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Abstract: A theory of principal bundles possessing quantum structure groups and
classical base manifolds is presented. Structural analysis of such quantum principal
bundles is performed. A differential calculus is constructed, combining differential
forms on the base manifold with an appropriate differential calculus on the structure
quantum group. Relations between the calculus on the group and the calculus on
the bundle are investigated. A concept of (pseudo)tensoriality is formulated. The for-
malism of connections is developed. In particular, operators of horizontal projection,
covariant derivative and curvature are constructed and analyzed. Generalizations of
the first Structure Equation and of the Bianchi identity are found. Illustrative examples
are presented.
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1. Introduction

In diversity of mathematical concepts and theories a fundamental role is played by
those giving a unified treatment of different and at a first sight mutually independent
circles of problems.

As far as classical differential geometry is concerned, such a fundamental role
is given to the theory of principal bundles [3]. Various basic concepts of theoretical
physics are also naturally expressible in the language of principal bundles. Classical
gauge theory is a paradigmic example.

In this work a quantum generalization of the theory of principal bundles will be
presented. All constructions and considerations will be performed within a conceptual
framework of noncommutative differential geometry [1, 2].

The generalization will be twofold. First of all, quantum groups will play the role
of structure groups. Secondly, appropriate quantum spaces will play the role of base
manifolds.

This paper is devoted to the study of quantum principal bundles over classical
smooth manifolds.

The paper is organized as follows.

Section 2 begins with a definition of quantum principal bundles. For technical
reasons, it will be assumed that a base manifold M is compact. Concerning a structure
quantum group G, it will be a compact matrix quantum group (pseudogroup), in the
sense of [8].

We shall prove that, as a consequence of an inherent geometrical inhomogeneity
of quantum groups, there exists a natural correspondence between quantum principal
bundles, and classical principal bundles over the same manifold M, with the structure
group G, consisting of “classical points” of G. Informally speaking, if we start from
a quantum principal bundle P then the corresponding classical principal bundle P,
consists precisely of “classical points” of P. Conversely, starting from a G_;-bundle
P,, the bundle P can be recovered applying a variant of the classical procedure of
extending structure groups.

Section 3 is devoted to the study of differential calculus on quantum principal
bundles. At first, general properties for differential calculus on P will be formulated,
including relations with differential structures over M and G. The main idea is that
local trivializations of the bundle locally trivialize the calculus, too.

A differential calculus over M will be the standard one, specified by differential
forms. A differential calculus on the structure quantum group G will be based on the
universal envelope of an appropriate first-order differential calculus I". This universal
envelope can be constructed by applying an extended bimodule technique [7, 9]. As we
shall see, the mentioned local triviality property of the calculus on the bundle implies
certain restrictions on the calculus I'. Informally speaking, I" should be compatible
with all possible “transition functions” for P. Motivated by this observation, we shall
introduce a notion of admissibility to distinguish first-order differential structures on
G for which the mentioned compatibility holds.

The next theme of Sect. 3 is a construction of the calculus on P, starting from
differential forms on M and a given admissible first-order calculus I" over G. As a
result we obtain a graded differential algebra (2(P, I"), representing the calculus on
the bundle P. We shall prove the uniqueness of this algebra.

After this, various properties of 2(P, ") will be studied (the existence of -
structures, the right covariance and the existence of the graded-differential extension
of the dualized right action of G on P). These properties are closely related to similar
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properties of I". On the other hand, independently of the choice of I" there exists a
natural left coaction of G on (2(P, I"), becoming trivial in the classical case.

In Sect. 3 the structure of admissible calculi is studied, too. In particular, left-
covariant admissible calculi are characterized in terms of the corresponding right
ideals in the algebra .4 of “polynomial functions” on G. It turns out that there exists
the “simplest” left-covariant admissible calculus (which is automatically bicovariant
and *-covariant).

Finally, at the end of Sect. 3 we introduce and briefly analyze analogs of horizontal
and verticalized differential forms on the bundle.

The study of connections on quantum principal bundles is the main topic of Sects.
4 and 5. Through these sections we shall assume that I is the simplest left-covariant
admissible calculus.

In Sect. 4 we shall first generalize the classical concept of (pseudo) tensoriality.
Together with certain considerations performed in Sect. 3 this will enable us to intro-
duce connection forms, in analogy with classical geometry. We then pass to the study
of local representations of connections, in terms of gauge potentials.

Further, we shall prove that each connection on P admits a decomposition into a
“classical connection,” interpretable as an ordinary connection on F;, and an appro-
priate “purely quantum” tensorial 1-form.

Each connection decomposes the algebra (2(P, I') into a tensor product of spaces
of horizontal forms and left-invariant forms on GG. With the help of this decomposition
we shall introduce the horizontal projection operator. This will enable us to define
the analogs of covariant derivative and curvature operators, which will be studied in
Sect. 5. In particular, we shall analyze local representations of covariant derivative
and curvature, and find counterparts of the first Structure Equation and the Bianchi
identity.

In Sect. 6 some concrete examples are worked out. Considerations are mainly
confined to specific properties of the calculus on structure quantum group G, and to
the presentation of “quantum phenomena” appearing at the level of connections. A
particular care is devoted to the example with the quantum SU(2) group. Finally, we
shall briefly discuss a possible formulation of a “gauge theory” in the framework of
quantum principal bundles.

The paper ends with three technical appendices. In Appendix A relevant properties
of the set G, of classical points of G are collected. Some concrete examples are
computed.

In the second appendix properties of universal envelopes of first-order differential
structures are analyzed in detail. It is important to mention that, in the general case,
the universal envelope of a bicovariant first-order calculus does not coincide with the
exterior algebra constructed in [10], although in the case of ordinary Lie groups (and
ordinary 1-forms on them) two structures coincide. We shall see that, quite generally,
the universal envelope coincides with the graded-differential algebra constructed by
applying the mentioned extended bimodule technique. A reason for our choice of
higher-order calculus on G lies in the conceptual simplicity of the universal calculus,
which is independent of the group structure on G (in contrast to the exterior algebra
construction). Because of this, similar considerations can be applied to more general
fiberings, for example of the type of associated bundles where fibers are diffeomorphic
to an arbitrary quantum space. On the other hand, we are able to consider examples
in which I" is not bicovariant.

We shall also prove that {2(P, ") can be understood as the universal envelope
over its first-order part.



460 Mico Durdevic

In Appendix C some properties of the already mentioned minimal admissible
first-order calculi are collected.

Concerning the notation of quantum group entities, we shall follow [8]. A quantum
group G will be represented as a pair G = (A, u), where A is the C*-algebra of
“continuous functions” on the space G and u € M, (A) is the matrix determining
the group structure. The x-algebra representing “polynomial functions” on G will be
denoted by . 4. This *-algebra is generated by entries of u. The comultiplication, the
counit and the antipode will be denoted by ¢, € and & respectively.

We shall write symbolically

¢(a) = ¥ ® a®

for each a € .. Similarly, the symbol a¥ ® ...a™ denotes the result of a (n — 1)-
fold comultiplication of a € % (due to the coassociativity property of ¢ this is
independent of the way in which comultiplications are performed).

We shall denote by ad: .4 — .4®.-4 the adjoint action of G on itself. Explicitly,
this map is given by

ad(a) = a® ® n(a(l))a(3).

If M is a smooth manifold we shall denote by S(M) the x-algebra of complex
smooth functions on M. Similarly, S,(M) will be the x-algebra consisting of smooth
functions having a compact support.

2. Structure of Quantum Principal Bundles

Let us consider a compact matrix quantum group G. Let M be a compact smooth
manifold.

Definition 2.1. A (quantum) principal G-bundle over M is a triplet of the form
P =(4%,i,F) where .% is a (unital) x-algebra, i : S(M) — %8 is a unital linear
map and F' : 5B — J8 ®./ is a linear map such that for each = € M there exists an
open set U C M containing x and a *-homomorphism 7, : & — S(U) ® .4 such
that the following properties hold:

(grbl) We have

() =(fly) ®1

for each f € S(M).

(gpb2) If q = i()b where ¢ € S,(U) then 7;;(q) = 0 implies g = 0.

(gpb3) We have

(d® pyry = (my @IDF  7,(FB) 2 S(U) ® A,

A motivation for this definition comes from classical differential geometry. The
map i: S(M) — .7 is interpretable as the “dualized projection” of the bundle P on
its base M. The map F plays the role of a dualized right action of G on P. Finally,
maps ; are dualized local trivializations of the bundle.

Let P = (4,1, F) be a principal G-bundle over M.

Definition 2.2. A local trivialization for P is a pair (U, ;) consisting of a non-
empty open set U C M and a *-homomorphism 7, : & — S(U) ® .4 such that
properties listed in the previous definition hold. A trivialization system for P is a
family 7 = (7)< Where 74 is a finite open cover of M and for each U € %
the pair (U, 7;;) is a local trivialization for P.
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Let 7 = (my;)ye 2, be a trivialization system for P.
Lemma 2.1. The family T distinguishes elements of .75.
Proof. Let us consider a partition of unity @ = (¢);c,, for Z4. In other words

oy € S,(U) and
Z oy =1y,

Uec

According to Definition 2.1 if b belongs to the intesection of kernels of maps 7,
then 7, (i(;,)b) = 0, and hence ()b = 0, for each U € 74. Summing over 24 we
conclude that b =0. O

Lemma 2.2. (i) The map i: S(M) — £ is a x-monomorphism.
(ii) The image i(S(M )) is contained in the centre of .75.
Proof. The following equalities hold
oy (i(f9) = i(Nig)) = (fgly) ® 1= (fIy)Ngly) © 1 =0,
7y (i) = 7y ({() = (F 1) @ 1= (f1p)* @ 1=0,
7y (((N)b = bi()) = (f1) © 1)1y (0) — 1B ((fI) @ 1) = 0.

Using Lemma 2.1 we conclude that ¢ is a *-homomorphism and that (if) holds. If
f € ker(i) then f[,, =0 for each U € %4 and hence f =0. a

Lemma 2.3. (i) The map F is a unital *-homomorphism.
(ii) The following identities hold

(F@id)F = (id ® ¢)F, (2.1)
(id ® e)F =id. (2.2)

(iii) An element b € .72 belongs to z'(S(M)) iff
Fb)y=bx 1. (2.3)

In other words F defines a right action of G on P. The corresponding “orbit
space” coincides with the base manifold M.

Proof. According to Definition 2.1,
(1 ®id)FG*) = (d ® )ymy, (b*) = ((d © ¢y ()"
= ((my ®IDF®)" = (1, @ id) (F(b))*
as well as
(my ®@id)F(bg) = (id ® )7, (bg) = (id ® ¢) (7, (B)my;(q))
= ((d ® ¢)m(B) ((id ® P)m(g))
= ((my ®IDF®B)) ((r, ®@ id)F(q))
= (1 ® id)(FO)F(g))

for each U € ?4. Hence, F is a *-homomorphism. Equations (2.1)—(2.2) as well as
the identity
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Fif)=ufH)H®l
can be checked in a similar way.
Let us assume that F'(b) = b ® 1. We have then

(my ® 1) F (i(y)b) = 7y (ip)b) ® 1= (ild ® $)my;(i(py)b),
where (1), is a partition of unity for 4.
Acting by id ® € ® id on the second equality we obtain
Ty (i(p)b) = [(d ® ey (i(py)b) | © 1.
It follows that
i(‘Pu)b =i(Ny)s
where 7, = (id ® ), (i(ch)b). Summing over U’s we obtain

b=i<z nu)-

Ue?

Finally, the unitality of F’ directly follows from (iii) and from the unitality of 7. O

We pass to the study of internal structure of quantum principal bundles, in terms
of the corresponding “G-cocycles.”

For a given open cover 24 of M, we shall denote by N*(24) the set of all
k-tuples (Uy, ..., U,), where U, € ¢ are such that U; N ---NU, #0.
Definition 2.3. Let %4 be a finite open cover of M. A (smooth, quantum) G-cocycle
over (M, 726) is a system & = {1/)UV | (U, V) e NZ(%)} of non-trivial S(U N V)-
linear *-homomorphisms v, : S(UNV)® 4 — S(UNV)® .4 such that

(i) The diagram

SUNV)Q .4 v, SUNV)®. 4
id@o| lide s 2.4)
SUNVQ AR A SUNV)R 4R 4
Yy ®id
is commutative.
(ii) We have
?pUV [Qﬂvw((;o)] = wa(SD)a (2.5)

for each (U,V,W) € N¥(%26) and p € S(UNV NW) ® . 4.
Let us observe that S(U N V')-linearity property of maps 1, implies
Yoy [S.(WV) @ 4] € S(W)® .4

for each (nonempty) open set W C U N V. Furthermore, maps 1), are completely
determined by their restrictions on S,(U N'V).

The following proposition completely describes G-cocycles. Let G, be the classi-
cal part of G (Appendix A). This is a classical group (a “subgroup” of GG) consisting
of points of G (formally *-characters on .%).
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Proposition 2.4. For each G-cocycle & = {'L/)UV | (U,V) e Nz(%)} there exists
the unique collection of smooth maps g.,;: (U N'V) — G, such that

Vv (P @ D), = pgyy (@)(a) ® a?. (2.6)

Maps g, form a classical G,j-cocycle over (M, ?6).
Conversely, if gy, form a classical G,-cocycle then formula (2.6) determines a
quantum G-cocycle over (M, %5).

Proof. Let & = {ww | (U, V) € Nz(%)} be a G-cocycle. For each (U,V) €
N*(2¢) let us define a map piy;;: 4% — S(UNV) by

fyy (@) = (id ® ey, (1 @ a). 2.7)

Acting by id ® € ® id on both wings of diagram (2.4) we obtain

Yy (0 ® a) = (@) @ a®. 2.8)

Maps iy, are unital *-homomorphisms. Equivalently, they can be naturally under-
stood as smooth maps gy, : (UNV) — G, by exchanging the order of arguments:

[ty (@] (@) = [gyy(@)](@).

We see that (2.6) holds. Now acting by id ® € on (2.5), using (2.6) and the definition
of the product in G,; we conclude that

Juv9vw = Juw (2.9)

for each (U, V, W) € N3(%4). In other words, maps gyy form a classical G;-cocycle
over (M, %6). The second part of the proposition easily follows from the coassocia-
tivity of ¢ and the definition of the product in G_,. |

Property (2.6) implies that maps v;;;, are bijective. Indeed, the inverse is explicitly
given by

Vil ® a), = gy (@)(a?) ® a®. (2.10)

In particular, (2.5) implies

YD =F Yoy =Yy

We see that G-cocycles are in a natural correspondence with G_;-cocycles. On
the other hand, G_;-cocycles are in a natural correspondence with classical principal
G,,-bundles over M (endowed with a trivialization system).

A similar correspondence holds between quantum G-cocycles and quantum prin-
cipal G-bundles. Let P = (%, 1, F') be a quantum principal G-bundle over M. For a
given (nonempty) open set V' C M let us denote by I, the lineal in .% consisting
of elements of the form g = i(¢)b, where b € .7 and ¢ € S.(V). Lemma 2.2 (ii)
implies that I}, is a (two-sided) *-ideal in ..

Let (U, m;) be a local trivialization of P. The following lemma is a direct conse-
quence of properties listed in Definition 2.1.
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Lemma 2.5. Let V C U be a nonempty open set. Then
71'U(Iv) - ‘SL(V) QA

and the restriction (t;[1,): I, — S.(V) ® 4% is a *-isomorphism. O
Let ¢, : S.(U) ® .4 — .7 be a *-monomorphism defined by

Yy = (my1,) 7" @.11)
Evidently, the diagram
SU) ® A Y,
do¢| |7 (2.12)
SU)® AR A B& A
Py ®id

is commutative.
Let us consider a trivialization system 7 = (7;;);,¢ 5, for P.

Lemma 2.6. There exists the unique G-cocycle & = {ww | (U, V) € Nz(%)}
satisfying

ww(Q) = 7'(Ul/)v(q) (2.13)
for each (U, V) € NX(26) and g € S(UNV)® A4.

Proof. The above formula defines maps 1);,, on algebras S,(U N V) ® .. These
maps are S(U N V)-linear. Because of this it is possible to extend them uniquely to
*-homomorphisms 9, : S(UNV)®.4% — S(UNV)®.4. Covariance property (2.4)
follows from (2.12). Cocycle condition (2.5) is a direct consequence of the definition
of maps 1, . O

Let us consider an arbitrary G-cocycle & = {1/}UV | (U,V)e N 2(@é)}, and let
us define a *-algebra .7 as a direct sum

7 =Y swe.2

Ue?
Let .2 be a set consisting of elements b € .7 satisfying
(UlUnV ®id)PU(b) = ¢UV(V IUmV ®id)Pv(b) (2.14)

for each (U, V) € N?(%¢), where p,; and ;| are the corresponding coordinate
projections and restriction maps.

All maps figuring in (2.14) are *-homomorphisms. Hence, B is a *-subalgebra
of 7. The formula

(py @1 F 5 = (id ® P)py, (2.15)
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determines a *-homomorphims F - :.7 — .7 ®. 4. Dlagram (2. 4 1mphes that .5

is [ --invariant, in the sense that F'- (ﬁ’) C 52 ®. ¢ Let F: S — T ® . ¢ be
the corresponding restriction map. The formula

P =l @l (2.16)

defines a *-homomorphism 7: S(M) — A. Let Ty B — S(U) ® .4 be the
restrictions of coordinate projection maps.

Proposition 2.7. The triplet P = (737, i, F ) is a principal G-bundle over M. The
Jamily T = (7)) ¢, Is a trivialization system for P. The corresponding G-cocycle
coincides with the initial one. In other words € =€ _. O

The above proposition directly follows from the construction of P.LetP = (2,1, F)
be a principal G-bundle over M, with a trivialization system 7.

Lemma 2.8. The following identities hold
(U!Um/ ®id)m;;(b) = wUV(ViUﬁV ®id)7"v(b)> (2.17)
where 1, are transition functions from ¢_.

Proof It is sufficient to check that above equalities hold on elements of the form
=1i(p)b, where ¢ € S,(U NV). However, this is equivalent to

wU\/ﬂ'v((I) = ﬂ'U(Q)

which is the definition of ¥, . m]

Proposition 2.9. Let P = (.}E‘: L F ) be a principal G-bundle constructed from the
G-cocycle € _. Then the *-homomorphism j_: .72 — .7 defined by

Pyl. =Ty (2.18)

isomorphically maps . /3 onto A Moreover, the following equalities hold
Fj. =(j, ®id)F, (2.19)
ji=1. (2.20)

Proof. According to Lemma 2.8 we have j_(.%) C /37 Further
Pud,up) =(ely) & 1 =pyle),

for each ¢ € S(M) and U € ¢¢. Thus (2.20) holds. Together with (2.18) this implies
by =y, .21)

where LZU are the corresponding right inverses for . 2.

The map j_ is surjective, because spaces zZU [S(U) ®. 6} linearly span .77.

Injectivity of j_ is a consequence of Lemma 2.1. Hence, j_: .2 < 7.
Finally, we have

(Pyi, @IDF = (1; @ F = (1d @ ¢)ry; = (d @ d)py i, = (py @ id)-ﬁ]}a
for each U € 4. Consequently, (2.19) holds. O
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In summary, the following natural correspondences hold:

{quantum principal

classical principal
G-bundles } « {G-cocycles} « {G,-cocycles} < { }

G,,-bundles

In this sense, each quantum G-bundle P determines a classical G,;-bundle F,,
and vice versa.

The correspondence P « F,, has a simple geometrical explanation. Each quan-
tum group G is inherently inhomogeneous, because it always possesses a nontrivial
classical part G,; consisting of points of G' (because of € € G,;) and (as far as .4 is
not commutative) a nontrivial quantum part, imaginable as the “complement” to G, in
G. 1t is clear that “transition functions” being diffeomorphisms at the level of spaces,
preserve this intrinsic decomposition. As a result, because of the right covariance,
transition functions are completely determined by their “restrictions” on G_,.

In fact the correspondence P < F,; can be formulated independently of trivial-
ization systems 7. If P = (%, 1, F) is given then the elements of P, are in a natural
bijection with *-characters of % In other words, P, is consisting of classical points
of P.

Conversely, if P, is given then P can be recovered by applying a variant of the
classical construction of extending structure groups.

Let 7: g — r, be the (left) action of G, on the algebra S(F,), induced by the

right action of G, on P;. Let (*: g+ (7 be the left action of G,; on .. Explicitly,

7,(0)(@) = p(zg), (2.22)

;=g @id)e. (2.23)

Operators r, ® C are automorphisms of a *-algebra S(F,;) ® .4. Let .72 be the
corresponding gxed -point subalgebra. It is easy to see that formulas

F(b) = (id ® ¢)(b), (2.24)

w(p)=omy 1, (2.25)

where 7,,: P, — M is the projection, define *-homomorphisms i: S(M) — .7 and

F: % — % ® .4 such that P = (.#,1, F) is a principal G-bundle over M. The
initial bundle P, is realized as the set of classical points of P.

3. Differential Calculus

Let P = (%8, 1, F') be a quantum principal G-bundle over M. As the starting point for
this section, we shall formulate three basic assumptions about a differential calculus
over P. We shall assume that the calculus on P is based on a graded-differential

algebra
= Z@ 02k,
£>0
possessing the following properties:
(diffl ) The algebra .% is realized as the Oth order summand of {2,. In other
words, 29, =.%5.
(diff2) As a differential algebra, £2,, is generated by .%5.
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The next (and the last) assumption expresses an idea of local triviality of the
calculus. It relates the calculus over the bundle P with differential structures over the
structure quantum group G and the base manifold M. The calculus over M will be the
classical one, based on a graded-differential algebra {2(M) consisting of differential
forms. For each open set U C M we shall denote by {2(U) and {2 (U) algebras of
differential forms on U (having compact supports).

Concerning the calculus over G, it will be based on the universal differential
envelope I' of a given first-order differential calculus I" over G. Properties of such
structures are collected in Appendix B. A symbol & will be used for the graded tensor
product of graded (differential) algebras.

(diff3) Let (U, ;) be a local trivialization for P and v, : S,(U) ® .4 — .7 the
corresponding “right inverse.” Then 7;; and )y, are extendible to homomorphisms
iy 2p — 2U YR and Vi RU)BT" — 02 of (graded-) differential algebras.

Property diff2 as well as the fact that (2,(U) ® I'" is generated, as a differen-
tial algebra, by S,(U) ® .4, imply that homomorphisms 7/, and 1], are uniquely
determined. It is easy to see that

W[/}w(/}(w) =w (3.1)

for each w € QU) ® I'".
For a given open set V' C M let I{} C 2, be the differential subalgebra generated
by I,, C .%.

Lemma 3.1. (i) Algebras I{} are ideals in (2.
(i) If (U, ;) is a local trivialization for P and if V. C U then
Vp V)& I = I,
mHIp) = 2.(V)® I,
Proof. The second statement follows directly from Lemma 2.5 and definition (2.11).
Concerning (i), let us prove it first in a special case described in (if). It is sufficient to
check that by} (f), ¥{}(/)b, dbyp(;(f) and ¢ {;(f)db belong to I} = YH(2.(V)IR ),
for each f € Q(V)® I'" and b € .%. Each f € Q(V) ® I'" can be writ-
ten as a sum of elements of the form fydf, ...df,, where f, € S(V)® 4. We
have by (fodf, ... df,) = biby(f)dpy(fy) ... dy(f,) € I because by (f,) €
Y (S(V) ® 4). Inclusions ¥[5(f)b € I{} follow in a similar manner. Further,
dbiy(f) = dbip(f) — bibpy(df) € Iy, and similarly 7)(f)db € I},
Let V' C M be an arbitrary open set and 7 = (), », an arbitrary trivialization

system for P. It is then easy to see that I{} is linearly spanned by ideals I}, where
U € ?¢. Thus, I{} is an ideal in 2.

Lemma 3.2. Let 7 be a trivialization system for P. Then every map 1, from the cor-
responding G-cocycle €. is uniquely extendible to a graded-differential automorphism
Yy QUAVIS TN = QU NV)S I

Proof. 1t is sufficient to construct ¥7),, as automorphisms of (U N V) ® I'". For
each (U, V) € N*(%¢) let us define ngv to be the composition of the isomorphisms
Py .QC(UOV)@I’A — Iy and (W)~ ISy — 2(UNV)RI. By construction
Y, is a grade-preserving differential automorphism which extends the action of ;.
Uniqueness follows from the fact that S,(UNV)®. 4 generates the differential algebra

QUNV)R I O
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Consequently, not all differential structures over GG are relevant for our consider-
ations. The calculus I" must be compatible with transition functions v;,. This is a
motivation for the following

Definition 3.1. A first-order differential calculus I" over G is called admissible iff
for each G-cocycle & every transition map ¥, : SUNV)®.A4 = SUNV)®.4
is extendible to a homomorphism ¥}, : 2(U NV) QI - QUNV)R I of
differential algebras. Maps ), are grade preserving, bijective, 2(U N V)-linear and
uniquely determined.

As we shall prove, each admissible calculus over G, together with requirements diff/—
3, completely determines the corresponding calculus {2, over P. At first, the notion
of admissibility will be analyzed in more detail.

As explained in Appendix A, the Lie algebra [ie(G,;) can be naturally understood
as the space of (hermitian) functionals X : .4 — C satisfying

X(ab) = e(a) X (b) + e(b) X (a)
for each a,b € .#. Hence, for each X € lie(G,;) the map
ly = —(X ®id)¢ (3.2)

is a derivation on .-4. Further, ¢: lie(G,)) — Der(_#4) is a monomorphism of Lie
algebras. The image of ¢ consists precisely of right-invariant derivations on . 2.

Let & = {wuv | (U, V) € Nz(%)} be a G-cocycle over (M, 24). For each
(U, V) € N*(26) we shall denote by 0V : .4 — 2(U NV) a linear map defined by

0% () = gyy;(@M)d (g, (@®)). (3.3)
It is easy to see that
% (ab) = e(@)8Y (b) + ()3 (a) (3.4)

for each a,b € 4. Hence, YV can be understood in a natural manner as an element
of the space 2(U NV) ® lie(G,)).

Lemma 3.3. A first-order calculus I" over G is admissible iff the following implica-
tions hold

{Z a;db; = 0} = {Z ;@ )d¢; (k) = 0}, (3.5)
{Z a;db, = 0} = {Z a;lyx(b,) = 0} (3.6)

foreach g € G, and X € lie(G,).
Proof. Maps 1{};, have the form
Yoy (@ ® D) = appy (9), (3.7

where ¢fyy,: — 20U NV) ® I'™ are (unique) graded-differential homomorphisms
extending the maps
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v (@) = gy (@) ® a®. (3.8)
If Y " a,db; =0 then

0= () = ovye & o)l 60018

i

=Y 9@ (g 0)) ® aPbP + Y gy (agyy 0) ® aP db?
) 7

=Y 9@V D) ® aPb + Y g1 (aV") @ P db?,
7 7

according to Definition 3.1. Comparing bidegrees we find
5 B0 © 4 0,
> gvp @b @ aPdb? = 0.
i
Because of arbitrariness of the G-cocycle, the above equations imply (3.5)—(3.6).
Conversely, if (3.5)—(3.6) hold then the formula
Hov(adb) = gy (@) @ a@db® + gy (66D (6?) ® @b
consistently defines a linear map ff,,: I' — 2UNYV) ® I'. Tt is easy to check that

ﬁUV (adb) = Puv (a)d@Uv (b)

for each a,b € 4. According to Proposition B.2 there exists the unique homomor-
phism @7y, 1 I'N — QU NV) ® I'" of graded-differential algebras which extends
both ¢, and f;,. Let us define maps v}, by (3.7). These maps are differential
homomorphisms extending the cocycle maps 1, . O

If implication (3.5) holds then the formula
¢, (adb) = ¢ (@)d (b) 3.9

consistently determines a left action of G,; by automorphisms of I".
It is easy to see that if (3.5) holds then

{Z adb, = 0} = {Z Cx(a;)db, +a;dl(b,) = 0} (3.10)

for each X € lie(G,)). In other words, the formula
{x (adb) = £y (a)db + adl x (b) (3.11)

consistently determines a linear map £, : I' — I'. Evidently, the following equalities
hold

£y (ag) = €x(a)§ +alyx(§)

Exld) = dbx@ ) o) 0 (©)a+Ely (@),
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Let us now suppose that (3.6) holds. In this case the formula
tx(adb) = aly(b) (3.12)

consistently determines a bimodule homomorphism ¢y : I" — ..

It is worth noticing that the mentioned left action of G; on I" (and . 4) is, accord-
ing to Proposition B.2, uniquely extendible to the left action of G, by automorphisms
of the graded-differential algebra I'". Moreover, operators ¢, and ¢ are uniquely
extendible to a grade-preserving derivation £, : I'* — I'* commuting with d, and
an antiderivation ¢, : I' — I'" of order —1 respectively. Classical identities

Lyly +lytyxy =0 [fX,Ly]=L[X’Y]
Ly =diy +1xd E[X,Y]=[€X,£Y]
hold.

Lemma 3.4. If G, is connected then the admissibility property is equivalent to impli-
cations (3.6) and (3.10).

Proof. Let us suppose that Z.aidbi =0. It is easy to see that
1

(Y adh,) = 3 Gtapdc) =0 (3.13)

for each t € R and X € lie(G,)), where ¢t — g* is the 1-parameter subgroup of G,
generated by X. Consequently, there exists an open set N 3 € such that

{Z a’idbz‘ = 0} = {Z C;N (az)dC;N (bz) = O} (3.14)

for each ¢V € N.If G,, is connected then each g € G, is a product of some elements
from N. Inductively applying (3.14) we find that (3.5) holds in the full generality. O

On the other hand, implications (3.6) and (3.10) are equivalent to the possibility
of constructing the maps ¢, : I'* — I'.

We pass to the construction of a calculus over P. Let us fix a trivialization system
T = (7y)yeqy for P, and an admissible first-order calculus I" over G.

For each (U, V) € N%(%6) the corresponding cocycle map 1, admits a natural
extension Y7y, : AU NV)® I — QU NV)® I'" characterized as the unique
graded differential homomorphism extending 1),,,,. By definition, the maps v/}, are

£2(U N V)-linear. In particular, subalgebras {2, (W) QI are ¥{y -invariant for each
openset W CUNV.

Lemma 3.5. (i) The maps 1y, are bijective and
W) =90y (3.15)
(ii) We have
DOy Yow (@) = Y () (3.16)

for each (U,V,W) € N} (26) and ¢ € QUNV NW)® I
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Proof. Everything follows from similar properties of transition functions ), and
from the fact that 1{);, are differential homomorphisms. |

Let us consider a graded-differential algebra
& ~
Th=> " eu)er
Ue#

and let 2(P,7,I") C.7 " be a subset consisting of all w € .7 " satisfying
w[l}V(VIUﬂV ®1d)pv(w) = (UlUﬂV ®1d)pU(w) (317)

for each (U, V) € N%(%¢), where py are corresponding coordinate projections.

All maps figuring in (3.17) are graded-differential homomorphisms. This implies
that $2(P, 7, ) is a graded-differential subalgebra of .7 ".

The Oth part of {2(P, 7, ") can be, according to Proposition 2.9, identified with
.73. By the use of the previous analysis, it can be shown easily that 2(P,7,I") C .7
satisfies requirements diff2 and diff3 too.

We shall now prove that {2(P,7,[") is, up to isomorphism, the unique graded-
differential algebra satisfying conditions diff1-3.

Let & be an arbitrary algebra possessing this property.

Lemma 3.6. We have
Vv (v lyay @IDTH (W) = (4] yqy @id)m]) (w) (3.18)
for each (U, V) € NX(%6) and w € &.

Proof. Both sides of (3.18) are differential algebra homomorphisms coinciding on
A = &9, according to Lemma 2.8. Property diff2 implies that they coincide on the
whole &. O

Lemma 3.7. The system of maps 7" = (7(}) ¢ », distinguishes elements of &.

Proof. Let (py;)yc 4, be an arbitrary smooth partition of unity for 7, and let us
assume that w € ker(n(}) for each U € 4. Then i(¢,)w € I} Nker(n})) for each
U € ?4. Hence, we have i(¢;,)w = 0. Summing over 74 we obtain w = 0. O

Proposition 3.8. (i) There exists the uniqgue homomorphism j": & — P,7,I") of
differential algebras, extending the map j_: .78 — 7.
(ii) The map j! is bijective.

Proof. Let us define a graded-differential homomorphism j/: & — .7 " by equalities
Pyir =7y
According to Lemma 3.6 we have
JNE) C AP, T, ).

The map j: & — (2P, 7,I") is injective, according to Lemma 3.7. The above
equality implies

ity =g, (3.19)
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where {/;{} 2.U) ®I' — P, r,T) is the unique graded-differential extension of
Yy S(U)®.4 — . Surjectivity of j now follows from the fact that 2(P, 7, I") is
linearly generated by spaces im(¢);,). Uniqueness of j directly follows from property
diff2. O

We see that §2(P,7,I") is essentially independent of a trivialization system 7.
For this reason we shall simplify the notation and write $2(P,I") = {2(P,r,["). It is
worth noticing that the algebra {2(P, I') can be understood as the universal differential
envelope of its first-order part (understood as a first-order calculus over .%).

In the rest of this section algebraic properties of §2(P, I') will be analyzed in more
detail. It will be assumed that a trivialization system 7 is fixed.

Let us observe that the formula

i) = aly (3.20)

determines (the unique) graded-differential homomorphism : 2(M) — (P, I")
which extends the map 7. The map " is injective and

iNow = (—1)2%wi (@) (3.21)

for each a € 2(M) and w € 2(P, ).

As we shall now see, it is possible to introduce a natural coaction of G on 2(P, I'),
trivialized in classical geometry. Let ¢: I' ® .4 — I' be a natural coaction map,
defined in Appendix B.

Lemma 3.9. The diagram

R A @id R
{Q(UﬂV)@I”\}@L/@ Yoy ®1d, {Q(UﬂV)@FA}ﬁ’z‘g)aé
d® cl lid ®c (3.22)
QUNV)R I —— QUNAVYR I
uv

is commutative, for each (U, V) € N?(%¢6).
Proof. A direct computation gives
Yo id ® )(w @ a) = Yy, (Lyay © k@) w(lyqy ® a®)
= (gw,i(a(z)) ® K(a(l)))d)@v(w) (gVU(ao)) ® a(4))
= (gyy(e(@®)1) ® £ (@™)) Yy )1y ® a®)
= (1yny ® 6(a™) Py )15y ® a®)
= (id ® )WJy ®id)(w ® a).0

Proposition 3.10. (i) There exists the unique A: Q2(P, ") ® 4 — (P, I') such that
the diagram

A

®id ~
PN e s 2! {.Q(U)@F/\}@)J@

A l lid ®c (3.23)
2P, T) N U) I"
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is commutative, for each U € Z4.
(it) The following identities hold

A(w ® ab) = A(Aw ® a) ®b), (3.24)
Alwu ® a) = Aw Q@ aP)Au @ a?), (3.25)
Aw®1)=w, (3.26)

A(N(@w ® a) = (@) Aw ® a). (3.27)

Proof. Uniqueness of A is a direct consequence of the fact that maps 7{) distinguish

elements of 2(P, ). To prove the existence, consider a map AT N@ A TN
defined by B
pyAw ® a) = ({d ® o) (py(w) ® a).

Lemma 3.9 implies that A(X(P,I) ® .4) C §AP,I'). The restriction of A on
(P, I") gives the desired map A: (P, ") ® .4 — §2(P,I). Evidently, diagram
(3.23) is commutative.

A direct computation gives

w(’}(A(wu ®a)) = Z(—l)%laﬂi alﬁj ® c(ﬁinj ® a)
iJ
= Z(——l)‘”laﬁﬂ aiﬁj ®cv, ® a“))c(nj ® a?)
1]
=1 (A(w ® a)A(u @ a?)),

Similarly
0 (Aw ® ab)) = Z a, ® (¥, ® ab) = }: a; ® cle(a; ® a) @ b)

=) (AMA(w ® a) ® b)),
and finally

T A w @ a) = ((aly) ®1) Y o, @ o, ® a) = 7)) (N Aw & a)),

where 77} (w) = Za ®49, and ) (u) = Zj B3; ®1,. Hence (3.24)~(3.27) hold. O
In the case when I" admits the *-structure, or if it is right-covariant [9] the algebra
{2(P, I") possesses a similar property, too. To prove this we need a technical lemma.

Lemma 3.11. (i) If I is a *-calculus then (), preserve the natural *-structure on
UNVY® I
(i) If I is right-covariant then the diagrams

~ id ® p7
QUavyerh 221, {

Q(UnV)@FA} ® A

w@vj lw@v ®id (3.28)

QUAVYS T —— {Q(UﬂV)@FA}@w@
id® pp
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are commutative. Here, p7.: I'" — I' ® .4 is a natural extension of the right action
pp: I = T'®. 4

Proof. Elements of the form w = a ® ayda, ...da,, where a € 2(U NV) and
g, @y, - - ., a, €4, linearly span (U NV)® I'. If I is *-covariant then

Yy w*) = ()M D2Y0 (o* @ d(al) ... d(a})ay)
= (=)0 dlpy (@))] - - dlpgy (@]l (ag)
= ()" V2o dlpyy ()] . . dlegy (a)] oy (ag)*
=Yy (w)*,
according to (3.8) and Proposition B.3. Similarly, if I" is right-covariant then Propo-
sition B.6 (ii) implies
(id ® PPy (w) = (1d @ 1) (apyy (ag)dleyy (@] - . - dlpgy (a,)])
=al(pyy ® id)d(an]l(dpyy, @ id)ga))]. .. [(deyy, @ id)é(a,)]
=¥y @ id)(id ® pP)(w).0

Proposition 3.12. If I' is *-covariant then there exists the unique antilinear map
«: P, Iy — 2P, T extending *: B — B, satisfying (wu)* = (—1)2%y*w*
and commuting with d: $2(P, ") — (2(P, I"). The following identities hold

iNa®) =N, (3.29)
(Ww*)* =w, (3.30)
Alw ® a)* = Aw* ® K(a)*). (3.31)

Proof. If I is a *-calculus then tensoring the natural *-structure on {2(U) with the
corresponding *-structure on I'” and taking the direct sum we obtain a *-structure
on .7 M. It is easy to see that

(wu)* = (=D7u*w*  dw")=dw)*  iNaT) =)

for each u,w € .Z " and a € 2(M). According to Lemma 3.11 (i), the algebra
2P, ') C .7 " is *-invariant. The restriction of the *-operation on (P, I") gives
the desired involution.

Applying the definition of A and elementary properties of ¢ we obtain

HAwea)] =) ol @, ®a) = Z a; @ c(9; ® K(a)*)

=7}y [A@w* ® K(a)*)]
for each U € 4. Uniqueness of * directly follows from property diff2 for $2(P, I').
O
Proposition 3.13. (i) If I is right-covariant then there exists the unique homomor-
phism F": (2P, ") — (AP, ") ® 4 which extends F and such that
FNd = (d®id)F". (3.32)
The following identities hold
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FANiMa) = iMNa) @ 1, (3.33)

(d® e F”" =id, (3.34)

(id @ ¢)F" = (F" @ id)F", (3.35)

F*A(w ®a) = Z Aw,, ® a®) @ k(@) a®, (3.36)
k

where F(w) = kak ® ¢y
(i) If I is also a *-calculus then F" is hermitian, in a natural manner.

Proof. If I is right-covariant then a map F: 7" — .7 @ 4 defined by

vy ®iDFY = (1d ® phpy

is a homomorphism which, according to Proposition B.6 (ii), satisfies the following
equations

Fyd=(d®id)F),
(d® e F) =id,
(d® ¢F7 = (Fz @idF7,
Fi (@) =a®id,

where p;(a) € 2(U) ® 1 for each U € %4. Now Lemma 3.11 (ii) implies that
2P, 1) = 2(P,1,I) is a F_;-invariant subalgebra of .77, in other words we have
the inclusion F%- ((Z(P, F)) C AP, I')®. . The restriction of F> on §2(P, I) gives
the desired map F”.

According to Lemma B.7

() @ id)F Aw @ a) = (id ® o)) {Z o; ®cd, ® a)]
= Z o, ®c(¥,;, ® a?)® H(a(l))cijam
1]

= (1], ®id) [Z A(w, ®a?)® n(a(l))ckaa)}
k

for each U € %¢4. Here, p(0,) = Z ¥;; ® c;;. Uniqueness of F is a direct
7

consequence of property diff2. If I" is in addition *-covariant then 2(P,I) is a *-
subalgebra of .77 and F'}- is hermitian, according to Proposition B.6. O

From this moment we shall assume that " is left-covariant. The space of left-
invariant elements of I" will be denoted by I', . Further, .72 C ker(e) will be the
right #-ideal which canonically [9] determines this calculus.

Proposition 3.14. A left-covariant calculus I' is admissible iff
(X ®@id)ad(22) = {0} (3.37)
Jor each X € lie(G,)).
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Proof. If I' is admissible (and left-covariant) then the following equality holds
opym@) = 0"V (a®) ® k(@P)a® + 1,4, ® m(a). (3.38)
Indeed,

<p{}v7r(a) = go{}v (ﬁ(a(l))da(2))
= gVUn(a(z))dgVU(aG)) ® k(aM)a®
+ gy (k(@®)a?) ® k(@®)da®
= guv(@?)dgyy (@) @ £(aP)a®
+ gyy (e@®)1) ® K(aV)da®
= 0" (a®) ® k(a")a® + 1,4, ® 7(a)

according to (3.3) and (B.29).
If a € .72 then

Y (a?) @ k(aM)a® =0. (3.39)

It is easy to see that, because of arbitrariness of 7, Egs. (3.39) are equivalent to Eqgs.
(3.37).

Conversely, let us assume that (3.37) holds for each X € [e(G,;). To prove
admissibility of I it is sufficient to check implication (3.6), because (3.5) is satisfied
automatically for left-covariant differential structures. As a consequence of (3.37), the
formula

+ (@) = X(@®)r@@?)a® (3.40)

consistently defines a linear map p : I, — ., for each X € lie(G,)).
Now if Ziaidbi =0 then

0= Za 5 oy (m(6)) = > a, bV X 6P )k

= > a XODeb M =~ alyG)

because of (B.31) and the fact that I is free over I,

mu

as a left/right . 4-module. O

There exists Zt\he simplest” left-covariant admissible calculus. It is based on the
right .é-ideal .72 consisting of all elements a € ker(e) annihilated by operators
(X ®id)ad. This calculus is also bicovariant and *-covariant. It is analyzed in more
details in Appendix C.

Now we are going to construct the total “pull back” for the right action of G
on P. We shall assume that I" is bicovariant. AsA shown in Proposition B.11, the
comultiplication map admits a natural extension ¢: I'* — I'* ® I', which is a
graded differential algebra homomorphism.
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Lemma 3.15. The diagram

A
aunver Y%, awavyere

id®$l lid®$ (3.41)

QUAVIRIT RN ————— QUNV)R TN TN
Yiy ®id

is commutative.

Proof. All maps figuring in this diagram are homomorphisms of graded differential
algebras, and 2(U N V)-linear in a natural manner. Hence, it is sufficent to check the
commutativity in the Oth order level. However, this is just the covariance condition
for the cocycle maps. O

Proposition 3.16. (i) There exists the unique homomorphism
F: P, Ty — AP, T)& I

of graded-differential algebras which extends the map F.
(ii) The diagram

orrn L. oapr e
ﬁl Jid ®d (3.42)
QPN QPN e rh

~

F®id

is commutative and the following identities hold

FM = (id @ py)F, (3.43)
(id® eMF =id, (3.44)
Fi"a)=i"@) ® 1. (3.45)

iii) If I is in addition *-covariant then F preserves canonical *-structures.
p

Proof. Let us consider a linear map ﬁ7: TN TN given by
(py ®IDE, = (id ® P)p,,-

This map is a homomorphism of graded-differential algebras and F}(a) =a®1 for
each o € .7}, where

b
Ty = }: 200).
Ue

According to Lemma 3.15 the algebra 2(P,I") = {2(P,7,I") is ﬁy-invariant, in the
sense that - ((P,I)) C 2P, 1) & I'.
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Let F: 2P, ) — AP, T)® I'" be the corresponding restriction. The diagram
(3.42) and Eq. (3.44) directly follow from (B.38) and (B.39).

Let us consider a map (id ® p,)F': $2(P, ") — §2(P,I") ® 4. Evidently, this is a
homomorphism which extends F'. Moreover,

(id ® py) Fd(w) = (1d ® py)(d ® id + (—1)?*id @ d) F(w) = (d © py) F(w)

for each w € £2(P, I'). Proposition 3.13 implies that (id ® po)ﬁ = F”. Uniqueness of
F follows from property diff2.

Finally, if I" is *-covariant then ¢ is hermitian. This implies that F- is hermitian,
too. Hermicity of F' also directly follows from hermicity of F’, and hermicity of all
differentials appearing in the game. a

Let us define the graded *-algebra of horizontal forms to be the tensor product

hot(P) = 2(M) ®,, . 5. (3.46)

This algebra can be understood as a subalgebra of 2(P, I") consisting of all w satis-
fying

mh(w) € U) ® A (3.47)
for each U € %4. By construction, hot(P) is independent of a choice of I'.

Let us now define a graded algebra of “verticalized” differential forms to be, as a
graded vector space

ver(P, )= BRI (3.48)

mu

while the product is specified by

@@mMObR V)= gb & (nocy, (3.49)
k

where Zkbk ®c;, = F(b). Here, o is the left-invariant restriction of the coaction map

¢. Associativity of this product easily follows from the main properties of F' and o.
We see that .% and Fifw are subalgebras of ver(P, I'), in a natural manner. For each
U € %¢ the map

Ty ®id: vee(P, 1) - S @ AT, = SU)@ I

wmnv

becomes a homomorphism of graded algebras. Actually this property characterizes the
product in ver(P, I'), because the maps 7; ® id distinguish elements of this algebra.
The algebra ver(P, I') can be equipped with a natural differential, defined by

d,(b®D) =) b, @7(c,)? + b d. (3.50)
k

We have

(ry @id)d, 0@ 9) = |a, 80’ @ 7@ + o, @0, @ d0], (35D

%
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where 7;;(b) = Ziaz ® a,. We see that locally

d, < ({ded: SO - SU) eI,

Furthermore, right actions of G' on ./ and ")) naturally induce the right action
F, of G on vex(P, ). More precisely,

Fb@v)=Y b, ©9,@cd, (3.52)
kil

where () = Zlﬁl ® d;. This action can be also characterized by relations

(ry @1dHF, = (ild ® o))y, @ id). (3.53)
The differential d,, is F -covariant, in the sense that
F,d,=(d, ®id)F,. (3.54)

Indeed, we have
Fd,0e0) =3 (b rc, o nd)eld, + b, do, @ ¢,

kl
=3 (e, © Pd +b, © 49, @ ,d,) = (d, @ IF, 6@ ).
kl

Graded-differential algebra ver(P, I”) can be also obtained from (2(P, I") by factor-
ing through horizontal forms. More precisely, let H be the ideal in £2(P, I") generated
di (S(M )). Then ver(P, I') is naturally isomorphic to the factor-algebra (P, I")/H.
Moreover, 1 is a right-invariant ideal and, according to (3.51) and (3.53) the fac-
torized F"* and d coincide with F,, and d,, respectively. We shall denote by m, the
factor projection map.

The homomorphism = : §2(P, ") — ver(P, I") possesses the following properties

(r, @iF" =F 7, (3.55)
m,d=d,m,, (3.56)
T, =b® 1. (3.57)

The last two properties uniquely characterize .

Finally if I" is *-covariant then H is *-invariant and there exists the unique *-
structure on ver(P, I') such that 7, is hermitian. Explicitly, this *-structure is given
by

b =Y b®W och). (3.58)
k
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4. Connections and Pseudotensorial Forms

This section is devoted to the study of counterparts of (pseudo)tensorial forms. In
particular, we shall develop the formalism of connections.

At first, the classical concept of pseudotensoriality will be translated into the
noncommutative context. Let us assume for a moment that the bundle is classical. Let
us consider a representation p: G — lin(V') in a vector space V. Then a V-valued
k-form w on P is called pseudotensorial of (p, V)-type [3] iff

g (W) = p(g— "y
for each g € G, where g* is the pull back of the corresponding right action. The form
w is called fensorial, if it vanishes whenever at least one argument is vertical.

The pseudotensoriality property can be equivalently formulated in terms of the
map w: V* — 2(P), where w(¥) = Jw, via the following diagram

v Y, P

o) | o @
V* —— AP)
w

where p is the contragradient representation of p. Moreover, w is tensorial iff w(1%)
is horizontal for each ¥ € V*.

Let us turn back to the noncommutative context. Let P = (%, 1, F) be a quantum
principal G-bundle over M and p: L — L ®./4 a (nonsingular) representation [8] of
G in a complex vector space L. Let I" be an admissible right-covariant calculus over
G. The above diagram naturally suggests to define pseudotensorial forms as linear
maps w: L — (2(P, ') such that the diagram

L Y. P

Pl lFA (4.2)
LR A —— QPR A
w®id
is commutative.

Let us denote by (P, p,I") the space of corresponding pseudotensorial forms.
This space is naturally graded

$(P,p, D)= WP, p, D), 43)

i>0

where the grading is induced from (2(P, I'). Strictly speaking the above decomposition
holds if L is finite-dimensional. The space (P, p, I') is a bimodule over £2(M), in a
natural manner. According to (3.32), the space of pseudotensorial forms is invariant
under compositions with d: 2(P, ") — 2(P, I').

We shall denote by (P, p) the subspace consisting of tensorial forms w, charac-
terized by

w(L) C hor(P). 4.4)
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Actually 7(P,p) is a graded £2(M)-submodule of (P, p,I"). Let us observe that
7(P, p) is independent of a specification of I'.

If L is endowed with an antilinear involution *: L — L such that p is hermitian,
in a natural manner, and if I" is a *-calculus then the formula

w* (V) = (w(¥*)*

defines a *-structure on (P, p, I'). The space 7(P, p) is *-invariant.
Tensorial forms possess a simple local representation.

Proposition 4.1. (i) For each w € 7(P, p) and U € %€ there exists the unique linear
map ;2 L — S2U) such that

THhw = (¢ ® id)p. 4.5)
We have

oy Dlyav) =D (u@luny)guvicr) (4.6)
k

for each ¥ € L and (U, V) € N*(26), where Zkﬁk ® ¢ = p(V).

(ii) Conversely, if maps ; satisfy equalities (4.6) then there exists the unique
w € 7(P, p) such that (4.5) holds.

Proof. We have
myw(L) C 2U)® .4

for each w € 7(P,p) and U € 74. On the other hand (4.2) is equivalent to the
following equations

(id ® ¢) [rpw@)] = (rjw @ id) p(V). 4.7

Acting by id ® € ® id on both sides of this equation we obtain (4.5) with ¢, =
(id ® e)mj,w. Conversely, a direct verification shows that (4.7) follows from (4.5).
Let us now analyze how ¢;; and ¢y, are related on the overlapping of regions U
and V.
For an arbitrary system of linear maps ¢ : L — (2(U), the formula (4.5) de-
termines a linear map w: L — .7 . According to (3.17) a necessary and sufficient
condition for the inclusion w(L) C £2(P, T, I") can be written in the form

(Wluay @Dy @idp@) = Yy (by @) gy () @ ¢, (4.8)
k

which is equivalent to (4.6). 0O

From this moment it will be assumed that I" is the simplest left-covariant ad-
missible calculus. Explicitly, I" is a first-order calculus based on the right ideal .72
consisting of all a € ker(e) such that (X ® id)ad(a) = 0 for each X € [ie(G,). As
explained in Appendix C, this is a bicovariant *-calculus.

Furthermore, we shall restrict the consideration to the case

L=T, p=1w.

mv
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In this case we shall simplify the notation and write (2(P), ver(P), 7(P) and ¢(P)
for the corresponding algebras and modules.
Finally, we shall fix a section n: £* — I, of v: I, — £* (Appendix C)

mv mnv
which intertwines *-structures and adjoint actions of GG.,. Hence we can write
cl

Ly =L" @ ker(v), (4.9)
with 7 playing the role of the projection on the first factor.
If ¢, are local representatives of w € 7(P) then maps
eg = ey =yl =)

satisfy (4.6), too. This, together with Proposition 4.1, enables us to introduce the
“classical” and the “quantum” component of w, by

Wf,wcl = (gof} ® id)w ﬂ(’}wL = (goé R id)w.
By construction,
w=w, +w, .

We shall denote by 7,(P) and 7, (P) corresponding mutually complementary
graded *-{2(M)-submodules of 7(P). Elements of 7,;(P) will be called classical
tensorial forms.

Proposition 4.2. A tensorial form w is classical iff the diagram

r,, o4 Y29 opye. 2
ol l A (4.10)
r,, —— P
w

is commutative.
Proof. Let us suppose that w is classical. In local trivialization terms, this means
oy (@ o a) = e(a)py (D), (4.11)

foreach v € I, , U € %4 and a € 4. On the other hand, according to (3.23) and
(B.20), commutativity of (4.10) is equivalent to equalities

5 [w@ 0 a)] = (¢ ®id)w(P o a) = Z oy (@, 0 a?) ® x(aV)c,a®
k

=Y oy, ® k@), a® =) Alw®) ®a], (4.12)
k

where w(V) = Zkﬁk ® ¢y
If (4.11) holds then, evidently, (4.12) holds. Conversely, if (4.12) holds then acting
by id ® € on both sides of the third equality we obtain (4.11). O

We pass to the study of connection forms.
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Definition 4.1. A connection on P is every pseudotensorial 1-form w satisfying

w(d*) = w()*, (4.13)
Tw@) =189 (4.14)
foreach ? € I,

mu”

Condition (4.14) plays the role of the classical requirement that connections map
fundamental vector fields into their generators. Connections naturally form an infinite-

dimensional affine space (as far as I, is non-trivial).

Lemma 4.3. (i) Each quantum principal bundle P admits a connection.

(ii) For an arbitrary connection w on P, and a linear map o: I, — (2(P), the

map o+ w is a connection iff o is a hermitian 1-order tensorial form.

Proof. Let us consider an arbitrary smooth partition of unity (p;) ., for 24, and
define a map w: I, — 2(P) by
w®) =Y oy ). (4.15)

Ue?

This map is a connection on P. The second statement easily follows from Defini-
tion 4.1. O

Let con(P) be the affine space of all connections on P. The following proposition
describes connections in terms of gauge potentials.

Proposition 4.4. (i) For each w € con(P) there exist the unique system of linear maps
Ay I, — 2U) such that

wmnv

Thw®) =Y Ay) ®c, + 1, @9 (4.16)
k

for each U € 76, where Zkﬁk ® ¢, = w(¥). These maps are hermitian and
(AyDlurv) = 3_(Au@lunv) 9o (e + Iy (9) @17
k

for each (U, V) € N*(%6), where Opym = oYV,

(ii) Conversely, if hermitian maps Ay : I, — (XU) are given such that (4.17)

holds, then the formula (4.16) determines a connection on P.
Proof. The proof is essentially the same as for Proposition 4.1. g

Definition 4.2. A connection w is called classical iff the diagram

F®ﬂ———?———->]7

w® idl lw (4.18)
AP)® A — 2(P)

is commutative.
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Proposition 4.5. A connection w is classical iff
Aynv = A, = Ay(¥oa)=ela)Ay (),
for each U € 2¢.
Proof. A similar reasoning as in the proof of Proposition 4.2. a

Every connection can be written as a sum of a classical connection, and a “purely
quantum” part.

Proposition 4.6. For each w € con(P) there exist the unique classical connection w,,
and hermitian tensorial I-form w | € 7, (P) such that

W=w,tw, . ' 4.19)
Proof. Let us start from the corresponding gauge potentials A;; and define
A = Aymy A = Ay — AL

From (4.17) it follows that

(AF D yry) = D (AFO D yay) duy () + Oy (D),
k

(AF Dl yav) = Y (AF@ D v doy (©0)-
k

It is easy to see that A¢ and Af; are hermitian. Hence, there exist a classical connec-
tion w,; and a hermitian element w, € 'ri(P) such that

mhw,(9) = (AY @ idyw(¥) + 1, ® 9,

Thw | (9) = (Af @ id)yw(9)
for each ¥ € I, . Evidently, (4.19) holds. This decomposition is unique, because of
mutual complementarity between 7,,(P) and 7 (P). O

From this moment it will be assumed that the subalgebra I} of left-invariant

mv
elements is realized as a complement to the space S}, C I'> | with the help of a

linear section ¢: I\, — I' of the factorization map, which intertwines *-structures
and adjoint actions of G. Here S is the left-invariant part of the ideal S* C I'®
and I'$ is the tensor algebra over I, (Appendix B).

It is easy to see (for example, applying a quantum analog of the method of group
projectors) that ¢ always exists. If I'; s finite-dimensional then « can be constructed
by identifying I")» with the orthocomplement of S , with respect to an appropriate
scalar product.

However, it is important to mention that in various interesting situations (for
example, if G = S, U(2) and p € (=1,1) \ {0}) the space I, will be infinite-
dimensional.

For each connection w, let us denote by w®: 5, — 2(P) the corresponding
unital multiplicative extension. Let w”: I'/: — 2(P) be the composition of maps ¢

and w®.
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Proposition 4.7. (i) The diagram

N
I3 Y . P

wmu

wh l lFA (4.20)
Iy, ® & —— QAP)® . 4
wh @id
is commutative.
(ii) We have
T, (@ =19 4.21)

for each 9 € I’ .
(iii) The map w" is *-preserving.

(iv) If w is classical then w" is multiplicative and the diagram

.
m oot %Y opye. e
ol lA (4.22)
rh, o P

is commutative.

Proof. Property (i) is a simple consequence of the pseudotensoriality of w and of the
w®-invariance of (I}, ). Property (ii) follows from (4.14), and the multiplicativity
of m,.

To prove (iii), it is sufficient to observe that w® intertwines *-structures on IS,
and 2(P).

Let us assume that w is classical. We shall prove that w® vanishes on the ideal
S C I'® . In accordance with considerations performed in Appendix B, it is suffi-

my — mv”*

cient to check that
w?® [1(a) ® m(a®)] =0 (4.23)

for each a € %2. In the local trivialization system, this is equivalent to the following
equalities

[(AU ® id)ww(a(l))] 7(a?®) + (@) [(AU ® id)ww(a(z))]
+ [(Ay ® idwr(@)] [(4y ® idwr(@®)] =0.
A direct calculation shows that the last term, as well as the sum of the first two,
vanishes. Consequently w” is multiplicative.

Commutativity of (4.22) is a direct consequence of (3.25), (B.27) and (4.10), and
the multiplicativity of w”. O
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With the help of w” the space (2(P) can be naturally decomposed into a tensor
product of hor(P) and I'" .

Let us suppose that vh(P) = hor(P) ® I, is endowed with a graded *-algebra
structure, via the natural identification

hot(P) @ I}« 2(M) ®,, ver(P). (4.24)

The algebra vh(P) represents “vertically-horizontally” decomposed forms on the bun-
dle. We shall denote by F,, the natural right action of G' on vh(P).
For each w € con(P) the formula

m,, (e ® 9) = pw () (4.25)
defines a linear grade-preserving map m,,: bh(P) — 2(P).
Proposition 4.8. (i) The map m , is bijective.
(ii) The diagram
oh(P) s QP)

le lF’\ (4.26)
oh(P) ® 4 AP ® A

m, ®id

is commutative.

(iii) If w is classical then m , is an isomorphism of graded *-algebras.

Proof. At first we prove that m, is injective. Each a € vh(P)\ {0} can be written in
the form « = Z w,; ®Y, +, where ¥, € Fzﬁfj are homogeneous linearly independent
elements and w, # 0, while 4 is the element having the second degrees less than k.

If m_(a) =0 then
> myw)d, =0

for each U € %4. This implies sz ® ¥, =0, which is a contradiction.
1
In order to prove that m, is surjective, it is sufficient to check that

¥ (R2U) © I'™) € my, (oh(P)

for each U € %4 and k > 0.

For k = 0 the statement is obvious. Let us suppose that the above inclusion holds
for degrees up to some fixed k. Equation (4.16) together with the definition of w”
gives

mym,w@9)] =Y o, +p, (4.27)
where 9 € (I3,)*"! and w = ) (3 o, ®a,), while § € L)@ I", with the

second degrees less than k + 1.
Acting by 9{; on both sides of (4.27) we get
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56 (Y e, @ a,9) =m o 9) - v)H).
i

By the inductive assumption, the right-hand side of the above equality belongs to
im(m_,). Hence m,, is bijective.

The commutativity of (4.26) is a direct consequence of (4.25), and Proposition 4.7
@).

Finally, let us suppose that w is classical. According to Proposition 4.7 (iv) and
definition (3.49) of the product in ver(P), we have

@@ Nw @) = (=17 " uw, @ (9o c)n, (4.28)
k

and hence

m,,[(u® Nw @] = (- 1)9wo9 Z uww" (¥ o ¢ )w ()
k

= (—1)0wo? Z uw, A(w” () ® ¢ Jw"(n)
%
= uww" (Pww" () = m(u @ Hm_(w ).

Here F"(w) = kak ® ¢, and we have used the identity

> w A ®cy) = (=) aw, (4.29)
k

where « is arbitrary (and w is horizontal). Similarly, the *-structure on vh(P) is given
by

WD) = w0 oc), (4.30)
k

and hence
o (W ®9)*] Zw whW*ocy) = Zw};A(wA(ﬁ)* ®c)
= ( D Wy w* = [m,(we9)] .0

It is of some interest to analyze in more detail the question of the multiplicativity
of wh.

Definition 4.3. A connection w is called multiplicative iff

w®(Sy,) = {0}.

Equivalently, w is multiplicative iff w” is a multiplicative map. In this case w” is
independent of the embeddmg ¢, and coincides with w® /57 i As already mentioned,
the multiplicativity of w” is equivalent to (4.23). This gives a quadratic constraint
in con(P). In the general case the left-hand side of (4.23) determines a linear map

r,: %2 — §2(P). This map “measures” a lack of multiplicativity of w.
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Proposition 4.9. We have
r,=mgw, TR w, TP, 4.31)

where m, is the product map in §2(P). In local terms
whr, = U ®@id)(ad[.22), (4.32)
where r¥(a) = Am(aM)Afn(a@). In particular T, is a horizontally-valued map.

Proof. Using local expressions for w,, and w, , Egs. (4.23) and (B.30), and Proposi-
tion 4.5 we obtain

Wl/}rw(a) — W(/}mﬂ(wlﬂ' ®w, mPa) = w@mg(wlw ® w,;m)P(a)

+ ngg(wclﬂ' ® W_L7T)¢(a)

= ACL,'/r(a(z))Afjlw(aG)) ® k(aP)a®
+ Agm@®)Agn(@?) ® ra®)a?
+ Ajm(@®) ® k(@)a®n(@®)
_ Aéﬂ-(aﬁ)) ® 7.(.(a’(l))l.g(a(l))a@)

= Aéw(ae))AE}ﬂ(f-ﬁ(a(z))a“)) ® k(a@)a®
+ Aéw(am) ® m(a(z))a(4)7r(ﬁ(a(l))a(s)),

for each a € .22. Remembering that Z is ad-invariant we conclude that the above
terms vanish. Hence (4.31) holds. Property (4.32) simply follows from (4.31). O

5. Horizontal Projection, Covariant Derivative and Curvature
For each w € con(P) let h,: 2(P) — {2(P) be a linear map given by
h, =m,(d ® p), ) m;". (5.1)
Let D ,: 2(P) — §2(P) be a linear map defined as a composition
D, =h,d. (5.2)
Evidently, both maps are hot(P)-valued.

Definition 5.1. Operators h,, and D, are called the horizontal projection and the
covariant derivative associated to w.

The following statement easily follows from the analysis of the previous section.
Proposition 5.1. (i) The map h , is £2(M)-linear and projects (2(P) onto hor(P).
(ii) We have
(D, = d(20MD) ={0} D, we) = ([@dw)h (@) +(~1)’"wD () (5.3)

for each w € 2(M) and ¢ € f2(P).

(iii) Maps h, and D, are invariant under the action of G. In other words, the
diagrams
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F» F"

op L apye. ¢ opy L apye. s
h| |hoeid D, |pooid 54
QP) ——— AUPY®. 4 AP) —— APy ®. ¢

I P

are commutative.

(iv) If w is classical then h, is a *-homomorphism. Furthermore

D_ () = D_(@)h_(p) + (= 1)7Yh_()D_ () (5.5)
for each i, p € 2(P). ]

By construction, the space hov(P) is D_-invariant. The corresponding restriction
is described by the following

Proposition 5.2. If v € hot(P) then
D, () = d(p) = (=1)"m,(id @ wm) F" (). (5.6)

In local terms,

D) =Y {da) @ a, — (-1, Ay @0, (5.7)

where Z o, Qa, = ﬂf](ap).
Proof. We have

mhdip) =Y di) @ a,+ ()"0, © (),

and hence

D (p) = Z (o) ® a; — (- DR Z ozZAUW(a(f)) ® a;l)&(agz))a?)
- Z{d(az) 2 a;, — (—1)?a, A, (@) @ a‘;’-)}

according to Definition 5.1. This proves (5.7). Let us compute the right-hand side of
(5.6). We have

7 [dp) = (=1 m g (id 2 wm )] = 3 dley) @,
+ED™ ) @al @) |
— (—1)% i: aZAUW(aED) ® a(iz)
— (—1)% ‘: o, ® ail)ﬂ(aiz))

= Z{d(ai) ®a, - (-, Ay @ af)} =7)D_().0
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For given linear maps o, 3: I

o — §2(P) we shall denote by [, 3] and («, ) linear
maps defined by

[, Bl =mya® B, (5.8)
<O{, 18> = m[)(a ® /6)67 (59)

where ¢": I, — I}, ® I, is the “transposed commutator” map [9] explicitly

givenby (C.1) and 6: I, — I, ® I  is the “embedded differential” defined by

6(9) = 1d(¥). (5.10)

If a,8 € ¥(P) then (o, 3),[a, 8] € Y(P), according to Lemma C.4. In particular
these brackets map 7(P) x 7(P) into 7(P). Similar brackets can be introduced for
maps valued in an arbitrary algebra.

According to Proposition 5.1 the space ¥ (P) is mapped, via compositions with
h, and D, into 7(P). In particular 7(P) is D _-invariant.

Proposition 5.3. (i) We have

() D2 = {dpy, — (=1L, Ay} @ id)@(®), (5.11)

where @, are local representatives of ¢ € T(P).
(if) The following identity describes the action of D , on tensorial forms

D, = dp — (~1)*[p,w]. (5.12)
Proof. We have

mpde(d) = Z dipy(9)) ® ¢ + (=D, B) ® (),
k
where Zkﬂk ® ¢, = w(). Taking the horizontal projection we obtain
D00 = 3 {dioy () ® ¢, — (~ 17?0 @) A ey & P r(c)eld }
k
=Y " doy(9,) ® ¢, — ()0, (9 Am(E)) @
k

= (dpy — (~1)lpy, Ay1)(¥,) ® ¢,
k

A computation of the right-hand side of (5.12) gives
{dp = (~1P%lp,wl} = Y dpy(B) @ ¢ — (D (D) Ay @ o
k
= (n(; D, p)(¥).0
Let g, : 9(P) — (P) be a linear map defined by

4,0 = (W, 0) = (= D%(p,w) = (~1)*lp,w]. (5.13)
By definition, this map is 2(M)-linear from the right.



Quantum Principal Bundles 491

Propesition 5.4. The space T(P) is q,,-invariant.

Proof. For a given ¥ € I, let us choose a € ker(e) satisfying conditions listed in
Lemma C.5 (i). We have then

~=1% (150, @) @) = > { u@ AT @ & + oy 8,) @ P}
k
- <pU7r(a(2))AU7r(a(3)) ® k(@M)a®
_ @Uﬂ-(a(Z)) ® m(am)a(3)7r(a(4))
+ (—1)8‘pAU7r(a(2))ch7r(a(3)) ® k(aya®
+ oy m(a®) © m(@)r(@®)a®,

for each ¢ € T7(P).
On the other hand, applying (B.30) and (B.25) we find

oym(a®) @ k(a)a®(@?) - ;10 @ T(aP)k(a?)a®
= Z Py (9,) ® (D).
k

Combining the above equalities we obtain finally

(754,@) @) = (¢ () ® id) w(®), (5.14)

where
() = (A, op) — (=D%(py, Ay) — (=D%loy, Ayl (5.15)
We see that g () is tensorial. 0

If w is classical then the operator g, vanishes on tensorial forms. Indeed, in this
case
Aym(ab) = e(a)Aym(b) + e(b)Aym(a)

which, together with (5.8)—(5.9), implies
[0, Ay )0) = oy m(@®) Ay (s(aV)a®)
= pym(@)Aym(@®) — (=1 Ay (@), (a®)
= ({0 Ay) — D7 (Ay, 0)) (9).
Consequently, in the general case the operator g, [7(P) depends only on the quantum
part w, of w, and can be written in an explicitly tensorial form
0.(0) = (W, 0) = (D% (p,w,) = (~DP[p,w,],
25 @) = (A, oy) = Doy, Af) — (D% ley, Ap).

The rest of the section is devoted to the introduction and the analysis of the
curvature form.

(5.16)

Definition 5.2. A tensorial 2-form
R =D w 5.17)

is called the curvature of w.
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This definition directly follows classical differential geometry. However, in con-
trast to the classical case, the curvature is generally §-dependent.

Proposition 5.5. We have
THR, () = (Fy ® id)w(¥), (5.18)
where
F,=dA, — (Ay, Ay). (5.19)
Proof. A direct calculation gives
—(rHw™ )@Y = 1; @ m(@P)m(a®) + Aym(a®) @ k(a)aPr(a®)

— AU7r(a(3)) Q m(aMk(@®)a®
+ AUﬂ(a(z))AUﬁ(aG)) ® k(@M)a®

=1y @ m@m@®) + Y {4, 0 © P72 ~ (A, A} 0 © 0 |-
k

On the other hand

() dw)@) = =1y @ 7@ )r@®) + 3 {4, 0 © o — 4,0 @ V() ).
k

Here w(¥) = Zkﬁk ® ¢, and a € ker(e) is chosen as explained in Lemma C.5.
Combining the above expressions we find

my (do(®) = @) = 3 {dAy B ® ¢, ~ (Ay, A)O) @ e} (520)
k

To complete the proof it is sufficient to observe that two summands in the right-
hand side of the above equation are horizontal while the left second summand is
completely “vertical.” O

Now, the analogs of classical Structure Equation and Bianchi identity will be
derived.

Proposition 5.6. The following identities hold

R, =dw— (w,w), (5.21)
D,R,—q,(R)=(w ,(w,,w ))—({w,w,)w,). (5.22)

Proof. The previous proposition and Egs. (5.20) imply
(rhdw)(@) = (rpw ) (d9) + (T R)(0) = {n (R, + (w,w) }D),

foreach 9 € I, and U € Z4. Hence (5.21) holds.

mnu

Equation (5.15) and Proposition 5.3 imply
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(7 (DR, — a,(R))] @) = Z ddAy,(®,) ® ¢, — Z(dAU, A0, ® ¢,
k

+Z Ay, dAy )(ﬁk)®ck+2{ Fy, Ay)(W0y) @ ¢ — <AU’FU>(19k)®Ck}

—Z v (A, Ag)) — (Ay, Ay), Ap)) B)) @ ¢

On the other hand, using Lemma C.6 we conclude that
<AU7 <AU’ AU>> - <<AU3 AU>> AU> = <A$7 <Aé’ Aﬁ)) - <<A$7 ALJ}>7 Aé)
This is the local expression for the right-hand side of (5.22). O

If w is classical then (5.21)—(5.22) are equivalent to the classical Structure Equation
and Bianchi identity for w, if w is understood as a (standard) connection on P,.

More generally, if w is multiplicative then the right-hand side of (5.22) vanishes.
Indeed in this case we have

(w,,w,)m(a)= —wlw(a“))wlﬂ(aa))

for each a € 4.

It is important to mention that the proofs of identities contained in Proposi-
tions 5.4-5.6, the choice of an embedding ¢ figures only via its restriction on d([7,, ),
which determines the embedded differential map 6.

Generally, a map 6 can be constructed by fixing a *k-invariant ad-invariant com-

plement % C ker(¢) of .72, and defining
— 6= @mp(r] L)L (5.23)
If, in addition, }(L) C1® L + 5 ® 1+ %5 @ % then the above § satisfies
(6 ®id)6 = (id ® 6)6

and right-hand side of (5.22) vanishes identically.

Our restriction to the minimal admissible left-covariant calculus I” is not essen-
tial. All considerations can be performed using an arbitrary admissible bicovariant
*-calculus. Moreover, if the bundle is trivial we can abandon the assumption of ad-
missibility, and work in a fixed global trivialization.

For example if we take .72 = {0} then I" becomes the “maximal” calculus. In this
case I, =ker(e) and I A = I'® is the universal differential envelope of .4 (modulo
the relation d1 = 0). Because of S = {0}, every connection is multiplicative and §
is uniquely determined.

6. Examples

In this section we consider some illustrative examples related to the presented theory.
We shall discuss “nonclassical” phenomena appearing in the formalism of connections,
as well as interesting properties of appropriate differential caluli over the structure
group G.

Two types of G will be considered. The case of a classical Lie group G, and the
quantum case G = SMU 2).

As a possible application in theoretical physics, we shall briefly describe a “gauge
theory” based on quantum principal bundles.
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Classical Structure Groups

Let us assume that G is a classical compact Lie group (.4 is commutative and
G, = G). The corresponding principal bundles are objects of classical differential
geometry.

The minimal admissible calculus over G coincides with the classical one, based on
standard 1-forms. The corresponding universal differential envelope gives the classical
higher-order calculus on G, based on standard differential forms.

The classical calculus on G, together with the classical calculus on the base
manifold M, induces the classical differential calculus on corresponding principal
bundles. The whole theory presented in this paper is equivalent to the classical theory.

However, if we start from a nonstandard differential calculus on G then, generally,
“quantum phenomena” will enter the game.

Let I" be an arbitrary admissible bicovariant *-calculus over G, and let 92 C ker(e)
be the corresponding . 4-ideal. We have

2 C ker(e)?

because of the admissibility of I'.

For example, if .72 = ker(e)’c with k > 2, then I, is naturally isomorphic to the
space of (k — 1)-jets in the neutral element € € G.

Let P be a principal G-bundle over M and w € con(P). After choosing a splitting
(4.9) the “classical-quantum” decomposition of w can be performed. Components of
the field w, are “labeled” by elements of the space ker(v). The field w, figures in
“quantum terms” introduced in the previous two sections. Generally these terms do
not vanish. Moreover they already figure in the case of a finite group G.

The Minimal Admissible Calculus For Quantum SU(2)

This subsection is devoted to the analysis of the minimal admissible left-covariant
calculus I" over the group G = .5, U(2). We shall also briefly discuss certain features
of corresponding principal bundles.

As first, let us assume that u € (—1,1) \ {0}. As explained in Appendix A,
G, = U(1) in a natural manner. The (complex) Lie algebra of G, is spanned by a
single element X : .4 — C determined by

1
X(@)=-X(") =7 X(m=X("=0. 6.1)

The correspondence X <« 1 enables us to identify lie(G,;) = C. In particular, the

space I, can be viewed (via the map p) as a certain subspace of . 4.

Proposition 6.1. The map p: I, — 4% is a bijection onto the subalgebra (7 C 4

mnu
consisting of left U(1)-invariant elements. A natural basis in (7 is given by elements

&, 1y wheren € Z and k € NU {0} and

ok = (6.2)

’

(" (Y e ifn >0
()™)Y kE ifn<o.
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Proof. According to [7] the elements a™y*y*" form a basis in ..% (by definition
a”™ =a*"). It is easy to see that g € U(1) acts on the left by multiplying these ele-
ments by 2" **", where z = g(). Hence, (7 is spanned by basis elements satisfying
n — k +r = 0. Equivalently, elements (6.2) form a basis in .

We have to verify that & = p(I’,, ). According to Lemma C.7 (i) the image of
p is contained in . It is easy to see that

pr(a) = % - o (y*) = &y

oo 2w 1 pr(y) = —ay. 63)

pre’) = pyy" = 5

Furthermore, a straightforward calculation gives

Eopoa =p 2K IMe L quitl — P lhe (6.4)
§,po0t = pPMnle e p2quinl — p2RBInhye (6.5)
Eoroy == M L n>0, (6.6)
Lo =0 =25 L n<0, 6.7)

a0V == p7 N o + 7@ =P FTE L n <0, (68)
EoroY == p 2, +p 7A@ E™E L, n> 00 (69)

The o operation is given by £ o a = x(a'V)éa®. We see that (7 is invariant under o.
Above formulas imply that ¢ is generated, as a right . 4-module, by elements (6.3).
Having in mind that p(I",,) is a right #2-submodule of £ (as follows from (C.7))
we conclude that p is surjective. a

The following proposition describes the right . #-ideal T corresponding to the
calculus I.

Proposition 6.2. We have

R = (Pa+ar — 1+ A1) ker(e). (6.10)

Proof. Let %2 be the right-hand side of (6.10). According to Lemma C.7 (ii) the

space .72 is contained in .72.
On the other hand, the space of ad-invariant elements of . % consists precisely of
polynomials of z>a +a* and we have

ad(ba) = bad(a)

for each a € .4 and an ad-invariant element b € ..%. In particular, corresponding
multiple irreducible subspaces are closed under the left multiplication by ad-invariant
elements. Furthermore, primitive elements for nonsinglet multiple irreducible sub-
spaces of ad are of the form p(u?c + a*)y* and p(u?a + a*)y**, corresponding to
spin k highest and lowest weights respectively. Hence, in the decomposition of the
factorized adjoint action on ker(¢) /.72 each irreducible multiplet appears no more than
once. On the other hand, elements pm(y"), pr(y*™) and pr(p>a+a*) are all non-zero
(as follows from (6.3), (6.6)—(6.7) and (C.7)). Therefore, for each spin value, the rep-

resentation ad contains at least one irreducible multiplet. Consequently %2 =.%8. O
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We pass to the detailed analysis of the adjoint action . In terms of the identifi-

cation I, = we have

@ = (D).

Let us assume that I, is endowed with a natural w-invariant scalar product, induced

by the Haar measure (as explained in Appendix C). We are going to decompose w
into irreducible multiplets. Let us consider operators
K, =(0d® X )w K, =(3{d® X)w, (6.11)

which are counterparts for the “creation” and “anihilation,” as well as the “third spin
component” operator. Here X, : .4 — C are linear functionals satisfying

X (ab) = X (a)x(b) + e(a) X (), (6.12)
where x: .4 — C is a multiplicative functional determined by
1 * *
x(@) = i x@)=p x(v)=x(v")=0.
We shall adopt the following normalization
Xi(@=X, (@)=X,(m=X_(v)=0 —puX,()=X_(m=1

It turns out that the following identities hold

2 1 — p=46
K+K_ — K K__K+= 1__——/1,"—27 (613)
KK, -K,K;=K, KK —-K K;=—-K_, (6.14)
K;(9n) = K5(9)n + 9K,(n), (6.15)
K () = K (D)x,m) +IK (), (6.16)
where x_ = (id ® x)w. Furthermore, we have
Xl =1 Ky, ) =né, s (6.17)
1— 'u2k
K (&) = =55 Enet ko n 20,
Pl = p?) 6.18)
R ) <0 '
K_(, )= —1_—M‘2—“5n_1,k~1 n=U.
Now (6.17)—(6.18) imply that
N ®
o=>"0,
£>0

where (¢, are irreducible subspaces for the k-spin representation. In particular
52
G=> G (6.19)
Im|<k

where &, = ker(ml — K3) N (. The spaces ¢, , are 1-dimensional. Hence it
is possible to construct an orthonormal basis in ¢Z by choosing unit vectors Com €
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. ,n- A priori, there exists an ambiguity for this choice, one phase factor for each
(k.- However, requiring that non-vanishing matrix elements of K, are positive, the
ambiguity is reduced to one phase factor for each multiplet. According to [7], we
have

I{«Lck,m = vk,m+l<k.m+l K—Ck,m = Ulamck,m_p (6.20)

where

1 —
vkm=,ul‘m‘k((k+m)ﬂ(kz~m+l)u)l/2 n = "

-
Let - be the space of one-variable polynomials. It is easy to see that
C(),k =p(Y"), (6.21)

where p, € . are kth order polynomials orthonormal with respect to a scalar product
given by

P, = /p*q- (6.22)

Here [:.2” — (C is a linear functional given by

/x” =(n+ 1);’. (6.23)

We shall assume that leading coefficients of polynomials p, are positive. This com-
pletely fixes vectors ¢ .

Proposition 6.3. (i) Polynomials p, are given by

k
P = (=D, 0 [ ] = 27, (6.24)
7=l

where ¢, > 0 are normalization constants and 0: ° — .2 is a linear map specified
by

oz™) = nuxn_'. (6.25)

(ii) The following identities hold

(k—m) '\ '/
G = (=D (m“‘,) @ p Y "™,
" 6.26
km _*xm __xm (k_m)p«' 172 m * ( )
Corom =1 <W> O p YY),
!

where m € {0, ..., k} and n,!= H;Lzlju‘
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Proof. The map 0 satisfies the following “Leibniz rule”

Ipg)(@) = (Op)x)q(x) + p(*2)(q)(@), (6.27)
as it directly follows from (6.25). More generally

n

N GOEDY (Z) @ *p)(p*Fz)0F g)() (6.28)
"

k=0

for each n € N. In the above formula

<n) _ nM!
k/, B kn—k),!

It is easy to see that

/ a(p) = p(1) — p(0) (6.29)

for each p € &°. Inductively using (6.27) and (6.29) we obtain the following “partial
integration” rule

~ 1
Jo0r )=S0 D (@ k20 o)}
k=1

+ (=D / O Qp(*" ).

It is now easy to prove that polynomials p, given by (6.24) are mutually orthog-
onal. Furthermore, leading coefficients of these polynomials are positive. Having in
mind that p, are normed we conclude that (6.21) holds.

To prove (ii) it is sufficient to act by K" on both sides of (6.21), and to apply
(6.18) and (6.20). g

It is worth noticing that ¢7 is *-invariant. The map *: ¢ — (7 corresponds to
the canonical *-structure on I, . We have

C;:,_m = (~/L)’”Ck,m~

In the classical limit the algebra . consists of polynomial functions on the group
SU(2). The subalgebra ¢7' then consists of polynomial functions invariant under left
translations by diagonal matrices from U(1). Equivalently, ¢Z can be described as the
algebra of polynomial functions on the 2-sphere 52, because the above mentioned
action defines the Hopf fibering S — S2. In this picture ¢, . become spherical
harmonics, and K, K, correspond to standard angular momentum operators.

Of course, for ;4 = 1 the minimal admissible calculus is just the classical 3-
dimensional one. As we shall see later, a similar situation holds for u = —1.

In the general case the algebra ¢ represents polynomial functions on a “quantum
2-sphere” [5]. At the level of spaces, the inclusion ¢ < ./ is interpretable as the
“quantum Hopf fibering.”
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Proposition 6.4. The space S} consists precisely of elements of the form

202

2u? *
L a0ret @l

a0 ot + [xB)+

g=1@ [ﬂ(b)+
2u?
1—p?

* * %k 1 * k%
[(1 + 1YY @yt + patyt @ ay + ;av ®a’y ](o ® o)¢p(b),
where b € ker(e).

Proof. The statement follows from Lemma B.10, Proposition 6.2, and properties
(B.30) and (6.3). O

Let us now consider a quantum principal G-bundle P over a compact manifold
M. According to the results of Sect. 2, the structure of P is completely determined
by its classical part P, which is a classical U(1)-bundle over M. Let us consider a
connection w, and describe its components w,; and w . At first, we have to specify
a splitting (4.9). Modulo the identification I, = ¢ we have v = (¢]Q). With the
help of v, let us identify £ with the 1-dimensional subspace in I, generated by
1. The elements of the subspace £ * are characterized by £ o a = e(a)é.

Therefore, the classical component w, is locally determined by 1-form A (1).
From the point of view of classical geometry, this 1-form is a gauge potential of
w,;» understood as a connection on F,. On the other hand, the quantum component
w, is locally determined by a collection of 1-forms AU(§n, x)» Where (n, k) # (0,0).
Globally, we have a collection of tensorial 1-forms on F,.

It is important to mention that such a classical reinterpretation of connections de-
stroys the information about the irreducible multiplet structure of corersponding gauge
potentials. Because of mutual incompatibility of decompositions (4.9) and (6.19).

Let us now describe a construction of the embedded differential map 4. In the
context of this example, § can be naturally introduced with the help of a splitting
ker(e) = 22 @ £, where % C ker(e) is the minimal ad-invariant lineal which
contains p?a +a* — (1 + p?)1 and ¥, for each k& € N. Explicitly, this lineal can be
constructed by extracting irreducible multiplets from ad(y*). The map & is given by
(5.23).

According to (5.19) the local expression for the curvature is given by

Fym(a) = Aym(a) + Aym(a®)Aym(a®@),

where a € £

Let us consider the case ;. = —1. As explained in Appendix A, the classical part
of G is isomorphic to a semidirect product of groups U(1) and Z, = {—1,1}. The
corresponding Lie algebra is generated by a single element X, as in the previous
example. Let I' be the minimal admissible left-covariant calculus. Equations (6.3)
reduce to

pr(Y") =a"y*  pm(y) =ya,

1 . (6.30)
pr(a) = —pm(a™) = A
The o-structure is given by
m(y)o{a,a*} = —m(y) 7wy o{a,a*} = —m(y"), 631)

7,7 o {7, 7"} ={0} m(@)oa=e(@)m(a).
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Consequently, elements

n,=7(y) ny=mla—a") n_ ="

form a basis in I, .

From (6.31) and Lemma B.13 it follows that the flip-over operator o is just the
standard transposition. Furthermore, the space S” ' is consisting precisely of symmet-

®2 mu
ric elements of I~

It is worth noticing that the map & is uniquely determined, because 5> contains
only one irreducible triplet. Explicitly,

5(774-) = (713 ® Ne — N4 ® 773)/2

&) = — (632
s_)=(n_®n, —n,®n_)/2 () =n,®n_-n_n, (632

and hence

5= _%J (6.33)

in accordance with Lemma C.5 (ii). Furthermore, we have
7 = Ker(e)? (6.34)

as in the classical case.

The formalism of connections, based on this calculus I', becomes essentially the
same as in the classical SU(2) case. In particular, because of the symmetricity of
572 every connection is multiplicative. Hence, the right-hand side of the Bianchi
identity vanishes. Further, the “perturbation” g, also vanishes, as follows directly
from (6.32)—(6.33) and (5.16). The presence of the decomposition w = w,; +w, is the

only nonclassical phenomena appearing at the level of connections.

Trivial Bundles and Non-Admissible Structures

According to the previous example, compatibility conditions between a left-covariant
differential calculus I" over G = S U(2), and “transition functions” of an appro-
priate principal bundle can be fulﬁﬁed only in the infinite-dimensional case. This
automatically rules out various interesting finite-dimensional differential structures.

Such obstructions can be avoided if we restrict the formalism on trivial principal
bundles. In this case /& = S(M) ® .4, and a differential calculus on P can be
constructed by taking the product 2(M) & I'" = 2(P).

Of course, such a calculus over P does not satisfy the property diff3. On the other
hand, if I" is an arbitrary bicovariant *-calculus then essentially all considerations of
Sects. 4 and 5 can be repeated in this “trivial” framework. The only exception is that
there exist no analogs for classical connections. Because it is no longer possible to
construct the restriction map v: I, — £

Each connection w possesses a global gauge potential A“: I,
by

— (2(M), given

nv

w(®) = (A @ idyo() + 1,, ® V. (6.35)

The curvature is of the form
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R, =F* ®idw F¥ =dA” — (A“, AY). (6.36)
As a concrete illustration, let us consider the case G = SMU (2) where u €

(—1,1)\ {0}, and let I" be a 4-dimensional calculus described in [9]. By definition,
the corresponding right . #-ideal .72 is generated by multiplets

1={a(;fa+a*—(1+u2)1) }, 3={a7, ala — a™), avy* },

5= { 7 (e —ah), o — L+ ) e =9y + o, yi(a — o), 77 }
where a = p2a + o — (u? + 1/p)1. It turns out that the elements

T=r(a+a’) n,=71(7) m=mle—a’) n_=mn(y") (6.37)

form a basis in I,

mu’

The canonical right . 4-module structure on I, is given by

_ (-~ ) oo bxpt o opd - - )
TOYy = m 1, Tow —,U(l"‘/iz)T 1+, 3
1 — )1 — p? 1+ pt 1 — p)(1 —p?
07*=( Ju8 u)n_ con = #2T+( X zu)?73
1% (1 + %) (1 + p?)
. 1+ (1 - p?) 1—p?
oyt=mn_oy=-— T — (6.38)
ey W+ =) i)™
1_/“2 * * 1- 2
N30y =— p N, Moy=n_oy =0 noy"=- u” n_
. A+ —p?) 2p
— = 2 N~ 2" —p = *
w1+ p2)(1 = p) L+p n,oa=mn,=1n0a
CpEm(d—pd o 2u n_oa=n_=n_oa".

I G R M P

The ideal .72 is ad, *&-invariant. This means [9] that I” is a bicovariant *-calculus.
By the use of (B.33) and (B.37) it is easy to determine the *-involution and the adjoint
action w. We have

*

n=pn_ m3=-ny ol =1,
"= —7 w(r)=7®1
w(n,) =10 —n;@ay+u’n_ @7 (6.39)
w(ny) = (1+p”)n, @Y a+n, @ (aa® —yy") — (1 +pHn_ @ya*
wn_)=n, @72+ n, @Y +n_ ®a™.

We see that 7 form a singlet, while {7, ,7,,7_} form a triplet, relative to .
We are now going to compute the space S/'2 C I'®2. Acting by (7 ® )¢ on the

v mu *

generating elements of .72, using (6.38) and (B.30), and taking linear combinations
we obtain a lineal spanned by
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s_[men  wmen+unen_+n_@n  n_en
2PN, @m0, ®@m,  n_@ny+pln, @n_ ’

l+u4 )
=N 3 (T@n, +n; @T)+(1 — wslj € {+,—,3} ¢, (6.40)
1={_<L+_M><M

TRT+un @m —(1+ 151, @n_ +un_ ® )},
u(l _ ,Uf)(l __ /J/3) /J’TIS 773 M 77+ n ®n 7]+

where we have used the following abbreviations

=N, R0 — RN, 2 =130M_ — i @,
sy = (1= pny @ ny + p(l + p*)(m, @n_ —n_@n,).

Lemma 6.5. It turns out that S ;;3} coincides with the lineal generated by the above
elements.

Proof. According to equation (B.42) elements of S{;ﬁ are o-invariant, where o is the
canonical flip-over operator. On the other hand, the space ker( —o) is 10-dimensional,
spanned by the above elements and 7 ® 7. Consequently, in order to determine S)2,
it is sufficient to analyze elements of the form (7 ® m)¢(a), where a € %2 is ad-
invariant. This follows from the fact that (7 ® )¢ intertwines ad and w®?. However,

ad-invariant elements of .72 are just linear combinations of terms of the form
_ 2 * 3 2 * 2 2 *\ 72
r, = (a+o® — @ +1/wl) (Pa+a” — 1+ D)) EPa+a™)".
Inductively using (B.30) and (6.38) we find
(T @ m(r,) = p~ (L + )" (1 @ T)P(ry)-

On the other hand, the last (singlet) term in (6.40) coincides with the element
(p(1 +p2)/(1 = p)(1 = 1)) (T @ T)$(r,). Hence, elements (6.40) generate S22, O

mnv’

Let us compute the differential d: I' — I'’*. As first, let us observe that

S L R
(1= mA = p)

for each a € 4. Indeed, it is evident that (6.41) holds for a = 1, and from (6.38)
we conclude that it holds for a € {a,a*,7,v*}. Remembering that {a, o*,~y,v*}
generate .4 and using (B.30) and linearity of both sides of (6.41) we conclude that
the above equality holds for all a € 4.

As a consequence of identities (6.41) and (B.31)-(B.32) we find

w(a) = (T oa— e(a)T), (6.41)

H 899
= —oo—— (19 — (= 1)V 6.42
TR T R (042

for each 9 € I'".
Now we shall compute the braid operator : I'S2 — I'®%. Using Lemma B.13,

nv

and properties (6.38)—(6.39) we obtain the following expressions
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o, ®n)=n,Qn, o(m_®n_)=n_&n_ o) =TV

1+ p8 (1 — - p?)
0’T®_=—~——_®T+——————%_
ren.) pA(L+ p?) p?

1+ 8 (1 —p(1 — )
U(T®773)='_—2(1+M2) 3®T+mu2 2

_ 1+ (1 -pd-p)
o(tr®mn,)= A +'u2)n+ T+ 2 ,

as well as

1
o, ®@my) =3 — p — ;72)773 ® 1,

1— (1 + ) — p?)?
+ m_®n, —n,@n_) 20— ) KT
A+ p)(1 — p?) 1
0(7I+®773)=773®77+“Wﬂ+®7'+(1*ﬁ)m®773
(1 +p)(1 — p?)
0(n_®n3)=ng®n_+—f_—;3~“—n_®f+(1—uz)n,®773
(1+ A — p?)
Oy @) =0, @y + o, © 7+ = A @,
(1+ ) — p?) 1
o, ®n )=n_®n, — ———a—n_QT+(1 — =), @1_
(m®n_)=n_Qmn 20— ) n 20 @1
11— (1 + A —p?)
oM, N_)=n_0n, — ————51N QN — ———s 1), T
(77+ n_)=n Un /«L(1+ﬂ2)n3 UK H(l+u2)(1__”3)n3
1—p? (1+p)(A — p?)

om_®@n)=n,Qn_+ ;R T.

S — + s
W+ BT W @A — )

Furthermore, sp(c) = {1,—u?, —1/u?}. The operator ¢ is diagonalized in the
basis consisting of vectors (6.40), 7 ® 7, and the following two w®?-triplets

1_/1'3 3
2 2
T®77+_u77+®7-+1+u “y ”T®77+~77+®T—1+u »y
1"‘/‘3 1_-“3
2 2
T®T]3—[L'I73®T+l+u 3 u7'®n3—773®7'——1+u 23
TN — i’y ore il Bren —n_ ®T -~ :
- - l+p - - l+p

corresponding to values —u? and —1/u? respectively.
It is interesting to observe that there exists an indefinite tw-invariant scalar product

on I', , such that o is unitary, relative to the induced product in I'"®2. Such a product
is given by

- @)
1+ pp (6.43)
Men) =1 (g =1+ () =1/,

(r,7) =
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while n,,n;,7 are assumed to be mutually orthogonal. The unitarity of o easily
follows from the co-invariance of the introduced scalar product, and the identity

(@ oa,n) = (0,10 K a)). (6.44)

The product is uniquely determined by the above conditions, up to a scalar multiple.
There exists a natural splitting ker(e) = %2 & %, where % is the lineal spanned by
elements {v,7*,a — 1,* — 1}. This splitting enables us to introduce the embedded
differential map 6. A direct calculation gives

~(L+pD8(T ) =1 @ T+ PPy @ my — p(l + p)(n, @ N_ +pPn_ @ n,)
—(L+p2)8(e) =T @+ @ T+ 32, (€ {43, -}

The map 6 is coassociative, by construction.
According to (6.35)—(6.36) the curvature has the form

F(r) = dA“(T) + (1 — p*)A“(n_)A“(n,) -
F¥(ny) = dA¥ (n;) + 2pA% (n,) A (n_)
F(n_)=dA*(n_)+ A“(ny)A“(n_)  F“(,) =dA%(n,) + A“(n,)A“(1)3).

It is worth noticing that essentially the same expressions for singlet and triplet
components of 6 and F' can be obtained in the framework of the previous example.

Gauge Theories

Classical principal bundles provide a natural mathematical framework for the study
of gauge theories [4]. It is therefore interesting to see what will be the counterparts
of these theories, in the context of quantum principal bundles [6].

In analogy with the classical case, the simplest possibility is to consider la-
grangians of the form

Lw)=) (F@), F*®),,, (6.45)
¢

where elements ¥ form an orthonormal system in I, =~ with respect to an ad-invariant
scalar product, and (),, is the scalar product in 2(M), induced by a metric on M
(here M plays the role of space-time).

Properties of such “quantum gauge” theories essentially depend, besides on the
“symmetry group” G, on the following two prespecifications. ‘

First, it is necessary to fix a bicovariant *-calculus I". This determines kinematical
degrees of freedom, as well as “infinitezimal gauge transformations.”

Secondly, we have to choose a map ¢. This influences dynamical properties of
the theory, because ¢ implicitly figures in the self-interacting part of (6.45). In the
classical case the curvature is §-independent.

For instance, in the context of the previous example, we find a four-component
gauge field consisting of mutually interacting singlet and triplet fields. However if we
change 6 and define

6(9) = TRV+Y®T),

N
(1= (1 = p?)
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then (6.45) will describe non-interacting fields. On the other hand, in the context of
the second example, we find a self-interacting infinite-component gauge field with all
integer spin multiplets in the game.

Closely related with this line of thinking is a question of “gauge transformations.”
The most direct way of introducing gauge trannsformations as vertical automorphisms
of P gives nothing new. Every such automorphism of P preserves the classical part
P,, and moreover it is completely determined by the corresponding “restriction,”
which is a classical gauge transformation of P,. In such a way we obtain an isomor-
phism between gauge groups for P and F,;. However, a proper quantum generalization
of gauge transformations can be introduced via the concepts of quantum (infinites-
imal) gauge bundles. These are the bundles associated to P, relative to the adjoint
actions {ad, w} respectively. It turns out that operators h,, D and R are covariant
with respect to natural actions of these bundles on P. Moreover, the lagrangian (6.45)
is gauge-invariant, in the appropriate sense.

A. Classical Points

Let G be a compact matrix quantum group. We have denoted by G, the set of
*-characters of . 4. The elements of G, are interpretable as classical points of G.

The quantum group structure on G induces a classical group structure on G, in
a natural manner. The product and the inverse are given by

9f =0 ® e, (A1)
g ' =g~ (A2)
The counit €: .4 — C is the neutral element of G,.
Lemma A.1. (i) The formula
Lu(g)ij = g(ui]‘)
defines a monomorphism v,,: G,; — GL(n).
(ii) The image v,(G.;) is compact.

Proof. Without a lack of generality we can assume [8] that v is a unitary matrix. In
this case matrices ¢,(g) belong to U(n). We have

L9 = @Hw,) = (g ® N, )

n n
= g ) =Y @it (D,
k=1 k=1

Hence ¢, is a group homomorphism. This map is injective, because .4 is generated,
as a *-algebra, by the matrix elements u, .

Because of the compactness of U(n), it is sufficient to prove that the image
of ¢, is closed. Let us suppose that a sequence of matrices ., (g,) converges to
T € U(n). This means that the sequence of numbers gk(uij) converges to Tij for
eachi,j € {1,...,n}. It follows that a sequence g,(a) is convergent, for each a € . 4.
Now the formula

g(a) = lilgn gi(a) (A.3)

consistently defines a *-character g: .4 — C with the property ¢, (g) =T a
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The monomorphism ¢, enables us to interpret G, as a compact group of matrices.
In particular, G, is a Lie group in a natural manner. Furthermore the space G, is an
algebraic submanifold of U(n). The Hopf *-algebra . %, of polynomial functions on
G,, is generated by elements ufjl.(g) = g(u;;). Let [ ;: & — 4, be the restriction
homomorphism. Let [ie(Gd) be the (complex) Lie algebra of G, understood as the
tangent space to G, in the point €.

The formula

X(a) = d(]4(@)) (X) (A4)
enables us to interpret elements X € lie(G,;) as certain linear functionals on . 4.
Lemma A.2. (i) We have
X(ab) = e(a) X (b) + e(b) X (a) (A5)

for each a,b € 4. Conversely, if X: .4 — C is a hermitian linear functional such
that (A.5) holds then X is interpretable via (A.4) as a real element of lie(G,;)

(ii) In terms of the above identification, the Lie brackets are given by
[X, Y@ = X(@)Y (@®) - V(@)X (a?). (A.6)

Proof. 1t is clear that functionals X given by (A.4) satisfy (A.5). If X is a hermitian
functional satisfying (A.5) then the formula

ga) = ¢ [Z ki ((id ® X)) (a)tk] (A7)
k=0

determines a 1-parameter subgroup of G,,. The corresponding generator coincides
with X, in the sense of (A.4). Finally, (A.6) directly follows from (A.4), and the
definition of Lie brackets. a

In terms of the identification (A.4) the conjugation in [ie(G,,) is given by
X*(a)=X(a")".

Let F' € M, (C) be the canonical intertwiner [8] between u and its second con-
tragradient ©°“. Then

Lemma A.3. We have
L, (QF = Fu (g),

foreach g € G,.
Proof. According to definitions of F' and u“°, we have
FuF~' =4 = (id ® £*)u.

Acting by g € G, on this equality, and remembering that gk? = g, we conclude that
F and ¢,(g) commute. O
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In a generic case when all eigenvalues of F' are mutually different, the group
G, will be very small, because every element U € ¢ (G,,) is a function of F'. In
particular G,; will be Abelian.

Furthermore, a rough information about the minimal size of G, is cointained in
F. According to the results of [8] we have F*' € ¢ (G,), for each ¢ € R. Hence,
the closure of this 1-parameter subgroup is contained in ¢, (G,;). This closure is
isomorphic to a torus the dimension of which is equal to the number of rationally
linearly independent elements of the spectrum of log(F’).

In the rest of this appendix classical parts of some concrete quantum groups will
be computed.

The Classical Case

Let us assume that .4 is commutative. Then so is A and according to [8], G is an
ordinary compact matrix group consisting of characters of A. Since every compact
matrix group is an algebraic manifold in the corresponding matrix space, the restriction
map g — g|.-# is an isomorphism between G and G,,;.

Quantum SU(2) groups

By definition [7], the C*-algebra representing continuous functions on the group
G=S uU (2) is generated by elements « and <y, and relations

aa® + ptyyt =1 afa+yty=1 (A8)

* *

ay=pye oyt =pyia oyt =qTy

u= (a ““ﬁ) .
v «

Let us consider the case p € (—1,1) \ {0}. Relations (A.8) imply that every g € G,
satisfies

while

lg(@)=1 g7 =g(y")=0.
Consequently g is completely determined by the number g(a) € U(1). Moreover, the
correspondence G; 3 g — g(a) € U(1) is a group isomorphism.
If = —1 relations (A.8) give the following constraints

lg@] =1 g(7)=9g(y")=0, or

lgpl=1 g(@) =g(@")=0.
In this case

G,=UM)NZ,

in a natural manner.
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Quantum SU(n) groups

Let us assume that y € (—1, 1)\ {0}. By definition [10] the C*-algebra A representing

continuous functions on G = S5, U(n) groups is generated by elements u,;, where
i,j € {1,...,n}, and relations
n
* —
Z UigUky = Ot Z “Jz ik =
j=1 (A9)
Z*uil]l o 'uinanjl...]n = Ezl...an‘
The last summation is performed over indexes j, and
- I(»)
Eil.-.in - (_/1/) )
where I(7) is the number of inversions in the sequence ¢ = (4., .. ., ¢,,), if the sequence

is a permutation. Other components of E vanish, by definition.

The fundamental representation of G is irreducible. Let us compute the canonical
intertwiner F'. The conjugate representation ¢ can be naturally realized as a subrep-
resentation of the (n — 1)th tensor power of u. The carrier space H is spanned by

vectors
Ty = Z*Ek]l-~~.]n~—lejl Q- €

Here e, are absolute basis vectors in C™, and the summation is performed over indexes
j. We have
F=cj'j,

where ¢ > 0 and j: C — H is the canonical antilinear map defined by j(e,) = z,.
Now, a direct computation gives

Fe, = ;LZk_"_lek (A.10)

foreach k € {1,...,n}.
According to Lemma A.3, matrices ¢,,(g) are diagonal. Relations (A.9) imply that
corresponding diagonal elements ¢;,(g) are complex units, and that

[Mu@=1

7

The same relations imply that conversely for any sequence of numbers z,...2, €
U(1) satisfying [, z, = 1 there exists the unique g € G, such that ¢, ,(g) = z,. In
summary, G, is isomorphic to the (n — 1)-dimensional torus.

Abelian Quantum Groups

If G is Abelian then every subgroup of G is Abelian, too. In particular G, is an
Abelian compact matrix group, and as such it is isomorphic to a product of a torus
with a finite Abelian group.

According to [8] there exist a discrete finitely generated group I", Hilbert space
H and a unitary representation U: I" — U(H) (the square of which is contained in
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its multiple) such that . is isomorphic to the *-algebra generated by the image of
U. Furthermore

d(UM)=UMRUM) eUM)=1 s(Uw)=Ux"

for each v € I'. Since operators U(vy) are mutually linearly independent [8], every
character g € G, can be viewed as a character on I, via

9 =g9(UMm),

and vice versa. In other words G, is isomorphic to the group of characters of I'.

Universal Unitary Quantum Matrix Groups
Let us consider a positive matrix /' € M, (C) such that
te(F) = u(F ).

Let Ap be a C*-algebra generated by elements u,;, where i,j € {1,...,n}, and
relatlons

n n
* —_—

§ :uuuk] o E :ujiujk =01
J=1 J=1
n n (A.11)
E u wfur, =61

k] zk Ji gk T Tk
=1 j:l

where uf = FuF~!.

The pair G = (Ap,u) is a compact matrix quantum group. We are going to
describe the category of unitary representations of G .. Let .7 be a concrete monoidal
W*-category [10] generated by elements u and u®, with carrier Hilbert spaces H, =
C™ and H = H. It will be assumed that H is endowed with the standard scalar
product, while the product in H is specified by (z,y) = (z, F'y). The objects of .7~
are just the words of v and u® (including the unit object). By definition, morphisms
between objects of .7~ are generated by “elementary morphisms” t: C — H, ® H}
and t: H; ® H, — C, which are given by

n
=) e ®jC) Hzoy=G"zy),
=1
where j: H, — H is the complex conjugation map. By construction « and u¢ are
mutually conjugate objects.

Then G = (Ap,w) is the universal .7 -admissible pair (v is a distinguished
object). In other words G, is a compact matrix quantum group corresponding to .7,
in the framework of the Tannaka-Krein duality [10]. The antipode acts as follows

K(w;,) = uj, K(u;)) = ujl';
The map F = jTj is just the canonical intertwiner between u and 1*°. According
to Lemma A.3 and relations (A.11), the elements of ¢, (G%) are precisely unitary
matrices commuting with F'. Hence,

G =U(n)) x - x U(n,)

where n, are multiplicities of eigenvalues of F'.
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B. Universal Differential Envelopes

Let .4 be a complex unital associative algebra and I" a first-order calculus [9] over
4. Let I'® be the corresponding “tensor bundle” algebra, and let S” be the ideal in
I'® generated by elements of the form

Q= Z da, ® ,db,, where Z a;db, =0. (B.1)

T

By definition, S” is a graded ideal in I"® and its first (generally) nontrivial component
coincides with the set of elements @) of the form (B.1).
Let I'" = I'® /S be the corresponding factor-algebra.

Proposition B.1. There exists the unique linear map d: I' — I'" extending the
derivation d: .4 — I' such that

=0
d(@n) = d@)n + (=1)**9d(n)
for each 9, € I'.
Proof. The formula

d (Z a;db,) = > dadb, (B.2)

consistently defines a linear map d: I" — I'*. We have

dd(a) =0, (B.3)
d(a?) = (da)¥ + ad(9), (B.4)
d(P¥a) = d(¥)a — ¥(da) (B.5)

for each a € .4 and ¥ € I'. Equalities (B.4)—~(B.5) imply that maps d admit the
unique extension d: I'® — I'" satisfying

dw ® ,u) = dw)II(u) + (— 1) I(w)d(w), (B.6)

where I1: I'® — I'" is the projection map. Equations (B.3) and (B.6) imply that
S” C ker(d). Consequently, there exists the unique map d: I' — I' defined as a
factorization of the previous d through II. This map possesses all desired properties.

O

The differential algebra I possesses the following universality property.

Proposition B.2. Let (2 be a differential algebra with a differential d,: 2 — (2.

(i) Let ¢: A4 — {2 be a homomorphism admitting the extension ﬂqo: r — (
given by
i, (ad®) = p(a)d ().

Then there exists the unique differential algebra homomorphism ©": I'™ — (2 ex-
tending both ¢ and § o

(ii) Similarly, if ¢: A4 — {2 is an antimultiplicative linear map and if there exists
ﬁsa: I' — (2 satisfying
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£, (ad(®)) = dyp®)p(a),

then ¢ and ﬁw admit the unique extension " : I'™ — (2 satisfying

pd=dge",
@ (@) = (= 1)71" ()" ()

for each 9,m € I'".

Proof. We shall check the statement (i). The maps ¢ and §, admit the unique common
multiplicative extension ©®: I'® — (2. It is easy to see that ©®(Q) = 0, for each
Q given by (B.1). In other words, S C ker(<p®) and hence " can be factorized
through II. In such a way we obtain the desired map ¢”. The uniqueness follows
from the fact that I'" is generated by .4, as a differential algebra. O

A similar statement can be formulated for antilinear maps ¢. As a simple corollary
we obtain

Proposition B.3. Let us assume that .4 is a *-algebra and that I' is a *-calculus.
There exists the unique antilinear involution x: I' — ' extending *-involutions on
4 and I and satisfying

d(0*) = ()", 5
W) = (=171 e

for each 9, € I'.0

Let us consider some examples of universal envelopes, interesting from the point of
view of quantum principal bundles.

Proposition B.4. (i) Let M be a compact manifold. Then

QM) = [2' (M.

(i) If P is a quantum principal bundle over M and I' an arbitrary admissible
calculus over G then

AP, T = [2Y(P, )"

In other words $2(M) and $2(P, I') are understandable as universal envelopes.

Proof. We shall prove the statement (i). The proof of (ii) is based on (i) and the
universality of I'.

The space 2(M)® M £2'(M) is naturally isomorphic to a S(M)-module of covari-
ant 2-tensors. To prove (i) it is sufficient to check that S coincides with the space
X of symmetric 2-tensors. According to universality of £2'(M)" we have S"? C X.
Conversely, elements of the form ¢ = df ®,, df, where f € S(M), generate the mod-

ule X. Every such element belongs to S”2, because of the identity fdf —d(f*)/2 = 0
Hence, X C S"2.
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The algebra I"" can be alternatively constructed by applying a method of extended
bimodules [1, 7, 9].

Let I'"{X} be the graded differential algebra generated by I, a first-order
element X, and the following relations

X2=0 dX)=0

X9 — (—1)?P9X = d(v). ®9
On the other hand, let I be the extended bimodule
I'=#Xor
with a right . /4-module structure specified by
Xa =aX +d(a). (B.9)

Proposition B.S. There exists the unique homomorphism IT*: T'® — I'{X} satis-
fing IT*(X) = X and extending the factorization map II. The kernel of 11 * coincides
with the ideal in I'® generated by X ® , X.0O

In other words, I'™ can be viewed as a differential subalgebra of I"® /ker(1T*)
generated by 4.

Let us turn to the quantum group context, and assume that % represents polyno-
mial functions on a compact matrix quantum group G. The following statement is a
direct corollary of Proposition B.2.

Proposition B.6. (i) Let I" be a left-covariant calculus over G, with the corresponding
left action £.: I — 4 ® I. Then there exists the unique map £: I' — A4 Q I'
which is multiplicative, extends ¢ and such that

lhd = (id @ d)ly. (B.10)

This map also extends £ and satisfies
(e ®id)¢p =1id, (B.11)
(¢ @id)e} = (id ® L) (B.12)

If I is also a *-calculus then £} is hermitian, in a natural manner.

(ii) Similarly, if I' is right-covariant then there exists the unique homomorphism
pp: I'N — I'" ® A4 extending ¢ and satisfying

prd = (d @ id)pp. (B.13)

This homomorphism also extends the right action map pp.: I' — I’ ® .4 and satisfies
(d ® e)pp =id, (B.14)

(o1 ®id)p} = (id ® ¢)pp. (B.15)

If, in addition, the calculus I' is *-covariant then ) preserves corresponding *-
structures.

(iii) If I" is bicovariant then so is ', that is

(d ® pP} = (U} ® id)p.O0 (B.16)
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There exists a natural grade-preserving coaction map c: I ® .4 — I'", given
by

c(¥ ® a) = k(aM)da?. (B.17)
The same formula determines the coaction of G on I'®. We have
cCW@)=9 c(c(@®a)®b)=c(d® ab). (B.18)
If I" is *-covariant then
(¥ ®a)* = c(9* ® K(a)*) (B.19)
for each ¥ € I'" and a € . A4.

Lemma B.7. Let us assume that I' is right-covariant. Then the following identity holds

phe(d ® a) = Z e, ®a®) @ w(aV)c,a®, (B.20)
k

where Zkﬁk ® ¢, = pp().

Proof. We compute

pre@ ® a) = ph(k(aV)da?) = Z k(@®)9,a® @ k@), a®
k

= o, ® a?) @ r(a)e,a®.0
k
Definition B.1. A first-order calculus I over G is called k-covariant iff there exists
a linear map ff,: 1" — I such that

dk(a) = §,d(a), (B.21)
i,.(a?) = §,(Dk(a) (B.22)

foreacha €. and 9 € I'.

The map {, is uniquely determined by the above conditions. Furthermore it is
bijective and

§.(9a) = (), (D). (B.23)

According to Proposition B.2 the map §,_ can be extended to a d-preserving graded-
antiautomorphism x: I' — ' If I is *-covariant then

KN NI = 9 (B.24)
for each ¥ € I'".

Proposition B.8. If the calculus I is left-covariant then k-covariance is equivalent to
bicovariance. a
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From this moment we assume that I" is left-covariant. Let us denote by I  the

mnv

space of left-invariant elements of I'*, for x € {®, A}. The space I, 1%; is naturally

identificable with the tensor algebra over I, . Proposition B.6 (i) implies that I/
is a graded-differential subalgebra of I". This algebra is generated by I,

nv”
Let (2: I'® — 4 ® I'® be the left action of G on I'®. The ideal S" is ¢$-
invariant and ¢} coincides with the factorized ¢% through II. The ideal S” is decom-

posable as

SN AR S,
It is easy to see that II(I> ) = I'/ . In other words

FZ%’U/ SZ/Y\L'U = F/\

mu”

The spaces F;w are c-invariant, and hence the formula

doa=c(d®a) (B.25)
determines a right .4-module structure on them. The following identities hold
loa=e(a)l, (B.26)
Wn)oa=Wo am)(n o a?). (B.27)
If I" is *-covariant then the spaces I, are *-invariant and we can write

(Yo a)* =9* ok(a)". (B.28)

Let w: .4 — I, be a linear map given by

mnv
m(a) = k(aM)d(a®). (B.29)
The map 7 is surjective, and (1) = 0.

Lemma B.9. The following identities hold

m(a) o b =m(ab — e(a)b), (B.30)
d(a) = aWV7(a®), (B.31)
dr(a) = —m(@P)r(a®). (B.32)

Proof. All these equalities follow by straightforward transformations, applying the
definition of . g

We can write

I, =ker(e)/.2,

where %2 = ker(e) Nker(r) is the right .#4-ideal which, in the sense of [9], canonically
determines the structure of I". According to [9], the calculus is *-covariant iff kK(.72)* =
.72. In this case

m(a)* = —m(k(a)*) (B.33)

for each a € . 4.
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Lemma B.10. The space S/2 C T, ®T,

i & Loy ® I, consists precisely of elements of the form

q = 1(@a") ® m(a?®), (B.34)
where a € .72.

Proof. The space S22 consists of left-invariant projections of elements ) given by

mv

(B.1). In terms of the identification I'® « .4 ® I'® we have

Q=Y"at" ® { (r@?) o t?) @ ) |

and hence
(€@ =Y _ (@bt @ r(bP) = ea)nb”) @ m(bP).
(2 2
The first summand on the right-hand side of the above equality vanishes, because of
ziaidbi = Ziaib?) ® m(b®) = 0. On the other hand, the elements of the form
r= Z'e(ai)bi cover the whole space ker(m) = C1 @ .%2. O

Actually the space S/? generates the whole ideal S* in I'®

mv wmnv mu’

A .
I/’ is a quadratic algebra.

In other words,

Proposition B.11. The following conditions are equivalent

(i) The calculus I is bicovariant.
(@) The coproduct map ¢ is (necessarily uniquely) extendible to the homomorphism
¢: I'N — I QI of differential algebras.

Proof. Let us suppose that (i) holds. Let c/b\ : ' — I’ ® I'" be a map given by

B = £1.(9) @ p (D). (B.35)

Proposition B.3 implies that this map, together with ¢, can be further extended to a

differential homomorphism ¢: I'* — I'" @I Conversely, if (ii) holds then formula
(B.35) defines the left and the right actions of G on I'. In other words the calculus
is bicovariant. O

Let us assume that I" is bicovariant. This is equivalent [9] to ad(.%2) C .22 ® . 2.

The spaces I, are invariant under the right action of G.

Let w*: I, — I ® .4 be the corresponding restriction maps. The following

identity holds

w*(Poa)= Z 9, 0a?® @ k(aM)e, 0, (B.36)
k
where Zkﬂk ® ¢, = w (V).
Explicitly, the map w: I, — I, Q@ ./ is given by

mu mnv

wr = (7 @ id)ad. (B.37)

The map $ possesses the property
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(id® ) = (§ ® id)p (B.38)

as follows from the coassociativity of ¢. Let ¢*: I'* — C be a homomorphism acting
as € on %, and vanishing on higher-order components. Then

(" ®id)p = (id ® ") = id. (B.39)

If in addition I" admits a *-structure then $ is a hermitian map. Let us denote by m”
the multiplication map in I'".

Proposition B.12. The following identity holds
mNK" ® id)p = m™Nid ® k") = 1e". (B.40)
Proof. Tt follows from the definition of *, ¢ and . ]
Let 0: I'®_, I' = I'®_, I' be the canonical braid operator [9]. This map

intertwines the corresponding left and rlght actions. In particular it is reduced in the

space Fz%v Its left-invariant restriction is explicitly given by

Lemma B.13. We have

on®9) =Y I, ®Moc,) (B.41)
k

foreach 9,m € I, , where Zkﬂk ® ¢, = w(?).
Proof. Using the definition [9] of o and performing direct transformations we obtain

o(n®9) = Z o ®_, (9,k(c)) D) = Z 9k ® ,nc?

k
= Z Wpr@)e) @, o)=Y 9, ®@oc) O
P

Let I'V be the braided exterior algebra [9] built over I'. In view of the universality
of I' there exists the unique homomorphism {j: I — I'V of graded differential
algebras reducing to the identity on I" and .. In particular

52 C ker(I — o). (B.42)
This also follows from (B.30), (B.41) and Lemma B.10. The map { is surjective, but
generally not injective. Moreover, the algebra I'V is generally not quadratic.
C. The Minimal Admissible Calculus
Let .72 be the set of elements a € ker(e) satisfying

(X ®id)ad(a) =0 (C.1)
for each X € fie(G,)).



Quantum Principal Bundles 517

Lemma C.1. The space S is a right . -¢-ideal and

ad(R) C R, 2, (C2)
k() =72, (C.3)

Proof. Let us assume that a € A and b € ker(e). A direct computation gives
(X @idyad(ab) = X (@®b?)k(a"bD)ap
= X (@®)r(M)r(@)a?b? + e(@) X (6P = 0.

Hence //8\ is a right ideal in . 2. Properties (C.2)—(C.3) follow from the definition of
/2, applying elementary properties of maps figuring in the game. O

Let I" be the left-covariant calculus which canonically, in the sense of [9], corre-

sponds to .#2. Then property (C.2) implies that I" is bicovariant, while (C.3) shows
that I" admits a *-structure. According to Proposition 3.14 the calculus I” is admissi-
ble. By construction, it is the minimal admissible left-covariant calculus.

Let ¥ * be the dual space of [ie(G,). It turns out that [, =~ can be naturally
embedded in ¥ * ®. 4. First, let us observe that the formula

(v7(@))(X) = vy7(a) = X(a) (C.4)

consistently defines a surjective linear map v: I — £*. Now, according to the

mv

definition of //z’\, alinear map p: I’ — £ * ®. ¢ given by

p=(r®id)w (C.5)
is injective.
Lemma C.2. The following identities hold
d® P)p = (p @id)w, (C.6)
pWoa)=Y ¢, @nrla)e,a?, (C.7)
k

where Zk'pk ® ¢, = p(V).

Proof. Property (C.6) is a direct consequence of the definition of p, and the comodule
structure property of . Equality (C.7) follows from Lemma B.7 and the following
equation

v o a) = e(a)v(19), (C.8)
which easily follows from (A.5), (B.30) and (C.4). O

In the following, ¥ * will be endowed with the natural *-structure, induced from
lie(G,;). Then maps v and p are hermitian.

Let (), be a scalar product in £*, with respect to which the *-operation is
antiunitary. Let h: . ¢ — © be the Haar measure [8] of GG. The formula

<9 ®a, 9 @ b> = (g, V), h(a"d) (C.9)

defines a scalar product in ™ @. <. This enables us to introduce a scalar product
<>in [, ., by requiring that p is isometrical.

mu’
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Lemma C.3. The introduced scalar product is wo-invariant. O

The above statement follows from the invariance of h. Let s: I, — I, bea
linear map defined by

sem(a) = m(k*(a)). (C.10)

Consistency of this formula is a consequence of the bicovariance of I". The following
identities hold

V(%) = v(9) 2(9)* = (%) Wi = (2@ K)w
@, () = (@), n) ", =G (), 9).

The scalar product on I can be naturally extended to a scalar product on Fi‘fv,
by tensoring and taking the direct sum. Let us assume that the maps 3¢ and * are ex-
tended from I, to >, by requiring multiplicativity and graded-antimultiplicativity
respectively. Such extended maps, together with the adjoint action w® satisfy the
same relations as initial maps.

Let us assume that the ideal S, can be orthocomplemented in I, relative
to the constructed scalar product. Then the space I, is naturally realizable as the
orthocomplement of S/ . In particular, we can introduce an embedded differential
map 6: I, — I, ®1I, .Thespace I') =S;- is invariant under w, * and .

mu mv’ mu mu
Letc : I, — I, ®I, bethe “transposed Lie commutator” map [9]. This

nv nv nv

map can be defined by
¢ =(d®m)w. (C.1D)

Maps 6 and c¢' are both covariant with respect to the adjoint action of G. In other
words

Lemma C.4. The following identities hold
(Ridw=w® (¢' Qidw =w®%c". (C.12)
Proof. Applying (C.11) and (B.37) we obtain

@®2c T (9) = w®? (2 9, ® W(Ck)) = Z 9, ® ﬂ(cf)) @ P r(EP)e
k k

= Z 9, ® W(cg)) ® cf) =(¢' ®id)yw(®),
k

where Zkﬁ & ® ¢, = w(¥). The second equality follows from the covariance of the
differential d: I} — I')) 0

mv’

Lemma C.5. (i) Foreach 9 € I,

" there exists a € ker(e) such that

9 = m(a),

.13
8 = —m(a?) ® m(a®). (C.13)

(ii) The following identity holds
¢’ =06 —6. (C.14)
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Proof. Let us choose ¢ € ker(e) such that m(c) = 9. According to Lemma B.9 we
have dv = —m(cP)m(c®). According to Lemma B.10 there exists b € .2 such that

§(9) = —n(cM) @ m(c®) — 7(6) @ (D).

Now a = b + ¢ satisfies (C.13).

To prove (C.14) let us choose, for a given ¥ € I, , an element a € ker(e) as
above. Applying (B.37), (B.30) and (C.11) we obtain

~06(8) = o(r(a") ® m(a®))
= m(a®) ® 7(a®) o (k(a®)a®)
=@ @7 [(a(l) - 6(a(1))1)ﬁ(a(2))a(4)]
= m(a) ® 1(a®) — 7(a®) ® 7(k(@)a?) = —c" (W) — §(19).0

Lemma C.6. We have
vy ®id)o(F) — (id ® v )6(0) = (id ® X)w(¥) (C.15)

foreach 9 € I, and X € lie(G,). O

The following lemma gives a rough information about the “size” of the space I, .
For each g € G, let w9: £* — £ be the induced adjoint action, given by

wlv =V ® g)w.
Lemma C.7. (i) We have
@ @p=p (C.16)

for each g € G,

(i) Let a € ker(e) be an arbitrary ad-invariant element. Then
a(ker(e)) C 2. (C.17)

Proof. The statement (i) directly follows from the definition of p. Let us prove (ii).
For arbitrary b € ker(e) and ad-invariant a € ker(e) we have

(X ® id)ad(ab) = X (ab®)s(bD)H® = X(a)e(d)1 + e(a)(X ® id)ad(b) = 0.

This shows that ab € ?7?3: and hence (C.17) holds. O
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