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Abstract: We give a systematic account of a "component approach" to the algebra
of forms on g-Minkowski space, introducing the corresponding exterior derivative,
Hodge star operator, coderivative, Laplace-Beltrami operator and Lie-derivative. Us-
ing this (braided) differential geometry, we then give a detailed exposition of the
g-d'Alembert and ^-Maxwell equation and discuss some of their non-trivial prop-
erties, such as for instance, plane wave solutions. For the ^-Maxwell field, we also
give a g-spinor analysis of the g-field strength tensor.

1. Introduction

This paper develops some elements of braided differential geometry on quantum
Minkowski space and uses these new tools to define and analyse the two simplest
wave equations on this non-commutative spacetime, namely the g-d'Alembert and
the ^-Maxwell equation. In order to distinguish our approach from other related
work it might be useful to emphasize that we are constructing generalisations of
classical wave equations in position space and not a deformation of quantum theory,
as for instance in [13], where wave equations in momentum space were constructed
by using irreducible representations of the g-Poincare group. At present, there is no
^-Fourier transform in this case, and it does not seem to be possible to compare
the results of the two approaches.

In our exposition of braided differential geometry we present forms in a slightly
different way than in some earlier papers by other authors. We use what one might
call a component approach to forms, but will show in Proposition 2.7 that the two
possible approaches are equivalent. This different approach to forms has the conse-
quence that the ^-exterior derivative d is constructed in terms of braided differential
operators da and not vice versa, as for instance in [12]. The additional ingredient
needed for this construction is a g-Lorentz covariant antisymmetrisation operation,
which we introduce. In a similar fashion, we also define the g-Hodge star operator,
^-coderivative, #-Lie derivative, and ^-Laplace-Beltrami operator. The advantage of
the component approach is that for instance the ^-electromagnetic field is given
terms of components and admits a very simple SLq(2, (C)-spinor decomposition into
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self-dual and anti-self-dual parts, which will be discussed in the last section of this
paper.

Preliminaries. In a previous paper [11], we gave a detailed account of the q-
deformation of spacetime and its symmetry group (see [10] for a comparison with
the approach of [2,1]). The key idea was that ^-Minkowski space should be given
by 2 x 2 braided Hermitian matrices, which were introduced by S. Majid in [3] as
a non-comutative deformation of the algebra of complex-valued polynomial func-
tions on the space of ordinary Hermitian matrices. Braided matrices have a central
and grouplike element, the so-called braided determinant, which plays the role of
a g-norm and which determines a ^-deformed Minkowski metric.

As given in [3], the braided matrices did not generalise the additive group
structure of Minkowski space, which should be reflected in our dual and g-deformed
setting by a braided coaddition as introduced in [6]. A braided coaddition is a
braided coproduct of the from Ax = x®\ + 10x which extends as an algebra map
with respect to a braided tensor product 0 and not the ordinary tensor product 0.
Braided tensor products are like the super tensor products encountered in the theory
of superspaces, but with the ±1 factors replaced by braid statistics. The tensor
product algebra is given by (a®b)(c(jj)d) = aΨ(b®c)d, where Ψ is the so-called
braiding which measures how two independent copies of a system fail to commute.
In the commutative case, Ψ is simply given by the twist map Ψ(a 0 b) = b 0 a.
In the non-commutative case the braiding is determined by a background quantum
group, which acts as the symmetry group of the system. A good introduction to the
theory of braided matrices and braided groups is in [4].

The braiding and background quantum group which allows for quantum
Minkowski space to have a braided coaddition was found in [11]. This construc-
tion gives rise to a natural quantum Lorentz group which preserves both the braided
coaddition and the non-commutative algebra structure of quantum Minkowski space.
The final result is given in terms of two solutions of the four dimensional QYBE:

Όcd _ τ>-\LC r>B'l ΏA'J nKD nab DCI DBfJDAfKf>LD

KMab —K BIKJAKKD'KC'L KL cd ~ KJBK KAK LD'K C'l '

where P denotes the permutation map and

( q 0 0 0 >

0 1 q-q-λ

0 0 1 0
0 0 0 <?,

is the standard SUq(2) ^-matrix. The matrix R is defined as ((R'2)~l)t2

9 where t2

denotes transposition in the second tensor component. We also use multi-indices
α = (AA') = (11), (12), (21), (22). These two matrices obey the relation

which is needed to show the existence of a braided coaddition. In terms of these
data, ^-Minkowski space Mq is given as the algebra of quantum covectors Mq =
V*(RM) in the notation of [8]. It has generators xa and a star structure x* = Xj,
where a = (A'A) dentoes the twisted multi-index. The quantum Lorentz group ££q

is defined as a quotient of the FRT algebra A(RL) with generators λa

b by the metric



Wave Equations on q-Minkowski Space 459

relation λa

cλ
b

dg
cd = gab, where the ^-metric is given by gab = (q + q~})~}8ACR

AoC

B

εDB/ in terms of the SLq(2, (C)-spinor metric

We are working in a "spinorial basis," where the metric has two negative and two
positive eigenvalues. There is also a *-Hopf algebra morphism &q — >• SLq(2, C)

given by λa

b ι— > tAt
B

A, where t are the generators of SLq(29(C). This map induces a
push forward of J^-comodules.

If we now consider the coaction of 5fq on Mq9 one problem arises: In order
to obtain full covariance under the coaction by the g-Lorentz group, we have to
adjoin 5£q by a single invertible central and grouplike element ς [6]. The extended

g-Lorentz group is denoted by J^, and its covariant right coaction on q-Minkowski
space is given by

Similarly, there is a covariant coaction of the extended algebra SLq(29 (Γ) given by

XA

A, i— » xB

B, ^^βtA/'ς. Since the element ς measures the degree of elements of Mq9

it is often called the dilaton element [16,6].

2. Differential Forms on Quantum Minkowski Space

Differential operators da on quantum Minkowski space were first presented by O.
Ogievetski et al in [12], where suitable commutation relations between these op-
erators were introduced by hand. A general theory of braided differential operators
was developed only subsequently by S. Majid in [7], and allows for a more sys-
tematic presentation of the algebra from [12]. This general construction works for
any algebra of quantum vectors which can be equipped with a braided coaddition.
The action of braided differential operators da on quantum vectors is then defined
by formally "differentiating" the braided coaddition. Applied to ^-Minowski space
(equipped with the braided coaddition from [11]) this construction yields an alge-
bra of braided differential operators Q) with generators da which obey the V(RM )-
relations dadb =R^b

cc[Sddc [7, Propsoition 2.2], After changing q for q~] to match
out conventions, it is easily seen that this is just the algebra from [12. Eq. (5.2)]
written in a compact form. This algebra Q) acts on quantum Minkowski space with
an action α: &(&_Mq —> Mq such that a braided Leibniz rule holds [7, Lemma 2.2]:

Safg = (Pf)g + oψ~\da ® f)g . (4)

Again, these are just the corresponding relations from [12, Sect. 5] in a com-
pact form. Relation (4) also explains why we insist on calling the operators da

braided differential operators. For unlike in the commutative case, Mq is not a
^-module algebra, but what one might call a braided ^-module algebra. By re-
peating the construction from [11] one can easily show that Q) can be equipped
with a braided coaddition ΛSa — da(&\ + 10<9α, making it into a braided Hopf
algebra. The braided Leibniz rule is then seen to be nothing but the statement
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α(/z 0 ab) = o (α 0 α) o (zW 0 ψ 0 zW) o (4 0 /rf)(Λ 0 α 0 b\ which is a braided
generalisation of the classical notion of a module algebra.

By writing everything in the compact notation, it is also easily seen that q-
differentiation is covariant in the sense that α is an J^-comodule morphism. Due
to the covariance of the braided tensor product (see [5] for a detailed discussion),
Q)&Mq is &q -covariant.

An open problem in this context is the question of the *-structure on 2. It is
possible to equip Q) with a suitable *-structure making it into a braided *-Hopf
algebra in the sense of [9], but the obvious choice for "*" does not commute with
the action α. It has been speculated that the very notion of a * -structure needs to
be ^-deformed, but we will not attempt to solve this problem here.

2,1, q-Antisymmetrisers. In our component approach to forms, the exterior deriva-
tive is defined in terms of the braided differential operators da and not vice versa.
An essential ingredient in this approach is an J^ -co variant ^-antisymmetrisation op-
eration, which we now introduce. For this purpose, we define a </-de formed notion
of antisymmetry, and call an J^-tensor T...ab... q-antisymmetric in adjacent indices
a and b if

T...ab... = T...cd...RL

c

ab . (5)

Here Tab and Tab, etc. denote any elements of right J^-comodules, which transform
as Tab ̂  Tcd 0 λc

aλ
d

bς
n and Tab ι-> Tcd 0 Sλa

cSλb

dς
m, respectively, where S denotes

the antipode in <£q. We do not require a tensor to have a specific ς-scaling property,
and therefore n and m can be any integers. If a tensor is ^-antisymmetric in any
two adjacent indices, it is called totally q-antisymmetric.

At first sight, the definition (5) seem to cover only the case of lower indices.
However, it is known from [11], that one can use the ^-metric gab and its inverse
to raise and lower indices in a g-Lorentz covariant fashion. The key ingredient
in the proof is the relation R^l

ef — gpfgqeRlP

abg
akgbl between the ^-matrix and

the q-metric. Thus if for example a tensor T...ab... is q-antisymmetric in a and b
then the tensor with upper indices T'"ab' " = Γ.../y... - -giagjb' obeys T '"ab '" =
—R£b

dcT'"cd'" . Hence it is sufficient to define ^-antisymmetry for either upper or
lower indices.

Similarly to the definition of ^-antisymmetry, we call a tensor q-symmetrίc in a
and b if T...ab... = T...cd...R^c

ab. Again, this translates into a corresponding formula
for upper indices: this time by virtue of an analogous relation between the matrix
RM and g. It is crucial to note that the two ^-matrices used in the definition of q-
symmetry and ^-antisymmetry are genuinely different and not identical up to scaling
as in the Hecke case.

We would like to define a g-antisymmetrisation operation which assigns to any
g-Lorentz tensor a ^-antisymmetric one in a covariant fashion. Since the two R-
matrices RL and RM obey the relation (2), one might suspect that (PRM — 1) would
be a good candidate for a #-antisymmetriser. However, this operator is not a projec-
tor, and it is also not quite clear how to obtain higher antisymmetrisers. We shall
therefore take a different approach.

In the classical case, the space of totally antisymmetric tensors of valence four
is one-dimensional, and one can choose a basis vector εabcd with 61234 =. 1, which
then defines a projector (antisymmetriser) ^εdcbaεefίjh onto this one-dimensional
space. By successively contracting indices, one obtains lower antisymmetrisers. This
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construction turns out to be applicable also in the ^-deformed case, where a q-
epsilon tensor is also uniquely determined:

Lemma 2.1. Up to a factor, there is exactly one complex valued tensor εabcct which
is totally q-antisymmetric.

Proof. It suffices to verify explicitly that the system of linear equations εabcd =

—^ijcd^Lab = ~LaιjdR[bc — ~^abij^ι cd
 nas a one-dimensional solution space. D

The non-zero entries of εabcd in the normalisation £1234 = 1 are:

£1234 = 1

i 2
εi4i4 = \-q

£2134 = -1

9
£2413 = -q

£3142 — —q

£3421 = -<7
2

£4141 = q — 1

£4243 = 1 — <7

£1243 — — #

£1423 = 1

£2143 = q~

_2
£2431 — q

£3214 = -1

£3424 = 1 - q
2

£4144 = q — 1

£4312 = — 1

£1324 = ~1

£1432 = — 1

£2314 = 1

— 2 i
£2434 — # — A

£3241 = 1

£4123 = -1

£4213 = 1

£4321 — 1

£1342 —

£l444 —

£2341 =

£3124 —

£3412 =

£4132 =

£4231 —

£4342 —

q
i —2
1 -q

-1

1

2

i
-1

q
2
-\

£4414 — 1 — q £4441 — q — 1

Using a different approach, a g-epsilon tensor for g-Minkowski space was also pre-
sented by A. Schirrmacher in [14]. But this </-epsilon tensor is not g-anti symmetric
in the sense of our definition and does not coincide with the one given above.

After using the ^-metric to obtain the corresponding g-epsilon tensor with upper
indices, we can define </-antisymmetrisers by successively contracting indices of
these two #-epsilon tensors:

Definition 2.2. The q-antisymmetrisatίon of an &q-tensor T...ar..an... in adjacent
indices a\ an is defined as

j1 = T7 stfcv"€n
• • • [ a \ an\ •• • • • c i 'Cn {n}a\ an>

where the q-antisymmetrisers j/{£} are given by

for n < 5 and are zero otherwise. The normalisation factors n\ = n^ = 2(1 +

deformation of (4 - k)\k\.

It is evident that the g-antisymmetrisation of a tensor is ^-antisymmetric in
the sense of (5) and with some more effort one can show that the operation of
g-antisymetrisation also has all the other relevant projector properties:

Proposition 2.3. By explicit calculation, one can show:

1. The antisymmetrisers J/μ-} are projectors:



462 U. Meyer

2. Lower dimensional q-antίsymmetrisers cancel on higher dimensional ones:

T...[ar..[ak ..a{} an} = T...[a}...an]... . (7)

3. The one-dimensional projector is trivial:

£/{{} = 1, i.e. T...[a]... = T...a... .

4. The two-dimensional antίsymmetriser ^/{2} factors through (PRM - 1)'

^{2} = (PRM -l)B = B'(PRM - 1 ) , (8)

where B and B1 are invertible matrices.

The g-antisymmetrisers are also "Hermitian" with respect to the ^-deformed met-

ric. For instance, ^/{2} obeys the relation £#$\cd = QCJQdι^ ΐ{\kιQ
al Qbk , and similar

relations hold for the other </-antisymmetrisers.
Of particular importance for the following is relation (8), which ensures that

^-symmetric tensors are in the kernel of the g-antisymmetrisers. Relations (7) and
(8) imply:

Corollary 2.4. If an ££q- tensor T...ar..ak... is q-symmetric in any two adjacent
indices a{ and ai+\, then T...[aι...aiaι+l...a/(]... = 0.

Thus although ^-symmetry and ^-antisymmetry are defined in terms of two different
R-matrices, the two notions are compatible in this sense. This corollary will be used
later when we introduce the external derivative d and show that d2 = 0.

Up to now we have used the index notation also for g-antisymmetrised tensors,
thus implying certain transformation properties of these objects. However, a priori it

does not seem to be obvious that the </-antisymmetrisation operation is $q -co variant.

Proposition 2.5. The coaction by the q-Lorentz group commutes with q-antisym-
metrisation.

Proof. We need to show that monomials of generators of <£q commute with the
g-antisymmetriser <£/{„}. For this purpose, note that the uniqueness of ε from Lemma
2.1 can be used to establish that the generators of the g-Lorentz group obey the
relation

α yb ic yd hgfe _ — 1 dcba m yn T O i p Jrigje
Λ eA f'A c/A h^ — n4 fc ^mnop^ eA f'A CJA h

Hence we find for the #-antisymmetriser ^{2}'

α )b dcfe α ib zc *d hgfe
A eA f£ ?>cdkl — A e

A f ° y° h£ &cdkl

o-l c p
ύ A nεcdki

- l — l c p

n&cdkl
_ ^-\pmnba T O p yq -\r hgfe o-l d c— l
— n4 ε ε0pqrλeΛ j λyΛhε O Λ W0

— 1 yd c—
4

c— He yo P yq yr^ .
mύ A nεopqrλeA jA^A n .

_ mnbav-lyd C ~ l ; c o <\p yq ir
— ε ύ A mύ A nbopqrAcA dAkA l

_ mnba yq yr
— c ^nrnqrA k I *

and similar for s/ and ^ / 4 . The case of j/ is trivial. D
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2.2. The q- Exterior Algebra. After these remarks on g-antisymmetrisation,
we will now introduce the notion of forms on quantum Minkowski space. Sim-
ilar to [17], we first define an algebra A as the associative (C-algebra generated
by 1 and four elements dxa with relations dxadxb = —dxmdxnR"m

ab. This algebra

is an J2^-comodule algebra with coaction dxa ι— > dxb ® λb

aς. As a linear space, it

is a direct sum A — φ^=0^» where A^ is the (C-linear space spanned by 1 and
the elements dxaι dxak . In particular, we have AQ = C. We also define the dual

algebra /Γ with generators dxa, relations dxadxb = —R£b

cddxddxc and dual pairing
given by (dxa,dx\^ — δa

b. There is a ^-metric induced isomorphism between these

algebras defined by dxa h-» dxbg
ab, which is also a J^-comodule moφhism. The

proof is just like the proof of V(RM) = V*(RM) from [11].

For the construction of forms on quantum Minkowski space there are now two

possibilities. On the one hand, one could consider the subalgebra of J^-scalars in

A*®_Mq and define &-forms as J^-scalars in A%®Mq, as suggested by the construc-
tion in [17]. On the other hand, however, one could take a "component" approach,
which is the one we shall use in this paper:

Definition 2.6. A k-form w on q-Mίnkowski space is an 5£q-comodule morphίsm
w : Ak — » Mq.

Over the ring of all ^-scalars in Mq, &-forms form a linear space, which is denoted
by Ωfr. In terms of this space, we can show that the two approaches to forms on
quantum Minkowski space are equivalent:

Proposition 2.7. The linear space Ω^ is isomorphic to the space of ^q-scalars in

Proof. All &-forms are of the form w : dxa} dxak »— > fa\ ak for some element
far ak of Mq. This means that we can define a linear map φ : w •-> dxaι - - - dxak^_

fbk bl 9akbk ' ' ga}b} into the space of J^-scalars in A%®Mq. On the other hand, any

^-scalar h G A%®Mq is of the form h = dxak - - - dxaι®har..ak for some har..ak G Mq,
and we can define a map ψ : h ι— > (dxak - - dxaι -}har..ak in Ω/^. It is easy to see
that φ o φ = id and φ o φ = id, and hence the two spaces are isomorphic. D

For any A:-form w, the element vί(dxaι - - - dxak ) is a completely ^-antisymmetric
tensor in Mq. All such tensors in Mq are in the image of the g-antisymmetrisers
from Definition 2.2 and we find:

Proposition 2.8. All k-forms on quantum Minkowski space are of the form
w(dxaι . dxak) = W[ar ak] for some wav..ak G Mq.

Proof. The proposition follows from the observation that the dimension of totally

^-antisymmetric tensors over the ring of J^-scalars in Mq coincides with the ranks of
the ^-antisymmetrisers <£/{£}. As in the classical case, these spaces have dimensions
1,4,6,4, 1 for p — 0, 1,2,3,4, and dimension 0 for p > 4. D

The one-dimensional space Q$ is spanned by the top form ε : dxaι dxa4 ι— >
εαι... f l4, and ΩQ by the form 1 : ξ ι— > ξ 1 for ξ G AQ = C. As a corollary of relation

(7) from Proposition 2.3 one finds that the C-linear space Ω = ®£=0&* can be
equipped with an algebra structure.
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Corollary 2.9. The q-wedge product Λ : Ωk x Ωr — > Ωjt+r defined by

VΛv:dxaι ' dxak+l ^ W(al:.akVak+Γ..ak+l.]

is an associative (C-algebra structure on Ω, with identity 1 £ ΩQ.

Finally, we define the notion of a real form. By virtue of the relation R£b

cd =

Rba-j- from [11, Proposition 2.3], A can be equipped with a *-structure dx*a = dxά

A &-form w is then called real if vr(dxaι - dxaic )* = Yϊ((dxaι - - dxak )* ).
As already mentioned before, this paper defines the exterior derivative d in terms

of the braided differential operators da and the g-antisymmetrisers introduced in the
last section:

Definition 2.10. The q-exterior derivative d : Ωk ι— » Ωk+\ is defined by dw :

dxa[ "dxak+l ι-> d[fl lwΛ2...^+l].

Forms whose ^-exterior derivative vanishes are called closed and forms which
are themselves g-exterior derivatives are said to be exact. The crucial test for a
definition of a "g-deformed exterior derivative" is whether exact forms are closed.

Proposition 2.11. Exact forms on q-Minkowski space are closed: d2 = 0.

Proof. Relation (7) implies:

d2\v(dxa] - - dxak+2) = S[aιda2way..ak+{] = d[[aιda2]war..ak+l] = 0.

Here we used that braided differential operators da obey the relations of V'(RM)
[7], i.e. daι da2 is {/-symmetric and hence 3[αι da2\ — 0 by virtue of Corollary 2.4. D

As a consequence of the braided Leibniz rule (4), we find for the action of the
g-exterior derivative d on wedge products of forms:

Corollary 2.12. The q-exterior derivative acts as

d\v Λ v = (rfw) Λ v + (- 1 /w Λ d\

on wedge products w Λ v, where w is a k-form.

Proof. The crucial point is that the inverse braiding brings up ^-matrices, which
cancel on the #-antisymmetriser because of the symmetry property (5). We prove
the corollary only for 1 -forms w, the general case follows immediately by using the
hexagon identity for the braiding Ψ. Thus let w be a 1-form and v a A>form. On
Ak+2 we have by virtue of (4) and the ^-antisymmetry of εabcd:

^[a^a2

vay ak+2] = (S[a}^a2)
va^ ak+2] + ' ° Ψ~\d[aι ® ™a2 )

var ak+2]

Here we used the inverse braiding Ψ~l(daι Θ wα2) = wc Θ ddRϊa^ (see t^
3.2] for a useful list of braidings between various standard algebras). D

The second operator on Ω one can define with the tools at hand is the q-
Hodge star operator. It is defined in terms of the metric gab and the tensor εabcd
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Definition 2.13. The q-Hodge star operator * : Ωk — > Ω4_ jt is defined by

*v/(dxaι - dxa4_k ) = w[cι...ct]^
l

}"β^.β4_t ,

where H{k}a[k a,_k = ̂ "V^i-M*"* V1C| and nϋ = n4.

This g-Hodge star operator generalises the characteristic properties of the classical
Hodge star operation. For example, the top form ε and the identity 1 are conjugate
with respect to the g-Hodge star: *ε = 1. Also, we can show for *2 : Ω^ — » Ω^:

Proposition 2.14. *2|% = (-l)*<4-*>.

Proof. By explicit calculation, one can verify the following relations between the
^-antisymmetrisers J/{A} and the matrices //{&}> which implement the g-Hodge star
operation:

H{2}H{2] = ^{2}, -H{ι}H{l} = tfi/{3} ,

H{4}Hm = j/{5} . (9)

Together with (6), these relations imply the proposition. Since we are working in
a "spinorial basis" we do not obtain an additional (— l)-factor in Proposition 2.14,
as in the case of an "#, jμ,z,ί-basis." D

It is also possible to "shift" the g-Hodge star operator in the g-wedge product of
two &-forms:

Lemma 2.15. If w and v are both k-forms, then *w Λ v = ( — l) Λ w Λ *v

Proof. Verify by explicit calculation

77 a _^ bcde _ rj e ^ abed
~ {4}klmn '

rr ab ^ cdef _ ττ ef * abed
n{2}cd^ {4}klmn ~ U{2}cd^ {4}klmn '

rr abc _,/ defy _ rr e f g * abed
n{3}d^ {4}klmn ~ ~n{3}d ̂  [4}klmn '

This proves the lemma. Π

Now that we are given both a well-behaved exterior derivative and a g-Hodge
star operator, it is straightforward to define a ^-coderivative, g-Laplace-Beltrami
operator and #-Lie derivative

Definition 2.16. The q-coderivatίve δ : Ωk — » Ωk-\ and the q-Laplace-Beltrami
operator Δ : Ω^ — > Ω^ on k-forms on quantum Minkowski space are defined as
δ = *d* and Δ — δd + dδ, respectively.

Forms w on quantum Minkowski space which satisfy 6>w = 0 are called co-
closed, and forms which are themselves #-coderivatives are called co-exact. As a
corollary of Proposition 2.14 and Proposition 2.11, one finds:

Corollary 2.17. Co-exact forms on quantum Minkowski space are co-closed:
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Thus, although d, δ and A are defined in terms of deformed antisymmetrisers and
differential operators on a non-commutative space, their abstract properties resemble
very much the classical case. It is straightforward to verify that A commutes with
d, δ and *, and that

<5* =(-!)**</, *δ = (-\)k+ld*, dδ*=*δd.

Some further properties of these operators will be given in the context of the fol-
lowing sections. In particular we will analyse the explicit action of these operators
on zero and 1 -forms, which is of interest to physical applications.

The </-Hodge star operator also enables us to generalise the idea of a Lie deriva-
tive. For this purpose, we introduce a q-inner product on the ^-exterior algebra Ω
as a bilinear map ( , ) : β* x Ωr — » Ωk-r defined by (w, v) = /vw = *(v Λ*"1 (w)).
The </-inner product is "transposed" to the #-wedge product in the sense that

(v Λ w, u) = / v Λ wu = /vO'w«) = (w, MI) ,

and it also obeys *w = zwε and <Szvw = zv<5w + (— l)*/</vw, where v is a A -form. Fur-
thermore, Lemma 2.15 implies (v,w) = / vw = /*v*w = (*v, *w) for any two &-forms
v and w. In terms of this #-inner product, we now introduce:

Definition 2.18. Let v be a \-form. The q-Lie derivative Lv : Ω^ — » Ω^ with respect
to v is defined as Lv = zv o d + d o zv.

The #-Lie derivative commutes with the g-exterior derivative and we also have
£ fΛvw = f Λ Lvw + di Λ z'vw for zero forms f and 1 -forms v. For the action of the
</-Lie derivative on zero forms on ^-Minkowski space, we find:

Proposition 2.19. The action of Lv on f G ΩQ is given by Lvf : 1 ι— > vadaf.

Proof. First note that Zvf = ivdf, since f is a zero form. Then show by explicit
calculation that

Hence Z vf(l) = -vbdafHl}^^UmnH^ = -vb8afH«l]cdeH
b

{<f = υbda</»f.
D

3. The ^-d'Alembert Equation

The simplest case of a wave equation on g-Minkowski space is the g-d'Alembert
equation, where fields are 0-forms φ and the wave equation is given by the
g-Laplace-Beltrami operator.

Definition 3.1. A solution of the q-d'Alembert equation is a 0-form φ such that
Aφ = 0.

This equation can be written less abstractly, in terms of the braided differential
operators and the value φ on 1 G ΛQ of φ.
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Proposition 3.2. The q-d"Alembert equation is equivalent to

Dφ = 0, (11)

where D = dadbg
ab is the q-d'Alembert operator.

Proof. Since *φ is a 4-form, dδφ vanishes and thus Aφ = δdφ. With relation (10),
we find:

0 = δdφ(\) = dfdaφHίl}cdes/[c

4

d

}l/mnH
k

{<>"}«

= dfdaψHl}cdeH[«fe = dfdag
faφ ,

which proves the equivalence of the g-d'Alembert equation and (11). Π

Equation (11) is indeed the obvious choice for a g-d'Alembert equation, as
remarked by many authors before. This form is also convenient for proving that the
q-ά'Alembert equation is ^-covariant. Keeping in mind the various transformation
properties, one can show that the action α of the operator D commutes with the
coaction by J^, i.e. βMq o α o ( Π ® ( / > ) = α o βy,®Mq o (D ® φ). One could also write

down a q-Klein Gordon equation of the form (D +w 2)φ = 0, but this equation
would only be J^-covariant if the "mass" m transformed as m \-> m ® ς, i.e. not

as an J^-scalar. One might argue that this transformation property in itself is not
necessarily harmful, but the results of the next section on plane wave solutions seem
to suggest to us that J^-covariant wave equations on Mq are inherently massless.

A solution of the ^-d'Alembert equation determines a conserved current:

Proposition 3.3. Let φ be a solution of the q-d* Alembert equation. Then the
current \-form j,

j = ~φ Λ idφ — q~2idφ Λ φ

is conserved: δ\ = 0.

Proof. Equation (10), Corollary 2.12, and the relation q~2R^cd

abg
ba = gcd imply:

δ\(dxa) - idb(φdaφ - q'\

- idb(φdaφ - ̂ -2(

= idb(φdaφ - q~2(daφ)φ}gba

= i((dbφ)(daφ) - (dcφ)(ddφ)q-2R^cd

ab}gba

= 0.

Here we used repeatedly the relations (9). D

Since the question of the *-structure on the braided differential operators is still
unsolved, it is not quite clear whether this current is real or not. However, for
the plane wave solutions which we will discuss next, one can establish that the
corresponding current is indeed real.

As we are working in an algebraic framework, we will present our deformed
exponentials as "formal power series." Strictly speaking, they are not elements of
our algebra, but of a suitable completion. These plane wave solutions are indexed
by a copy of V(RM) regarded as momentum space with generators pa. This algebra
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of ^-momenta is an J^-comodule algebra with coaction pa ι—>• pb ®Sλ%ς~l, i.e. has
the ς-scaling property as appropriate for momenta. The relations between the p's
are described in terms of RM, but on the q-deformed light cone PQ defined as the
quotient of V(RM) by the relation gabpapb — 0, one also has:

Lemma 3.4. On the quotient PQ, the generators of V(RM) obey the V(q~2RL)
relations papb = q~2R°b

dp
d pc

Proof. Let p = (a,b,c,d) be the vector of generators. The algebra V(q~2Rι) has
the same relations as V(RM) except for cb — q2bc + (1 - q2)dd, which differs from
the corresponding relation cb — be — (1 — q2)ad — (1 — q~2)dd. However, in the
quotients V(q~2RL}/(gabPapb = 0) and PQ, the generators obey ad - q~2cd = 0 and
we can rewrite both relations as ad — be — (1 — q~2)dd. D

The g-light cone is invariant under the coaction by 5£q in the sense that the
coaction β by the #-Lorentz group on V(RM) descends to a covariant coaction
β : PQ —> PQ (g> <£q. Using PQ as an "index set" we define a family of q-deformed
plane waves:

oo jn

n=o M\ a{ an—

as a formal power series in M^0P0, where [n] = 1 + q2 H h q2(n~1^ and [n]\ =

Proposition 3.5. The family of P^-indexed complex valued plane waves φ(p) given
by 1 i—> exp(±/jc p) are solutions of the q-d*Alembert equation.

Proof. The elements exp(±/;c p) transform as scalars under the coaction by J^,

since the dilaton terms always cancel, and hence φ(p) is an J^-comodule morphism.
It remains to show Dexp(ά: /?) = 0. By virtue of Lemma 3.4, we find:

= Σ in7^δc

d<

-I _____ L ̂ ^-
^ . . .r a" . a 2 c

and hence Dexp(/jc p) — 0. We used the braided Leibniz rule to evaluate
d°Xaι'-Xan. Π

These plane wave type solutions exist only on the g-light cone, giving further
support to our claim that wave equations on quantum Minkowski space should be
massless. In general we do not know whether the conserved current associated to
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a solution of the g-d'Alembert equation is real, but in the case of plane wave
solutions, we can show:

Lemma 3.6. Any two monomials in the formal power series exp(— ix /?) and
exp(όc p) commute.

Proof. Using the statistics relations paxb = xcR^a

dbp
d and Lemma 3.4, which im-

plies RlXab

cdp
cpd = q~2pbpa we can show:

ncr . r (2) na'n . . . na\ — r - - . r 6δR~l a\c . - - Ό~λamdm-\ dm bm , . . J>\
PXa}"'XamWp P — xa}

 xamWKL d}b^
 KL dmbm P P P

and hence with q~2R^b

cdp
d pc = R£b

cdp
d p°, which also follows from Lemma 3.4:

a, - XanXbl - -Xbmpbm .. pb> pa» '"

- xcmxdl '

kλbλ m

f\cm-\ r, h\g\ r, k\gn_\
M /20! AM h2c)2 '" M k2bm_λ

1 m-\c\ τ>hm_\l\ βkm_\ln_\

M a\l\ KM a2l2 '" M anb\

— v . . . v v j . . . v /
Λ'Cl */VCY)7-/VU1 dfj

n fl 1 Ow r> ^ 2 ̂  1 /? — ^
L f\e\ L H\e2 '"' L k\bm

n f\cm-\ nh\g\ > < t n^\9n~\
KL f ' 2 c j } Lh2cj2 * ' * Lk2bm_ι

pfm-\c\ phm-\l\ pkm-lln-\
A L f l l / ! A Lα 2 / 2 " ^Lα^!

/'" /! X" - /?*!

= (̂ , -XbmPbm •- pb} )(xaι '' 'Xanp
a" ' * * P°} ) Π

This lemma suggests that in a suitable completion of our algebra, we can reorder
terms and verify that exp(/.x /?)exp(—ix •/?)=! . In this case, we would find
\(dx^) = \(dxd) = exp(—ix p)exp(ixp)pά — q~2 exp(—ix p)pάQxp(ixp) — Pά~
q~2 Qxp(—ix p)paQxp(ixp) — \(dxay and the conserved current j associated to
the plane wave solutions φ(p) would be seen to be real.
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4. The ^-Maxwell Equation

For g-Maxwell equations, we apply a similar strategy as for the g-d'Alembert equa-
tion: we first give a more abstract definition in terms of δ and d and then show
how this equation looks in terms of the maybe more familiar braided differential
operators d.

Definition 4.1. A solution of the q- Maxwell equation is a \-form A such that
δdA = 0.

Using the results from the preceding sections, we can rewrite this rather abstract
relation to resemble the classical equation dμδμAv — dμdvAμ = dμd[μAv] = 0:

Proposition 4.2. The q-Maxwell equation is equivalent to the set of four equations

dcd[cAz] = 0, (13)

or alternatively

ΠAz-dzd
cAc = 0 . (14)

Here d denote the braided differential operators on Mq, D the q-d'Alembert op-
erator and "[ ]" the q-antisymmetriser.

Proof. First verify by explicit calculation that

τr ab u xcd _ V * ι # J xc * ab

By virtue of this relation, we obtain

0 =

ab TJ x ef rj j TJ him p p A ττ ab τr x ej

^$}cz = dad[cAz] ,

where we used the definitions of δ and d, the relations (9) and (7), and finally
(15). This establishes the equivalence of the ^-Maxwell equation and (13). In order
to prove the second part, note that the generators of V(RM) obey

xax
b=jfxdRffca. (16)
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Hence with (8), we find:

0 = dcd[cAz] = dc(8cAz - diAjRά1^

= dcdcAz - dcd}AjR^cz = ΏAZ - dzd
cAc .

This proves the equivalence of (13) and (14). D

In the form (13), the ^-covariance of the ^-Maxwell equations can be easily

established. Again, a massive field equation, i.e. a q-Proca equation dcd[cAz] = m2Az

would be ^-covariant only if m transformed as m >— » m 0 ς"1, and again we shall
find ^-deformed plane wave solutions only on the g-light cone.

As in the undeformed case, solutions to the ^-Maxwell equation have a gauge
freedom. If A is a solution of the ^-Maxwell equation and φ a 0-form then by
virtue of theorem 2.11 the 1-form A + dφ is also a solution. Provided it is possible
to solve the inhomogeneous equation Aφ = —δ A, we can use this gauge freedom to
arrange for A to satisfy the q-Lorentz gauge condition £A = 0. Using an argument
similar to the proof of proposition 3.2, one can show that the g-Lorentz gauge
condition is satisfied if and only if d°Ac = 0. Proposition 4.2 implies that in this
case A obeys A A = 0 or equivalently D^4Z = 0. As in the classical case, a field A
satisfying the g-Lorentz gauge has a residual gauge freedom A ι— > A + dφ, where
φ is a solution of the g-d'Alembert equation.

The ^-Maxwell equation also has a family of plane wave solutions. However,
in this case the solutions are indexed by the ^-momentum pa (the generators of
the g-light cone PQ) and the "^-amplitude" Az, which are generators of a copy of
Mq. We define the algebra Y as the quotient of P$®_Mq by the relation pc®Ac = 0.
This algebra Y labels plane wave solutions to the ^-Maxwell equation:

Proposition 4.3. The family of Y-ίndexed \-forms A given by dxz \—> exp(όc p)®Az

are solutions of the q-Maxwell equation and satisfy the q-Lorentz gauge condition
<5A = 0.

Proof. Using the ^-Maxwell equations in the form (13), one finds:

dcd[cQxp(ίx - p)®Az] = dc(dcQxp(ix p)®Az - dmexp(ίx p)®AnRM

nm

cz)

= exp(/.x - p)pcpm®AnRM

nm

cz)

= exp(/;c p)pzp
c(j§Ac = 0 .

Here we used (8), Proposition 3.5 and relation (16). These solutions obviously
satisfy the g-Lorentz gauge condition. D

A solution A of the ^-Maxwell equation defines a 2-form F = ί/A, the q-field
strength tensor which obeys the two equations

</F = 0, <5F = 0. (17)

Proposition 4.2 implies that the second relation is equivalent to

dcFcd = 0. (18)

and we also find

aFab = Ώd[aAb] = dίaΏAb] = d[adb]d
cA = 0 ,
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using the fact that D is central in ® and the ^-Maxwell equation for A. Since at
present we do not have a g-Poincare lemma, we only know that (17) is implied by
the ^-Maxwell equations, but we cannot prove that they are equivalent.

5. 0-Spinor Analysis of the ^r-Field Strength Tensor

In this section we give a SLq(2, C)-spinor description of the g-field strength ten-
sor F similar to the classical case. For this purpose, we need a few elements
of the SLq(2, (C)-spinor calculus, some aspects of which were already discussed
in [15]. This case is very simple since the R-matrix (1) is of Hecke-type and
obeys 0 = (PR + q~l)(PR - q). This means that one can take either (PR - q)
or (PR~l -q~l) as a g-antisymmetriser for 5/^(2, (C)-spinors. The Hecke rela-
tion ensures that after a suitable normalisation these operators are projectors. Fur-
thermore, one does not have any problems with higher g-antisymmetrisers, since
they are all zero. One could also define a g-antisymmetriser by first identifying
a ^-antisymmetric εAB, similar to the procedure in Sect. 2.1, but this approach
gives the same result. The ^-antisymmetric spinor εAB is simply the SLq(2,<C)-

spinor metric (3), which obeys qεAB = —^CD^~ID

AB ^ne can easily verify that

~q~lΫcD obeys Λ2 = Λ by
virtue of the Hecke relation. We also define a q-symmetriser S = 1/2(1 — A) =
(q + q~l)~l(PR~l -f q), and the q-symmetrίsation "( )" and q-antisymmetrisatίon

[ ]" of a multivalent ^-spinor T...AB... with two adjacent lower indices A and
B as T...(AB}... = T...CD SC

A

DB and T...[AB} . = T...CD ΛC

A

D

B, respectively. Again, one
obtains similar relations for upper indices. Due to the Hecke relation, the g-(anti)-
symmetrisation of a g-spinor is ^-(anti)-symmetric:

T...[(AB)}...=0, T...([AB])...=0, (19)

and we also have a decomposition

T...AB... = T...(AB}... + T...[AB\... . (20)

The ^-(anti)-symmetrisation is SLq (2, <C)-co variant in the sense that both operations
commute with the coaction by SLq(2,<£). Furthermore, if T...CD is a multivalent
^-spinor then

B.... (21)

In this formula we do not violate the index notation by writing SCD on the left since
C and D are adjacent indices and the generators of SLq(2,<C) preserve the spinor
metric.

We now apply these results to the field strength tensor F, or more generally, to
any ^-antisymmetric tensor Fab G Mq. Any such tensor defines an 5/^(2, (C) spinor

fAB 77 i)l' B
J A'B' - ΓAIΊB'KAΊ

which is the object we will study in this section.

B

A/B
Proposition 5.1. The tensor fAB

A/B/ admits a decomposition



+ / [A'B'] V J [A'B'] '

and also

rAB -_fCD B-\C'D'B-IBA _ _ -2 AAB) , f[AB\
J A'B' — J C'D'1^ B'A'n CD ~ V J (A'B') (A'B')

[A'B'] ~ V J ' [A'B']
f(AB"> _ n2 f[ΛB]

J [A'B'} V J [A'B'] '
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where φAB and \j/ArBt are q-symmetrίc SLq(2,<E)-spίnors.

Proof. Since the tensor Fab is ^-antisymmetric, fAB

A,B> obeys:

fAB _ 77 Γ>I'B _ 77 DDD'CC' DI'B
J A'B' - *AIΊB'KAΊ ~ -^CC'DD'^L AIΊB'KA'I

_ 77 nC'KnD'LnAN nM/ nlfB _ fCD Ώθ'C1 pAB
— —^CC'DD'^LD KMB'K KCKI'NKAfl ~ ~J C'D'K A'B'K DC

Due to relation (20), we also have

fAB _ AAB) AAB] AAB) AAB]
J A'B' — J (A'B') ~Γ J (A'B') "•" J [A'B'] "•" J [A'B'] '

This implies with (22), (19) and the Hecke relation:

fAB _ _ fCD pD'Cf nAB _ _ 2 AAB) , AAB]
J A'B' — J C'D'^ A'B'n DC — V J (A'B') ~*~ J (A'B')

and therefore 0 = f(AB\A,B,} + f{AB\AιBιγ With relation (21), it follows

where φAB = f(AB^c

C and ψA/B/ = fc

c

(Afβ^ are ^-symmetric SLg(2, C)-spinors. D

In the case of a real tensor, the two components φ and ψ are not independent,
but are related by the star structure on Mq.

Proposition 5.2. A q-antisymmetric tensor Fab is real iff ψDC = -φ*CD and can
hence be written as

sAB ιAB^
J A'B' = Φ εA'B'

in terms of the q-symmetrίc SLq(2,(£)-spinor φAB.

Proof. If Fab is real then

f*AB _ 77* nl'B _ π nl'B
J A'B' — *AI'IB'KA'I - *B'II'AKA'I

_ z? τ>A'l _ rBΆ'
— ^B'II'AKBI' — J BA >
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where we used the fact that R is of real type, i.e. obeys RA£D = ^DBA m components,
this means that

φ*ABβλlB, + εABψ;,B, = φB'A'εBA + εB'A'ψBA

Due to the ^-symmetry of φ and φ and the ^-antisymmetry of εAB, multiplication
of this equation by qRcfA yields by virtue of (19):

12φ*CDεA>B> - εCDψA*B, = -φB'A'εDC+q2εB'A'ψDC .

again using that R is of real type. Thus φ*CD£A>β' = £B A ΦDC, which implies the
• ft' 4'

proposition, since ε = —&A'B' D

Classically, this decomposition of the field strength tensor into spinors coincides
with the decomposition into its self-dual and anti-self-dual part. The same result
holds in the non-commutative case. By virtue of Proposition 2.14, any two-form
F on quantum Minkowski space can be decomposed uniquely as F = F++F~,
where F+ = I(F + *F) and F" = ±(F - *F) are self-dual and anti-self-dual, i.e.

obey *F = iF^ The ^-Maxwell equations (17) are then equivalent to either
= 0 and d¥ = 0 or the two equations

£F+ = 0, < 5 F ~ = 0 . (23)

Proposition 5.3. Let FAB be a q-antisymmetric tensor. Then

f+AB _ ιAB- r-AB _ AB.i.
J A'B' - Φ &A'BΊ J AtBt - e ΨA>B>

are the self-dual and anti-self dual parts of f.

Proof. It suffices to show that f± are selfdual and antiselfdual, respectively. On
the tensor fAB

A,Bι, the g-Hodge star operation is implemented by the matrix

TTABA'B' _ f>A/I LT AI'IB' nj'o
U{2}CDC'Df - KIfBn{2}CJfJDfKC'J '

By explicit calculation, one verifies that this operator satisfies the relations

S EF&A'B' U{2}CDC'D' ~ $ EF^C'D' •>

ΛBvE'F' TjABA'B1 _ cCDςEfFf

b O AιB'u[2}CDC'D' ~ fc ° C'D' '

Since φAB and φA/B/ are ^-symmetric and thus eigenvectors of the ^-symmetriser
S, this implies that φEF£A'β

f and ^BΦA'B' are self-dual and anti-self-dual,
respectively. D

If we are looking for real solutions of the ^-Maxwell equations (17), it is thus
sufficient to solve one of the two equations in (23). In terms of the SLq(2, (C)-spinor
φ this means:

Corollary 5.4. For real F, the q-Maxwell equation δ¥~ is equivalent to

V^V/^-0, (24)

where Vcc' = RC'AϊAd
AA'.
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Proof. Proposition 5.3 implies with (18):

o = daF~b = Λ^/3/VV/'*' = ti'A?Ad
AA'^B, = vBI'ψI/Bf.

This proves the corollary. D
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