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Abstract: It is known, from a simple algebraic computation, that every Hilbert-
Schmidt operator on the Fock space admits a Maassen-Meyer kernel. Maassen-
Meyer kernels are a non-commutative extension of the usual notion of chaotic
expansion of random variables. Using an extension of the non-commutative stochas-
tic integrals which allows to define these integrals on the whole Fock space, we
prove that a Hilbert-Schmidt operator on Fock space is the sum of a series of
iterated non-commutative stochastic integrals with respect to the basic three quantum
noises. In this way we recover its Maassen-Meyer kernel which can be completely
described from the operator itself.

1. Introduction

It is well-known that every square integrable functional / of the Wiener process
W)f^o admits a preυisible representation, that is a representation as the sum of
a constant (its expectation) and a stochastic integral of a previsible process with
respect to W. But such a random variable also admits a chaotic expansion [7], that
is, a representation of the form

oo

- Σ / fn{h,...,tn)dwh---dwtn,
n—\ 0 < / i <••• <tn

where /„ is a square integrable function on the increasing simplex

The set 0>n of subsets of R + with cardinality n can be clearly identified to Σn.

The family {/„} can be viewed as a single square integrable function / on 0> —

U Λ ^ o = {0}), byj>uttmg/U) = fn(tu...9tn) if A = {0 < tx < - < tn} e &9

with the convention /(0) = E [ / ] . With this "short notation" ([3]) the chaotic ex-

pansion of / can be written / = J^f(A)dWA.

On the boson Fock space Φ over Z 2 ( R + ) , which is isomorphic to the space of
square integrable Wiener functionals ([15]), operators can be represented in two
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ways. Following Hudson and Parthasarthy's theory [6], some of them can be rep-
resented as a sum of non-commutative stochastic integrals of adapted processes of
operators integrated with respect to the three basic quantum noises: the creation, an-
nihilation and gauge processes, respectively denoted (Al)t^oΛ^7)t^o and (A°)t^o.
This representation can be seen as a quantum extension of the previsible represen-
tation of random variables.

The second kind of representation of operators on the Fock space Φ, is the
representation by Maassen-Meyer kernels, defined under their first form with two
arguments by Maassen [9] and under their definitive form with three arguments by
Meyer [11]. Maassen-Meyer kernels are to the non-commutative stochastic calculus
as what chaotic expansions are to the classical one. That is, a Maassen-Meyer
kernel is formally an operator T on Φ which admits a representation as a series of
iterated non-commutative stochastic integrals of scalar operators with respect to the
creation, annihilation and gauge processes. Using the same kind of "short notation"
as before, this can be written

T = J T(A,B,C)dA+dA°BdAc ,

where the subsets A,B and C can be supposed disjoint.
This has no rigorous meaning, in particular this form no longer respects the

adaptedness of the integrated processes and the convergence of the series has to
be studied. But one can formally describe how such an operator acts on a vector
of the Fock space. It suffices to determine the action of an operator of the form
dA^dAβdAς on a basis continuous element of the Wiener chaos dWL. One ob-
tains (cf. [10]) that the image Tf of / under T has for coefficients in its chaotic
expansion

f / , V,M)f(M +V+W)dM .

Although this is not rigorous, the latter identity is for some "good" operators and
some "good" vectors. This is the rigorous definition of Maassen and Meyer.

In this paper we study Hilbert-Schmidt operators on the boson Fock space Φ.
We first recall a result of [8] which proves by an algebraic computation that they
admit a Maassen-Meyer kernel. The aim of the paper is to prove that this Maassen-
Meyer kernel really corresponds to a non-commutative chaotic expansion.

Recall that the chaotic expansion property of square integrable Wiener function-
als can be proved by iterating the previsible representation. Indeed, every element
/ of L2(Ω,<F,P) can be written / = E [ / ] + /0°° ψsdWs, where ψ is a previsible
process in Z2(Ω,JΓ, JP). So, for almost all s, φs is an element of L2(Ω,^,P). Then
one has φs — ΊE[φs] + J^s[udWU9 for a previsible process (ψs[u)u£s Inserting this
identity in the representation of / , one obtains

oo t s

f = E[/] + jΈ[ψs]dWs + J Jφs[udWudWs .
0 0 0

One can iterate this operation arbitrarily many times. One then obtains two terms
in the representation of / : a sum of iterated stochastic integrals of deterministic
functions on the simplexes and an iterated stochastic integral of a previsible pro-
cess indexed by a simplex. The first term constitutes the beginning of the chaotic
expansion of / , the second term disappears when one iterates the procedure.
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In this paper we apply the same idea to the non-commutative case. That is, using
an extension of the notion of non-commutative stochastic integrals [2], we prove
that every Hilbert-Schmidt operator on the Fock space admits an extended integral
representation, with respect to the three basic quantum noises, valued on all the Fock
space. We show that this representation can be iterated arbitrarily many times. In
this way, we obtain a sum of iterated non-commutative stochastic integrals of scalar
operators which constitutes the beginning of a non-commutative chaotic expansion
of the operator, and another term which we prove converges to 0 in a certain
sense. We show that from this chaotic expansion one recovers the Maassen-Meyer
kernel. In this way, we obtain a description of the kernel in terms of the opera-
tor itself; this is a justification to the previous non-rigorous presentation of these
kernels.

There exists earlier literature about Hilbert-Schmidt operators and quantum
stochastic calculus on Fock space ([4,5 and 8]). The fact that Hilbert-Schmidt oper-
ators on the Fock space admit a Maassen-Meyer kernel was already observed. The
difference with this article is that here we want to apply to this case a new method
for finding operators admitting a Maassen-Meyer kernel. This idea is based on the
iteration of the integral representation procedure. This method, copied from the
classical stochastic calculus, consists in the following: each time one has a "good"
family of operators on the Fock space, admitting a non-commutative integral repre-
sentation such that the coefficients of this representation belong to the same family,
one can iterate arbitrarily many times this integral representation. If one has good
estimates, we can see that the constant terms of each integral representation will, at
the end, give the "non-commutative chaotic expansion" of the operator, while the
remainder will vanish. Then an algebraic computation will give the Maassen-Meyer
kernel of the operator. The aim of this article is to exploit the fact that the family
of Hilbert-Schmidt operators is such a good family. We apply our procedure to it.
This gives the announced results, and the hope that one can apply this method to
other families of operators.

2. Notations

Let (Ω, J^,P) be the Wiener space. Let (Wt)t^0 be the canonical Brownian motion
on Ω. For every t G IR+, let #7], resp. !F[t be the σ-field generated by {Wu; u ^ t},
resp. {Wu-Wt\u^ t}.

Let Φ, Φt] and Φ[t be the symmetric Fock spaces over respectively Z 2 ( R + ) ,
[0,t]) and L2([t, +oo[).
We then have the following identifications [11]:

Φ[t~L2(Ω,&[ί9P).

The orthogonal projection from Φ onto Φt] is denoted by Έt (it can be interpreted
as the operator of conditional expectation with respect to 3Ft\ For all u £ L 2 ( R + ) ,
let ε(u) be the stochastic exponential at the infinity of the martingale JQ u(s)dWs.
Recall that ε(u) is, in the Fock space structure, the coherent vector associated to u.
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For all s ^ t, let ut\ — wl[o,φ U[t = ut[U+oo[. Recall that the random variable ε(ut])

admits the previsible representation ε(ut]) = 1 + J^u{s)ε{us^)dWs. So

( t \
(ε(ut]\ε(vt])} = exp Jΰ(s)v(s)ds , for all u,υ e Z 2 ( R + ) .

V o /
Let L^(1R+) be the subspace of locally bounded elements of L2(1R+). Denote by
Sib the space of finite linear combinations of vectors ε(w), for u e Z^(IR+). Recall
that this subspace is dense in Φ.

3. Some Elements of Non-Commutative Stochastic Calculus

We present here only what is needed in the paper. For a more complete presentation
of the subject one should refer to the original paper of Hudson and Parthasarathy
[6], to Meyer's book [10] or Parthasarathy's book [13].

Note that all that is written in this article depends only on the structure of
Fock space. We will discuss this point in Sect. 4.

Recall that the boson Fock space Φ has a "continuous tensor product structure."
That is, for all t E IR+, Φ ~ Φt]& Φ[t. Recall that, in this structure, exponential
vectors are homogeneous elements: ε(u) = ε{uty) ® ε(U[t). In the following we omit
the tensor product symbol.

A family of operators (Ht)t^o from Φ into Φ, defined on S^ is an adapted
process of operators if, for all u £ lήb(ΊR.+ ), the mapping 11—>• Htε(ut]) is strongly
measurable and if, for all t e JR+,

(Htε(ut])e Φt]

\Htε(u) = [Htε(ut])]ε(u[t).

That is Ht = Ht\φf] ®I\<p[t in the structure Φ ~ Φt] 0 Φ[t-

An adapted process of operators (Mt)t^o is a martingale of operators if, for all
s ^ t, u,veL2

lb(l&+\ {ε(us]%Mt£(Vs])) = {ε(us]\Msε(vs])), that is

ΈsMtΈs = ΈSMSΈS(= MSΈS).

If T is an operator on Φ, defined on SΊb, the family (Tt)t^o of operators, defined by

Ttε(u) = [ΈtTε(ut])]ε(u[t\ t e IR+, u e 4 > ( ^ + ) ,

is a martingale of operators, called the martingale associated with T.
The three particular martingales of creation, annihilation and gauge, will be

respectively denoted {Af)t^,{Aγ)t^,{A°t)t^\ they verify

(ε(u)Xε(v)) = (ε(u\ε(υ))fΰ(s)ds,
o

(ε(u),A;s(v)) = (ε(u),ε(v))Jv(s)ds,

,4°ε(ιO) = (ε(u),ε(v))Jΰ(s)v(s)ds,
o
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for all t G IR+, u,v G L^(IR+). These identities a priori only define quadratic forms
on the Fock space, but they are proved to define operators on S°ιb in [6]. The same
remark holds for the identity (3) below.

If H°,H+,H~ are adapted processes of operators verifying, for all u G L^(1R+),
all t G IR+,

0

then the family of non-commutative stochastic integrals

Tt = jHs°dA°s + jHs'dA; + fH+dAf, t G R + , (2)
0 0 0

is well defined on Sib a s a martingale of operators verifying, for all t G 1R+, and
all u,v G L2^(1R+),

(ε(M), Γ,ε(ι;)) = / (ε(u),ΰ(s)v(s)H?ε(v) + ϋ(,s)//~ε(ι;) + ΰ(s)Hs

+ε(v))ds . (3)
o

Remark. 1. If the adjoint processes (7/ε)* are also defined on ^ and if they verify

f(\u(s)\\\(Hs

+yε(u)\\ + IKtfΓΓΦOII2 + |φ)| 2 | | (//;rε(M) | | 2)rfj < oo ,
0

then the process (Γ*)^o admits the integral representation

τ; =J{H?)*dA° + f(H+)*dA-+f(H-)*dAt .
0 0 0

Remark. 2. The non-commutative stochastic integral 7), can be defined for t — +oo
in the same way if (1) is verified for t = +oo.

For all ε G {+, o, —}, the martingale associated with the operator Jo°° H% dA\ is

In the following, each time one of these integrals appears we assume that the
processes H°,H+ and H~ verify (1).

4. Extension of the Non-Commutative Stochastic Integrals

Let us suppose that T is a bounded operator on Φ such that, on S^,

OO CO OO

T = J H° dA°s -f f H~ dA~ + J H^ dA^ ,
o Ό ' o

where H°, H~ and H^ are bounded operator processes. The definition (2) of
these integrals only defines them on the domain S^. As we want to study bounded
operators, we use the extension of the notion of non-commutative stochastic integral
given in [2].

We first need a little discussion to see that, despite the notations, the follow-
ing (and the entire article) is intrinsic to the Fock space structure. Let 2P be
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the set of finite subsets of IRΛ As & = \Jn0*n, where ^ 0 = {0}, and 0>n is the

set of /2-element subsets of R + ,« E N*, as each έ?n can be identified to a subset

of JR",^ acquires a natural measure denoted dA(A E &). One knows ([3]) that the

Fock space Φ is isomorphic to the Guiehardet space L2(έP); so every element /

of Φ is determined by its chaotic expansion, that is a square integrable function

/ on &. Furthermore, one has | | / | | 2 = f^ \f(A)\2dA. For each / E Φ one can de-

fine a family (fs)s^o such that, for almost all s, fs is an element of Φ whose

chaotic expansion is given by fs(A) = f(A U {.S})11ΛC[0,.S[ Indeed, one easily gets

that /0°° /^ \fs(A)\2 dA ds < oo. For any family (gt)t^o made of elements of Φ such

that gt E Φt] and Jo°° H^H^f < oo, one can define a new element of Φ, denoted

I(g) or /0°° gtdWu such that ϊ(g)(A) = 0 if A = 0 and 7(0)04) = ^ ( v 4 - ) other-

wise (where WA = max^l and A— = A\{VA}). Apply that to the family (ft)f^ol

one gets easily that I(f)(A) = f(A) if ^4φ0,O otherwise. Denote E [ / ] the element

of Φ such that Έ[f](A) = / ( 0 ) if ^ = 0,0 otherwise. One finally gets that, for
every f E Φ, f admits a representation, called preυisible representation of / , of
the form / = Έ[f] + /0°° fsdWs, with | | / | | 2 = E [ / ] 2 + /0°° \\fsfds. Of course,
in a probabilistic interpretation of Φ this representation is really the previsi-
ble representation of / , but as we have seen, it is a completely intrinsic
object. We can now present the results of [2], without worrying about the nota-
tions.

Let /, = Έtf, /oo = / and

Tt = J H: dA° + J H- dA; + J Hs

+ dA+, t G R + .
0 0 0

It is proved in [2] that, if / is in the space Sib, we have, for all / E IR+,

Ttft = / TsfsdWs + jH:fsdWs + ///-/,ώ + SH+fsdWs . (4)
0 0 0 0

On Sib, this equation is equivalent to (2) ([2], Theorem 1), but it has the advantage
of having a meaning for all / in Φ.

Definition. Let (Tt)t^o be a martingale of bounded operators on Φ, let H°,H~
and H+ be adapted processes of bounded operators, we say that

Tt = f H: dA° + f H- dA; + J H; dAJ, t ^ 0
0 0 0

in the extended sense on all Φ, if (4) is well defined and true for all f G Φ.

Theorem 4.1 ([2], Theorem 2).Let (Tt)t^o be an adapted process of operators
such that the processes (Tt)t^o and (T*)t^o admit an integral representation
on Sib. Then both integral representations can be extended wherever it is
meaningful
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5. Regular Martingales

Parthasarathy and Sinha [14] have defined a class of regular martingales. A mar-
tingale of operators (Tt)t ^o is said to be regular if there exists a Radon measure
m on R + such that, for all / G $Ίt,, with associated martingale (ft)f^o, for every
r < s < t, one has

\\TJr - T,frf g | | / r | |
2 m([M]) ,

\\τ;fr-Ts*fr\\2£\\fr\\2m([s,t]).

We now recall the Parthasarathy-Sinha theorem ([14]).

Theorem 5.1. Let (Tt)t^o be a martingale of bounded operators on Φ. The fol-
lowing two statements are equivalent.

i) There exists λ G C and three bounded adapted processes H°,H~ and H+

such that, on S\^

0 0
dA°s + JH~ dA~ + JH+

where \\H.~\\ and \\H.+ \\ are locally square integrable functions.

ii) The martingale (Tt)t^o is regular with respect to some Radon measure
m on R + .

Under these assumptions we have max{\\H~\\ ,\\H+\\ } ^ m'(s), a.a. s, where
m! denotes the derivative of the absolutely continuous part of m.

We recall a useful remark of Meyer [12]. If (Tt)t^o is a regular martingale
the coefficient H.° of (Af)t^o, appearing in the integral representation of Tu has a
locally bounded norm.

So, by the extension Theorem 4.1, we have that the integral representation of
any regular martingale can be extended to all of Φ (cf. [1], Corollary 2, for more
details).

6. Maassen-Meyer Kernels

We now recall the definition of Maassen-Meyer kernels (see [9 and 10] for details).
An operator T from Fock space Φ to itself is said to have a Maassen-Meyer kernel,
if there exists a set-function T on ̂  (in fact T needs to be defined only on
pairwise disjoint A,B,C in ̂ 3 ) such that, for "sufficiently many" vectors / of Φ,
one has

5 (5)
6 U+V+W=A

where the symbol "-f" denotes an union of disjoint elements of 3P.

In Maassen's theory supposing the kernels bounded implies (5) is well-defined
for all elements of a class of "test-vectors." But this part of Maassen's theory has
nothing to do with our purpose. We just need the definition of the class of "test-



50 S. Attal

vectors." An element / of Φ, with chaotic expansion

/ = f f(A)dWA,

is a test-vector if it verifies a compact time support condition: f(A) = 0 unless A
is included in some [0, Γ], and a domination condition: \f(A)\ ^ 0Λ\ where \A\
denotes the cardinal of A.

7. Maassen-Meyer Kernels of Hilbert-Schmidt Operators

The starting point of this work is the following result, already proved in [8].

Theorem 7.1. Let H be an Hilbert-Schmidt operator from Φ into Φ; then there

exists a mapping H from ^ 3 into R such that, for all f G Φ, all A G &*9 we have

Hf(A) = f Σ H(U,V,M)f(M+V+W)dM .
0> U+V+W=A

Proof Let H be an Hilbert-Schmidt operator from Φ into Φ. As Φ is isomorphic
to the space L2{£P), where 0* is endowed with the σ-fmite measure described pre-
viously, H then is an Hilbert-Schmidt operator from L2(£P) into L2(&). Therefore,
H admits a kernel representation, that is there exists a mapping φ from 0*1 into R
such that

/ φ(A,B)2dAdB < oo

and such that, for all / G

= / φ(A,M)f(M)dM .

Put H(A,B,C) = (-l)Wφ(A,C). One has

Θ> UCA

The Mόbius inversion formula gives, for all C e 0>,

V (—\)\v\ = t
vcc

so one finally gets

: / Σ Σ (~i)'F'^(^^)/(^
0> UCA V<ZA\U

'-1 Σ Σ H(U9V9M)f(M+A\U)dM
& UCA VCA\U

- f Σ H(U,V9M)f(M+V+W)dM. D
0> U+V+W=A
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This simple result indicates that every Hilbert-Schmidt operator from Φ into Φ
admits a Maassen-Meyer kernel. The main result of the following section is that,
in the case of Hilbert-Schmidt operators, this kernel really corresponds to a series
of multiple reordered non-commutative stochastic integrals, in a rigourous sense.

8. Iteration of the Previsible Representation

We are going to forget Theorem 7.1 for a moment and try to apply, in the non-
commutative context, the previsible representation iteration procedure. That is, we
are going to prove that one can iterate infinitely many times the representation of
Hilbert-Schmidt operators as non-commutative stochastic integrals.

Let us first detail some notations and preliminaries.
A martingale (Ht)t^0 of operators from Φ into Φ is an Hilbert-Schmidt mar-

tingale if, for all / G R + , the operator Hu restricted to Φt], is an Hilbert-Schmidt
operator.

We denote || H^ the Hilbert-Schmidt norm of operators.

For all s ^ t, we denote by Φ^ the orthogonal of Φs] into Φt] and Φ^ the
orthogonal of Φt] into Φ.

We sometimes use the notation ΦQQ] for Φ.

Lemma 8.1. Let t be fixed in [0, oc], let Ht be an Hilbert-Schmidt operator from
Φt] into Φt]. Then, for all s < t, the operator ΈsHt is an Hilbert-Schmidt operator
from Φs^ into Φsγ

Proof One has Φt] = Φs] θ Φ^ ί ] . Let (W")«€N, resp. (vn)ne^, be an o.n.b. of Φs],

resp. Φ^t]. The family (ww)w G ] N, denned by w2n = un,w2n+ι = vn then is an o.n.b.

of Φty Thus, one has

g IIE^wl2 ^ £ \\Htu
n\\2

ίΣ\\Htu
n\\2+Σ\\Htv"\\2

= Σ\\HtWn\\2 = \\H\\2

HS < o o . •
«=o

In Parthasarathy and Sinha's article [14], it is proved that every Hilbert-Schmidt
martingale is a regular martingale. By Theorem 5.1 and the remarks which follow
it, every Hilbert-Schmidt martingale is representable as a sum of non-commutative
stochastic integrals in the extended sense on all Φ (note that the results of the
non-commutative integral representation of Hilbert-Schmidt operators on the expo-
nential domain was first proved in [5], but the language of regular martingales was
not yet used). We subsume these results, and an easy extension, in the following
proposition.

Proposition 8.2. Let t e [0, -f oo] be fixed, let Ht be an Hilbert-Schmidt operator
from Φf] into Φty Then Ht admits a non-commutative stochastic integral
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representation, in the extended sense on all Φ, of the form

Ht = ΊE[Htt]I - JHS° dA°s + JH- dAJ + f Hs+ dAf ,
0 0 0

where (H°)s^t is the martingale associated to Hu and where, for all ε = —,-\-,for
almost all s g t, Hz

s is an Hilbert-Schmidt operator from Φs] into Φs] such that

J\\H!\\2

HSdsS\\Ht\\2

HS.
0

Proof

1st case: t = +oo. If H is an Hilbert-Schmidt operator from Φ into Φ then, by
Lemma 8.1, the martingale associated to (Ht°)t^o is an Hilbert-Schmidt martingale.
In [14], Proposition 4.3 and Theorem 4.4, it is proved that (H°)t^o is then a regular
martingale, so it is representable on all Φ. But, it is also proved in [14] that the
integral representation has the form

H? =H0°-J Hs° dA° + J H- dAJ + JHs

+ dAJ ,
0 0 0

where it must be remarked that the coefficient of dA° is, up to a sign, the martingale
(Hf)fzo itself. Furthermore, it is proved in the same reference that, for almost all
s G IR+, all ε G {—,+}, i/yC is an Hilbert-Schmidt operator from Φs] into Φs] and
that, if one defines α#(f) = 11 °̂ 11^,* G IR+, then ocH in a non-decreasing continuous

function, which verifies | | i / / | | ^ ^ %Ή(S)> w n e r e α// is t n e absolutely continuous part
of the Stieltjes measure associated to α#. So

oo

/ \\m\\2

HSds % α*(oo) - CLH(S>) ύ α^(oo) = \\H\\2

HS .
0

2nd case: t < -f oo. Let Ht be an Hilbert-Schmidt operator from Φq into Φt] and
(H°)s^t be the associated martingale. By Lemma 8.1, it is an Hilbert-Schmidt
martingale but indexed only by [0, t], so one cannot apply Parthasarathy and Sinha
theorem directly. One must extend (H°)sst m*° a n Hilbert-Schmidt martingale
indexed by R + .

Put Hs° = HtΈt\φs] ®I\Φ[S for all s G]ί,+oo].

Lemma 8.3. The family (H°)S^Q is an Hilbert-Schmidt martingale.

Proof Let (un)new be an o.n.b. of Φt] and (υn)ne^ be an o.n.b. of Φ^. The family

, defined by w2n = un, w2n+ι = vn is then an o.n.b. of Φ. One has

£ P O Ί I 2 = £ \\H2oW\\2 + £ \\H^υn\\2

n=0 n=0 n=0

n=0 n=0

w=0

So //^ is an Hilbert-Schmidt operator on Φ.
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The martingale (H^ s)s^o associated to H^ is an Hilbert-Schmidt martingale
and is defined by

,s] s i s > t

'1*5] S 1 s = t

= H? .

So (H°)s^o is an Hilbert-Schmidt martingale on R + and the lemma is proved.
By this lemma one can apply the results of the first case. One obtains the

required integral representation on Φ, along with the appropriate estimates for the
norm of the coefficients. D

Proposition 8.2 shows that any Hilbert-Schmidt operator from Φt] into Φt] admits
a non-commutative stochastic integral representation such that all the coefficients
are Hilbert-Schmidt operators on the corresponding space Φsy The same kind of
conditions as for the iteration scheme of the previsible representation of Brownian
functionals are verified here. We then can iterate this integral representation. Let us
precise a "short notation."

Let En = {+, o, —}n, E* = {+, — }n. For an element E = (ε\,..., εn) of En we
denote no(E) the number of elements β; which are equal to o.

In the following we use families of operators H*"'''^, indexed by En x &n or
E* x ^ . We denote

Σ fH*dAE

M= Σ 7f'''fΉ i?d4l ''M?n
EeEn^n clv..,ε«G{+,o,-} 0 0 0

Remark that, in the notations Hj^ or dΛfj, the elements of E and of M are not
taken in the same order.

Proposition 8.4. Let H be an Hilbert-Schmidt operator from Φ into Φ. For all
N G N*, H admits, on all Φ, an integral representation of the form

n=0 EeEn 0>n

Furthermore, for all M = (t\ < < tN) G ̂ TV, all E G EN, the operator H§ is
an Hilbert-Schmidt operator from Φtι] into Φtιy, and one has the following esti-
mates: for all E eEχ9

for all E e EN, all 0 < T < oo,

/ \\HE

M\\2

HSdM

Proof By Proposition 8.2, Proposition 8.4 is verified for N = 1. Working by in-
duction on N, suppose that the proposition is true for every k ^ N.
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For all M G &N, E G EN, the operator Hj^ is Hilbert-Schmidt from Φtl] into
Φίj], so by Proposition 8.2, it admits, on all Φ, an integral representation of the
form

HE = E[tf*l]/ - / {HE

Mt dA°s + J (HE

M)J dAJ + J (HE)t dA?
0 0 0

= W&V - I HLuΐsl dA° + I HMV dAJ + S
0 0 0

Reintroducing this representation in that of H, one gets

H = NΣ Σ /(-iΓ ( £ ) E[4i]/rf4+ Σ J(-I)"°(

n=0 EeEn g>n EeEN &Ή

+ Σ Σ / J(-ιr{E\-ιr{ε\H^γsdAidAE

M
E£EN ε£{+,o,-} 0>N 0

= Σ Σ J(-ιr{E)nH£ίt]idAE

M+ Σ j {-\T{E)HE

MdAE

M.
n=0E£En &n

This proves the required integral representation at level N + 1.
Let us prove that the other conditions are also satisfied. For all M G ̂ V, E e EN,

let (X.M(S) = | | (#M)° |Φ WHS, S ύ h- One knows, by the induction hypothesis, that the

operators (H^)f are Hilbert-Schmidt from Φs] into Φs] and that

where α̂ f is the absolutely continuous part of the Stieltjes measure associated to
aft (which is a non-decreasing function on [0, t\]). So one has

/ l\\{HE

M)%\\2

HSdsdM £

L \\HE

M\\2

HS)dsdM

and

0>Nn[O,T]N o ^ n t o . Γ ] ^ o

^ T J \\HE

M\\2

HSdM.

The conclusion follows by induction. D

We have proved that one can iterate TV times the non-commutative stochastic
integral representation of Hilbert-Schmidt operators on Fock space. We are going
to prove that this iteration converges when Λf tends to +oo.
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9. Convergence of the Iteration

Let g G L2

lb(R+), let ε G {+, o, - } , we denote

g if ε = o or — ,

g if ε = o or + ,

II if ε = - .

We also denote Mg{t) = max( l , sup J € t 0 ^ |g(s)|).
For E = ( ε i , . . . , ε n ) G En and M = (tu[..,t»)e ^«, denote

gE{M) = Π 9&ι(U) and gE{M) = Π G^iU)
/-I i=\

Finally, let Sc

lb be the space of finite linear combinations of elements ε{u), where

u is an element of L^(IR+) with compact support.

Proposition 9.1. Let H be an Hilbert-Schmidt operator from Φ into Φ. Let
N G N*, let

be the remainder of the integral representation {iterated N times) of H given by
Proposition 8.4. Then, for all f9gE $c

lb> the term {g^R^f) converges to 0 when
N tends to +oo.

So, in the sense of this weak convergence, one has

oo

H=Σ Σ fΈlH&l]IdAE

u.

Proof. Let ε(/) and ε{g) be two elements of Sc

lb. Let T G JR+ be such that the
supports of / and g are included in [0, T]. One has, by (3),

Σ / (-1)ME)gE(M)fE{M){ε(g\ H^s{f)) dM
EeεN &N

Σ J \gE{M)\ \fE{M)\ \(ε(g)9Hfc(f))\dλf

( \
^ Σ / \gE{M)\2\fE{M)\2dM\

E£EN \0>Nn[O,T]N J

x / \{ε(glH*ε(f))\2dM)
V^ΛΓΠtO.Γ]^ /

( \ 1 / 2

S Σ / \gE{M)\2\fE{M)\2dM\
EβEN \0>Nr\[O,T]N )

( V2
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;£ Σ (Mg(ί)Mf(t)f [ J dM\ 11

/2

γN/2

^ 3N(Mg(t)Mf(t)f-^=\\ε(g)\\\\ε(f)\\TN\\H\\HS .

This last term converges to 0 when N tends to +oo. D

10. Computation of the Kernel from the Iteration

We begin here the most important and the most technical part of this work. We have
seen from Proposition 9.1 that an Hilbert-Schmidt operator is, in some way, the
sum of a series of iterated non-commutative stochastic integrals of scalar operators.
We now prove that one can reconstruct the Maassen-Meyer kernel of the operator
from this iteration and describe it completely.

Let / be an element of Φ. We denote, for all t E ΊSλ.+,(f^~)t^Q the martingale
associated with / and (f^)t^o the previsible process which appears in its previsible
representation. Let dWt

+ = dWt and dWt~~ = dt.
FarE = (8U...9εn)eE;, and M = (h < < tn) e 9n, put

rE _ fZn ε\ _( // fεn\
εn-l\ \B\

J M — J tn tγ — V "\\J tn)tn-\)" ')tχ '

We also denote dW^ = dWt\
ι dW%.

Proposition 10.1. Let H be an Hilbert-Schmidt operator from Φ into Φ, let f E Φ.
One has, for all N e N*,

jΈ.[H*l]Έ[fϊί]dW*+
π=0 EEE* n ^ N

where the operators H^ are those given by Proposition 8.4, with E E [JnE*.

Proof From Proposition 8.2 and identity (4), defining the extensions of the non-
commutative stochastic integrals, one has, for every operator Ht which is Hilbert-
Schmidt from Φt] into Φq, every ft e Φφ

H,f, = Έ[H,ί]Έ[ft] + / Hs°fΓ dW; - / H°f7 dW?
0 0

dWs

+

Htft = Έ[Htt]Έ[ft] + / HΓfJ dWΓ + / H+ft dWs

+ . (6)
o o
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So the proposition is verified for N = 1. Suppose that the proposition is verified for
all ranks up to N. One then has

Hf = NΣ Σ jΈ.[H*t\Έ[fϊi]dW*+ Σ / HE

MfMdWE

M.
/i=0

The operators H^, M G &N, E E E^, are Hilbert-Schmidt operators from Φt]^ into
Φ?1] (where t\ is the smallest element of M). In this case, fff is an element of
Φh], applying (6), one has

HM/M = E[#MAM/M] + / {HξfXf- dW~ + / {Hξf^J
0 0

Introducing this equality in the representation of Hf, one obtains

n=0 EeE 0n E£E £

}^ { } N 0

= Σ Σ fm[H*i]Έ.[fff]dws+ Σ
«=0

which is the required representation at rank JV + 1. D

This proposition gives a representation of Hf in two terms: the first one must
be the begining of the chaotic expansion of Hf, the second one must converge to
0 when N tends to +oo.

Let Ξ be the set of / G Φ such that

J 4^f(A)2 dA < oo .

It is a dense subspace of Φ.

Proposition 10.2. Let H be an Hilbert-Schmidt operator from Φ into Φ, let N G
N, let f G Φ and let

•= Σ

be the remainder appearing in the representation of Hf given by Proposition 10.1.
Let w G N k fixed, let gm be an element of L2(Σm) and Im(gm) be the element
of the mth associated chaos.

Then, for all f G Ξ, the term (Im(9m)τrN{f)) converges to 0 when N tends
to +oc.

Proof Let f £ Φ, one has

\{im(gm\rN(f))\ = Jgm(M)dWM,fH^ffίdW] M

For E = {εi,...?ε#} G £^, let n+{E) be the number of elements of E which are
equal to -f. Suppose that n+(E) = n ^ N. The term L H^fff dWjύ is an iterated
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integral with respect to Brownian motion and to time. One knows that there are
exactly n integrations with respect to Brownian motion and N — n integrations with
respect to time. Let I+(E) be the subset of {1,...,7V} constituted by the indices k
such that εk = +.

We are going to reorder the integral f^ H^ff^dW^ so as to first integrate
with respect to the N — n terms in dt, then with respect to the n terms in dWt.
This gives, if I+(β) = {h < < in},

tιk+2 hχ tχ

hu 0 0

oo

/
0

tin

I
0

n2

0

oo tN tln+2

II'" I
tin tin Un

dt\- dth-\dtiι+\

In this way, one integrates with respect to Brownian motion along Σn and with
respect to time along a subset of ΣN-Π denoted S^n(I+(E)) (indeed this reordering
is entirely determined by the integer N and the subset I+(E) of {1,.. ,,N} indicating
which indices are moved in front). In this way

\(U9m)9rN(f))\

N

Σ Σ
»=0 EEE*

n+(E)=n

f9m(M)dWM, J I HMUM'fMUM'dMMUM'fMUM dWM,

Σ
n=0

Σ
EeE^

n+(E)=n

I J gm(M"uM')dWM,,,

I HE

MΌM,fE

MΌMldM)dMf

Σ Σ /
n=0 EEE^ M'e0

n+(E)=n

/ / gm{M"uM')dwM,,9

ιι=0
Σ

TV ϊ

n+(E)=n

J gm(M"UM')dWMfl
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Σ / /
M"ί

J gm(M"UM')dWM,

n+(E)=n

V 1/2 / X 1/2

x\\fE

MUM,\\2dMdM> ) J J \\H*UM,\\2dMdM')

n=0
Σ ( I ( I A(M»UM')dM

\MeSNtΛ{I+(E))
(f\\H*\\2dλλ
\ J

But one must remark that, for all s ^ t, all / e Φ, one has ff~ = / ~ . So, one

H2 = ll/l/" }Ίl2 This gives

l(4(fo)/»(/))l I Σ Σ \\Uβm)\\[ ί ll/iΓ} fdM) \\H\\NS.
»=0 εeε* \ΣN^n )

For f £ Φ, i e N, we denote by /[, the vector

/ f(A)dWA,

that is / minus its projection on the first / chaos (including the chaos of order
0 : E [ / ] ) . One has

m

Wm{9m),rN{f))\ ύ \\lm{gm)\\\\H\\Hs Σ Σ WhN-n\\
n=0 EEE

n+(E)=n

^ \\Im{gm)\\\\H\\HS2
N\\f[N^m\\.

But, one has

1/2 1/2

2N-m\\f[N-m\\=2N-m\ J f(A)2dA\ = / 4N-mf(AfdA
\A\^N-m \A\tN-m

1/2

/

If / is an element of Ξ1, this last term converges to 0 when N tends to -hoo. So
one concludes. D

This result of convergence allows to express the chaotic decomposition of Hf
in terms of the decomposition of / .



60 S. Attal

In the following we denote by Ξ the space of Maassen test-vectors presented in
Sect. 6.

Proposition 10.3. Let H be an Hilbert-Schmidt operator from Φ into Φ, let f G Φ
and m G N. If one denotes by Im(Hf) the projection of Hf on the mth chaos, then

Σ
EEE*

n+{E)=m

where the convergence of the series is weak if f G Ξ and strong if f G Ξ.

Proof It is clear that the projection on the mth chaos of

N

Σ Σ /
is equal to

Σ Σ
n—m E£E*

• (7)

So, by Propositions 10.1 and 10.2, for all / G Ξ, Im(Hf) is the weak limit of the
expression (7) when N tends to +oo.

In order to show that this limit occurs in the strong sense on Ξ, it is sufficient
to prove that, for all / G Ξ, the set of terms given by (7) is bounded in norm,
uniformly in N. One has

N

Σ Σ
n=m E£E*

n+(E)=m
N

n=m EEE*
n+(E)=n,

N

Σ
n=m E£E*

Σ

I I Έ[H^MΛ]Έ[fE

MUMf]dMfdWM

1/2

Σ Σ
n=m E^E*

n+(E)=m

I

/
\

dM

N

Σ Σ
n—m EeE*

vV2

\\in-m{f)\\
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^ Σ Σ \\H\\HS ||/n-m(/)|| ύ \\H\\HS ~ Σ 2Λ||/n-m(/)||
n=m E£E* n=m

n+(E)=m

n=0

But, if / is an element of Ξ, one has

Y / 2

So

ΎΎlγ/2
C2"dA < Cn- Γ-

D

We now have all the elements needed to describe the Maassen-Meyer kernel of
an Hilbert-Schmidt operator in terms of the operators H^. Let us first detail some
notations.

Let n ^ m G N, we denote by P{n,m) the set of the / = {ί\ < < ίn} c
{I9...,m}. For a / e ^(n,m), we denote by E(I,m) = {ε\9...,εm} the element of
E^ such that εk = + if k e I, ε^ = — otherwise.

Theorem 10.4. Let H be an Hilbert-Schmidt operator from Φ into Φ, then H
admits, on Ξ, a representation as a Maassen-Meyer kernel, where the kernel H
of H is given by

H(A9B9C) = ( -

Proof. By Proposition 10.3, one has, for all / € Ξ, all nt € N,

oo

•=Σ Σ .

= / Σ Σ / Έ[H^MΆ]Έ[fE

AUM]dM

n+(E)=m

dWA

So, if A is a fixed element of SPm,

Σ
n=0l£P(n,n+m)

= 1
leP(\M\,\M\+m)

hsm+m,min}(MMHΪTl+mW(M) dM

If one puts

Σ
I£P(\M\,\M\ + \A\)
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one has proved that

so, using the same method as in the proof of Theorem 7.1, it is easy to see that

H(A,£, C) = (-1)l*lφ(A,C) defines the Maassen-Meyer kernel of H. Π

The author thanks M. Emery, R.L. Hudson, J.M. Lindsay, P.-A. Meyer and the

referee for their helpful corrections and comments.
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