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Abstract: We study the cohomology of the Schwinger term arising in second quan-
tization of the class of observables belonging to the restricted general linear algebra.
We prove that, for all pseudodifferential operators in 3 + 1 dimensions of this type,
the Schwinger term is equivalent to the "twisted" Radul cocycle, a modified version
of the Radul cocycle arising in non-commutative differential geometry. In the pro-
cess we also show how the ordinary Radul cocycle for any pair of pseudodifferential
operators in any dimension can be written as the phase space integral of the star
commutator of their symbols projected to the appropriate asymptotic component.

1. Introduction

Current algebras play an important role in many quantum field theories. Historically,
they were introduced in an attempt to describe hadronic processes. The hope was that
the relevant physics would be captured by a restricted set of operators, the currents,
satisfying linear commutation relations among themselves, and by a hamiltonian,
bilinear in the currents, describing their time evolution. Even after the advent of
QCD as the "microscopic" theory of strong interactions, physicists have often used
current algebra techniques in the kinematical regions where the fundamental theory
becomes intractable.

When seen from the point of view of a more fundamental theory, the currents are
interpreted as composite operators in terms of the elementary fields, e.g. bilinears in
some fermionic matter field. Often, at the quantum level, the naive conservation laws
and commutation relations of the currents have to be modified by the addition of
extra terms. In particular, when they spoil the conservation laws of some classically
conserved current, these terms are referred to as anomalies. These anomalies are of
crucial importance for the physical applications of the algebra; for global algebras
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they are known to determine e.g. the decay rate of π mesons, while for local algebras
one is confronted by unitarity problems if the extension cannot be eliminated by
choosing the particle content of the theory properly.

When appearing directly in the current-current commutation relations, these
terms are also referred to as Schwinger terms because originally such terms were
introduced by Schwinger in the context of QED [Sch]. From the point of view of
the fundamental theory, they should be generated by the regularization procedure
needed to make the current a well-defined composite operator. Their effect on the
commutation relations can be understood in terms of Lie algebra cohomology as
giving a certain central or abelian (perhaps even non-abelian) extension of the naive
current algebra.

We will only consider the case where the currents are bilinear in some fermionic
field. In 1 4- 1 dimensions we know from many thoroughly studied examples
(e.g. aίfine Kac-Moody algebras [BH, Kal, Mo]) that normal ordering suffices to
make such currents well defined and that, in general, central extensions are gen-
erated. In 3 + 1 and higher dimensions the situation changes dramatically in that
normal ordering alone is not enough to render the bilinear expressions for the cur-
rents well defined. However, although in perturbation theory a (wave function)
renormalization that successfully eliminates this problem can be implemented, it is
still not understood how to define the currents in a completely regular fashion.

As we will discuss extensively below, some of these concepts can be rigorously
formulated using the language of second quantization. In particular, to any observ-
able in the one-particle Hubert space, one can associate a fermionic bilinear acting
in some Fock space. From this point of view, the ordinary currents are thought of
as second-quantized multiplicative operators, and in dimensions higher than 1 + 1
they require further regularization in addition to normal ordering.

It is of interest to isolate the observables for which normal ordering is suf-
ficient even in higher dimensions. These form what is known as the restricted
general linear algebra gires of the one-particle Hubert space. In particular, we will
show that it is possible to characterize these operators explicitly by considering
only pseudodifferential operators (ΦDOs). This can hardly be regarded as a loss
of generality, since all the operators of interest in physics can be regarded as
ΦDOs of some kind. The real restriction is in considering only operators in glres.
Nevertheless, the study of gίres is of great interest for at least three independent
reasons:

1. The approach works in (1 + 1 )-dimensional spacetime, in the sense that nor-
mal ordering in this case suffices to regularize most operators. In particular, all
affine Kac-Moody algebras can be understood in this way.

2. In higher dimensions glres represents a simple subclass of operators that can be
studied very explicitly, still displaying non-trivial properties such as the presence of
Schwinger terms in their commutators. Any future understanding of representation
theory of higher-dimensional current algebras must eventually agree with the results
obtained for this subclass.

3. glres may actually be of crucial importance in developing the representation
theory mentioned above. It has recently been proposed by Mickelsson [Mi3] that
the elements of gϊres should be used as regularized versions of the more singular
operators one is actually interested in. gίres should play a similar role in the study
of the generalization of higher-dimensional current algebras recently discovered in
[CFNW, Fe].
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Normal ordering of the second quantized ΦDOs in glres generates Schwinger
terms which appear as two-cocycles of the underlying Lie algebra. As such, they
define a central extension glres of glres. However, when discussing ΦDOs one finds
that the requirement of making them smooth at zero momentum introduces a reg-
ulating function, i.e. the Schwinger term becomes regularization dependent. This is
an unwanted feature of the procedure, and it is crucial to find a way to extract the
cohomological information, or, in other words, to relate the cohomology class of
the Schwinger term to one of the known cohomologies in the space of ΦDOs. How
this can be done is one of the two main results of our paper:

• The Schwinger term for ΦDO's in glres lies in the same cohomology class
as the so-called "twisted" Radul cocycle [Mi4], a slightly modified version of the
well-known Radul cocycle used in non-commutative differential geometry.

Our second main result (that will actually be proven first) is not related in any way
to the structure of glres, but is a general result on the cohomology of ΦDOs:

• In any number of dimensions n, the Radul cocycle of two arbitrary ΦDO's
(not necessarily in glres) can be written as the integral over all phase space of their
commutator projected onto the component with asymptotic behavior |/?|~n.

The paper is organized as follows. After some introductory material on second
quantization and Schwinger terms in Sects. 2 and 3, respectively, we introduce
ΦDOs in Sect. 4. These short sections cover only well-known material and are
added primarily in an attempt to make the paper easier to read and to a certain
extent self-contained. In Sect. 5 we prove that the Radul cocycle can be expressed
as a commutator as stated above. In Sect. 6 we characterize the ΦDOs that belong
to glres and use this characterization in Sect. 7 to relate the Radul cocycle to the
Schwinger term. Some additional remarks are added in Sect. 8 and we mention a few
cases where our results are directly relevant, namely, affme Kac-Moody algebras
[BH, Kal, Mo] in 1 + 1 dimensions, Mickelsson-Faddeev-Shatashvili algebras in
3+1 dimensions [Fa, FS, Mil] and a recently proposed extension of the algebra
of maps from an ^-dimensional manifold into a semisimple Lie algebra [CFNW,
Fe]. We plan to return to these examples, particularly the last one, in a future
publication. For some recent results in this area, see [BKK, CM, La2].

2. From First to Second Quantization

Consider a particle moving in Minkowski space RM\ In quantum mechanics, the
dynamics of such a particle is specified by giving the time evolution of its wave
function Ψ : Rn —•> V up to an overall complex phase. Here V denotes the M-
dimensional complex vector space describing the other degrees of freedom of the
particle, namely spin and color. Throughout this paper we will only consider the
case of half-integral spin. "Color" here simply means any internal symmetry the
system may have.

To be specific, we will in Sect. 6 restrict our attention to (3 + 1 )-dimensional
Weyl spinors transforming in the fundamental representation of the color group
SU(N). The wave function Ψ is then valued in the (M = 2A/")-dimensional complex
vector space V = Cs

2

pm 0 C^ l o r. The restriction to Weyl spinors in 3+1 dimensions
will be made because, on the one hand, this is the most interesting case due to its
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direct connection to chίral gauge theory and, on the other hand, it is simple enough
to allow explicit calculations, yet general enough to display all the issues we want to
discuss. However, the analysis can be repeated for particles with other spins [Lai].
In any case, all that is said in this and in the following section depends only on
the fermionic nature of the matter field and not on the specific representation or
spacetime dimension.

We must of course restrict ourselves to square-integrable wave functions form-
ing the first-quantized Hubert space Jf. At the level of quantum mechanics, the
observables are described by self-adjoint operators A — A^ acting on ffl. We do not
need to worry about questions of domain in the first-quantized Hubert space since
all operators of interest to us are bounded.

However, as is well known from the early days of quantum mechanics this pic-
ture is inadequate if we want to describe the relativistic dynamics of elementary
particles because the energy E of the free particle is not bounded below and cre-
ation/annihilation processes cannot be described. In mathematical terms, Jf carries
a representation of the algebra of observables (to which E belongs) that is not
highest (actually lowest) weight. The solution to this problem in the Hamiltonian
formulation is also well known; precisely because of its privileged status in defining
the lowest weight, one uses the first-quantized energy operator E to define a polar-
ization, i.e. a splitting of the Hubert space into non-negative and negative energy
spaces Jf = Jf + Θ Jf _. Then one introduces a new Hubert space SF (the Fock
space), a lowest weight vector |0) G J^ (the vacuum), and a set of operators acting
on #", a(Ψ) and a^(Ψ) (the annihilation and creation operators, respectively), sat-
isfying a(Ψ)\0) =0ifΨeje+ and a\Ψ)\0) = 0 if Ψ e J f _. Since we are only
considering fermionic fields, the spin-statistics theorem requires that these operators
satisfy the anti-commutation relations {a(Ψ\),ά*(Ψ2)} = (Ψ\\Ψi).

With these assumptions, the Fock space carries an irreducible representation of
the canonical anticommutation relations [Ar]. One can then represent the algebra of
observables in the Fock space, i.e. second quantize the theory, as follows. Consider
a basis of eigenfunctions {φn} £ 3t? of E. Here n is a generic multi-index labeling
the elements of the basis and we write symbolically n ^ 0 iff φn £ Jf + and n < 0
iff φn e 34?- . Also, for the sake of brevity, we define an = a(φn), a\ = a\φn) and
Amn = (φm\A\φn). The representation of A in the second-quantized Fock space is then
given by the operator A = ^2mnAmn : a^an :, where the colons represent the normal
ordering necessary to ensure that the operators have zero vacuum expectation value.
One way to realize the normal ordering is by setting

-anάjn for n and m < 0 ,
. (1)

aJ

man otherwise .

If such a representation exists, it is manifestly unitary and lowest weight, i.e. E is
bounded below by the vacuum energy E\Q>) — 0.

What can go wrong in going from first to second quantization? In other words,
how do we make sure that A exists? The condition to check is that A creates states
of finite norm out of the vacuum, i.e. that ||v4|0)|| < oo. This norm can be computed
explicitly as

/ ^ ] ) , (2)
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where sign(£) = ±1 on ^C±. Hence, A is well defined iff the square of [sign(£),;4]
has finite trace in #?. Operators whose square have finite trace are known as Hilbert-
Schmidt (HS) operators. With respect to the polarization 2tf — J'f+ θ 2tf- an arbi-
trary operator A and, in particular, the sign of the energy operator can be written
as

\ ( 0 \
- i

Requiring the commutator [sign(E),A] to be HS is equivalent to requiring that the
off-diagonal blocks of A be separately HS. In order for the algebra of observables
to close under this property, one must also require that the elements be bounded
operators. This algebra is called the restricted general linear algebra gίres:

glres = {A : ^f -> Jf bounded | [ήgn(E\A] Hilbert-Schmidt} . (4)

At this point, we would like to make a short digression on the precise definition
of the trace in order to avoid confusion. Similar comments can be found in [LanM].
An arbitrary bounded linear operator S on a Hubert space Jf7 is said to be trace
class (see e.g. [PS, Si]) if its action on an arbitrary vector Φ e J^ can be written
as

where {φn} and {χm} are two orthonormal Hubert bases of J^7 and J2 W < °°
(Notice that it may not be possible to choose ψn — χn if S does not have a complete
set of eigenvalues.) For trace class operators the trace is defined to be

Ύr(S) = ΣMΨk\Xk). (6)
k

This series is obviously absolutely convergent since \(ψk\Xk}\ = l Such a trace is
basis independent; the two families {ψn} and {χm} define the operator, not the trace.

In our applications, however, the Hubert space comes with a polarization and
the kind of trace that we need is

ΊrcS = Tr (S+

o

+

 s ° )= ^τ(S + sign(£)S sign(£)), (7)

with the traces in the middle and on the right-hand side defined as in Eq. (6). By
considering S = [sign(E),AY[sign(E),A], where A G glres, we see that we could use
Tr c instead of Tr in Eq. (2). Clearly, if S is trace class the two definitions coin-
cide. However, the trace Trc is convergent for a larger class of operators (called
"conditionally trace class" in [LanM]) since the combination S -f s ign^)^ sign(£)
projects out the potentially too singular off-diagonal terms. The price one has to
pay is that the definition of Trc depends on the choice of polarization. Obvi-
ously, the projection S ι—> (1/2)(<S + sign(jE')5sign(J5')) is idempotent, and therefore,
whereas Tr(S) = (l/2)Tr(S 4- s i g n ^ S s i g n ^ ) ) only for truly trace class operators,
Tr c(S) = (l/2)Tr c(S + sign^SsignCE)) holds for the whole class of conditionally
trace class operators.

Unfortunately, the operators of ordinary quantum mechanics, in general, do not
admit a second-quantized representation like the one described above, i.e. they do
not belong to glres, and one therefore needs to renormalize the vacuum expectation
values [FT, MR, Pil, Pi2]. As an illustrative example, consider a smooth func-
tion f{x) with compact support and define the multiplicative operator (FΨ)(x) =
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f(x)Ψ(x). It is readily checked that F|0) has finite norm, i.e. belongs to glres, only
in 1 + 1 dimensions. Nevertheless, as mentioned in the introduction, there are many
reasons for looking at glres, perhaps the most important one being that this allows
one to obtain rigorous results for a specific class of observables that will eventually
have to be matched by any more general method.

3. The Schwinger Term as a Two-Cocycle

As mentioned in the introduction, one of the subtleties arising in quantum field
theory is the appearance of c-number terms in the commutation relations of various
operators, so-called Schwinger terms. A simple example of such a term is the one
present in the commutator between the space and time components of the normal-
ordered electromagnetic current Jμ(x,t) (for, say, QED). The naive expectation that
[Jo(x,t\Jk(y,t)] = 0 is frustrated by the fact that current conservation would then
require Jo to vanish. Schwinger postulated the appearance of the derivative of a δ-
function on the right hand side of the equation, that, vanishing upon integration, does
not spoil the definition of electric charge: [Jo(x,t),Jk(y,t)] — const x idkδ(x — y).
That this term actually arises can be proven rigorously in 1 + 1 dimensions by tak-
ing the current to be a normal-ordered fermionic bilinear and using point-splitting
regularization.

The advantage of restricting ourselves to the operators in glres is that the same
rigorous calculations can be straightforwardly generalized to arbitrary dimensions,
if only for a very restricted class of operators. In fact, at this abstract level, nothing
depends on the dimension of spacetime, i.e. on the particular choice of Jf. Let us
thus consider A,B £ glres and set

[A9B] = [£B]-^CS(A,B). (8)

(The factor —1/2 is inserted for later convenience.) By taking the vacuum expecta-
tion value of both sides, and using the fact that (0|0) = 1 and that (0|[^5]|0) = 0
we obtain the Schwinger term

cs(A,B) =-2(0\[A,B]\0)

= -^Ύv(sign(E)[[sign(ElAl[sign(E\B]))

1 ( 9 >
= --Ίr(sign(E)[sign(E%A][sign(E),B])

= Ίτc{[sigβ(E)9A]B) .

The traces are convergent precisely because of the HS property that we have as-
sumed for the operators A and B. Moreover, the Schwinger term (9) turns out to
be a two-cocycle of the algebra gίres defining a non-trivial central extension known
as gίres.

Let us at this point recall some basic elements of Lie algebra cohomology in
order to keep our discussion self-contained. For an extensive discussion of Lie
algebra cohomology and its relation to quantum field theory we refer the reader to
e.g. [Ka2, Ki, Mi2]. Given an abstract Lie algebra if, an ft-cochain with values
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in C is defined as an anti-symmetric /2-linear map cn\5£ί\^£f\ '-f\^£-^C. We
denote the vector space of such w-cochains by Cn = CΛ(if, C). The coboundary
operator δ : Cn -> Cw + 1 is defined by

!/Γ I „ Y X X } (]()}

where a caret indicates an absent argument. In particular,

( Π )

δc (X\,X2,X3) = C ([X\,X2],X3) — C ([X\ ,Xτ>],X2) + C ([*2>*3]>*1 )

The basic property of (5 is its nilpotency, i.e. δ2 = 0. Cochains such that (5c = 0 are
called cocycles (or closed cochains), and cocycles of the form c = δλ are called
coboundaries (or exact cochains). The abelian groups obtained by considering linear
combinations of cocycles modulo coboundaries define the Lie algebra cohomology
of ££. The only application of Lie algebra cohomology that we will need in this
paper is that the second cohomology group H2(^, C) describes the possible central
extensions of =Sf. Namely, on the vector space J ^ φ C the commutator

defines a Lie algebra & (i.e. satisfies the Jacobi identities) if and only if c(x,y) is a
two-cocycle. Furthermore, two two-cocycles define isomorphic Lie algebras if their
difference is a coboundary. An algebra Q? obtained in this way, a central extension
of S£ by C, is thus specified by an element of the second Lie algebra cohomology
group H2(£P, C).

Comparing with the definitions above, it is easily checked that the Schwinger
term (9) is in fact a non-trivial two-cocycle sometimes also referred to as the
Lundberg cocycle [Lu]. Understanding the explicit form of such terms and their
relation with other kinds of cohomologίes, namely those that arise in the study of
pseudodifferential operators (ΦDOs), will be the scope of most of the remainder of
this paper.

4. Basic Facts About Pseudodifferential Operators

In order to keep the paper self-contained we present here some well-known facts
about pseudodifferential operators (ΦDOs) that will be needed later on. We only
give the basic results without proofs and refer the reader to e.g. [H, LawM, T, VG]
for more detailed discussions.

Consider the Hubert space Jtf = l?{Rn) ® CM of square integrable functions
ψ : Rn -• CM of x. The ΦDO S acting on Jf is defined by

Sψ(x) = Jeix * Ps{χ9p)^p)—JL 9 (13)

where ψ(p) = J e~ιx ' pφ(x)dnx is the Fourier transform of φ and s : Rn x Rn —•
cjI(M, C) is a smooth function assumed to have compact support in x and at most
polynomial growth in p. The function s(x, p) is called the symbol of S which we
write as sym(xS') = s.
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A ΦDO S (or its symbol s) is said to be of order m, written as ord(5) = m,
if it has a leading asymptotic behavior for large \p\ of the kind s(x9 p) = Θ(\p\m)
uniformly in x. Here we will only be concerned with ΦDOs of integral order.
A ΦDO whose symbol decreases faster than any power of p is called infinitely
smoothing. Two ΦDOs S and R are said to be equivalent if they differ by an
infinitely smoothing operator. We will denote such an equivalence by S ~ R for the
operators, or by s « r for their symbols.

The importance of this equivalence relation is that it allows for the introduction
of asymptotic expansions; consider the sequence {sk(x9p)9k ^ m}9 where Sk is a
smooth symbol of order k. A symbol s of order m is said to have the asymptotic
expansion

if, for each integer r ^ m,

o r d s ( x 9 p ) - Σ s k ( x > P ) ) = r - l . (15)
V k=r J

It is often most convenient to assume that the symbols Sk in the asymptotic expan-
sion (14) are homogeneous of degree k in p for \p\ > δ and smooth everywhere:

Sk(x9λp) = λkSk(x,p) for λ > 1, and \p\ ^ δ > 0 . (16)

This does not represent a loss of generality, since any ΦDO has such an asymptotic
expansion. The necessity of imposing \p\ ^ δ arises from the fact that a homo-
geneous function is not, in general, smooth at the origin; in this sense, δ should be
thought of as an infrared regulator to be taken to zero at the end.

Any asymptotic expansion (14) defines the symbol of a ΦDO up to an infinitely
smoothing operator and we can therefore use the same equivalence sign " « " be-
tween two asymptotic expansions. One way to convince oneself that this is true is to
introduce a C°° function φ : R+ —> R such that φ(t) = O for t < 1/2 and φ(t) = 1
for t > 1, and set

It can be proven that s(x, p) is the symbol of a ΦDO of order m. Although there
is a lot of arbitrariness in the choice of s(x, p) it should be evident that two such
symbols can only differ by an infinitely smoothing operator. Note that the regulating
function φ in the series (17) for s(x9 p) above has the effect of truncating the series
for any given value of \p\ to a finite number of terms, and that the number of terms
grows with increasing \p\.

The basic operation in symbol calculus is the star product, corresponding to the
(noncommutative) multiplication of operators on Hubert space. In other words, the
star product of the symbols of two operators S and R is defined as the symbol of
the composite operator:

sym (S) * sym (R) « sym (SR). (18)

The asymptotic expansion of the star product of two symbols is

°° ( - 0 * dks Bkr
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and we may formally write

( 2 0 )

Note from the first term in the expansion (19) that oΐά(SR) — ord(S) -f- ord(7?).
Although we have not explicitly inserted one in (19), a regulator is needed if one,
as we do here, wants to deal with smooth symbols only. Consequently, (19) defines
such a smooth function only up to an infinitely smoothing operator.

The asymptotic behavior of the symbol also determines whether the correspond-
ing operator is bounded, HS or trace class; in any dimension n, S is bounded iff
ord(S) S 0, HS iff ord(*S) < -(n/2) and trace class iff ordOS) < -«, the last two
inequalities being in the strict sense. For a trace class ΦDO one could, of course,
compute the trace as in Def. (6), which by Fourier analysis would lead to

There are, however, a couple of problems with this expression. One is that it is not
well defined on the equivalence classes of ΦDOs; for instance, T r β " ' Δ ' φ 0 . This
means, for example, that one should be careful in using asymptotic expressions like
(19) inside this trace. Another problem, which actually turns out to be a blessing in
disguise, is that, if we fix some specific order for evaluating the integrals and the
finite-dimensional trace tr, Eq. (21) gives a finite number for a much larger class
of ΦDOs. For example, if we decide to take the finite-dimensional trace first, then
the r.h.s. of Eq. (21) will vanish for any symbol of the type s(x, p) = f(x,p)T,
f : Rn x Rn —>• C, T G gl(M, C) traceless, independently of the asymptotic behavior
of s. Thus, by choosing a particular order of integration, we can considerably enlarge
the set of symbols yielding a finite answer. In [Mi4] it was argued that the right
order is to take the radial momentum integral, the only potentially divergent one,
after the trace and all other integrals. The reason why this is the right thing to do
will become abundantly clear from the calculations in Sects. 5, 6 and 7.

Quite independent of the above concepts is another trace that one can define on
the space of ΦDOs. This trace, known as the Wodzicki residue [Ad, G, KK, Ma,
W], has many advantages over the one defined by Eq. (21). Thus, consider a ΦDO
S with symbol s having an asymptotic expansion of the form (14). The Wodzicki
residue of S is defined as

^ ι

9 (22)

where η = pμdxμ is the canonical one-form, Sn~ι is the sphere \p\ — δ in momen-
tum space and we are assuming, as always, that s-n is homogeneous for \p\ ^ δ.
Note that the integral in Eq. (22) is independent of the radius of the sphere δ, as
long as we assume s-n to be homogeneous outside, and we could also consider
the limit lim<5_+0+ as a way of removing the infrared regulators. Since we are only
considering flat space, Eq. (22) reads:

Res(^) = -f- J dΩfdnx tr s-n(x,p), (23)
ylπ) \P\=δ D
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dΩ being the angular integration over the sphere \p\ — δ. The residue is a linear
functional operator defined on the space of ΦDO equivalence classes. Notice that
it vanishes identically for trace class operators.

The Wodzicki residue can be used to construct a non-trivial two-cocycle on the
Lie algebra of ΦDOs by

cR(A,B) = Res([log\p\,a]**b), (24)

where a = symA, b — symi?. This so-called Radul cocycle [Rl, R2] defines a non-
trivial central extension of the Lie algebra of ΦDOs. It also arises in applications
of non-commutative differential geometry [Cl, C2].

The reader should note that log|/?| is really a singular function at the origin.
However, the residue is a boundary integral and therefore independent of the way
log |/71 is regularized at the origin. We also would like to mention that log \p\ does
not have an asymptotic expansion in the sense of Eq. (14). This does not cause
any problem, however, since only its derivatives appear in the residue.

5. An Important Lemma: The Radul Cocycle as a Commutator

In this section we prove the following identity, to be used in Sect. 7:

cR(A,B) = - $ ^P-Jdnxtx([a,b]A-n) • (25)

The importance of the order of the integrals on the r.h.s. is already clear at this
stage and will become even more obvious after the calculations. The integrand is
not the symbol of a trace class ΦDO; if it were, being a commutator, its trace
would vanish. However, by taking the integrals in the order indicated above, we
will be able to prove that the r.h.s is well defined (i.e. independent of the regulators
for the star product) and coincides with the Radul cocycle. Also, notice that the
resemblance of the r.h.s. with a coboundary δλ(A,B) — λ([A,B]) is illusory; the
apparent one-cochain

J^J (26)
Rn yiπ) D

does not exist since the integral does not converge for a generic element A in the
class of ΦDOs we are interested in (e.g. a = (1 -f \p\)~n)

After these words of caution, let us turn to the proof. Consider two smooth
symbols a and fe, homogeneous of degree ka and k^ for \p\ ̂  δ. We prove the
identity (25) for such symbols - the complete result follows from linearity.

Let N = ka + kb + n. This is the number of ^-derivatives needed to reach a
symbol of degree -n. Using Expansion (19) for the star product, the integrand of
the r.h.s. of Eq. (25) is written

No regulating function φ is needed in Eq. (27) because we are dealing with a
finite sum of smooth functions. Integration by parts in x is always allowed since
the symbols have compact support. We use this fact to move all x-derivatives to b
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and then identify the integrand as a total divergence:

213

R"

d" p Γ ,„

-(-If a

(-if ( dNa dNb

N\ \δpμ]...δpμN

δ2Nb

d"

dpμ]...δpμNdx^...dx"N

dma 2N-m-\i

(28)

8pμi m=o δPμ2... δPμm+ι δpμm+2... dpmδx^ .

dn p f d
= l~(2πγ jD

dxδ~p~μ

Vμ-

For later comparison with the Radul cocycle, we have defined the quantity

N-\
γ =

 ι tr T( l) m~ι

dpμi... dPμm+ι dPμm+

(29)

which is homogeneous of degree (—« + 1) for \p\ ̂  δ. Since the integrand is a
total divergence it follows that the integral is scale invariant, i.e. independent of an
ultraviolet cut-off. Thus, it can be written as a surface integral that may be pulled
back from infinity to δ:

(30)

Let us now calculate the Radul cocycle explicitly. The integrand is

tr([log|p|,α]* *&)!_„= tr

δpμ ... δPμN V dpμι ... δpμ

δnog\p\
. (31)

Here we need to integrate by parts not only in x but also in p, which is allowed
since

0x5,-1

(32)

when wμ is homogeneous of degree (—« + 1). This follows from the fact that the
l.h.s. of Eq. (32) is the integral of an exact form

= d
n L

(33)
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over a manifold with boundary d(D x Sn~ι) = 3D x Sn~ι, where ωμ vanishes due
to the assumed spatial boundary conditions.

In one dimension the /^-integral reduces to a sum over 5° = {±<5}. Equation
(33) does not apply in this case, but since the derivative of a homogeneous function
of degree zero vanishes, Eq. (32) holds trivially and formal partial integration is
allowed. We may thus shift all the ̂ -derivatives except one from log|/?| and use

t 0 o b t a i n

(2π)

dma

p 2 dpμ2... dPμm+ι dPμm+2... dpμN

Interchanging the order of summation and performing the sum over q,

brings the result

Res([\og\pla]**b) = - ~ J dΩfdnxpμVvδ^ , (36)
KZπ) \p\=s D

with Vμ as in Eq. (29). This proves the lemma. For later purposes, notice that one
can even take the limit lim(5_>0+ in all the equations above, effectively removing the
infrared cut-off from the picture.

Notice that any term in the asymptotic expansion of [#,£]* after tracing over
gI(M, C) and integrating over x can be written as a total derivative in p. Therefore,
any term of degree less than — n vanishes upon integration over p because of
the good ultraviolet asymptotic behavior. For the term of degree — n, on the other
hand, the integral becomes scale invariant instead of having the naive logarithmic
divergence. This we think is at the very heart of the nature of anomalies; they are
neither genuinely ultraviolet nor infrared, but exactly what is in between.

6. The Embedding of Ψqlτts in gί r e s in 3 + 1 Dimensions

Having discussed the basic properties of ΦDOs, we are now in a position to describe
the subalgebra of ΦDOs in glres, which we denote by ^gϊres From now on, we shall
work in three dimensions only but it should be clear how to generalize the results
to an arbitrary number of dimensions. As mentioned in Sect. 2 we consider the case
of Weyl fermions with an extra SU(N) degree of freedom so that J f = L2(R3)®
Cs

2

 i n 0 C^olor. As before, we shall restrict ourselves to symbols with compact support
D in the variable x. The spin algebra is generated by the usual Pauli matrices σμ

(μ = 1,2,3 are space indices).
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Since the energy of a free Weyl fermion is given by E = ~ίσμdμ. Strictly speak-
ing, E reverses the chirality of the spinor. However, for our purposes, we can assume
the existence of a fixed isomorphism between the two chiralities; the symbol as-
sociated to the sign of the energy is sym(sign(is)) = -pp. As such, this symbol
is singular and requires an infrared regularization. Even if we will never need it
explicitly, one way to regularize a symbol of this kind is to introduce a function φ
similar to the one used in Sect. 4, except that now φ(t) = 0 for t < δ/2, φ(t) — 1
for t > δ, and to set:

sym(sign(E))r=φ(\p\)j^=ε. (37)

We can now look for the conditions under which a ΦDO describes an element
°f <Λes> i e has a good second quantization. Let A be a ΦDO acting on Jf with
symbol

Φ,P)& Σak(*,p) (38)

From Sect. 2, Eq. (4), we must require that A be bounded and [sign(E),A] be HS.
Specializing the considerations of Sect. 4 to the n — 3 case, we must require for a
first of all that m = 0, and second that the HS condition

ord([e,fl]*) S - 2 . (39)

The most general symbol satisfying these requirements is given by the asymptotic
expansion

) , (40)

with

ao(x, p) = αo(x, p) + αo(*, p)ε ,

α_iθ, p) = -εεμ — (<xo(x, p) + αo(x, p)ε) + α_i(x, p) + ά_i(x, j9)ε , (41)

α^( ̂ , p) arbitrary for k g — 2 ,

where the expression ε/f denotes the derivative of the symbol ε with respect to pμ

and o(o, αo, α_i α_i are four smooth symbols, homogeneous of degree 0 and —1
and proportional to the identity matrix in spin space.

To verify that (41) is the most general solution of Eq. (39), expand the commu-
tator [ε,#]* and impose that the contributions of terms of degree 0 and —1 vanish.
This requires:

[,».! = o, ^ ( 4 2 )

where the commutators in Eqs. (42) are ordinary commutators and we are con-
sidering solutions for \p\ §: δ. The first of Eqs. (42) has solution CIQ(X, p) =
αo(x, p) + άo(x, p)ε, since the only 2 x 2 matrices that commute with ε are the

1 Strictly speaking, E reverses the chirality of the spinor. However, for our purposes, we can
assume the existence of a fixed isomorphism between the two chiralities.
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identity and ε itself. Plugging this solution into the second of Eqs. (42), we see
that it determines only the component of α_i that anticommutes with ε. If we
write β_i = ac_λ + aΛ_x, for the commuting and anticommuting component respec-
tively, we obtain aA_ι = ^εεμJ^(ao(x, p) 4- tio(x, p)ε), whereas the commuting part
is given by the most general solution ac_λ = α_i(x,p) + α_i(x,p)ε. There are no
further requirements on the star commutator and, therefore, terms of order ^ —2
are arbitrary. This completes the proof of Eqs. (41). We will in fact never need
the explicit solutions (41) but only use the properties (42), Eqs. (41) being given
for completeness only. A final remark to be made is that if we tried to solve the
second of the Eqs. (42) for \p\ < δ we would have encountered the problem that,
in general, the equation is not integrable because of the presence of the regulator.

However, these problems do not arise for \p\ ^ δ where ε = - π ^ making the

r.h.s. anticommuting with ε and allowing to solve for aA_x.

7. On the Cohomology of the Schwinger Term in 3 + 1 Dimensions

In this section, we prove the other main result of our paper: The Schwinger term for
operators in glres, represented by the cocycle (9) when restricted to the subalgebra
of ΦDOs ^gUs

cs(A,B) = J—^-JV3xtr([ε,tf]* * b), (43)

R3 (2π) D

is cohomologically equivalent to the "twisted" Radul cocycle, defined as

cm(A,B) = cR(sign(E)A,B) = Res([log \p\,ε * α]* * b)

= Res (ε * [log \p\, a]* * b) . (44)

Equation (43) should be interpreted as the limit

cs(A,B)= lim / Jd3xtv Σ ([ε>a]**b)\k
δ-^o+R3(2π) D ^0,-1,-2,-3

d3 ^ 4 5 ^

R3(2πyD

where δ is the infrared regulator introduced in Sect. 4. As we will see below, there
is no need for an ultraviolet cut-off because the potentially divergent terms will
turn out to be zero. Also, we denote by s|^_4 a smooth ΦDO (representative) with
asymptotic expansion Σk<-4Sk

The notion of the twisted Radul cocycle was first introduced in [Mi4]. To check
that CTR really is a two-cocycle is straightforward and will not be done here (see for
instance [Mi4]). What is not obvious, however, is that, despite the fact that expres-
sion (45) is not well defined on the equivalence classes of asymptotic expansions
of ΦDOs because of the ambiguity of the integral in the presence of a regulator,
its cohomology is still well defined in the sense that all dependence on the regu-
larization can be written as an exact piece δλ(A,B), the Lie algebra coboundary of
a one-cochain λ to be specified below.
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The equivalence between these two cocycles was shown to hold for a more
restricted class of operators already in [Mi4] and, subsequently, in [Fe] for another
small class of operators. We show here that the equivalence is in fact true for all
ΦDOs in glres. All previous results follow straightforwardly from this one. Also,
our proof keeps careful track of all the regulators and allows us to settle some
unresolved issues in the previous literature.

What we will prove is that, for any two operators A and B in ΨQ\VQS defined
through their asymptotic expansions of the form given in Eqs. (40) and (42), the
following relation holds:

cs(A,B) = δλ(A9B) + cm(A,B). (46)

Here cs and CJR are defined as in Eqs. (45) and (44) and

* α ) | ^ _ 4 . ( 4 7 )

The proof proceeds as follows: Because of the associativity of the star product, the
following relation between asymptotic expansions holds true:

[e,α]* * b « ε * [a,b]* + [ε * b,α]* . (48)

Now consider the asymptotic expansion of the l.h.s. in terms of the asymptotic
expansions of a and b. The terms of degree 0 and —1 do not appear because
[sign^),^] is a HS operator and B is bounded. The terms of degree —2 and —3
can readily be worked out:

[ε,*]. *bU = ([ε,a_2] - fe" Aβ_, _ {s^ao)bo ,

Pi λ

v ΰxμ 2

- iJL([e9a-2] - ^ Λ ^ - i - WV7Π^a<>)ΊΓΪbo ' ( 4 9 )

oppv ox*1 2 dxμoxλ ; ox?
Consider the functions of p arising by taking the finite-dimensional trace and the
integral over the compact domain D of x for these two terms:

(50)

The crucial fact is that these functions vanish outside the sphere \p\ = δ. For ex-
ample, in the case of F _ 2 , one can check that neither α_2 nor ac_x survives the
finite-dimensional trace and that the remaining terms combine to

F _ 2 ( D ) = - fd3x tr(ε%ε v - εμv)a0-—~-b0 , (51)
2J

D dx»dxv



218 M. Cederwall, G. Ferretti, B.E.W. Nilsson, A. Westerberg

which is zero for \p\ ^ δ because of the identity

εμv + εεμvε + εμεvε + εvεμε = 0 , (52)

following by taking two p derivatives of ε = εεε. In a similar way, the reader can
check that also F-τ>{p) vanishes for \p\ ^ δ.

Using these results, we can restrict the integration over p to the region \p\ ^ δ
for the first four terms (k = 0, — 1, —2 and —3) in the asymptotic expansion. (Ob-
viously, the behavior of these functions inside the sphere depends on the regulator.)
Now note that the integral over \p\ :g δ of any smooth symbol of degree k = 0,
— 1 or —2 vanishes as we let δ go to zero:

d3
 D

lim / —JLfd3xti(sk) = 0 for k = 0 ,-1 , - 2 . (53)

Using this fact, Eq. (45) can be written as

cs(A,B) = lim / — ^

Using the same property also for the asymptotic expansions on the r.h.s. of the
equivalence relation (48), and comparing with the definition (47) we obtain

cs(yl,δ) = W ( Λ ί ) + lim+ / 7j—τJ<

A^ (55)

7ϊ£
R3 \Δπ) D

Equation (46) then follows directly from the results proven in Sect. 5:

21m+ -f 7 ^ / ί / 3 χ t r ( [ ε * ^ α ] * l - 3 ) = - c Ksign(£)5,^)Ξc r a (^S) (56)

and

- 4 ) = 0. (57)

This completes the proof of Eq. (46). We remark once again that its importance
relies not only on the fact that it relates two seemingly independent cocycles for
the whole space ^glres but also on the fact that it shows that the cohomology of
the Schwinger term is well defined in terms of ΦDOs, all the dependence on the
regulators being swept into a coboundary.

8. Conclusions

In this paper we have shown how to relate two seemingly unrelated concepts such
as the Schwinger term arising in second quantization and the Radul cocycle. There
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are numerous applications, some of which have already appeared in the literature,

that relate directly to our general theorem. We simply quote some of them. To

begin with, one can indeed reproduce the extension arising in affine Kac-Moody

algebras from the quantization of maps from Sι to a simple Lie algebra [KP] and

in fact generalize these results from multiplicative operators to ΦDOs. Even more

interesting is the three-dimensional case, which we have discussed at length. If one

uses ΦDOs as regularizing counterterms for higher-dimensional current algebras, as

recently proposed by Mickelsson [Mi3, Mi4], one can reproduce the extension aris-

ing in the gauge commutation relations for anomalous chiral gauge theories directly

from the normal-ordered regulated gauge transformations. Other higher-dimensional

current algebras, like the one proposed by us [CFNW] also admit such a regular-

ization [Fe]. Work is in progress in trying to understand the possible representation

theory for these algebras and we hope to return on the subject in a later publication.
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