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Abstract: We use a path integral formulation of the Chern-Simons quantum field
theory in order to give a simple “semi-rigorous” proof of a recently conjectured
limitation on the 1/K expansion of the Jones polynomial of a knot and its relation
to the Alexander polynomial. A combination of this limitation with the finite version
of the Poisson resummation allows us to derive a surgery formula for the contri-
bution of the trivial connection to Witten’s invariant of rational homology spheres.
The 2-loop part of this formula coincides with Walker’s surgery formula for the
Casson—Walker invariant. This proves a conjecture that the Casson—Walker invari-
ant is proportional to the 2-loop correction to the trivial connection contribution.
A contribution of the trivial connection to Witten’s invariant of a manifold with
nontrivial rational homology is calculated for the case of Seifert manifolds.

1. Introduction

In his paper [1], Witten defined a topological invariant of a 3d manifold M with an
n-component link % inside it as a partition funciton of a quantum Chern—Simons
theory. Let us attach representations V,,1 <i < n of a simple Lie group G to the
components of % (in our notations o, are the highest weights shifted by p =
%Z e A+}t,,A+ is a set of positive roots of G). Then Witten’s invariant is equal to
the path integral over all guage equivalence classes of G connection on M:

; n
Ly oM, L k) = f[@Au] exp (%—ch> I Tr,, Pexp < A,ﬂx“) ) (L.D)
=1 L,

here A4, is a connection, S¢g is its Chern—Simons action,

1 ' 2
SCS = -2— Tr gmpA{dx <A116VA/, + '3—AMA‘,A[,> . (12)
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Tr is a trace in the fundamental representation (so that Tr A? = 2 for long roots of
G), A is a Planck’s constant:

h="", keZ. (13)

Tr,, Pexp (§ L A,dx") are the traces of holonomies along the link components L;

taken in the representations V,,. Witten showed that for a link in $° his invariant
was proportional to the Jones polynomial of that link. In what follows we will refer
to Eq. (1.1) as the definition of the Jones polynomial and its normalization.
Witten derived a surgery algorithm for an exact calculation of the path integral
(1.1). We review it briefly in order to set our notations. Consider a manifold M with
a knot A inside it. Let us choose a basis of cycles on the boundary of its tubular
neighborhood Tub(#"). C; is a cycle contractible through the tubular neighborhood
(i.e. C; is the meridian of 7). C, is a cycle which has a unit intersection number
with C) (C; is defined only modulo Cy). Cut out the tubular neighborhood Tub(4")
and glue it back in such a way that the cycles pC; + ¢qC, and rC; + sC, on the
boundary of the complement of %" are identified with the cycles C, and C; on the
boundary of Tub(#"). As a result of this surgery, a new manifold M’ is constructed.
The integer numbers p, ¢, 7, s form a unimodular matrix

U = (5 g) €SL(2,Z), ps—qr=1. (1.4)

The group SL(2,Z) has a unitary representation in the space of affine charac-
ters of G which is in fact a Hilbert space of the Chern—Simons theory cor-
responding to 7% = dTub(#"). The basis vectors of this space |o,1)(a € 4G =
AY (W x KAR)\ walls, K =k + cy, ¢y is a dual Coxeter number of G,cy =N
for SU(N)) are the eigenstates of the holonomy operator along the cycle Ci:

Pexp (fﬁ”dx“) o, 1) = exp (%a) o, 1), (1.5)

i

here A" is an operator corresponding to the classical field 4#. The matrix elements
of U represented in this basis are (for a simply laced group)

1

~(ra) _ [isign (g)]!*+! in o] [ VolA*\ 2
= - [} 2

Var ™ = gy &P |~ 13 Im OHUD| o m

< Y Y= exp}}q

neARjgAR weW
x [po? — 200+ (Kn +w(B)) + s(Kn + w(B))] , (1.6)

here |4, | is a number of positive roots in G, W is the Weyl group and &(UP9))
is the Rademacher function defined as follows:

@ [é’ :J - pT“ —125(s,9) (1.7)
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s(s,q) is a Dedekind sum:
[ =l nj mj
= — t | — — ] . .
s(m,n) 4nj§1 co (n) cot ( " ) (1.8)
The formula (1.6) was derived by L. Jeffrey [3] for G = SU(2):

~(p, sign(q) _mgutro - in
(pq)_l g (Q)e 4q>(UP‘1)Z S pexp

o 2K p=Zin0  2Kg

x [ po® — 20(2Kn + pp) + sQKn + puB)’], Adsuoy:l S o fp<K-1.
(1.9)
According to Witten [1], the invariant of the manifold M’ constructed by a

UP9 surgery on a knot " in a manifold M can be expressed throug the Jones
polynomial of that knot and the representation (1.8) of the surgery matrix:

Z(M'; k) = &% 3 Z(M, A5k (1.10)
1€AG

(recall that p is a shifted highest weight of the trivial representation). The phase ¢g
is a framing correction. If both invariants are reduced to canonical framing, then

TEK—CV

=1%

dim G |@(UPP) — 3sign (3 +v>] , (1.11)
q

here v is a self-linking number of ¢ defined as a linking number between C, and
A
For a more general case when a surgery is performed on a link . in M Witten
concluded that
Z(M/;k):ei¢fr Z Zo(l 1”(M,$;k)0(PI"I])”.0(1’",‘]"). (1‘12)

,,,,, a1 p An P

Reshetikhin and Turaev showed in [2] that Eq. (1.12) is invariant under Kirby
moves. Therefore they proved that Z(M; k) is a topological invariant of the manifold
without invoking the path integral representation (1.1) which still lacks mathematical
rigor. They also established a general set of conditions on the components of the
r.h.s. of Eq. (1.12) which guarantee its topolocial invariance.

The disadvantage of Eqs. (1.10) and (1.12) is that they do not make the relation
between Witten’s invariant and classical topological invariants of 3d manifolds quite
transparent (The Alexander polynomial was the only quantum invariant which had
a clear topological nature since it was originally constructed from the fundamental
group of the knot complement). A possible way to deal with this problem is to
consider a large & asymptotics of the path integral (1.1) by applying a stationary
phase approximation. The stationary phase points are flat connections. Therefore the
invariant is presented as a sum over connected pieces .#. of the moduli space .#
of flat connections on M:

Zoyoon (M, L3 k) = 3251, (M, L5 K),
M

i

) (o]
Z41), (M, Z3k) = exp <S(c? + E_ZIS,‘,”)h”> , (1.13)
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here Scs is a Chern—Simons action of flat connections of .#. and S are the
quantum n-loop corrections to the contribution of .#.. The 1-loop correction is
a determinant of the quadratic form describing the small fluctuations of Scs(4,)
around a stationary phase point. Its major features were determined by Witten [1],
Freed and Gompf [4], and Jeffrey [3] (some further details were added in [S]):

im H —dim H,

di
5O QAT i in
=T NoT Ly P\ g Ses — N

x [ [\/|1R|ﬁTr11Pexp (fA#dx“>} , (1.14)
1=1

A = L

here H, is an isotropy group of .#. (i.e. a subgroup of G which commutes with
the holonomies of connections Aﬁf ) of M), Ny is expressed [4] as

Npn = 2I + dimH? + dimH} + (1 + b}, )dimG , (1.15)

1. is a spectral flow of the operator L_ = %D + Dx acting on 1- and 3-forms, D
being a covariant derivative, /? and H! are cohomologies of D, and b}, is the first
Betti number of M. tz is a Reidemeister—Ray—Singer torsion. It was observed in
[3] that \/7x defines a ratio of volume forms on .#. and H..

The higher loop corrections S are calculated by Feynman rules. They are ex-
pressed as multiple integrals of the products of propagators taken over the manifolds
M and the link . Such representation might make the nature of invariants Sie)
more transparent. Bar-Natan [6] and Kontsevich [7] studied the Feynman diagrams
related to the link. These diagrams produce Vassiliev invariants. In particular, Bar-
Natan observed that the 2-loop correction to the SU(2) invariant of the knot in S°
is proportional to the second derivative of its Alexander polynomial.

In their recent paper [8] Melvin and Morton conjectured® a rather strict limitation
on the possible powers of « in the K~! expansion of the SU(2) Jones polynomial
Z,(S?, 4, k) as well as a relation between the dominant part of this expansion and
the Alexander polynomial which generalizes the result of [6].

The properties of Feynman diagrams related to the manifold were studied in
early papers [10,11] and then by Axelrod and Singer [12] and Kontsevich [13]. A
convergence of those diagrams was proven, however no multiloop diagrams were
explicitly calculated. An “experimental” approach to their study was initiated in
[4] and [3]. Freed and Gompf checked the 1-loop formula (1.14) by comparing it
numerically to the surgery formula (1.12) applied to some lens spaces and Seifert
homology spheres. L. Jeffrey transformed the surgery formula for lens spaces and
some mapping tori into the asymptotic form (1.13) thus obtaining all the loop
corrections for those manifolds. This program was further extended to Seifert man-
ifolds in [5]. It was observed there among other things that the 2-loop correction
to the contribution of the trivial connection was proportional to the Casson—Walker
invariant as calculated by C. Lescop [14].

In this paper we study the trivial connection contribution to Witten’s invariant of
a knot, a link and a manifold. In Sect. 2 we prove the relation between the Jones and
Alexander polynomials of a knot (Proposition 2.1) conjectured in [8] by relating the

2 This conjecture was proven recently by D. Bar-Natan and S. Garoufalidis [9] at the level of
weight systems.
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former to the Reidemeister—Ray—Singer torsion of the knot complement. We also
generalize this result to the case of an arbitrary rational homology sphere (RHS).
In Sect.3 we derive a knot surgery formula for the trivial connection contribution
to Witten’s invariant of a RHS (Proposition 3.1). We show that at the 2-loop level
this formula coincides with Walker’s formula [15] for Casson—Walker invariant. This
proves the relation between the 2-loop correction to the contribution of the trivial
connection and the Casson—Walker invariant (Proposition 3.2) conjectured in [5]. In
Sect. 4 we try to go beyond RHS by considering a Seifert manifold with nontrivial
rational homology. We derive a formula for the trivial connection contribution to
its Witten’s invariant (Proposition 4.3) and compare its properties to the partition
function of a 2d gauge theory studied by Witten [16]. The results of Sect.2 are
illustrated in the Appendix, where a large k asymptotics of the Jones polynomial of
a torus knot is calculated. The contributions of reducible and irreducible connections
in the knot complement are identified. Similarly to the results of [5], the contribution
of the irreducible connections appears to be 2-loop exact.

It should be emphasized that the derivation of the results of Sects.2 and 3
involves the use of path integral. Therefore these results lack mathematical rigor.
The propositions which state them should be understood as “physical propositions.”
At the same time, the calculations of Sect. 4 and the Appendix are perfectly rigorous.

2. The Jones Polynomial and the Reidemeister—Ray—Singer Torsion

We are going to study the Jones polynomial of a knot .#" in a rational homology
sphere M (i.e. b}, = 0). We start with the case of M = S°. Then the SU(2) Jones
polynomial (in Witten’s normalization (1.1)) can be expanded in K~

ZAS*, H k)= 3 Cpnt"K™". (2.1)

m,n=0

Melvin and Morton [8] suggested® the following.

Proposition 2.1. If the knot A is canonically framed (i.e. the linking number v
between the cycle C, which determines the framing and A" is zero), then

Con=0 if m>n. (22)

Moreover,

2 sin(ma)
Cpad" =1/ — " <aZ<l, 2.3
L =N R A A oxpmiay) O =0 @3)

here A4(S?, A" exp(2mia)) is the Alexander polynomial of X" normalized in such
a way that A(S3, unknot; exp(2mia)) = 1, 44(M, X", exp(2mia)) is real.

It was established by Milnor [17] and Turaev [18] that in this normalization 4, is
related to the Reidemeister torsion of the knot complement:

2 sin(na)
R(M\ Tub(A"); exp(2mia))

Ag(M, A exp(2mia)) = (24)

3 1 am thankful to D. Bar-Natan and S. Garoufalidis for drawing my attention to the paper [8].
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Some simple quantum field theory arguments were used in [19] to show that the
Alexander polynomial was related by Eq. (2.4) to the Ray—Singer torsion of the
knot complement. Here we will apply the same arguments to the Jones polynomial

Z(S3, A k).
Consider the values of o of order K. We introduce a new variable
az%, 0<asl. 2.5)

Let us split the path integral (1.1) for a knot 2 into an integral over the con-
nection A4, inside the tubular neighborhood Tub(¢") and inside its complement
S3\ Tub(#") with certain boundary conditions on the boundary 72 = dTub(%"), as
well as an integral over these boundary conditions. According to [20], one pos-
sible set of boundary conditions requires that the guage fields 4; , on T2 should
belong to the Cartan subalgebra, the curvature F, should be zero and the integral
L = fclAﬂdx” should be fixed. In fact, it was established in [20] that in accor-
dance with Eq. (1.5), the path integral over connections on Tub(.#¢") is proportional
to 8(I; — 2mia). Therefore the Jones polynomial Z,(S>,2¢";k) is equal to the path
integral over connections on S3\ Tub(#")

ZAS k)= [ [DA,]exp (%S’Cs> (2.6)
[S3\Tub(A")]

taken with the boundary condition
Pexp (fA#dx”) = exp(2mia) . 2.7

Ci

The Chern-Simons action is modified [20] by the boundary term
1
Sig = Ses + 5T [ A14,d*x, (2.8)
72

which is necessary for the choice (2.7) of boundary conditions.

Let us calculate the path integral (2.6) by the stationary phase approximation
method (1.13). First of all, we look for stationary phase points, i.e. flat connections
satisfying the boundary condition (2.7). There is only one such connection for a <
aop (ap > 0 being a critical value depending on 2¢"). This connection is reducible:
all the holonomies belong to the maximal torus U(1) C SU(2). For this connection
Scs = 0. Since the linking number v of C; and X~ is zero, the homology class of
C, in S3\ Tub(¢") is trivial. Therefore 4, = 0 and the boundary term in Eq. (2.8)
is also zero. Thus the whole classical Chern—Simons action S¢ is zero.

We will estimate the 1-loop correction (1.14) up to a phase factor exp (—%Nph).
The flat U(1) connection on S\ Tub(¢") satisfying Eq. (2.7) has no moduli, so
dimH! = 0. The isotropy group is H, = U(1), so VolH, = 2v/27 (recall that the
radius of U(1) is v/2), while dimH? = 1. The determinants in the SU(2) Ray—
Singer torsion 7 split into three factors for three Lie algebra components of A,
which have the definite U(1) charge. The chargeless Cartan subalgebra (i.e. diago-
nal) component of 4, contributes 1, while each of the two off-diagonal components
contribute the square root of the U(1) torsion tz(S>\ Tub(#);exp(2mia)). As a
result of all this and Eq. (2.4) we conclude that
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Proposition 2.2. The loop formula (1.13) for the Jones polynomial of a knot in
S* can be presented in the form

3o 2 sin(ma) & (2 "
LS5 A k) = \/;AA(S3,9{; exp(2ria)) P [’2 <K> S"“(“)} > (29)

here S,(a) are the higher loop corrections for the path integral (2.6), they depend
on the boundary holonomy exp(2mia).

We will show later that ¢™"Voh = 1.
The substitution (2.5) turns the r.h.s. of this equation into the expansion (2.1)
with limitations (2.2) and property (2.3). We also learn that the sum of the terms

S Coro im0 K" (2.10)

m=0

comes from the n-loop Feynman diagrams (including disconnected ones) in the knot
complement S\ Tub(#").

Consider now a general RHS M with a knot " inside it. This time there may
be many flat connections (both reducible and irreducible) with a given holonomy
(2.7) even if a is very small. Each of them will contribute to the stationary phase
approximation of the path integral (2.6) turning it into the sum (1.13). We will
concentrate on the reducible U(1) connections because their 1-loop contributions
can again be related to the Alexander polynomial of 4.

Some changes have to be made to Eq. (2.9). Let b define the holonomy along
C;, for a reducible flat connection on M\Tub(#"):

Pexp <§A,de") = exp(2mib) . (2.11)
G

The holonomies (2.7) and (2.11) are related by the fact that the homomorphism
H(0Tub(A"),Z) — Hi(M\Tub(x"),Z) (2.12)
has a kernel. Let the cycle
Co=d(mCy +mCy), d,my,my €Z, m,mp— coprime (2.13)

be its generator. Then

Pexp (fA#dx”> = exp[2rid(mia + myb)| =1, (2.14)
Co
so that i
n
- z <
b mz(mla—l—d), nEZ, 0<n<d. (2.15)

If we smoothly reduce a to zero, then the flat connection on M\Tub(#") will
transform into a flat connection on M. Let S¢s o be its Chern—Simons invariant.
Then according to [21] and Eq. (2.8), the Chern-Simons action of the original

connection is

my na
Sty = —1* <m_2a2 + 2m—2b> + Ses.0 - (2.16)
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In particular, if the flat connection on M at a = 0 is trivial, then Scg = 0 and n = 0,
so that

Shg = —m* L a? . (2.17)

The Reidemeister—Ray—Singer torsion for the Cartan subalgebra part of 4, is known
to be equal to ordH (M, Z). As for the off-diagonal Lie algebra componens of 4,
we can use again Eq. (2.4). However the argument of the torsion is related to the
holonomy along the generator of the Z part of H;(M\Tub(:4"),Z). The holonomy
along the cycle Cj which has the unit intersection number with Cj, is

Pexp | §d,dx" | = exp <2m‘i> . (2.18)
c e

This cycle generates the dZ subgroup of Z, so the holonomy along the generator
of Z is exp <2m' mde) Combining all pieces together we get the following

Proposition 2.3. If M is a RHS and A" is a knot inside it, then the contribution
of the trivial connection to the Jones polynomial of A" is given by the formula

1 T 2%
Sin (1? @)

Ay (M,%,exp (%ﬁ))
X exp <—%%o¢2> exp [i (%)nsﬁl (%)} . (2.19)

We dropped the factor eF™h we will show later that it is equal to 1.

Assuming that o < K (that is, a < 1), we can present Zj((")(M, A k) in a
slightly different form by applying the stationary phase approximation directly to
the path integral (1.1) taken over connections on the whole manifold M:

ZON M, A3 k) = ,/%[ordHl(M,Z)]u%

Z8M, A k) = ZO(M; k) exp [%v(az - 1)} aJ(,K). (2.20)

In this formula ZU(M; k) is a contribution of the trivial connection to Witten’s
invariant of M itself; it contains Feynman diagrams which are not connected to
the knot . The function J(«,K) is a contribution of Feynman diagrams attached
to the knot, except for two factors that we separated out explicitly: the framing
factor exp [£Zv(o® — 1)] and the dimension of the representation dim ¥, = o, which
appears when the trace of the holonomy is taken in Eq. (1.1). Note the relation
between the self-linking number of the knot v and the numbers my, m;,:
my

y=——. (221)
my

The function J(«, K) can be expanded in K~',
J@K)= 3 DpnaK". (2.22)

m,n=0
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The numbers D,, , are type n Vassiliev invariants. By comparing Egs. (2.19) and
(2.20) we conclude that
Dyn,=0 for m>n. (2.23)

Moreover, according to [6] Do,() =1, D())] = D])] = D1’2 =0, D2’2 = —Dz,(), SO

that
o2 —

K?
The value of D, , can be deduced by comparing Egs. (2.19) and (2.20):

J(0,K)=1+Dyr——r— + O(K3). (2.24)

272 1
Dyy= - (41— —) . 225
227 md> ( 4 12) (2.25)

This relation was first obtained by Bar-Natan in [6].
The trivial connection contribution Z("(M;k) can be expanded in asymptotic
series in K~!. The leading 1-loop term is given by Eq. (1.14):

3
1 2nh 2 3
(i) ) — _ 3
2} D ooy (M3 ) = VelSU() (del(M’Z)) = V2n(K ord H\(M,Z))" 2 .
(2.26)

Comparing Egs. (2.26), (2.20) and (2.19) we see that Ny, = 0 and the term

e~ T™h can indeed be dropped from Egs. (2.19) and (2.9).
All the formulas of this section can be easily generalized to the case of a general
simple Lie group G. Equation (2.19) transforms into

ZOM, '3 k) = [2K ord Hy (M, Z)] 5 exp (_Eﬂ z)
K my

2sin(%°‘m'd"') o 2m\"
B e ey | S (R) s Q)] e

mzd

The generalization of Egs. (2.20) and (2.24) is

. )
Z8WM, A k) = Z(M; k) ex (Ev(cx2 —p? ) (o i
( ) (M k)exp | & p°) ,1,&@ )

} J(,K), (2.28)

12p% o2 — p?
dimG K?

J(,K) =14 Dy, + O(K3). (2.29)

3. A Trivial Connection Contribution to Witten’s Invariant

Suppose that a manifold M’ is constructed by a U9 surgery on a knot 4 in
a manifold M. Then Witten’s invariant of M’ can be calculated by the surgery
formula (1.10). The large & limit of the r.h.s of this formula contains implicitly the
contributions of all flat connections on M’. We will try to separate the contribution
of the trivial connection in the case when both M and M’ are rational homology
spheres.
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We start with the case of G = SU(2). Our main tool is the finite version of the
Poisson resummation formula. The Poisson resummation formula states that for any
function f(a).

> f(a) =Y [daexp(2miol) f(a). 3.1)
aEZ IeZ
Therefore we would like to extend the sum in Eq.(1.10) from 1 Sa =K -1 to

Z. First of all, since U(pq is equal to zero at o = 0,K, we can add these points
to the range of summation. We can also double this range:

1 K

K
;) - (32)

[\

a= —K+1

because the summand is even. Finally, we use a “regularization” formula,

f f(@) =2K lim 2 e ™ f(a), if f(o+2K) = f(2). (3.3)

1= —K+I1 L1y/A

Thus we obtain a sum ) _, to which we apply Eq. (3.1):

Z(M'3k) = &K lim e2% f doue ™ expmila)Z,(M, #; )00 . (3.4)
€7 —x

At this point we make the following assumption: the large & limit of the integral
over o in Eq. (3.4) is equal to the sum of the contributions of the special points o,
of the integrand, e.g. stationary phase points, breaks, poles, ezc. Their contribution
depends on the local properties of the integrand. Apart from the regularization factor

e ™ the set of critical points for all / € Z and their respective contributions
exhibit the same symmetries as the original summand of Eq.(1.10), i.e. they are

. 2 .
even and have a period of 2K. The role of the factor e™™* to the leading power
in ¢ is to suppress the contribution of each critical point o, by a factor e+,

Therefore we can play Eq. (3.3) backwards: we drop K lim,;_me% and e~™* while
limiting ourselves to the contribution of only those critical points which belong to
the fundamental domain

0<a <K. (33)
In other words,
Z(M'sk) = 90 S f do ™72, (M, k)0 "7 (3.6)
€T -
[0S 2x K]

here the symbol f ~ means that we take only the contributions of the special
[0=ax K]

points (3.5). If o, = 0,K, then its contribution to the integral of Eq.(3.6) carries
an extra boundary factor %

We assume that each of the special points in the domain (3.5) corresponds to
one or several connected pieces .4/ of the moduli space .#’ of flat connections on
M'. Consider a cycle in M’ which corresponds to the cycle C; on the boundary of
a tubular neighborhood of the knot #" in M. We will also call it C;. According to
Eq. (1.5), the holonomy of a flat connection related to a special point o, along C,
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is equal to exp(%cx* ), so the contribution of the trivial connection on M’ should
come from the point o, = 0.

We now concentrate on the point o, = 0, so we are interested only in the values
o < K. Therefore we can use a 1-loop approximation given by the formulas (1.13)
and (1.14) for the partition function Z,(M, #"; k). Some of the terms Zo(//")(M, A k)
may have a special point o, = 0. We have to determine which of them do contribute
to ZU(M’; k).

We are going to present some arguments why the contribution to Z((M’; k)
may actually come only from ZS”(M, A3 k). Suppose that a contribution of the
special point o, = 0 of a particular term Z\““)(M, #"; k) to the r.h.s. of Eq.(3.6)
corresponds to the contribution Z("(M’; k) of the trivial connection to the r.h.s of
that equation. Let us multiply the integrand of the path integral for Z(M'; k) by an
“observable” factor

O(C, ) = TrzPexp (fA“dx“> 3.7)
c

for f < K, thus turning it into Zg(M',C; k). According to Eq. (1.14) in the 1-loop
approximation,
Z{M', C3k) = BZM's k). (3.8)

A surgery formula (3.6) can also work for Zg(M’, C; k) if we add the factor (3.7)
to Z,(M, A", k) transforming it into the Z,3(M, (A, C); k). According to Eq. (1.14),
the effect of the factor O(C,f) on Zﬁ’”")(M, A3 k) is (if we forget for a moment
about an integral over .#.) to multiply it by a factor TrgPexp( fCAﬁf)dx“). This
factor turns into f§ if .#,. is a trivial connection. This is not only a sufficient but
also a necessary condition if .#, is a point.

If /. has a nonzero dimension and there is a nontrivial integral in Eq. (1.14),
then we may use the following reasoning. Characters form a basis in the space of
functions on the maximal torus of the Lie group (in our case it is U(1) C SU(2)).
Therefore we can take a linear combination of observables with different values of
f so that they form a smooth slowly varying function on the space of conjugation
classes of holonomies Pexp (fc Audx*), which is equal to 1 at identity. This new
observable is equal to 1 on ZU(M'; k) (that is, if we multiply the integrand of the
path integral for Z(")(M’; k) by that observable, then the value of the path integral
does not change at 1-loop). However different choices of the smooth function will
affect the value of the integral over .#, in Eq. (1.14). Therefore we conclude that
the contribution of the trivial connection on M’ to Z(M'; k) comes only from the
contribution Zo((”)(M, A3 k) of the trivial connection on M to Z,(M, X ; k).

According to Eq. (2.20), if M is a RHS, then o = 0 is not a singular point of
Zg(('r)(M, A5 k). Therefore its only chance to contribute to the integral (3.6) is to be
a stationary phase point. According to Egs.(1.9), (2.19) and (2.20), the relevant

part of the phase is
%(ngv) o2 + 2mi (1+g>a. (3.9)

We see that « = 0 can indeed be a stationary phase point if we put n =0 in
Eq.(1.9) and / = 0 in Eq. (3.6). Now it remains to substitute Egs. (1.9) and (2.20)
into the r.h.s. of Eq.(3.6) and add an extra boundary factor % Then we come to
the following



286 L. Rozansky

Proposition 3.1. If M and M’ are rational homology spheres and M’ is constructed
by a rational surgery UP? on a knot A" in M, which has a self-linking number
v, then the trivial connection contribution to Witten’s invariants of M and M' are
related by the formula

Z(")(M/;k) Z(tr)(M o 2eLd) sign (q) Pt n51gn( \)
2K|611

X exp [21< (12s(p,q) - (5 + v) + 3sign (-q’f + v))]

X f dosin (Kq) aJ (o, K)exp {2]71{ (g +v> zxz} ; (3.10)

[1*-0]

here the function J(a, K) comes from Eq. (2.20), it is a Feynman diagram con-
tribution of the trivial connection to the Jones polynomial of A" and satisfies the
properties (2.22)—(2.25).

The integral f tofo in Eq. (3.5) should be calculated in the following way:

the preexponential factor sin (2> )ocJ (o, K) should be expanded in K= series with

the help of Eq. (2. 22) then each term should be integrated separately with the
gaussian factor exp|sz ( 24 yv)a?].

According to this prescription a term D,, ,«”K ™" in the expansion (2.22) con-
tributes up to the (n — %)™ order in the loop expansion of Z(")(M’; k). Therefore
the limitation (2.23) leads to the following

Corollary 3.1. Only a finite number of Vassiliev’s invariants participate in a
surgery formula for Z"W(M'; k) at a given loop order.

In particular, we present explicit surgery formulas for the first two loop corrections.
In the notations of Eq. (1.13),

(tr) (tr)
&1 My _ =|p+vq|” Ze’s (M) (3.11)

. 1 /p 1. p
SO0 =00 +3 st )~ (§ ) + g (£ +)

1 (D2 2 11 )
| == . (3.12)
P 2n2 12 ¢?
( g " v) 1
The first formula is consistent with Eq. (1.14) which predicts that for a RHS,

5" — /2K ord Hi(M, Z)] 3 . (3.13)

As for Eq.(3.12), it transforms into Walker’s surgery formula [15] for Casson’s
invariant of a RHS* if we substitute

SM) = 3hcw (M) (3.14)

4 1 am thankful to K. Walker for checking this.
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and recall the relation (2.25) between D,, and the second derivative of the
Alexander polynomial. Thus we conclude that the conjecture of [5] can indeed
be extended to all RHS:

Proposition 3.2. If M is a rational homology sphere, then the 2-loop correction
to the contribution of the trivial connection to its Witten’s invariant (defined by
Eq. (1.13)) is related to the Casson—Walker invariant according to Eq. (3.14).

In the case of a general simply laced Lie group G the surgery formula (3.10) takes
the form

Z(tr)(M/;k) - Z(tr)(M;k)[ZSign (q)]|A+| Le—-% dimG sign(%Jr\')

(Klgh™2* 7]

X exp [j—:pz (125(19, q) — (s + v) + 3sign (—5 + v>>]
x [ dal| II (a.lil)sin(l(a-)))
(1e=0) | ieds (P * %) Kq !

% J(o, K ) exp [% (5 i v> ocz] , (3.15)

here |W| is the number of elements in the Weyl group and the integral goes over
the Cartan subalgebra. The first two loop corrections are

dim G

s 1 [2n 1 2

= = 1
e VolG | K ord Hi(M,Z) ’ (3.16)
SM) = 6p* hew(M) . (3.17)

A simple formula

[daexp [% <§ + v) az] 11 (o - &) sin [K—n—(oc . li)]

aeay (P ) q
_ e%’dlmGsign(%—ﬂ-) lWI [Sign (q)] |44]
2|q|
—dlZmG . 5
rank G | P ITT P
x K™% ———|-vl exp |~ (3.18)
q ( K q(--+ v))

allows an easy check of an obvious generalization of relations (3.11) and (3.12).

4. Beyond the Rational Homology Spheres

If a manifold M (M’) is not a RHS then the trivial connection is a point on
a connected piece M o(#}) of the moduli space of flat connections. Equations
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(2.20), (2.22) and (2.24) are no longer valid, since the 1-loop contribution of .#
to the partition function Z,(M, 2"; k) includes an integral

[ V/|&|Tr,Pexp <§Audx‘> , 4.1)

Ao

which may have singularities (e.g. poles or breaks) at a = 0.
We will determine the contribution of .#{ to Witten’s invariant Z(M'; k) when

M’ is a Seifert manifold Xg( ,'; ) X, can be produced by n surgeries
UPra) on fibers of S' x 2,; %, is a g-handle Riemann surface. We will sketch the
calculation leaving the details for [22].

The Seifert manifold X, (pq—ll, Zi) can be constructed by an S surgery® on a

special knot 7" belonging to the manifold M which is a connected sum of » lens
spaces L_, , and 2g manifolds S' x 72. The Jones polynomial of the knot %" (in
Witten’s normalization) is

ZM, A5 k) = HU( anp) gl (4.2)

ol

We put n = 0 in Eq. (1.9) in order to extract the contribution of .# to Z,(M, A "; k):

1
2\27¢ in H
Z80N M, A k) = (E) exp (_%?Og)

. o
|7 3EP) ot [T, sin (£ ) (4.3)
=V s (Fa)
here ) " "
P=1Tlp, =X H =ord H/(X,,Z). (44)

The expression in the r.h.s. of Eq.(4.3) has a pole at « = 0 of order 2g — I.
After substituting Eq. (4.3) into the surgery formula (1.10) and taking into ac-
count that U»9) = § and

nK -2

d’fr 4 K

Z(D(U( 9P1)) + 3sign (g)] , (4.5)

J=1

we get the following expression:

E 1= ‘JKZI ex in H sign (P) ein%ﬁg_zsign(%)
K P\72k P® 2] sin™ %7 (L)

n m (—q;,p;)
x [ e F2U " sin (%%) . (4.6)
J
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We should be careful in converting it to the integral (3.6), because the points
o = 0,K are singular. We shift the argument of the singular factor:

sin ™" 2972 (;Z;oc) — lim sin™"20*2 {I%(oc - is)} : (4.7)

e—0

Now we can add the points o = 0,K to the sum (4.6). The factor H;:I sin(%pij

makes the contribution to o =0 equal to zero, while the contribution of o =K
does not affect the local behavior at oo = 0. Thus the contribution of the piece
M|, containing the trivial connection to Witten’s invariant Z(X,; k) is equal to the
contribution of the special point o, = 0 to the integral in the following expression:

1—g .
Z("//())(Xg;k) _ % <_2_> Mem%sig“(%)

K V1P|

in (H . (H ‘
X exp o (F — 3sign (F) - 12125(%" Pﬂ)

2mixl

in H ,
== . 4.8
X exp ( KB ) (4.8)
For / = 0,a = 0 is a stationary phase point. Similar to the previous section we

conclude that

Proposition 4.1. The contribution of the | =0 term to the expression (4.8) for
ZU0)(X,; K ) is equal to

1—g . .
waty 1 (2 Sign(P) ;r3g