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Abstract: We give a systematic account of a “component approach” to the algebra
of forms on g-Minkowski space, introducing the corresponding exterior derivative,
Hodge star operator, coderivative, Laplace-Beltrami operator and Lie-derivative. Us-
ing this (braided) differential geometry, we then give a detailed exposition of the
g-d’Alembert and g-Maxwell equation and discuss some of their non-trivial prop-
erties, such as for instance, plane wave solutions. For the g-Maxwell field, we also
give a g-spinor analysis of the g-field strength tensor.

1. Introduction

This paper develops some elements of braided differential geometry on quantum
Minkowski space and uses these new tools to define and analyse the two simplest
wave equations on this non-commutative spacetime, namely the g-d’Alembert and
the g-Maxwell equation. In order to distinguish our approach from other related
work it might be useful to emphasize that we are constructing generalisations of
classical wave equations in position space and not a deformation of quantum theory,
as for instance in [13], where wave equations in momentum space were constructed
by using irreducible representations of the g-Poincaré group. At present, there is no
g-Fourier transform in this case, and it does not seem to be possible to compare
the results of the two approaches.

In our exposition of braided differential geometry we present forms in a slightly
different way than in some earlier papers by other authors. We use what one might
call a component approach to forms, but will show in Proposition 2.7 that the two
possible approaches are equivalent. This different approach to forms has the conse-
quence that the g-exterior derivative d is constructed in terms of braided differential
operators 0° and not vice versa, as for instance in [12]. The additional ingredient
needed for this construction is a g-Lorentz covariant antisymmetrisation operation,
which we introduce. In a similar fashion, we also define the g-Hodge star operator,
g-coderivative, g-Lie derivative, and g-Laplace-Beltrami operator. The advantage of
the component approach is that for instance the g-electromagnetic field is given
terms of components and admits a very simple SL,(2, C)-spinor decomposition into
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self-dual and anti-self-dual parts, which will be discussed in the last section of this
paper.

Preliminaries. In a previous paper [11], we gave a detailed account of the ¢-
deformation of spacetime and its symmetry group (see [10] for a comparison with
the approach of [2,1]). The key idea was that g-Minkowski space should be given
by 2 x 2 braided Hermitian matrices, which were introduced by S. Majid in [3] as
a non-comutative deformation of the algebra of complex-valued polynomial func-
tions on the space of ordinary Hermitian matrices. Braided matrices have a central
and grouplike element, the so-called braided determinant, which plays the role of
a g-norm and which determines a g-deformed Minkowski metric.

As given in [3], the braided matrices did not generalise the additive group
structure of Minkowski space, which should be reflected in our dual and g-deformed
setting by a braided coaddition as introduced in [6]. A braided coaddition is a
braided coproduct of the from Ax = x®1 + 1®@x which extends as an algebra map
with respect to a braided tensor product ® and not the ordinary tensor product .
Braided tensor products are like the super tensor products encountered in the theory
of superspaces, but with the +1 factors replaced by braid statistics. The tensor
product algebra is given by (a®b)(c®d) = a¥(bQc)d, where ¥ is the so-called
braiding which measures how two independent copies of a system fail to commute.
In the commutative case, ¥ is simply given by the twist map Y(a® b)=bQa.
In the non-commutative case the braiding is determined by a background quantum
group, which acts as the symmetry group of the system. A good introduction to the
theory of braided matrices and braided groups is in [4].

The braiding and background quantum group which allows for quantum
Minkowski space to have a braided coaddition was found in [11]. This construc-
tion gives rise to a natural quantum Lorentz group which preserves both the braided
coaddition and the non-commutative algebra structure of quantum Minkowski space.
The final result is given in terms of two solutions of the four dimensional QYBE:

cd _ p—1LCLB' 1 pa'y KD ab _ pCl pB'J pA'K LD
Ryfay =R g RIAR R R = RypR R pR ¢y s

where P denotes the permutation map and

qg 0 0 0
01 g—g' 0

R={g o 777 of acm 1)
00 0 q

is the standard SU,(2) R-matrix. The matrix R is defined as ((R?)~')2, where
denotes transposition in the second tensor component. We also use multi-indices
a=(44") = (11), (12), (21), (22). These two matrices obey the relation

0= (PR, + 1)(PRy — 1), 2)

which is needed to show the existence of a braided coaddition. In terms of these
data, g-Minkowski space M, is given as the algebra of quantum covectors M, =
V*(Ry) in the notation of [8]. It has generators x, and a star structure x = xg,
where @ = (4'A) dentoes the twisted multi-index. The quantum Lorentz group %,
is defined as a quotient of the FRT algebra A(R;) with generators 17 by the metric
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relation 2%4%,g° = g, where the g-metric is given by g = (¢ + ¢~") 'e4cRYG
DB’

£”% in terms of the SL,(2, C)-spinor metric
0 1/yq )
eqp = . 3
AB <_\/q 0 ( )

We are working in a “spinorial basis,” where the metric has two negative and two
positive eigenvalues. There is also a *-Hopf algebra morphism %, — SL,(2,T)

given by A9 — tfﬁt‘i;, where ¢ are the generators of SL,(2,C). This map induces a
push forward of Z,-comodules.

If we now consider the coaction of %, on M,, one problem arises: In order
to obtain full covariance under the coaction by the g-Lorentz group, we have to
adjoin %, by a single invertible central and grouplike element ¢ [6]. The extended
g-Lorentz group is denoted by .,‘Zq, and its covariant right coaction on q-Minkowski
space is given by

Bu, : xa — x0 @ ¢

Similarly, there is a covariant coaction of the extended algebra :S'zq(2,(l?) given by

x”i,, — x%, ® t?t A‘f’g. Since the element ¢ measures the degree of elements of M,,
it is often called the dilaton element [16,6].

2. Differential Forms on Quantum Minkowski Space

Differential operators 0 on quantum Minkowski space were first presented by O.
Ogievetski et al. in [12], where suitable commutation relations between these op-
erators were introduced by hand. A general theory of braided differential operators
was developed only subsequently by S. Majid in [7], and allows for a more sys-
tematic presentation of the algebra from [12]. This general construction works for
any algebra of quantum vectors which can be equipped with a braided coaddition.
The action of braided differential operators 0 on quantum vectors is then defined
by formally “differentiating” the braided coaddition. Applied to g-Minowski space
(equipped with the braided coaddition from [11]) this construction yields an alge-
bra of braided differential operators & with generators 0 which obey the V(R )-
relations 0“0° = R@.,070° [7, Propsoition 2.2]. After changing ¢ for ¢~' to match
out conventions, it is easily seen that this is just the algebra from [12. Eq. (5.2)]
written in a compact form. This algebra & acts on quantum Minkowski space with
an action o: Y@M, — M, such that a braided Leibniz rule holds [7, Lemma 2.2]:

fg=("f)g+o¥ '("® f)g. 4)

Again, these are just the corresponding relations from [12, Sect.5] in a com-
pact form. Relation (4) also explains why we insist on calling the operators 0
braided differential operators. For unlike in the commutative case, M, is not a
Z2-module algebra, but what one might call a braided %-module algebra. By re-
peating the construction from [11] one can easily show that & can be equipped
with a braided coaddition 40’ = 0*®1 + 1®0“, making it into a braided Hopf
algebra. The braided Leibniz rule is then seen to be nothing but the statement
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wh@ab)= + o(a®@a)o(id @Y Qid)o(4R®id)h® a® b), which is a braided
generalisation of the classical notion of a module algebra.

By writing everything in the compact notation, it is also easily seen that g¢-
differentiation is covariant in the sense that a is an ,‘Z’q-comodule morphism. Due
to the covariance of the braided tensor product (see [S] for a detailed discussion),
DM, is Z,-covariant.

An open problem in this context is the question of the *-structure on 2. It is
possible to equip & with a suitable *-structure making it into a braided *-Hopf
algebra in the sense of [9], but the obvious choice for “x” does not commute with
the action o. It has been speculated that the very notion of a *-structure needs to
be g-deformed, but we will not attempt to solve this problem here.

2.1. g-Antisymmetrisers. In our component approach to forms, the exterior deriva-
tive is defined in terms of the braided differential operators ¢“ and not vice versa.
An essential ingredient in this approach is an Z,—covariant g-antisymmetrisation op-
eration, which we now introduce. For this purpose, we define a g-deformed notion
of antisymmetry, and call an ,?q-tensor T...qp... g-antisymmetric in adjacent indices
a and b if

Toap.=T..ca RS, . (5)

Here T,; and T%, etc. denote any elements of right ,?7 -comodules, which transform
as Tpp = Ty @ /IC 2 »¢" and T ab s T © SA°.SA° ¢, respectively, where S denotes
the antipode in ff We do not require a tensor to have a specific ¢-scaling property,
and therefore n and m can be any integers. If a tensor is g-antisymmetric in any
two adjacent indices, it is called totally g-antisymmetric.

At first sight, the definition (5) seem to cover only the case of lower indices.
However, it is known from [11], that one can use the g-metric g* and its inverse
to raise and lower indices in a g-Lorentz covariant fashion. The key ingredient
in the proof is the relation RL ef =9pf geeRP, g" kgb! between the R-matrix and
the g-metric. Thus if for example a tensor T...4... is g-antisymmetric in ¢ and b
then the tensor with upper indices 7% = T..;..---g“¢/’--- obeys T "%

—Rf T Hence it is sufficient to define g-antisymmetry for either upper or
lower indices.

Similarly to the definition of g-antisymmetry, we call a tensor g-symmetric in a
and bif T..pp... =T ...Cd...RA‘;’Cab. Again, this translates into a corresponding formula
for upper indices: this time by virtue of an analogous relation between the matrix
Ry and g. It is crucial to note that the two R-matrices used in the definition of ¢-
symmetry and g-antisymmetry are genuinely different and not identical up to scaling
as in the Hecke case.

We would like to define a g-antisymmetrisation operation which assigns to any
g-Lorentz tensor a g-antisymmetric one in a covariant fashion. Since the two R-
matrices R; and Ry, obey the relation (2), one might suspect that (PRy, — 1) would
be a good candidate for a g-antisymmetriser. However, this operator is not a projec-
tor, and it is also not quite clear how to obtain higher ant1symmetr1sers We shall
therefore take a different approach.

In the classical case, the space of totally antisymmetric tensors of valence four
is one-dimensional, and one can choose a basis vector g,,.s With €234 = 1, which
then defines a projector (antisymmetriser) 3;69““¢, sy, onto this one- _dimensional
space. By successively contracting indices, one obtains lower antisymmetrisers. This
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construction turns out to be applicable also in the g-deformed case, where a g-
epsilon tensor is also uniquely determined:

Lemma 2.1. Up to a factor, there is exactly one complex valued tensor e,pcq Which
is totally g-antisymmetric.

Proof. 1t suffices to verify explicitly that the system of linear equations &upcq =
&R/ = —tajaR/'s. = —¢ariyR/" 4 has a one-dimensional solution space. []

The non-zero entries of &4 in the normalisation &334 = | are:

o o _ _ 2
£1234 = 1 €243 = —q e1324 = —1 £1342 = ¢
2 2
eus=1-—gq era3 = 1 e1432 = —1 eaas =1 —¢q
-2 . _
&134 = —1 143 =¢q &304 = 1 e2341 = —1
-2 -2 2
&2413 = —¢q &2431 = 4 G4 =¢q ~—1 €314 = 1
9 _ _ _ 2
83142 = —¢ e3214 = —1 £3041 = 1 &3412 = ¢
2 '
€421 = —¢q Bp4=1-—gq e4123 = —1 eq132 = 1
2 -2
eq141 = q° — 1 equa=¢q " —1 ep3=1 g3 = —1
-2 . 2
ez =1—gq e4312 = —1 e4321 = 1 e =q — 1

eaga=1-q¢72 em=q 7 —1
Using a different approach, a g-epsilon tensor for g-Minkowski space was also pre-
sented by A. Schirrmacher in [14]. But this g-epsilon tensor is not g-antisymmetric
in the sense of our definition and does not coincide with the one given above.
After using the g-metric to obtain the corresponding g-epsilon tensor with upper
indices, we can define g-antisymmetrisers by successively contracting indices of
these two g-epsilon tensors:

Definition 2.2. The q-antisymmetrisation of an i”,,-tensor T..q..a - in adjacent
indices a, - - a, is defined as
— €l Cn
Tofay-an] - = T...(.l...c,,...ﬂ{n} aran
where the g-antisymmetrisers of ;) are given by
ayp--ay o= lcq_pcrap--a
ﬂ{k} bk = T e T ey by by

for n <5 and are zero otherwise. The normalisation factors ny =n3 =2(1 +
@ +q*) m=0+¢)1+¢%), ns=q7201+¢" +4")1+¢)1+¢%) are a g-
deformation of (4 — k)'k!.

It is evident that the g-antisymmetrisation of a tensor is g-antisymmetric in
the sense of (5) and with some more effort one can show that the operation of
g-antisymetrisation also has all the other relevant projector properties:

Proposition 2.3. By explicit calculation, one can show:

1. The antisymmetrisers <f ) are projectors:

Ay = Ay il Toqiaan = Tofayoan) - - (6)
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2. Lower dimensional g-antisymmetrisers cancel on higher dimensional ones:

Loty tagatan) = Tofay - - )

3. The one-dimensional projector is trivial:

Jf{l} =1, ie T.q..=T.,4..
4. The two-dimensional antisymmetriser </ (5 factors through (PRy — 1):

12y = (PRy — 1)B = B'(PRy — 1), (8)
where B and B' are invertible matrices.

The g-antisymmetrisers are also “Hermitian” with respect to the ¢g-deformed met-
ric. For instance, ./ 5} obeys the relation Lszf{‘z’lic 0 = 9o 94 3 99", and similar
relations hold for the other g-antisymmetrisers.

Of particular importance for the following is relation (8), which ensures that
g-symmetric tensors are in the kernel of the g-antisymmetrisers. Relations (7) and
(8) imply:

Corollary 2.4. If an j’q—tensor T..aya- IS q-symmetric in any two adjacent
indices a; and a;y,, then T..(,...qa,,,-a;)- = 0.

Thus although g-symmetry and g-antisymmetry are defined in terms of two different
R-matrices, the two notions are compatible in this sense. This corollary will be used
later when we introduce the external derivative d and show that d*> = 0.

Up to now we have used the index notation also for g-antisymmetrised tensors,
thus implying certain transformation properties of these objects. However, a priori it
does not seem to be obvious that the g-antisymmetrisation operation is ,G,;Q,-covariant.

Proposition 2.5. The coaction by the q-Lorentz group commutes with q-antisym-
metrisation.

Proof. We need to show that monomials of generators of %, commute with the
g-antisymmetriser </y,,. For this purpose, note that the uniqueness of ¢ from Lemma
2.1 can be used to establish that the generators of the g-Lorentz group obey the

relation
b d hgfe _ . —1 dcb 0 1P hyfe
A% ,-/lcg/l hE 9fe — ny &' ”smngpl”e’l"/-/lgll L 9/

Hence we find for the g-antisymmetriser ./(;y:
b def b d hyf
%A € feans = /lael‘f-é";lé he 97 eanr
b hgfeq—17d g—1
= 2820 0 TS 38 ST A ean
—1 mnb - hgfeg—19d o—I
= 1y & e e AN 24 TS T A0, ST A fean
—1 mnbag—1,d g—1 e oh
=n, &"ST A8 lc,,sopq,/l"el’} MAh: e 91 e ars
bag—17d ¢—1 ‘
= "SI 2 ST A o pr A% A X
_ 8mnba8 lq A
- nmgr’* A s

and similar for /3 and /(4). The case of o/} is trivial. [J



Wave Equations on g-Minkowski Space 463

2.2. The q-Exterior Algebra. After these remarks on g-antisymmetrisation,
we will now introduce the notion of forms on quantum Minkowski space. Sim-
ilar to [17], we first define an algebra A as the associative C-algebra generated
by 1 and four elements dx, with relations dx,dx, = —dx, dx,R/",. This algebra
is an jq-comodule algebra with coaction dx, — dx, ® A%¢. As a linear space, it
is a direct sum A = @::0 Ay, where A; is the C-linear space spanned by 1 and
the elements dx,, - - - dx,, . In particular, we have Ay = C. We also define the dual
algebra A* with generators dx’, relations dx?dx® = —R®,dx?dx‘ and dual pairing
given by (dx“,dx;) = 0%. There is a g-metric induced isomorphism between these
algebras defined by dx* +— dxpg®®, which is also a jq-comodule morphism. The
proof is just like the proof of V(Ry ) = V*(Ry) from [11].

For the construction of forms on quantum Minkowski space there are now two
possibilities. On the one hand, one could consider the subalgebra of .%,-scalars in
A*®M, and define k-forms as jq-scalars in A;®M,, as suggested by the construc-
tion in [17]. On the other hand, however, one could take a “component” approach,
which is the one we shall use in this paper:

Definition 2.6. A k-form w on g-Minkowski space is an ,qu-comodule morphism
w: A — Mq.

Over the ring of all jq—scalars in M,, k-forms form a linear space, which is denoted
by €. In terms of this space, we can show that the two approaches to forms on
quantum Minkowski space are equivalent:

Proposition 2.7. The linear space € is isomorphic to the space of jq-scalars in
A M,

Proof. All k-forms are of the form w:dx, ---dx, + f4..q for some element
fay--aqp of My. This means that we can define a linear map ¢ : w — dx,, -- - dx, ®
Sbgby goPh . g@bt into the space of jq-scalars in A;®M,. On the other hand, any
:Z,-scalar h € A;@M, is of the form h = dx% - - - dx" Qhy,...q, for some hy, ..., € My,
and we can define a map  : h— (dx% - -dx - -)hg ..q in Q. It is easy to see
that ¢ oy = id and ¥ o ¢ = id, and hence the two spaces are isomorphic. [

For any k-form w, the element w(dx,, - - - dx,, ) is a completely g-antisymmetric
tensor in M,. All such tensors in M, are in the image of the g-antisymmetrisers
from Definition 2.2 and we find:

Proposition 2.8. All k-forms on quantum Minkowski space are of the form
W(dxy, -+ dXa, ) = Wia,...q) fOr sOme wy,..qp € M.

Proof. The proposition follows from the observation that the dimension of totally
g-antisymmetric tensors over the ring of Z]-scalars in M, coincides with the ranks of
the g-antisymmetrisers /(4. As in the classical case, these spaces have dimensions
1,4,6,4,1 for p =0,1,2,3,4, and dimension 0 for p > 4. [J

The one-dimensional space €4 is spanned by the top form e :dx,, ---dx, —
€4y.--a4» and Qo by the form 1: & & - 1 for & € A9 = C. As a corollary of relation

(7) from Proposition 2.3 one finds that the C-linear space Q = @:zo Q) can be
equipped with an algebra structure.
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Corollary 2.9. The g-wedge product N : Q; x Q, — Q,, defined by
WAV dxg -+ -dxaH, = Wiay - Vagy - aggn]

is an associative C-algebra structure on Q, with identity 1 € Q.

Finally, we define the notion of a real form. By virtue of the relation RL"IL’,d =
R?%_ from [11, Proposition 2.3], A can be equipped with a *-structure dx;; = dxz.
A k-form w is then called real if w(dx,, ---dx,, )" = w((dxg, - - - dxg.)").

As already mentioned before, this paper defines the exterior derivative d in terms
of the braided differential operators ¢° and the g-antisymmetrisers introduced in the

last section:

Definition 2.10. The g-exterior derivative d : Qp — Qi1 is defined by dw:
dxal "'dxak+| = a[ﬂlwaz'“akH]'

Forms whose g-exterior derivative vanishes are called closed and forms which
are themselves g-exterior derivatives are said to be exact. The crucial test for a
definition of a “g-deformed exterior derivative” is whether exact forms are closed.

Proposition 2.11. Exact forms on g-Minkowski space are closed: d* = 0.
Proof. Relation (7) implies:
dzw(dxal - dxg ) = Oty OayWay-ay11) = Oftay Oy Way -y ) = 0.
Here we used that braided differential operators d, obey the relations of V/(Ry)
[7], i.e. 04,04, is g-symmetric and hence J,, 04,1 = 0 by virtue of Corollary 2.4. [

As a consequence of the braided Leibniz rule (4), we find for the action of the
g-exterior derivative d on wedge products of forms:

Corollary 2.12. The g-exterior derivative acts as
dw AV = (dW)Av+ (1w A dy

on wedge products w A\ v, where w is a k-form.

Proof. The crucial point is that the inverse braiding brings up R-matrices, which
cancel on the g-antisymmetriser because of the symmetry property (5). We prove
the corollary only for 1-forms w, the general case follows immediately by using the
hexagon identity for the braiding ¥. Thus let w be a 1-form and v a k-form. On
Ary2 we have by virtue of (4) and the g-antisymmetry of £%¢¢:

6[alwazva3...ak+2] = (8[alwa2 )l)a3...ak+2] + - 0 ‘I’_l(ﬁ[al ® Wa?_ )Ua3...ak+2]
_ —lecd
- (a[al Wa, )Ua3"‘ak+z] T we® adRL [aéal Vay---ay 5]

= (Ofa; Wa, Way--ap 451 + Wia, ® OaVay---ay 4] -

Here we used the inverse braiding ‘I/_l(ﬁaI Q@ Way) = We ® 6dRL_"l2”gl (see [8, Prop.

3.2] for a useful list of braidings between various standard algebras). [J

The second operator on  one can define with the tools at hand is the g¢-
Hodge star operator. It is defined in terms of the metric g° and the tensor egpey.
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Definition 2.13. The g-Hodge star operator x : Qu — Qu_y is defined by
*w(dxal T d'xa4>[\ ) = w[('|-“('/\]H{[];I}”a'?.\'..a“__l‘ s

e SN bie bie _
where H{k}alm“_k =1 ey ybyby 90Nk gk and ng = ng.

This ¢-Hodge star operator generalises the characteristic properties of the classical
Hodge star operation. For example, the top form ¢ and the identity 1 are conjugate
with respect to the g-Hodge star: *& = 1. Also, we can show for #* : Q; — Q;:

Proposition 2.14. +?|g, = (—1)*=5).

Proof. By explicit calculation, one can verify the following relations between the
¢-antisymmetrisers .«/(;) and the matrices H{;, which implement the ¢-Hodge star
operation:

HyoyHay = 1, —HyyHy = oy,
HpyHppy = oy, —HpyHpy = 3y,
HiyHioy = sy - ®)

Together with (6), these relations imply the proposition. Since we are working in
a “spinorial basis” we do not obtain an additional (—1)-factor in Proposition 2.14,
as in the case of an “x, y,z,t-basis.” [J

It is also possible to “shift” the g-Hodge star operator in the g-wedge product of
two k-forms:

Lemma 2.15. If w and v are both k-forms, then *w Av = (—1)fw A *v

Proof. Verify by explicit calculation
bede e bed
H{la}b(’d‘%{él}k/mn = _H{I}bcd‘%{ﬂ}klmn >

b def f bed
H{za}cdéjp y = H{ze}(vd‘%{zt}(klmn >

{4}kimn
be g defy 19y abed
H{;};Mﬂ}k;mn - _H{;}dl'%{‘il}k/mn :

This proves the lemma. [

Now that we are given both a well-behaved exterior derivative and a g-Hodge
star operator, it is straightforward to define a g-coderivative, g-Laplace-Beltrami
operator and ¢-Lie derivative

Definition 2.16. The g-coderivative 6 : Q — Qx_ and the g-Laplace—Beltrami
operator A : Qp — Q. on k-forms on quantum Minkowski space are defined as
0 =*d* and A = dd + do, respectively.

Forms w on quantum Minkowski space which satisfy éw =0 are called co-
closed, and forms which are themselves g-coderivatives are called co-exact. As a
corollary of Proposition 2.14 and Proposition 2.11, one finds:

Corollary 2.17. Co-exact forms on quantum Minkowski space are co-closed:
3 =0.
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Thus, although d,d and 4 are defined in terms of deformed antisymmetrisers and
differential operators on a non-commutative space, their abstract properties resemble
very much the classical case. It is straightforward to verify that 4 commutes with
d,d and %, and that

& =(=Dfd, rs=(-1)*a*,  ds*="dd.

Some further properties of these operators will be given in the context of the fol-
lowing sections. In particular we will analyse the explicit action of these operators
on zero and 1-forms, which is of interest to physical applications.

The g-Hodge star operator also enables us to generalise the idea of a Lie deriva-
tive. For this purpose, we introduce a g-inner product on the g-exterior algebra Q2
as a bilinear map ( , ): @ x Q, — Q_, defined by (w,v) = iyw = *(v A*~! (w)).
The g-inner product is “transposed” to the g-wedge product in the sense that

(YA w,u) = iyawtt = iy(iy) = (W, iyu),

and it also obeys *w = iye and diyw = i,0w + (—1)¥izyw, where v is a k-form. Fur-
thermore, Lemma 2.15 implies (v,w) = iyW = i,,*W = (*v, *w) for any two k-forms
v and w. In terms of this g-inner product, we now introduce:

Definition 2.18. Let v be a 1-form. The q-Lie derivative Ly : @, — Qi with respect
to v is defined as Ly = iyod +d o,

The g-Lie derivative commutes with the g-exterior derivative and we also have
Lipayw = f A Lyw + df A iyw for zero forms f and 1-forms v. For the action of the
g-Lie derivative on zero forms on g-Minkowski space, we find:

Proposition 2.19. The action of Ly on f € Qy is given by Lf: 1 — v°0,f.

Proof. First note that L,f = i,df, since f is a zero form. Then show by explicit
calculation that

H{y g HE = =g (10)

Hence Lyf(1) = ~0h00/ Hiyyogo P ilm " = 0000 S HE )t HEESE = 09001
O

3. The ¢g-d’Alembert Equation

The simplest case of a wave equation on g-Minkowski space is the g-d’Alembert
equation, where fields are O-forms ¢ and the wave equation is given by the
q-Laplace—Beltrami operator.

Definition 3.1. A solution of the q-d’ Alembert equation is a O-form ¢ such that
Ap = 0.

This equation can be written less abstractly, in terms of the braided differential
operators and the value ¢ on 1 € Ay of ¢.
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Proposition 3.2. The q-d’ Alembert equation is equivalent to
Uy =0, (11)

where [0 = 0,0,9°° is the g-d’ Alembert operator.

Proof. Since *¢ is a 4-form, do¢ vanishes and thus 4¢ = déd¢. With relation (10),
we find: y
0= 5d¢(1) = a/aa(pH?l}cde‘ME:}le\:lmnHﬁ’f"
= af'aa(pH?l}cdeH{’:}de = af'aag/.aq) s
which proves the equivalence of the g-d’Alembert equation and (11). O

Equation (11) is indeed the obvious choice for a g-d’Alembert equation, as
remarked by many authors before. This form is also convenient for proving that the
g-d’Alembert equation is .,‘Zq—covariant. Keeping in mind the various transformation
properties, one can show that the action o of the operator [J commutes with the
coaction by %, i.e. Bu, o xo (D@ @) = oo Bygu, o (J® ¢). One could also write
down a g-Klein Gordon equation of the form (CJ+ m?)p = 0, but this equation
would only be Z,—covariant if the “mass” m transformed as m +— m ® ¢, i.e. not
as an Z,-scalar. One might argue that this transformation property in itself is not
necessarily harmful, but the results of the next section on plane wave solutions seem
to suggest to us that .Z,-covariant wave equations on M, are inherently massless.

A solution of the g-d’Alembert equation determines a conserved current:

Proposition 3.3. Let ¢ be a solution of the q-d’Alembert equation. Then the
current 1-form j,

i=9ANidp—q lidp Ao
is conserved: dj = 0.

Proof. Equation (10), Corollary 2.12, and the relation ¢~2R; ', g** = g°¢ imply:

8i(dxa) = i0p(@0up — 2 (0aP)PIH 1y et (& iimnH 4}
= i0p(P0a — 42 (0aP)PIH 1y ca {53 H 0y kimnH {2}
= i0p(P0up — 4 (0.0)9)g™

= i((0pP)(0a) — (0:P)(0ap)g >R "%, g™
=0.

Here we used repeatedly the relations (9). O

Since the question of the *-structure on the braided differential operators is still
unsolved, it is not quite clear whether this current is real or not. However, for
the plane wave solutions which we will discuss next, one can establish that the
corresponding current is indeed real.

As we are working in an algebraic framework, we will present our deformed
exponentials as “formal power series.” Strictly speaking, they are not elements of
our algebra, but of a suitable completion. These plane wave solutions are indexed
by a copy of V(Ry) regarded as momentum space with generators p®. This algebra
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of g-momenta is an fq—comodule algebra with coaction p® — p® ® SA¢c™!, i.e. has
the ¢-scaling property as appropriate for momenta. The relations between the p’s
are described in terms of Ry, but on the g-deformed light cone Py defined as the
quotient of V(Ry) by the relation g, p“p® = 0, one also has:

Lemma 3.4. On the quotient Py, the generators of V(Ry) obey the V(q~*Ry)
b

relations p°p® = q 2R, p? p°.

Proof. Let p = (a,b,c,d) be the vector of generators. The algebra V(¢ ?R;) has
the same relations as V(Ry ) except for cb = g?bc + (1 — ¢*)dd, which differs from
the corresponding relation cbh = bc — (1 — ¢*)ad — (1 — g~%)dd. However, in the
quotients ¥ (g~ 2R;)/(gas p°p® = 0) and Py, the generators obey ad — ¢~ 2cd = 0 and
we can rewrite both relations as ad = bc — (1 —q~2)dd. O

The ¢-light cone is invariant under the coaction by Z, in the sense that the
coaction f§ by tlle g-Lorentz group on V(R ) descends to a covariant coaction
B:Py— Py® %, Using Py as an “index set” we define a family of g-deformed
plane waves:

o i

exp(ix » p) = > ey Xg,@P - P (12)
n=0 [n]

as a formal power series in M,®P,, where [n] = 1 + @+ +¢*" D and [n]! =
[1]-- [n].

Proposition 3.5. The family of Py-indexed complex valued plane waves @( p) given
by 1 exp(kix - p) are solutions of the q-d’ Alembert equation.

Proof. The elements exp(zix - p) transform as scalars under the coaction by %,

since the dilaton terms always cancel, and hence ¢( p) is an Qq-comodule morphism.
It remains to show Oexp(ix - p) = 0. By virtue of Lemma 3.4, we find:

|
exp(ix « p) =D i"—=0xg - Xg, p™ -+ p*
w [n]!
1 N N g
— E l'l’l_—é;lxdz . xdn(bl:llg"n _'_ PR dIdZ bd:;“'dn + PR dle PR ./ld3

Leyg” 7L eyes

- [n]| L ejey”e3---epn
dy---dn . dydy e In—2dn en ... p€l
x §ladn g PR PRIy per

1+q2+...+q2(n—1)
[n]!

=exp(x - p)ip°,

a ¢

a
xaz...xa"p"...p p

=> 4"
n

and hence [(lexp(ix - p) =0. We used the braided Leibniz rule to evaluate
O%q, + * Xg,. O

These plane wave type solutions exist only on the g-light cone, giving further
support to our claim that wave equations on quantum Minkowski space should be
massless. In general we do not know whether the conserved current associated to
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a solution of the ¢-d’Alembert equation is real, but in the case of plane wave
solutions, we can show:

Lemma 3.6. Any two monomials in the formal power series exp(—ix « p) and
exp(ix - p) commute.

Proof. Using the statistics relations p“x, = x.R;'%, p? and Lemma 3.4, which im-

plies R; "2, p¢ p? = q~% p’ p* we can show:

—laje R—lamdm—l Am 1 bm

(4 a, ap b
pxal...xam@pm...pl_xal...xam@RL dlbl... L dpby p’"p pl

—2m

= q xa] o 'xam@p

am

e pal pc R
and hence with ¢g72R %, p? p° = R®, p? p, which also follows from Lemma 3.4:

(Xay - Xay P -+ P™1) (3, '-'xb,,,pb’" e phy

—2nm bm | by an aj

:q xal...xa"xbl...xbmp p p p
_ —2nm
_q xC] "'meXdl "‘Xd”

dicm dyey dney—|

RM /'le] RM hlez T RM klbm

f1em—1 higy kign—1
RM f291 RM hagr M kyby—y
fmr€1 byl kL
RM alll RM 02[2 T RM a,,b|
pbm ... pbl per - ph
:xcl...xc”’xdl-..xd"

R dycm dye . R dney—y
L_/']el Lh|e2 Lk]bm
f1em—1 hig) ky1gn—1

R, fa91 R, h292 L kyby—y
fm—1€1 hm—11y km—11p—1
RL a|1| RL 02[2 T La,,b|

pbm...pblpan < p

a

bl?l

=(xbl...xbmp ...pbl)(_xal...xa"pa"...pal). O

This lemma suggests that in a suitable completion of our algebra, we can reorder
terms and verify that exp(ix - p)exp(—ix - p) = 1. In this case, we would find
i(dx?) = i(dxg) = exp(—ix - p)exp(ixp)ps — ¢ exp(—ix - p)paexp(ixp) = ps —
g 2exp(—ix - p)psexp(ixp) = j(dx,)* and the conserved current j associated to
the plane wave solutions ¢@( p) would be seen to be real.
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4. The g-Maxwell Equation
For g-Maxwell equations, we apply a similar strategy as for the g-d’Alembert equa-
tion: we first give a more abstract definition in terms of 0 and d and then show

how this equation looks in terms of the maybe more familiar braided differential
operators 0.

Definition 4.1. A solution of the q-Maxwell equation is a 1-form A such that
0dA = 0.

Using the results from the preceding sections, we can rewrite this rather abstract
relation to resemble the classical equation 00,4, — 00,4, = 0"0j 4, = 0:

Proposition 4.2. The q- Maxwell equation is equivalent to the set of four equations
00red) =0, (13)

or alternatively

004, — 0,04, = 0. (14)

Here 0 denote the braided differential operators on My, O the g-d’ Alembert op-
erator and “[ 17 the g-antisymmetriser.

Proof. First verify by explicit calculation that

Hab chd _ (1+q2)2 xc&{ab (15)
(2}ed™0} 27 2(1 4 ¢ + ¢*))12 g {2}ez -

By virtue of this relation, we obtain

0 = 0dA(dx;) = 0x0ad ‘%{Z}CdH{Z}ef%{xf}tk/mH{glfnz

/ kim __ a f kl
= 0xOadsH (3, g Gyer  (ShamH Y = 0cOudbH G o p A (S S

= 0 0aAsH S HS H

kim __ b f
OV H B = OcOudbH (S H 5

{3} 2
= 6 0 Angc%{Z}cz = aaa[cAz] >

where we used the definitions of 6 and d, the relations (9) and (7), and finally
(15). This establishes the equivalence of the g-Maxwell equation and (13). In order
to prove the second part, note that the generators of V(R,;) obey

xoxb = xcdeA[,}dca . (16)
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Hence with (8), we find:
0 = 0°0cAy) = (0.4, — BAR,) )
= 0°0,A, — °O,A,R,) . =04, — 0,04, .
This proves the equivalence of (13) and (14). O

In the form (13), the jq-covariance of the g-Maxwell equations can be easily
established. Again, a massive field equation, i.e. a g-Proca equation &°0;.A, = m*4,
would be g’q-covariant only if m transformed as m — m ® ¢!, and again we shall
find g-deformed plane wave solutions only on the g-light cone.

As in the undeformed case, solutions to the g-Maxwell equation have a gauge
freedom. If A is a solution of the g-Maxwell equation and ¢ a 0-form then by
virtue of theorem 2.11 the 1-form A + d¢ is also a solution. Provided it is possible
to solve the inhomogeneous equation 4¢ = —0A, we can use this gauge freedom to
arrange for A to satisfy the g-Lorentz gauge condition A = 0. Using an argument
similar to the proof of proposition 3.2, one can show that the g-Lorentz gauge
condition is satisfied if and only if 0°4. = 0. Proposition 4.2 implies that in this
case A obeys 4A = 0 or equivalently (14, = 0. As in the classical case, a field A
satisfying the g-Lorentz gauge has a residual gauge freedom A — A + d¢, where
¢ is a solution of the g-d’Alembert equation.

The g-Maxwell equation also has a family of plane wave solutions. However,
in this case the solutions are indexed by the g-momentum p? (the generators of
the g-light cone Py) and the “g-amplitude” A4,, which are generators of a copy of
M,. We define the algebra Y as the quotient of Po@M, by the relation p°®4. = 0.
This algebra Y labels plane wave solutions to the g-Maxwell equation:

Proposition 4.3. The family of Y-indexed 1-forms A given by dx, — exp(ix + p)®A,
are solutions of the q-Maxwell equation and satisfy the q-Lorentz gauge condition
oA = 0.

Proof. Using the g-Maxwell equations in the form (13), one finds:
0“Ofcexp(ix - p)@A.] = 0°(Ocexp(ix - p)®4: — Omexp(ix - p)R4aRy"":.)
= exp(ix * p)p° pn@AnRy"";.)
= exp(ix + p)p-p'@4. = 0.

Here we used (8), Proposition 3.5 and relation (16). These solutions obviously
satisfy the g-Lorentz gauge condition. [

A solution A of the g-Maxwell equation defines a 2-form F = dA, the g-field
strength tensor which obeys the two equations

dF =0, oF =0. (17)
Proposition 4.2 implies that the second relation is equivalent to
0Fq =0. (18)

and we also find

OF = 0pdp) = 0104 = dadpd°4 = 0,



472 U. Meyer

using the fact that [J is central in & and the g-Maxwell equation for A. Since at
present we do not have a g-Poincaré lemma, we only know that (17) is implied by
the g-Maxwell equations, but we cannot prove that they are equivalent.

5. ¢-Spinor Analysis of the g-Field Strength Tensor

In this section we give a SL,(2,C)-spinor description of the g-field strength ten-
sor F similar to the classical case. For this purpose, we need a few elements
of the SL,(2,C)-spinor calculus, some aspects of which were already discussed
in [15]. This case is very simple since the R-matrix (1) is of Hecke-type and
obeys 0 = (PR + ¢ ") (PR — q). This means that one can take either (PR — q)
or (PR™'—g™") as a g-antisymmetriser for SL,(2,C)-spinors. The Hecke rela-
tion ensures that after a suitable normalisation these operators are projectors. Fur-
thermore, one does not have any problems with higher g-antisymmetrisers, since
they are all zero. One could also define a g-antisymmetriser by first identifying
a g-antisymmetric €45, similar to the procedure in Sect.2.1, but this approach
gives the same result. The g-antisymmetric spinor g4 is simply the SL,(2,C)-
spinor metric (3), which obeys geyp = —sCDR_”LCB. One can easily verify that
then A8, = (q+q ") 'eBecp = (g+q7 )" (PR7' — g7 ' Y'E,, obeys 4> = 4 by
virtue of the Hecke relation. We also define a g-symmetriser S =1/2(1 — 4) =
(q+q ") Y(PR™' + q), and the g-symmetrisation “( )" and g-antisymmetrisation
“[ 77 of a multivalent g-spinor T.. 4. with two adjacent lower indices 4 and
B as T.g).. = T..cp..SG5 and T.pug)... = T...cp... A}, respectively. Again, one
obtains similar relations for upper indices. Due to the Hecke relation, the g-(anti)-
symmetrisation of a g-spinor is g-(anti)-symmetric:

T-~~[(AB)]~~ =0, T...([AB])W =0, (19)
and we also have a decomposition
T.yp... = T..4y... + T... (4] - (20)

The g-(anti)-symmetrisation is SL,(2, €)-covariant in the sense that both operations
commute with the coaction by SL,(2,C). Furthermore, if T...cp... is a multivalent
g-spinor then

T..‘[CD]W = ECDT‘.‘BB..‘ . (21)

L
' +q
In this formula we do not violate the index notation by writing ecp on the left since
C and D are adjacent indices and the generators of SL,(2,C) preserve the spinor
metric.

We now apply these results to the field strength tensor F, or more generally, to
any g-antisymmetric tensor F,, € M,. Any such tensor defines an SL,(2,C) spinor

AB I'B
S = Far Ry
which is the object we will study in this section.

Proposition 5.1. The tensor f*8,,, admits a decomposition

fAljl’B’ = ¢"epp + Py
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where ¢*8 and g are g-symmetric SLy(2, C)-spinors.

Proof. Since the tensor F,;, is g-antisymmetric, [ Ai, p ObEys:

AB I'B __ DD’ cC’
S AR — FAI'IB’RA’I = FCC'DD’RL AI’IB’RA’I
~MI
= —FCC/DDIRLD RMB’ RIINRA/I = C/D/R A/B/R (22)

Due to relation (20), we also have
AB (4B) [4B) (4B) [4B)
f A'B! — f (A/B/) + f (A/B/) + f [AIB/] +f [A’B/] .
This implies with (22), (19) and the Hecke relation:

AB 2 r(4B) AB
f A'Br = — ’D’R A’B’R pDCc = 9 f (A’B/)+f[ ](A’B’)

(4B) —2 [4B]
+f [A/Bl] _q f [AIB’]’
and also

AB CD —1¢'D’ p—1B4  _ —2 £(4B) [4B]
S ap == op Ry Ry =—qa""f (A’B’)+f (4'B")

(4B) 2 ,[4B)
f [A/B/ - f [AIB/] ’
(4B) [4B) . . .
and therefore 0 = f ey T f (4B With relation (21), it follows

fAA/B/ d) Eqrp + &t %’B’

where ¢ = f (AB)CC and Vg = f (’Z A/py A€ g-symmetric SL,(2, C)-spinors. [J

In the case of a real tensor, the two components ¢ and Y are not independent,
but are related by the star structure on M,.

Proposition 5.2. A g-antisymmetric tensor F is real iff Ypc = —¢*P and can
hence be written as

Y

S p = 0"Pepp + epadp™

in terms of the g-symmetric SLy(2,C)-spinor ¢

Proof. 1f F,, is real then

*AB o I'B _ I'B
A A'B! — AI’IB’RA’I = FB’”’ARA’I

_ Al _ B A
= FpaRpr = [~ "
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where we used the fact that R is of real type, i.e. obeys R4Z, = ROS,. In components,

this means that
AB AB | % B' A B'A
O Peyp + g = ¢ epgs € 7 gy

Due to the g-symmetry of ¢ and ¥ and the g-antisymmetry of ¢4, multiplication
of this equation by gRSP, yields by virtue of (19):

U ! 4l
" Peyy — Py = —¢" Vepc + 47 e -

again using that R is of real type. Thus ¢*Peyp = &84 Ypc, which implies the
o . ! 4!
proposition, since e84 = —¢gp. O

Classically, this decomposition of the field strength tensor into spinors coincides
with the decomposition into its self-dual and anti-self-dual part. The same result
holds in the non-commutative case. By virtue of Proposition 2.14, any two-form
F on quantum Minkowski space can be decomposed uniquely as F =F' +F~,
where F* = L(F+*F) and F~ = J(F — *F) are self-dual and anti-self-dual, i.e.
obey *F£ = +F%. The g-Maxwell equations (17) are then equivalent to either
dF* =0 and dF~ = 0 or the two equations

OFt =0, oF~ =0. (23)
Proposition 5.3. Let Fyp be a g-antisymmetric tensor. Then
f+Alf4/B/ = ¢AB£A’B” _Ai/B/ = EABl//A’B’

are the self-dual and anti-self dual parts of f.

Proof. 1t suffices to show that f* are selfdual and antiselfdual, respectively. On
the tensor f "“Z, 5> the g-Hodge star operation is implemented by the matrix

ABA'B AL 4B D
Uleberr = RugHs o RE -
By explicit calculation, one verifies that this operator satisfies the relations

AB ABA'B' __ oCD
Serearn Ugyeporpr = Sprecin

AB GE'F' 17ABA'B' _ .CDGE'F'
& SA’B’U{Z}CDC’D/ =¢& SC’D’ 5

Since ¢"# and yyp are g-symmetric and thus eigenvectors of the g-symmetriser
S, this implies that ¢Feup and &'Byyp are self-dual and anti-self-dual,
respectively. [

If we are looking for real solutions of the g-Maxwell equations (17), it is thus
sufficient to solve one of the two equations in (23). In terms of the SL,(2, C)-spinor
Y this means:

Corollary 5.4. For real F, the q-Maxwell equation 5F~ is equivalent to
VB[/ Vg =0, (24)

U ~C'c ’
where V€ =R, 0.
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Proof. Proposition 5.3 implies with (18):

_ ~'B ’ ~I'B gt ’
0=0"F, =R 4,0, " \gr = Ry 0 g = VE Y.

This proves the corollary. [J
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