structure of the zero level of the momentum map, corresponding to a
Hamiltonian action of a Hilbert-Lie group on a Hubert manifold was studied, un-
der additional technical assumptions, by Arms, Marsden and Moncrief, [3]. Special
cases were considered by Mitter and Vialet [4], Atiyah and Bott [5], Kondracki and
Rogulski [6] and Huebschmann [7,8].

Functional analytic assumptions made in this paper are consequences of the
results of [1]. They fail to satisfy two basic assumptions made in [3]: (i) neither
the differential of J nor its adjoint are elliptic, (ii) the extended phase space P is
not invariant under the interchange of A and E. Hence, we cannot use the results of
Arms, Marsden and Moncrief, [3]. Instead, we follow the main idea of their paper,
and prove the necessary intermediate steps. In particular, we prove the properness
of the action of GS(P) and of the existence of slices for this action. From this we
show that the reduced phase space is the union of symplectic manifolds labelled by
the conjugacy classes of compact subgroups of GS(P). Each of these symplectic
manifolds consists of the fields (A, E, Ψ) with a definite mode of symmetry breaking.

In the finite dimensional case the partition of the reduced phase space into
symplectic manifolds can be described algebraically in terms of the Poisson algebra,
cf. [9,10]. Similar results for central Yang-Mills connections on surfaces has been
obtained in [8]. An adaptation of this approach to our phase space will be studied
elsewhere.

The paper is organized as follows. In Sect. 2 we discuss, in a proper functional
analytic framework, the gauge symmetry group and its action. The structure of
the zero level of the momentum map is analysed in Sect. 3. A stratification of
the reduced phase space is studied in Sect. 4. Section 5 contains discussion of
symmetry breaking corresponding to each stratum. The almost complex structure in
the L2 completion of P is discussed in Appendix A. The properness of the action
of GS(P) is proved in Appendix B. The slice theorem is proved in Appendix C.

2. Gauge Symmetries and the Momentum Map

The requirement that (1.6) gives an action of ξ G gs(P) in the space P, defined by
(1.2), implies that grad ξ e H2(M). Since M is bounded, it follows that ξ e H3(M).
Moreover, the action of ξ has to preserve the boundary conditions. The conditions
(1.1a) are the usual bag boundary conditions and are gauge invariant. The conditions
(1.1b) are satisfied if and only if n gradξ = 0. Hence,

gs(P) = {ξ : M -> o\ξ e H3(M) and n grad ξ = 0} . (2.1)
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The L2 dual ^ ( P ) * of gs(P), considered here, is the space of square integrable
maps from M to the dual g* of g, that is

gs(F)* = {v : M -> g*|v G L2{M)} . (2.2)

The evaluation of v G gs(P)* on ξ G gs(P) is given by pointwise evaluation and
integration

(v\ξ) = fvξd3x. (2.3)
M

The momentum map J defined in Eq. (1.9) is a continuous map from P to gs(P)*.
GS(P) has a manifold structure with the tangent bundle space spanned by gs(P).

The presentation of the structure group G as a matrix group, and boundedness of
M, enable us to present GS(P) as a group of maps φ from M to G of Sobolev
class H3(M). Moreover, the boundary conditions (1.1) require that n grad φ = 0.
Hence,

GS(P) = {φ:M -+ G\φ G H\M) and n grad φ = 0} . (2.4)

Since M is contractible and G is connected, GS(P) is connected. However, it need
not be simply connected.

Proposition 2.1. The exponential mapping exp : ^ ( P ) —* GS(P) is a diffeomor-
phism of a neighbourhood of 0 G #s(P) o«to tf neighbourhood of the identity in
GS(P).

Proof Let U be a neighbourhood of 0 G g and F a neighbourhood of the identity
e G G, such that the exponential mapping exp : g —> G is a diffeomorphism of U
onto F, and let In : V —> £/ be the inverse of this diffeomorphism. Since, by the
Sobolev embedding theorem, each φ G G£(P) is a continuous map from M to G,
the sets

V = {φ G GS(P)| range ψ C F }

is open in GS(P). Similarly, the set

U = {{ € ^ ( P ) | range ξ C U}

is open in ^ ( P ) . For every φ G V, In o φ is in ^ ( P ) , and its range is in
U. Hence, In o φ G U. Let exp : gs(P) —> GiS(P) denote the exponential for the
gauge algebra. For every ξ G #s(P), e x P ( O — expoξ. Hence, for every φ G V,
exp(lnoφ) = expolnoφ = φ, which implies that exp(U) = V. •

The main property of the action of GS(P) in P used in this paper is its
properness.

Theorem 1. The action of GS(P) in P is proper. That is, for every sequence pπ

converging to q in P and every sequence φn in GS(P) such that φnpn converges
to p, the sequence φn has a convergent subsequence with limit φ9 and φq — p.

Proof is given in Appendix B.

For each p G P, we denote by Op the orbit of GS(P) through p,

(2.5)
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All orbits Ov of GS(P) are closed since, if φnp is a convergent sequence of points
in <9P with limit q, then the sequence φn has a convergent subsequence with limit
φ and q = </>p, which implies that q G 0 p .

For every subspace V of ΓpP, we denote by Vω the symplectic annihilator of
V, that is

V ω - { w e ΓpP|ω(v,w) = 0 V v e V } . (2.6)

Note that Vω is closed, and if V is closed, then (Vω)ω - V.

Proposition 2.2. For each p G P,

ΓpOp = (ker dJp)
ω . (2.7)

Proof. If ξp is the Hamiltonian vector field of Jξ, cf. Eq. (1.11), then for every
v G Γ P P ,

) = <rfJp(v)|ξ). (2.8)

Since ΓpOp = {ξP(P)|£ G 0s(P)} it follows that v G (Γp<9p)
ω if and only if v G

ker dJv. Hence, ( Γ p 0 p ) ω = ker dJp, and therefore ΓpOp = (ker dJv)
ω, since ker dJv

is closed. •

Proposition 2.3. For euery p G P, range dJp is a closed subspace of gs(P)* with
finite codimension.

Proof For p = (A,E, Ψ) and (a,e,^) G ΓpP, Eq. (1.12) implies that

(dJ^e9ψ)\ξ) = /{-(div(e) + [A,e] -f [E,a])ξ + ^ ^ + Ψ]ξψ}d,x .

Hence, ί/Jp = Γ + *S : ΓpP -^ L2(M, g), where

Γ(a, e, ι/ί) = -div (e) and S(a, e, ι/ί) = -[A,e] - [E, a] + \fi 0 Ψ + Ψ] (8) ιA

The Hodge decomposition, cf. [11], applied to square integrable zero forms on M,
implies that L2(M,g) = ^ Θ f̂, where Jf is the space of constant g-valued func-
tions and ^ = {div(v)|v G Hι(M, g), «v = 0}. Both # and Jf are closed subspaces
of L2(M, g). Since range Γ = #, it follows that the range of T is closed. Moreover,
cokernel T = L2(M, g)/range T ~ #? has finite dimension, since dim J^ = dim g.
Hence, T is semi-Fredholm.

Further, if \n = (aw?eM,^w) is a bounded sequence in ΓpP, then the sequence

{5vΛ} = {-[A,eΛ] - [E,aΛ] + ^ ® y + y t Θ ψny

is bounded in Hι(M, g) C L2(M,g). Since the embedding of Hι(M, g) into L2(M,g)
is compact, it follows that the sequence {S\n} has a convergent subsequence. That
is, the operator S is compact. This implies that dJp = T + 5 is semi-Fredholm, that
is it has closed range and finite codimension, cf. [12]. D

For each p G P we denote by gsv the gauge symmetry (isotropy) algebra of p,
that is

gs,, = {ξe 0s(P)|fr(p) = 0} , (2.9)
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and by GSV gauge symmetry (isotropy) group of p,

p} . (2.10)

By properness of the action of GS(P) in P, each sequence {φn} in GSV has a
convergent subsequence, which implies that GSV is compact. Consequently, the Lie
algebra gsp is finite dimensional. It is isomorphic to a subalgebra of the structure
algebra g; a construction of such an isomorphism is given in Sect. 5.

The annihilator of a subalgebra ί) C gs(P) is the subspace \f C ^ ( P ) * defined
by

ψ = {v e flfί(Pr|<v|ξ> = 0 V ξ e I)} . (2.11)

Proposition 2.4. TTze rαra#e of the map dJ^ : ΓpP —> #s(P)* w g/t ew by the anni-
hilator of the symmetry algebra of p, that is

(gsv)
a. (2.12)

Proof By (1.11), for each ξ e gs(P)9 and p e P,

<rfyp( - )|ξ> = ί P (p) J ω . (2.13)

Since ω is non-degenerate, it follows from (2.9) that

gsp = {ξ€ gs(F)\(dJp(v)\ξ) = 0 V v e ΓPP} = (rangei/ p) β . (2.14)

Since range dJ^ is closed, taking annihilators of both sides we obtain

(gsvγ = (ranged/pΓ - range <£/p ,

provided that (rangedJv)
aa is the closure of rangedJv.

In order to prove the last assertion, denote by Rv the closure of range dJv in the
topological dual gs(P)' of gs(P). The polar of Rp is

and the bi-polar

(Rvr = {v€ gs(P)'\(V\ξ) = 0 V ξ e (#p)0}

is the closure of i?p in gs(P)\ cf. [13]. By definition /?p is closed so that /?p = (i?p)0 0.
Since range dJv is dense in ^ p , it follows that

(Λp)° = (range rf/p)
β.

Hence,
(range J / p Γ = (i?p)0 0 Π ̂ ( P ) * = Λp n ^ ( P ) * ,

which implies that (range dJv)
aa is the closure of range dJv in gs(P)*. D

We conclude from Proposition 2.4 that p is a regular point of the momentum
map J if and only if p has no infinitesimal symmetries, i.e. gs^ = {0}. In this case
J~ι(J(p)) is a manifold in a neighbourhood of p with the tangent space
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Singular points of the momentum map have non-trivial algebras of infinitesimal
symmetries.

The next essential property of the action of GS(P) in P needed here is the
existence of slices. A slice through a point p G P for the action of GS(P) is a
submanifold Sp of P containing p, and such that

(1) S p is transverse and complementary to the orbit Ov at p, that is

ΓpSp Θ Γptfp = ΓpP . (2.15)

(2) S p is transverse to all GS(P) orbits, that is, for each q G Sp,

ΓqSp + TqOq = ΓqP . (2.16)

(3) Sp is invariant under the action of the gauge symmetry group G5P of p.
(4) For q G Sp and φ G GS(P), if φq G Sp then φ G GSP.
The last condition implies that

GSq C GS9 V q G Sp . (2.17)

A slice S p through p gives rise to an open neighbourhood U p of p G P of the form

Up = S p x Vp, (2.18)

where Vp is an open neighbourhood of p in the orbit Ov. It will be referred to as
a slice neighbourhood of p. A slice S p will be called aίfine if it is an open subset
of a closed affine subspace of P.

Theorem 2 (Slice Theorem). For each p G P, there exists an affine slice S p through
p for the action of GS(P), which is I?-orthogonal to ΓpOp.

Proof is given in Appendix C.

Let H be a compact subgroup of H of GS{P). We denote by P#, P[//], and
P(#) the sets of points p in P such that GSV = H, GSV D H, and GSΨ is conjugate
to H, respectively,

=#}, (2.19)

DH}9 (2.20)

P(#) = {p G P| 3 φ G GS(P) such that GSV = φHφ~1} . (2.21)

Note that P(H) is the union of the GS(P) orbits through the points of PH,

P(//) = {ΦV\Φ e GS(P)9 p G PH} . (2.22)

Proposition 2.5.

(1) P[H] is a closed affine subspace of P.
(2) For every p G PH,

P//ΠSp = P C T Π S p , (2.23)

where S p w β̂2 affine slice through p, w /̂2 o/?̂ « subset of a closed affine subspace
of P.
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(3) P// is locally a submanifold ofP, that is connected components ofV^H)
are submanifolds of P.

Proof.
(1) Follows from the fact that the action of GS(P) is continuous and affine.
(2) Clearly, PH Π S p C P[H] Π Sp. Suppose q G P[H] Π Sp. By definition, GSq D

H. However, (2.17) implies that GSq C H. Hence, GSq = H and q G P#. Therefore,
P// Π S p = P[//j Π Sp. Since P[#] is a closed affine subspace and S p is an open subset
of a closed affine subspace, it follows that PH Π S p is an open subset of a closed
affine subspace of P.

(3) Each q G P(H) has a neighbourhood in P(H) of the form Vq x (Sq Π P#),
where H = GSq and Vq is a neighbourhood of GS(P) orbit through q, cf. (2.18).
Since both factors are submanifolds of P, it follows that P(//) is locally a subman-
ifold of P. D

3. Constraints

The constraint set is the zero level of the momentum map J. It follows from Propo-
sition 2.4 that J~ι(0) need not be a manifold in neighbourhoods of points admitting
infinitesimal symmetries. We shall show that it is partitioned by presymplectic sub-
manifolds labelled by conjugacy classes (//) of compact subgroups of GS(P).

For each compact subgroup H of GS(P), we denote by M(#) the intersection

of J~ι(0) with the submanifold P<τ/),

M{H)=J-ι(0)ΠP(H). (3.1)

If (//i)φ(//2), then P(//j) Π P(τ/2) = 0. Hence, the constraint set is the union of
disjoint sets M(#),

1 (3.2)

where the union is taken over the conjugacy classes of compact subgroups o

Theorem 3. For every compact subgroup H of G5(P), M(#) is locally a submani-
fold of (P,ω). The null distribution of ω restricted to M(#) consisting of the
vectors tangent to the GS(P) orbits in M(#).

The proof of this theorem will be given in a series of propositions.
The momentum map J restricted to P// has values in the annihilator \f of the

Lie algebra ϊ) of H because (J(q\ξ) = (θ,ξp(q)), and ξp(q) = 0 for all ξ e ί) and
q G PH The Ad* action of GS(P) in gs(P)* is given by,

;,ξ) = {μ,Adφξ) = {μ,Φ~lξΦ) , (33)

for all φ e GS(P% μ e gs(P)*9 and ξ G ̂ ( P ) . Since J is Ad* equivariant,

Ad j (q) = J{φq) V φ G GS(P), (3.4)

it follows that,

Ad*φJ(q)=J(q)VψeH. (3.5)
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Let \fH denote the subspace of #s (P)* consisting of the μ ei)a satisfying

Aά μ = μ V φβH. (3.6)

It is a closed subspace of gs(P)*, and hence,

=l)a

HΘ(ψH)±, (3.7)

where i))a

H)1~ denotes the L2 orthogonal complement of \fH. We denote by π # : P —>
\fH the projection on the first component, and by KH the composition of J with πH,

KH = πHoJ:P-+lfH. (3.8)

Proposition 3.1.
J-ι(0)ΠPH=K-ι(0)ΠPH. (3.9)

Proof. Clearly, /(p) = 0 implies KH(v) = 0. Hence J~ι(0)ΠPH is contained
in Kΰ\θ)ΠPH. Conversely, let peK^ι(0)ΠPH. Equations (3.5) and (3.6)
imply that J(p) G \fH. Since the projection KH(j>) of J(p) to \fH vanishes, it
follows that /(p) = 0. Hence, J~l(0)nPH DKΰ\θ)nPH, and r 1 ( 0 ) Π P / / =
K~\0)nPH. D

For each p G P//, we denote by Sp an affine slice through p which is L2 ortho-
gonal to the tangent space Γ p 0 p of the GS(P) orbit through p.

Proposition 3.2.

KH1(®) Π P// Π S p is a submanifold of P in a neighbourhood of p .

Proof By Proposition 2.4 range dJv = ψ. Hence, for every μ G \fH, there exists a

unique vector uμ £ TVP, L2 -orthogonal to ker dJv, such that

dJ9(uμ) = μ. (3.10)

By definition of KH, Eq. (3.10) is equivalent to

dKv(uμ) = μ. (3.11)

Since the action of GS(P) in P preserves the Riemannian structure given by the
L2 scalar product, and ker dJp is invariant under the action of H it follows that the
I? orthogonal complement of kerdJp is H invariant. Hence, Eqs. (3.4) and (3.6)
imply that uμ is H invariant. This implies that the action of H fixes every point of
the affine line q(t) = p -4- tuμ in P. Therefore, for every t £ R, GSφ) D H so that
q(0 G P[H] Differentiating with respect to t we get uμ £ TpP[H]-

For every ξ and ζ e gs(V), {dJv{ξj>)\ζ) - (J(p)|[ί,C]>. Hence, J(p) = 0 im-
plies that £p(p) G kerJJp for all ξ G gs(P). Since {£p(p)|£ G ̂ ( P ) } spans ΓpOp,
it follows that

ΓpOp Ckerί/J p . (3.12)

By assumption ΓpSp is the L2 orthogonal complement of ΓpOp and uμ is L2 ortho-
gonal to kerdJp. Hence, it follows that uμ G ΓpSp.

The above results imply that uμ G TV(P[H] Π S P ) . Taking into account (3.11),
we see this means that p is a regular point of the restriction KH\(P[H] ΠS p ) of KH
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to P[H] Π Sp. Hence, Kχl(0) Π Pm n S p = (KH\(P[H] Π Sp))~1(0) is a submanifold

of P[//]ΠSP in a neighbourhood of p. By Proposition 2.5 ^ ! ( ° ) n P / / n S p =
1 a n d it is a submanifold of P in a neighbourhood of p. D

Corollary 3.3. M(H) is locally a submanifold of P.

Proof For each q G M(#) Π Sp, GSq is conjugate to H and contained in H. Hence
GSq = H, and M(//) Π S p C P#. Hence,

MiH) n s p = J ~ ι ( θ ) n P ( / / ) n s p = J~ι(0) n P/, n s p = ^ ( 0 ) n P ^ n S p ,

which is a submanifold of P in a neighbourhood of p by Proposition 3.2.
As a consequence of the Slice Theorem, each point p G M(#) has an open neigh-

bourhood in M(//) obtained by the intersection of M(// ) with slice neighbourhood of
p G P . By (2.18) it is of the form (M(H) Π Sp) x Vp, where Vp is an open neigh-
bourhood of p in the orbit Op. Since (M(#) Π Sp) x Vp is a submanifold of P, it
follows that M(//) is locally a submanifold of P. D

Proposition 3.4.

TΨ(KH1(0) Π P ^ n Sp) - ker JJp Π Γp(P[/7] n S p ) . (3.13)

Proof In the proof of Proposition 3.2 we have shown that p is a regular point of
the restriction KH(P[H] Π Sp) of KH to P[H] Π Sp. By Proposition 2.5, P//ΠS p =
P[#] Π Sp so that

# n Sp) = (ker rf^) n τv(P[H] n s p ) . (3.14)

Since P[/η Π S p is an open subset a closed affine subspace of P, it follows that,
for each u G ΓP(P[#] Π Sp), a neighbourhood of p in the affine line q(t) — p + tu
is contained in P[H] Π Sp. Equation (3.5) implies that Ad^J(q(ί)) = «/(q(0) f° r

all φ e H. Differentiating with respect to /, we obtain AdφdJv(u) = dJv(u) for
all φ in H. Taking into account Proposition 2.4 we obtain dJp(u) G \fH. Hence,
dKH(u) = πHo dJp(u) = dJv(u) for every u G TV(P[H] Π Sp). Hence,

dJ\τp(P[H] n s p) = dκH\τv(?[H] n s p ) . (3.15)

In particular, kerd/ Π Γ P (P O T ΠS p ) = k.QxdKH Π Γ P (P O T Π Sp) which, together
with (3.14), implies (3.13). D

Proposition 3.5. For each p G P//, the restriction of ω to ΓP(M(#) ΠS P ) /.s1

Proof Propositions 3.1 and 3.4 imply that

Γ p (M ( i / ) Π Sp) - (ker dJv) Π TpP[H] Π ΓpSp . (3.16)
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In order to show that it is symplectic we need the almost complex structure β
discussed in Appendix A.

By assumption ΓpSp is L2 orthogonal to ΓpOp. Hence, Eqs. (2.7) and (A.7)
imply, that

/(kerrfjp) = ((kerΛ/P)-L)ω = {{ksxdJ^f)1- = (ΓpOp)-1 C ΓPSP

and

so that
/((kerrf/p) Π ΓpSp) = (ker rfjp) n ΓpSp . (3.17)

Moreover, the action of GS(P) preserves J*, which implies that

TvP[H]. (3.18)

Let v G ΓP(M(#) Π Sp) be such that ω(v, w) = 0 for all w G TV(M(H) Π Sp). Then

ώ(v, w) = 0 for all w in the I2 closure f p (M ( / / ) Π Sp) of Γp(M ( / / ) Π Sp). By (3.17)

and (3.18), / maps f P(M(//) Π Sp) to itself. Hence, taking w = /v, we get

Therefore v — 0, which implies that the restriction of ω to Γp(M(#) ΠS p ) is non-
degenerate. D

Corollary 3.6. M(#) «• locally a submanifold of (P, ω). 77ze null distribution
of ω restricted to M(H) consisting of the vectors tangent to the GS(P) orbits in
MiH).

Proof It follows from Proposition 2.2 and (3.12) that TVOV = (kerdJ p ) ω C (ker dJv).
Hence, ω(v, w) = 0 for every v G TOV and w G ΓpM(//). Since ΓpM(//) = ΓP(M(//) Π
Sp) + ΓpOp, and Γp(M(/f) ΠS p ) symplectic by Proposition 3.5, it follows that TVOV

is the null space of ΓPM(#). D

4. Reduction

The reduced phase space P of the system is defined as the space of GS(P) orbits
in the constraint set J~ι(0),

P = J-l(0)/GS(P). (4.1)

We denote by p: J~ι(0) -^ P the natural projection, assigning to each p G J~ι(0)

the orbit Op G P,

P(P) = ^ P (4-2)

Since the action of GS(P) in P is proper, the quotient topology in P is Hausdorff.
This can be seen as follows. If p,q G J~ι(0) are such that p(p) and p(q) cannot
be separated by open sets, then there exists a sequence pπ in J~ι(0) such that
p(pn) converges both to p(p) and p(q). Let Sp and Sq be slices through p and q,
respectively. For sufficiently large n, there exist φn,φn £ GS(P) such that φn^n G Sp
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and φnpn G Sq. Hence, φnpn -> p and φnpn -» q as n -» oo. Thus, φnΦnl(Ψn9n) -•
p, while φnVn ~^ 9> which implies that φnφn~ι has a convergent subsequence with
limit χ and χq = p. Hence, p G Oq and p(p) = p(q).

For every compact subgroup // of GS(P), we denote by P(#) the projection of

M{H)=J-\0)ΠP{H) toP,

(4.3)

and by p(#): M(H) —• P(H) the restriction of p to M(#), considered as a map to

P ( ί ) ). Thus,

P = U IV) > (4.4)

where the union is taken over the eonjugacy classes of compact subgroups of GS(P).

Theorem 4. For each eonjugacy class (//), P(H) is a quotient manifold ofNl^π)
endowed with a weakly symplectic form

ώ{H) = dθiH) (4.5)

such that

P(HAH) = ι*H)θ and ρ*H)ώiH) = ι*{H)ω , (4.6)

where 1(H)*> M(#) —> P is the inclusion map.

Proof For each p G M(#)5 let Sp be an affine slice through p normal to ΓPOP. By
Proposition 3.1, M(#) Π S p is a submanifold of P in a neighbourhood U of p and
it is contained in P//, where H — GSP. The image of U under p(#) is the space of
the equivalence classes under the equivalence relation ~ in U, given by pj ~ p 2 if
and only if pj = φp2 for some φ G GS(P). The Slice Theorem implies that φ G H.
Since U C P//, it follows that φp2 — p2 Hence, P(#)|U is a bijection of U onto its
image, and it is a local homeomoφhism in the quotient topology of P(#).

Since U is a submanifold of P, the collection of maps {(P(//)|U)~1} induces
an atlas in P. Suppose that p G P(//)(Ui) Π p(//)(U2). Then, there exists an open
neighbourhood V of p in P(τ/)(Ui) Π p(//)(U2). Let V/ = P("̂ /)(V) Π U/, and p? be in
the intersection of Vz with the fibre p^)(p)? *' = 1>2. Then, there exists </> G ^ ( P )
such that p 2 = φpj. Consider the affine slice SP l through pj orthogonal to TVlOPl

such that P(//)(SPl ί l % ) ) = V (such a slice always exists for a sufficiently small
V). Since Vi and SP l Π M(//) are smooth submanifolds of P, projecting onto V
and P! G Vi Π (SP l ί l M ^ ) , it follows that there exists a smooth map Φ\: SP l Π
M(//) -^ GS(P) such that the map

Φι: SP l Π M ( / / ) -> Vi: q ̂  Φi(q)q

is a diffeomoφhism. In a similar way we can construct a diffeomoφhism Φ2

SP2 Π M(//) —> V2, where SP2 = 0S P l is an affine slice through p 2 orthogonal to

ΓP2OP2 and such that p w ( S P 2 n % } ) = V. The map q κ+ Φ2(φΦΓ1(q))ΦΦΓ1(Q)
is a diffeomoφhism of Vi onto V2. This guarantees that the atlas induced by the
maps {(p(H)\U)~1} defines a differentiable structure in P of class C°°.
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For each p G M{H) and ζ G GS(P% (0|ξp(p)) = Jξ(v) = 0. Hence, θv is annihi-

lated by the vectors in TVOV. Moreover, θ is GS(P) invariant. Hence, the pullback
ι(H)θ °^ ^ *° M(H) pushes forward to a 1-form θ on P satisfying (4.6).

By Proposition 3.5, the restriction of ω to Γp(M(//)ΠSp) is non-degenerate.
Since p(#) is a diίfeomorphism of a neighbourhood of p in M(#) Γ) Sp onto its
image, and 7p<9p is the null space of Ϊ*//)&>P, it follows that ι*H^co pushes forward

to a non-degenerate form ώ on P which satisfies (4.6). Equation (4.5) follows from
ι*(H)ω = d(ι*H)θ). Π

5. Symmetry Breaking

Yang-Mills potentials represent connections in a right principal bundle Q over M
with structure group G. Since M is contractible, the bundle Q is trivial,

Q = MxG (5.1)

and the action of G in Q is given by

QxG^Q: ((x, g\h)~ ((x, g) h) = (x, gh). (5.2)

The associated bundle Q[G] of Q with typical fibre G and the adjoint action
of G on itself is called the group bundle of Q. Sections of Q[G] correspond to
automorphisms of Q covering the identity transformation in M. In this context, the
group GS(P) of gauge symmetries of P can be identified with the group of sections
of β[(j], of class H3(M), which satisfy the boundary condition (2.4).

Sections of associated bundles correspond to equivariant maps from the principal
bundle to the typical fibre. Thus, each element φ G GS(P) corresponds to a map
φu\ Q —> G such that, for every (x,#) G β,

φ\x,g)) = g-ιφ(x)g. (5.3)

The adjoint bundle of Q is the associated bundle β[g] with typical fibre g and
the adjoint action of G on g. The space of sections of g[g] is the Lie algebra of
the group of sections of the group bundle β[G]. The Lie algebra gs(P) consists of
sections of the adjoint bundle, which are of Sobolev class H3(M) and satisfy the
boundary condition (2.1). Each ξ : M —> g in gtf(P) corresponds to an equivariant
map ξ# : P —> g such that

ξ#(x,e) = ξ(x). (5.4)

The aim of this section is to describe the symmetry breaking by the fields
(A, E, Ψ) G P//, that is the fields with gauge symmetry group H, where H is a
compact subgroup of G5(P).

Let XQ be a fixed point in M, then

Ho = {<Kxo)\φ e H} (5.5)

is a closed subgroup of G isomorphic to H. We denote by Z[HQ] the centralizer of
Ho, defined by

Z[H0] = {ge G\hg = gh\/ heH0}. (5.6)
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It is a closed subgroup of G with the Lie algebra

3 [Ho] = {ξ G Q\hξh~ι = ζ\/heH0}. (5.7)

The subset QQ of Q, given by

βo = {(χ,g) e P\φ\χ,g) = Φ(χo) V φ G H} , (5.8)

is a right principal bundle over M with structure group Z[HQ\. Since M is con-
tractible, go is trivial, that is it is diffeomorphic to the product of M and Z[/fo]
Actually, we could have chosen the product structure (5.1) in Q in such a way that

Qo=MxZ[Ho]. (5.9)

For the sake of simplicity of presentation, we assume that (5.9) holds. With this
choice of the trivialization elements φ G H are constant maps from M to G with
values in Ho. By assumption (A, E, Ψ) G PH, and (1.5) implies that

φAφ~ι =A\/φeH. (5.10)

Comparing with (5.7) we see that the Yang-Mills potential A takes the values in
3 [//o] This means that the connection in Q described by A reduces to a connection
in go- Similarly, the electric component E of the field strength is a g-valued 1-form
on M. The transformation law (1.5) implies that

φ E φ ~ ι = E V φ e H . (5.11)

Hence, E has values in 3 [Ho].
The matter field Ψ is a section of the associated bundle of Q, with typical fibre

R" (8) (C4, where Rw is the space of the fundamental representation of (the matrix
group) G, and the factor (C4 describes the spin degrees of freedom. It follows from
(1.5) that

ΨVφeH. (5.12)

Hence, Ψ has values in the space

Fo = {zeRn(g)C4 |/*z = z V he Ho}, (5.12)

and it corresponds to a section of the associated bundle βolTo] of βo with typical
fibre Fo Thus, we have proved

Theorem 5. For every (A, E, Ψ) e P//, the Cauchy data (A, E) for the Yang-
Mills theory with the structure {internal symmetry) group G reduce to Cauchy
data for a Yang-Mills theory with the structure {internal symmetry) group

Z[H0] = {ge G\gφ{x0) = φ{xo)g V φ e H} .

The matter field Ψ reduces to a section of an associated bundle with typical fibre
Vo = {z e Rw (8) <C4|/zz - z V h G Ho}.

It should be noted that the change of the point x0 £ X, used in the definition of
Ho, Eq. (5.5), corresponds to passing from Qo to another principal sub-bundle of Q
with conjugate structure group.

Symmetry breaking can now be described in terms of the centre C[Ho] of HQ
given by

C[Ho]=Z[HQ]ΠHo. (5.13)



Yang-Mills and Dirac Fields in a Bag, Constraints and Reduction 109

It is an abelian Lie group with Lie algebra c [Ho]. Elements of the center C[H]
of H, analyzed in terms of the principal bundle βo? correspond to sections y of
the associated bundle QO[C[HQ]]. AS before, we denote by yn the Z[//o]-equivariant
map from QQ to C[HQ] corresponding to a section y of βo[C[//o]] I n analogy to
(5.8) we define

βi = fag) e Qo\y*(χ,g) = y(χo) V y e C[H]}. (5.14)

It is a principal sub-bundle of QQ with structure group C[H$]. The assumption (5.9)
about the product structure of QQ gives the product structure

Q{=MxC[H0], (5.15)

and we shall continue our discussion in terms of this product structure. If c [Ho] Φ 0,
we can decompose %[H0] into c [Ho] and its orthogonal complement bo,

= c [ i / 0 ] θ b 0 . (5.16)

Similarly, we can decompose the Yang-Mills potential

A = AC + A b , (5.17)

where Ac has values in C[HQ], and Ab in bo The component Ac describes a
connection in the C[H0] principal bundle Q\, while Ab gives rise to a tensorial
form on Q\. In terms of the terminology used in the Higgs mechanism for symmetry
breaking, they correspond to the residual Yang-Mills potential and the vector boson
field, respectively, [14].

It should be noted that the symmetry breaking described here is purely intrinsic.
There is no need for the Higgs field. However, the vector boson fields corresponding
to Ab are massless. In the Higgs mechanism the mass of vector bosons is derived
from the kinetic energy term for the Higgs boson, [15], which is absent here. On
the other hand, the mass of the vector bosons might appear in quantization as an
anomaly, [16].

Appendix A. Completion and Almost Complex Structure

One of the technical assumptions in [3] is the existence of an appropriate almost
complex structure, which in Yang-Mills theory acts by interchanging A and E.
However, in our phase space P the variables A and E appear asymmetrically, and
we do not have existence and uniqueness theorems in spaces symmetric under the
interchange of A and E.

Let P denote the completion of P in the L2 norm. The weak symplectic form

ω in P induces a strong symplectic form ώ in P. The L2 scalar product ( | ) L 2

defines a Riemannian metric in P. Let β : TV —> TV be defined by

f(δA, δE,δΨ) = (-(SE, δA, iδΨ) (A.I)

for every (δA,δE,δΨ) e TV. Then, / 2 = - 1 , and

ώ(fu,fv) = ώ(u,v) = (fu\v)L2 = -(u\fv)L2 (A.2)
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for all u, v G J P . Thus, / is an almost complex structure on P. The action of GS(P)
in P extends to an action in P preserving its symplectic form, the Riemannian metric
and the almost complex structure.

Let V be a closed subspace of ΓPP and let V be its closure in ΓPP. The
symplectic annihilator Yω of V is defined by

Vω = {uG ΓpP|ω(u,v) = 0 V v G V} . (A.3)

Similarly, the symplectic annihilator of V in ΓpP is

Vω = {u G ΓpP|ώ(u,v) = 0 V v G V} . (A.4)

Since V is closed, we have
(V ω ) ω = V . (A.5)

We denote by V x the L2 -orthogonal complement of V in ΓPP, and V the I?

orthogonal complement of its closure V in ΓpP. We have

(V-1-)ω - (V"1 f Π ΓPP . (A.6)

Moreover, by Eq. (A.2),

(V"V = {u G 7pP|ώ(u,v) = 0 V v G V"1} = {u G Γ pP|/u G ( V " V } = / V .

Hence,
(V-L)ω = / V n Γ p P . (A.7)

In the following we shall use the notation

Γ P P. (A.8)

Appendix B. Properness of the Action of the Gauge Symmetry Group

The gauge symmetry group GS(P) consists of map φ : M —> G in the Sobolev
class H3(M) such that n gradφ = 0, (2.4). Its action in P is given by (1.5.). In
order to prove that this action is proper, we need to show that, for every sequence
pn = (An, EΛ, Ψn) converging to p ^ = (Aoo, Eoo, ^oo) G P, and every sequence
φn in GS(P) such that φn^n converges to p = (A, E, Ψ), the sequence φn has a
convergent subsequence with limit φ and c/φ^ — p.

The gauge transformations act on A, E, and Ψ independently. Hence, we may
consider first the action of GS(P) on the connections. For a sequence An converging
to Aoo, and a sequence φn in GS(P), let

+Φndφ-X (B.I)

denote An transformed by φn. This implies

dφn = φnAn - Cnφn . (B.2)

By hypothesis, the sequences An and Cn converge in H2(M) to A ^ and A, re-
spectively. In particular, their H2(M) norms HA^H^ and HC^H^ are bounded.
Furthermore, the L2(M) norms ||</>W||L2 of φn are bounded since M and G are
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compact. Equation (B.2) implies that also the L2(M) norms ||<iφw||L2 of dφn are
bounded. Hence, the Hι(M) norms ||0«||#i of φn are bounded. Repeating this ar-
gument twice, we conclude that the H3(M) norms of φn are bounded. By Rellich's
Lemma the sequence φn has a subsequence convergent to φ in H2(M). Without
loss of generality, we can restrict our argument to this subsequence, and assume
that φn converges to φ in H2(M). Hence, the sequence Cn = φnAnφ~ι -f φndφ~ι

converges to φA^φ"1 + φdφ~ι in Hι(M),

WφAooφ'1 + φdφ~ι - Cn\\Hι -^ 0 as w->oo. (B.3)

By hypothesis, Cn converges to A in H2(M). Therefore,

WφAπφ-1 + φdφ~ι - A\\Hl £ WφA^φ-1 + φdφ~ι - QHtfi

-+- | | C n — AH^i —> 0 as n —> oo .

This implies that

A = φAOΰφ~ι +φdφ~ι , (B.4)
and hence,

dφ = φAoo-Aφ. (B.5)

Since the right-hand side of (B.5) belongs to H2(M), it follows that dφ e H2(M\
so that φ e H\M).

Using (B.2) and (B.5), we observe that

\\dφn - dφ\\H2 = \\φnAn - Cnφn - (φA^ - Aφ)\\H2

^ \\φnAn - φAaoW^ 4- \\Cnφn - Aφ)\\H2 .

As n —> oo the right-hand side tends to zero, because φn —• φ, An -+ Aoo, and
Cn —> A in H2(M). Hence, \\dφn — dφ\\H2 —> 0, which implies that φn —> φ in
H3(M). This proves the propemess of the action of GS(P) on the space of H2(M)
connections satisfying the boundary conditions (1.1).

In remains to show that φ takes Eoo to E and ^oo to Ψ. By hypothesis
En —> Eoo and φnΈnφ~ι —» E in Hι(M). Since φn —> φ in // 3(M), and a pointwise
multiplication of functions in Hι(M) by functions in H3(M) is a continuous map
from / ^ ( M ) x //3(M) to / ^ ( M ) , we obtain

E - lim (φnEnφ-1) = f lim ψΛ ( lim E Λ f lim

In a similar manner we obtain

Ψ = lim (φnψn) = lim (0Λ) lim (Ψn)
//2(M) //3(M) //2(M)

This completes the proof of propemess of the action of G£(P) in P.

Appendix C. Proof of the Slice Theorem

We establish here the slice theorem for infinite dimensional groups, cf. [17]. Since
the assumptions made here are more general than in the body of the paper, we use
an independent notation following that of Appendix 2 of [18].
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Let M be a Hubert manifold, and G a Hubert Lie group, with a continuous
proper smooth left action Φ : G x M —> M. In the following we use the notation
Φg(m) — Φ(g, m). Let g be the Lie algebra of G. For each m e M, we denote by
Gm the isotropy group of m, by gm the Lie algebra of Gm, and by Om = G - m the
orbit of G through m. Since the action is proper Gm is compact and the orbit Om

is closed. The tangent space TmOm can be presented as g m = TΦ(q,Q)(e,m), and
9m rn = 0.

Hypotheses

(a) The group G is a Lie group in the sense that the exponential map gives
a diffeomorphism of a neighbourhood of 0 G g onto a neighbourhood of e £ G.

(b) The action Φ is proper.
(c) Bochner Linearization Lemma, [19]. There is a Gm invariant neighbour-

hood U of rn £ M and a diffeomorphism ψ : U —> TmM such that:

\l/(m) = 0 and Tmφ = identity (C.I)

, for every g <Ξ Gm and p G U,

(C.2)

These assumptions are stronger than needed to get slices, but they allow us to
control the topology of the space of orbits of the group action. They are satisfied
by the gauge symmetry group GS(P) considered in this paper. Proposition 2.1
guarantees assumption (a). Properness of the action of GS(P) is proved in Appendix
B. The Bochner Linearization Lemma follows from the fact that the action of GS(P)
is affine.

First we need a lemma.

Lemma C.I. Given m € M, let L be a submanifold of G through e such that

g = g m 0Γ,Z, (C.3)

and let S be a submanifold of M through m such that

TmM = TmOm θ TmS . (C.4)

Then there is an open set U x V C L x S such that Φ\(U x V) is a diffeomor-
phism onto an open neighbourhood W of m GM.

Proof Let DΦ : TG x TM -> TM denote the derivative of Φ, and DtΦ be the re-
striction of DΦ to the zth factor. Since Φ(e,m) = m for all m e M, we have that
L>2^(e,m) — identity, and so DΦ^em) is surjective. Now \QτD\Φ^em) = gm by defini-
tion, and also, by definition image D\Φ^m) = TmOm.

Choosing l e g and S c TmM so that we can make the identifications

TeL = g/gw , (C.5)

ΓmS ^ TmM/TmOm , (C.6)

we have that DΦ\(TeL x TmS) is an isomorphism. Since M is a Hubert manifold
the lemma now follows by the inverse function theorem. D
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Corollary C.2. If ΦgV Π F Φ 0 for some g e U C L C G, and V CS, then g = e.

Proof Let m G V be such that Φ(g,m) — Φ(e,m') with m' G K. Since Φ is a local
diffeomorphism on U x K it follows that (g,m) = (e,mf), so that g — e. D

Lemma C.3. For every neighbourhood U on M containing m, there is a Gm in-
variant open set U containing m with U C U.

Proof Since M is a Hubert manifold, it is first countable. Hence, there exists
a sequence {Un} of neighbourhoods of m in M such that Un C £/w-i,Γ|^i Un ~
{m}. Suppose now that the statement of the lemma is false. Then Gm Un is not
contained in U for all n. Hence, there exist sequences mn G Un and gn G Gm such
that 0Λmw ^ U. Since the action of G is proper, the isotropy group Gm is compact
and the sequence gn has a convergent subsequence. Without loss of generality we
may assume that gn converges to g G Gm. The sequence mn converges to m by
construction. The continuity of the action of G in M implies that gnmn converges
to g m = m, which contradicts the statement that gnmn ^ U for all n. D

Slice Theorem. For each m G M, there exists a smooth submanifold S of M
through m such that

(1) TmM = TmOm Θ TmS . (C.7)

(2) ΓpM = ΓpOp + ΓpS V p G S , (C.8)

(3) Gm S C S , (C.9)

(4) For p G S, and g G G, if Φ^(p) G S ίλew g e Gm . (CIO)

Proof We prove the existence of a slice by constructing a candidate Sε and showing
that properties (1) through (4) hold.

Observe that if k G Gm, kg m — kgk~λ m, or

If g = Qxp(tξ), ξ G g, then the 1-parameter groups 11-> ^[expί^)]^" 1 and ί h-> exp
(ίAd^ξ) have the same tangent vector Ad^ξ at t = 0. Hence, differentiating (C.ll)
with respect to / at t — 0 we get

TmΦkTeΦm(ξ) = TeΦm(Aάkξ) (C.12)

which tells us that TmΦk leaves TmOm invariant.
Since Gm is compact, there is a Gm invariant inner product on TmM. So (Γ m O m ) ±

is a Gm invariant subspace. Using the local linearizing diffeomorphism φ (from the
Bochner Lemma) the submanifold
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where Bε is a ball of radius ε in TmM (with respect to the Gm invariant inner
product) is Gm invariant. So Sε has property (3). Moreover, TmSε — (T^O^)-1,
since Tmφ = identity. Hence, property (1) holds as well.

We argue that Property (2) is an open condition in Sε as follows. Observe that
Φ|(G x Sδ) : G x Sε —> M is a submersion at (e,ra). Hence it is a submersion at
(e, p), for all p in a neighbourhood of m in Sε.

Now it remains to show that we can find ε > 0 so that (4) holds. Suppose that
it does not hold for any ε > 0. This would imply that there is a sequence of points
{mn} with mn G Si/W, and a sequence gn G G, such that gn ^ Gm, and gnmn G Si/π.
Hence, mn—>m and gnmn —> m. Since the action of G in M is proper, it follows
that there exists a convergent subsequence of gn. Without loss of generality, we
may assume that gn —> g. Moreover, gnmn —> gm = m, which implies that g G Gm.
Hence, g~ιgn -> e, g G Gm and gn § Gm.

Gm acts in G be multiplication on the left, and the orbit of this action through the
identity in G coincides with Gm. Applying Lemma C.I to the action of Gm in G, we
conclude that there is a submanifold L of G transverse to Gm at e, and an open set
U x V C Gm x L such that the multiplication (A:, /) ι—> A:/ is a diffeomorphism onto
some open neighbourhood ^F of β in G. Thus, we may assume that g~ιgn = knln,
with &„ G Gw and /„ G L. Since, g and kn are in Gm and gn φ Gm, it follows that
4 = KlQ~lQn $ Gm for all n.

We now apply Lemma C.I to U x V C L x Sε. For sufficiently large π, ^m^ =
gknlnmn is in F C Sε. It follows from Corollary C.2 that #&„/„ = e for « large
enough. Hence, ln = k~ιg~ι G Gm, which contradicts the result above. This contra-
diction establishes (4). D

We should remark that for the case under consideration in this paper, that
is for G = G*S(P), there is a natural GS(P) invariant weak inner product on
the manifold M = P given by the L2 scalar product. In this case, we can take
(TmOm)1- to be the L2 orthogonal complement of TmOm. As long as the ball Bε

is defined with respect to the strong Gm invariant inner product on M, the man-
ifold S ε defined by (C.13) will satisfy properties (1) through (4). Hence, for the
gauge symmetry group GS(P) one can always choose a slice S through m satis-
fying the condition (3.8), requiring that ΓmS is the L2 orthogonal complement of

Acknowledgement. The authors are greatly indebted to Richard Cushman for numerous illuminating
discussions on the topic of singular reduction in a finite dimensional setting.
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