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Abstract: We give an explicit formula for the vertex operators related to the level 1

representations of the quantum affine Lie algebras Uq(D(n^) in terms of bosons. As
an application, we derive an integral formula for the correlation functions of the

vertex models with Uq(D(n ^-symmetry.

1. Introduction

In [FR], Frenkel and Reshetikhin constructed a ^-analogue of the WZW model on
the sphere based on the representation theory of the quantum affine Lie algebras.
They defined ^-deformed chiral vertex operators as intertwining operators between
representations of certain types and derived a system of difference equations called
the quantum Knίzhnik-Zamolodchikov equations, which is satisfied by the vacuum
expectation value of compositions of #-vertex operators. They also observed that
the connection matrices between the solutions of quantum Knizhnik-Zamolodchikov
equations with different asymptotics provide elliptic solutions of the Yang-Baxter
equations in the face formulation. It shows that the above theory is very closely
related to the solvable lattice model theory. The ^-vertex operators are characterized
by the intertwining conditions, however, it is difficult to know explicit forms for
them in general. In [JMMN], the bosonization of the level 1 vertex operators for

Uq(sl2) was constructed using the Frenkel-Jίng construction of level 1 irreducible

highest weight modules. Following [JMMN], the level 1 case for Uq(sln) was done

in [Ko]. For general levels for Uq(sl2\ the bosonization of vertex operators was
constructed in [KSQ] and in [M] using a ^-deformation of Wakimoto modules. The
main purpose of this article is to give an explicit formula for the level 1 vertex

operators related to Uq(D(n^}.
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On the other hand, it was shown in [DFJMN] that the ^-vertex operators related

to Uq(sΪ2) appear as the dynamical symmetries of the XXZ-model in the thermody-
namic limit. The XXZ model is a one-dimensional quantum spin chain model with
the Hamiltonian

tfxxz = -~ Σ (σkσk+\ + σkσk+\ + Δσkσk+\] >L kez

where σ%, σy

k, σ\ are the Pauli matrices acting on the &th component of the infinite
tensor product

It was observed in [DFJMN] that the quantum affine Lie algebra 6^(^/2) acts on
the above space formally via the iterated comultiplication. When A = (q + q~l)/2,
a formal manipulation shows that

where U'q(sl(2)) denotes the subalgebra of Uq(sl(2)) without the grading operator d.

Thus the algebra Uq(sl2) provides an exact symmetry of the Hamiltonian 3?χχzι
while d plays the role of the boost operator. The new method proposed in [DFJMN]
for studying the model is based on the hypothesis that the space of physical states
for the above model in the anti-ferromagnetic regime (i.e. —1 < q < 0) can be

regarded as a ^(s/2)-module. More precisely, they postulated that the space of

physical states is the level 0 ^(^/2)-module:

&λμ = V(λ)® V(μγ = Homc(F(μ), V(λ)) ,

where V(λ) is the level 1 highest weight ^(1s/2)-module and F(μ)* is the

(restricted) dual module of the level 1 highest weight ^(s ̂ -module V(μ). The
space V(λ) can be embedded into the half infinite tensor product (g) V ® V ® V
by iterating the vertex operator (called type I in [DFJMN])

φf : V(λ)-> V(μ)®V .

It was conjectured in [DFJMN] that there is a unique normalization of the above
which makes the infinite iteration convergent. This conjecture was proved in [E], and
the unique normalization of vertex operators under which the convergence holds was
explicitly computed by M. Jimbo ([E, Sect. 4]). Similarly, V(μ)* can be embedded
into the other half infinite tensor product V 0 V 0 V ® . Altogether, we get the
embedding

«^Xμ -> < 8 > K ® F ® F < 8 > -

The above embedding relates the naive picture on V®00 with the representation

theory of Uq(sΪ2). The shift operator on V®00 and the Hamiltonian #fχχz are
interpreted as operators on J^;t?μ, and the correlation functions are evaluated by the
trace of the vertex operators (see [DFJMN] for the details). The method can be
applied to the other model associated to any quantum affine Lie algebra. The other
purpose of this article is to give an integral formula for the correlation functions

of the vertex model associated with the vector representation of Uq(D^) using the
technique developed in [JMMN].
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This paper is organized as follows. In Sect. 2, we summarize some notations

for representation theory of Uq(Dn ) and give a comultiplication formula for
Drinfeld generators. The exact formula for comultiplication of Drinfeld generators
was obtained in [Be]. Our formula does not contain all the terms, but it is enough
for the bosonization of the vertex operators. In Sect. 3, we recall the construc-
tion of level 1 irreducible highest weight modules (Frenkel-Jing constructions) and
construct level 1 vertex operators explicitly in terms of bosons. In Sect. 4, as an
application of the expression of the vertex operators, we derive an integral formula

for the correlation functions of the vertex models with Uq(Dn )-symmetry.

2. The Quantum Affine Lie Algebra

2.1. The algebra Uq(D(n}). Let / = {0, 1, ...,«} be an index set, and let

A = (aij\jς.ι be an affine generalized Cartan matrix of type /)„ :

\

A =

/ 2
0

-1
0

0
2
-1
0

-1 0
-1 0
2 -1

-1 2

2
-1
0
0

-1 0
2 -1

-1 2
-1 0

0
-1
0
2 /

(2.1)

V

Let I) be a complex vector space with a basis {ho, h\, ..., hn,d} and define the
linear functionals α, e h*(/ e /) by

for y e (2.2)

Then the triple (ί), Π = {α, / £ /},ΠV = {ht\i £ /}) is the realization of the matrix
A. The Kac-Moody algebra g associated with the matrix A is called the affine Kac-

Moody algebra of type D^\n ^ 4) (cf. [K]). We denote by e» /„ h,(i G /) and
d the generators of the Kac-Moody algebra g. The elements of Π (resp. Π v) are
called the simple roots (resp. simple coroots) of g.

Let Λl £ ί)*(/ G /) and δ £ [)* be the linear functionals on f) defined by

= δ,j, Λ,(d) = 0 ,

= 0, δ(d) = 1 for j e / . (2.3)

We define the affine weight lattice of g to be P = ZA0 0 TLΛλ Θ θ ZAn θ Zδ.
The lattice Pv = TLhQ θ Έ.h\ 0 θ TLhn θ %d is called the dual affine weight lat-

tice. The derived weight lattice P and the dual derived weight lattice P are defined

to be P = ZA0 θ TLA\ θ θ %Λn and PV = ZhQ θ ^h\ 0 - 0 ZAΛ, respectively,
where the At are regarded as the linear functionals on ί/ = 0J3

=o ̂ / Since the
matrix A is symmetric, there is a nondegenerate symmetric bilinear form ( ) on fy*
satisfying

(αjαy) = aij9 (<5|α/) = (δ|δ) = 0 for all /, y £ / . (2.4)
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The quantum affine Lie algebra Uq(D(

n^) is the associative algebra with 1 over
<C(#1/2) generated by the elements eh ft(i G /) and qh(h G Pv) with the following
defining relations:

4° = !, q

h

q

h'=q

h+h' for A, ti G Py ,

qheιq-
h = q'^e,, qh fiq~

h = q'^fi for A G Pv(ι G /) ,

f, - t~l

eιfi - fjeι = <5ι/J — br> wnere tί = qhi and *» j ε I >

Σ (-ΌV/^/y^^O f o r i Φ y , (2.5)
m+n=\— alf

where e,
(A) = β*/[*]!, /,(i) = /*/[*]!, [«]! = ΓCL,[*], and [k] = ̂ f^. We denote

by U'q(D(n}) the subalgebra of Uq(D(

n

l)) generated by eh fh tt(i e /).

The algebra Uq(Dn ) has a Hopf algebra structure with comultiplication A,
counit ε, and antipode S defined by

Δ(qh) = qh®qh for h & Pv ,

Δ(et) = e,®\+t,®el ,

A(f, ) = /, ® ς ' + 1 ® f t , for i € / , (2.6)

s(et) = ε(fj) = 0 f o r / G / , (2.7)

i = q~h for h G />v ,

£(£>,•) = -fΓ1^, £(/,) = -y f, for / G / . (2.8)

The Hopf algebra structure of Uq(Dn ) enables us to define a Uq(Dn )-module

structure on the tensor product of Uq(Dn )-modules and the (restricted) dual space

of a L^(Z)i1))-module. More precisely, if F, W are L^(/)l1))-modules and F* is the
(restricted) dual space of F, then we define

x . (v 0 w) = A(x)(υ 0 w ) , (2.9)

and
(jc ϋ*)(ιι) = ι;*(S(jc) - ύ) (2.10)

for c G t/Λg), M, ϋ G F, w e W, and y* G F*.

2.2. Drίnfeld's Realization. In this section, we recall Drinfeld's realization of the

'q(quantum affine Lie algebra Uq(Dn) (and of U'(D(

n

l))) (cf. [Dr]). Let U be the
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associative algebra 1 over C(#1/2) generated by the elements xf(k\ #/(/), K^\
±dy = i, 2, ..., w,£ G Z, / G Z\{0}) with the following defining relations:

[y

±1/2 j M] = o for all w G U ,

Aγ Ay — Ay A./, j = A.J A/ = 1 ,

), qda,(l)q-d = qla,(

l ) x f ( l ) -

f(l + 1) - xf(l + !)**(*) ,

where ψι(m) and φz(— m)(w G Z^o) are defined by

= K~} exp a,(-k)zk ,
A:=l

= 0 if (α, αy) = 0 ,

= 0

if (α, |α,)=-l.

We denote by U' the subalgebra of U generated by the elements xf

(2.11)

In [Dr], it was shown that the algebra U (resp. U') is isomorphic to the quantum
affine Lie algebra Uq(D^) (resp. U'q(Dn}))). We call the algebra U (resp. U') Drίn-

feld's realization of the quantum affine Lie algebra Uq(D(

n^) (resp. of Uq(D^)). In

order to give the precise isomorphism of U and Uq(D^) (resp. U' and Uq(D^))9

we need the following lemma.

Lemma 2.1. Let IQ = {1, 2,..., n} be the index set for the simple roots of a finite
dimensional simple Lie algebra go with symmetric Cartan matrix. Then for each
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/ G /o, there exists a sequence of indices i = i\ , /2, .. . ,4-ι such that

(α 7 l |α / 2 ) = -1 ,

(α/, + α/ 2 |α/ 3 ) = -1 ,

(α/. +- - + αI . >/, ,) = -!, (2.12)\ t j ' lfι—2 i lh—\ ' ' v '

where h is the Coxeter number of the Lie algebra go. D

Proposition 2.2. ([Dr]) Let iι,i2,...,ih-\ be a sequence of indices in Lemma 2.1
satisfying (2.12), and let θ = VL\ + 2u2 H h 2αw_2 + u,n-\ + αw be the maximal
root of the finite dimensional simple Lie algebra go = Dn. Then there is a (C^1/2)-
algebra isomorphism ψ : Uq(§) —» U defined by

to^yK~l, qd^qd, (2.13)

where KQ = K\K% K^__2Kn-\Kfl, h — 2(n — 1), and [x,y]q — xy — qyx.
Moreover, the isomorphism Ψ is independent of the choice of the sequence

z'ι,/2, ,4 satisfying (2.12). The restriction of Ψ to U'q(Dn ) defines an iso-

morphism of U'q(D(n}) and U7. D

2.3. Comultiplication of the Algebra U. By Proposition 2.2, the algebra U is given
a Hopf algebra structure. In principle, the comultiplication of the algebra U, which
we will also denote by A, can be expressed using Drinfeld's isomorphism (2.13).
The general formula for the comultiplication of U in terms of Drinfeld's generators
was obtained in [Be]. However, as it was shown in [CP, JMMN, and Ko], the
formula for the "main terms" of the comultiplication is sufficient for our purpose.

Theorem 2.3. Let k G Z^0, I £ 2>o, and let Ns

+ (resp. Ns_) be the left ideal of the

algebra U generated by the elements x^(m\) -x£(ms) (resp. x~(m\) -x^(ms))
with ml G Z^o Then the comultiplication A of the algebra U satisfies the following
relations:

+ y2kK, 0 χ+(k)

Σ J

Σ y^Φiί-/ +7)
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+ Σy
7=1

x~(-k)) = x~(k)

~l , A+3/

Σ yy~V(-7) ® y~^~9i(J ~ *)
7=0

. (2.14)

Clearly, our assertion is also true for the subalgebra \J'.

Proof Fix z e/o = {1,2,. ..,«}. By (2.6) and (2.13), we have

JC+(0),

Let / = / Ί , / 2 j Jh-\ be a sequence of indices in IQ satisfying (2.12). Then the
inverse images of jc7

+( — 1) and jc~(l) under the isomoφhism Ψ are given by

Since A is a <C(</'/2)-algebra homomorphism, it follows from (2.6) that

= χ-(\)®K, + γ ®jc,-

Using the relations

we obtain

^(α/( l)) = fl,(l)0y1/2 + y3 / 20 fl/(l) (mod7V_(g)7V+),

Zl(^(-l)) = a7-(-l)07-3/2 + y-1 / 2(g)a7-(-l) (mod Λ^_

The rest of the formulas can be proved inductively using the relations (2.11). D

2.4. Evaluation Modules. Let V = (0?=1 <C(ql/2)Vi) Θ (0"=1 C(^1/2)^7) be the 2n-
dimensional natural representation of the quantum group Uq(Dn\ Thus the Uq(Dn)-
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module structure on V is given as follows:

eiυi+\=υl, e^j = v—^ etVj = 0 i f y φ z + 1,7,

a = ι>, +ι, fiV- +ϊ = vΊ, fiVj = 0 if y ΦM + 1 ,

i+i = q~lv,+\,

tiVj = Vj if j φ z, z + 1, z, z + 1 ,

eΛι>Λ = ι>Λ-ι, ^U^Y = ϋπ, enVj=0 if y φ w - l , w ,

Vn-\=vji9 fnVn = v—v fnVj = 0 i f y φ « - l , w ,

tnVj = Vj if j=\=n— l,n,n— l,n , (2.16)

where / = 1,2, . ..,« — l,y = !,...,«, T, . . . ,w.

We define the L^(Di1})-module structure on F by

= 0 for 7 φ 1,2 ,

f o r y φ l , 2 , T , 2 . (2.17)

Since V is a finite dimensional vector space over (C(g1/2), it does not admit
r

q(Dnl ^-module structure. But we can define a Uq(a Uq(D(n ^-module structure. But we can define a Uq(D(n ^-module structure on

the aίfinization of V (cf. [KMN]). The affinizatίon of V is the ί/^(Z)l1))-module

Vz = V®<£(ql/2)[z,z-1] with the f/^1 ^-modules structure defined by

ti(υ®zm) = tiv®zm, qd(v®zm} = qmv®zm , (2.18)

for / = 0, 1 ,...,«, m ^7L, v G K The aίfinization Fz of K is also called the evalua-
tion module of V at z. Let us denote by EtJ the matrix unit of End^ ι/2)K such that

^^ = ̂ ^ for i,j,k = !,...,«,!,...,«. Then the Uq(Dn )-module structure on Fz

can be expressed as follows:

?i = ^1,1+1 4- £/+τ,7» '̂

_
y Φ /,/+!, 7, /+ι

n^\t Jn — ^n,n-\ H~ ̂ ΓJ^ >
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/„ — π( J? μ F Λ I π— \CR., _μ E\~ Λ _i_ V^ F
IQ — yv^ ] ] i ^2 2' ^ ^ 1 1 ^^ ^ / v ^77 ?

/ Φ 1,2,1,2

qd(υ 0zm) = gmt; (g)zm (2.19)

for z = l ,2 , . . . ,w- 1, v G F, m G Z.
We now consider the U-module structure on Vz induced by Proposition 2.2. Note

that, as a Uq(Dn )-module, Vz has level 0. Thus y acts on Vz as the identity. We

have already seen that qd acts on Vz by (2.19). The action of the rest of Drinfeld's
generators of the algebra U on Vz is given in the following theorem.

Theorem 2.4. The U-module structure on the evaluation module Vz is defined as
follows:

n - λ l - lEn_^n_, - qlE-nΓn) + (q~lE^n - qlE—^ϊ) (2.20)

/or / = l ,2, . . . ,n- 1, fc G Z, αwJ / G

Proof. The idea of proof is the same as that of Theorem 2.3. Fix / G /o\{«} =
{ l ,2, . . . ,w- 1}. Since ^(0) = Ψ(e,) and ;c~(0) = Ψ(ft), we have from (2.19)
that

on Vz. Recall that the inverse images of x+(—\) and x~(l) under the isomorphism
Ψ are given by (2.15). Using the formulas (2.19), we obtain

on Fz. The relations

yield

α,(l) = (JzKq-'E,, - ?£,+ ,.,+ , ) + (ί2"-'-^)^-'̂ ^ - qE-,-) ,
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on Vz. The rest of the formulas can be proved inductively by using the relations
(2.11) and (2.19).

The formulas for x+(k\an(l) (k G TL, I G Z\{0}) are proved in a similar
way. D

Now let F* = (0"=1 C(?1/2K)®(0£=ι C(41/2)*;7*) be the dual space of V,
and recall that the 6^(g)-module structure on F* is given by

(* O(w) = ι?*(S(*) K) (2.21)

for *€ U'q(D
(n\ w e F, t>* G K*. Let Fz* be the affinization of F*, and de-

note by E* the matrix unit of EndC(^ι/2)F* such that Effi = δβV* for ij,k —

!,...,«, T,. . . ,/ ϊ . Then by (2.18) and (2.21), the L/^DJi1 ̂ -module structure on Fz*
is given by

e, = (-<?-')(£,;,, + ), /, = (

: + %jϊπ) + Σ _E]J ,
yΦ/,/+ι,7,/+ι

_
j φ n—l,n,n—\,n

Σ
y φ 1,2,1,2

9VΘz m )=yVΘz m (2.22)

for / = l ,2, . . . ,w- 1, z;* G F*, m G Z.
As in the case with Fz, the evaluation module Fz* is given a U-module structure

induced by Proposition 2.2. In particular, γ acts on Fz* as the identity, and qd acts
on Fz* by (2.22). The action of the rest of Drinfeld's generators on Fz* is given in
the following theorem, which can be proved by the same argument for Theorem 2.4.

Theorem 2.5. The \J-module structure on the evaluation module V* is defined as
follows:
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~' * - ~ ( 2 n - l - 2 } l - l - '

*Λ(0= γ(*-(Λ-V((<Γ^ (2.23)

for i=l,...,n-l. k£ Z, and I e Z\{0}. D

3. Level One Representations of

3.1. Frenkel-Jίng Construction. The level one irreducible representations of the

quantum affine Lie algebra Uq(Dn ) are realized on the Fock space of the tensor

product of the group algebra C[g] of the root lattice of the Lie algebra Dn and
the symmetric algebra generated by the elements a/(-k), k e N, j — 1,. . .,«. To
construct vertex operators between the irreducible representations, we need to work

o
on the group algebra (C[P] of weight lattice. However, the latter poses some incon-
venience to deal with (see the remark below). We instead consider the following

o
group algebra of the lattice P .

P' = TLλλ +Zαι + Z:αn_ι , (3.1)

where the element λ\ together with other λ^s are the fundamental weights of the Lie
algebra Dn. Note that the Λ,/'s are the finite dimensional analogues of the fundamental
weights Λ/'s :

We identify the algebra C[β] with a subalgebra of C[P'] via:

αΛ = 2λ, - 2α, 2α,7_2 - αΛ_, . (3.2)

We also need the following weights:

λ0 = 0,

λ, = αi H h (/ - l )α/_ι + /(α, H h απ_ 2) + -/(α^_ι + α/7)

for / = l , 2 , . . . , w - 2 ,

+ ... + ( π _ 2 ) α _ 2 + -/ια _! + -(/!-2),

^ = ^ Γα, + - - - + (n - 2)α,7_2 + l(/ι - 2)an_! + ^/ιaΛ . (3.3)

o o
The inner product on P induces an inner product on Pf. There exists a central

o
extension of the group algebra C[P']:
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such that
eV = (-l)(α|/Ve* (3.4)

o

for α, β G Q, the root lattice, and here we also use the same symbol to denote
corresponding elements in the central extension.

o

In fact we can construct the central extension as the associative algebra <£{P'}
generated by e*1,...,^"-1 and eλl subject to the relations:

e*>e*> = (- l)< α <l α /V</£? α <,
(1 ^ ij ^ / ι - l )

e' \e*ι = (-\)*>\ιe*'eλι (3.5)

For any element α = m'λ\ + Σ*l=\ mj(y-j £ * * we define

e* _ g/«'*ig>Hιαι . φ . g/H Λ -iα Λ -i ^ (3.6)

In particular, we have,

gin —e2λ\e-1x\ . , . e-2xn-2e-*n-l f (3-7)

Note that in general e*e~* — ε G {U}

Proposition 3.1. The algebra CjP7} is a central extension of <£[P'] with the
property that

for α, β G Q = 1TLλ\ + 2£αι + + Zα^_ι, ί//£ rooί lattice of Dn, and moreover,

eΛ\e*, — (—\)δl\e*ιe

λ\

(1 ^ / ^ / i ) ,
β;,?-Λ/7_! = (_1)«-i(^ / 7_1-A / 7> )-ι ^ (3ί8

Proof. Note that

. . . e*n-2e*n-\ . (3.9)

The relations are directly verified from the defining relations (3.5). D

We remark that we could also consider the following method to construct central

extensions of the group algebra C[P] (cf. [FLM, DL]). Let ωp be a primitive ptl}

root of unity, and we assume that p is an even integer. For any skew-symmetric
Z-bilinear map CQ:

c0 : P x P -+ Zp ,

there associates a central extension P of P:

1 -> (ωp) -> P^P -> 1

such that ~
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for #, b G P. Moreover, we can have a CQ such that

C0(α,j8) = (α|j8) mod2Z

O Λ

for α, /? G β, an even sublattice of P. Thus the central extension P factors through
o

the root lattice Q as a central extension over Z^ and

aba~lb~[ =(-!)'

for a,b £ Q. Then the group algebra <£[P] will serve our purpose. However, the
disadvantage of this construction is that our vertex operators will contain some
clumsy constants involving the commutator map CQ.

The subalgebra of Uq(D^) generated by elements γ±l and cij(k) (k £ Z\{0},

j = !,...,«) is an infinite dimensional Heisenberg algebra, denoted by Uq(ϊ)). Let

Sym(ί)~) be the symmetric algebra over (C^1/2) generated by the elements 1 and
a}(—k\ k G 3N, j = !,...,« of the Heisenberg subalgebra Ug(ί)). Then the space

Sym(ϊ)~) provides a natural representation of Uq(ί)) with y = q (or c = 1), where
the action is induced from the left multiplication modulo the relations

aj(n) - 1 = 0 (n £ N),

For / = 0, l , w — 1,«, let

.̂ = 5yw(S-)0C{ρK' , (3.10)

where we formally enlist the element eλ»-{

9 and define

e'n _ g^n— ̂ 17-1^/j-l — ̂ lg~αl . . . e~*n-\ e*n-\ (3 1 1 )

o

as an element in the space CjP7}^"-1. Note that, as vector spaces,

- . (3.12)

We extend the action of the Heisenberg algebra Ug(ί)) to the space Wl by letting
o

its elements acting freely on the twisted group algebra (CjP7}. Define the operators
e'α,δα and d on the space Wt by

βα - / 0 eβ = f (g) eαβ/j ,

y=ι

where / (g> e1* = ajt (-n\) αy ;(-n/) ® e^ € ff,.
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Proposition 3.2. [FJ] The space Wι becomes the irreducible representation V(A{)

(i — 0, l,n — 1,«) of the quantum affine Lie algebra Uq(D(n^) under the action:

y .-> q, Kj .-> qd*ι, Oj(k) ^ aj(k) (1 ^ j ^ n),

=exp (±g *£=>> q^A exp
V t=ι IΛJ / V k=\

/Ae degree operator d acts by (3.13). The highest weight vectors are respec-
tively:

ι ® e A / , / = ι ,«-ι,«. π

3.2. Vertex Operators for Level one Representations of Quantum Affine Lie Algebra

Uq(Dn ). We recall the notion of vertex operators and some of the properties [FR,
DJO]. Let V be a finite dimensional representation of the derived quantum affine

Lie algebra U'(Dn ) with the associated affinization space Vz (recall Sect. 2).
(\\

The vertex operators are Uq(Dn )-intertwining operators between an irreducible
module and another one tensored by the affinization Vz. A vertex operator belongs
to type I if the affinization Vz lies in the right factor of the tensor product, and it
is of type II if the affinization Vz lies in the left factor of the tensor product.

The existence of vertex operators is described in the following theorem.

Proposition 3.3. [FR, DJO] Let V(λ) and V(μ) be two irreducible representations

ofUq(D(n}\ Then we have

Horn n ( i ) (V(λ\V(μ)®Vz) ~ {v £ V\wt(υ) = λ - μ moάδ and
U D

where the isomorphism is defined by sending an element Φ £ Hom^(F(/l), F(μ))
to an element v G F such that

Φ\λ) = \μ) 0 v + (higher terms in the powers of z),

and 0 denotes a suitable completion of the tensor product. (We will omit ^ from
now on.)

Similar statements are also true for the vertex operators of type II.
We will consider only level one representations for the quantum affine Lie al-

gebra Uq(D(n^). There are only four irreducible level one modules for Uq(D(^):

V(ΛQ\ F(Λι), F(Λ-ι), V(Λn).

The vertex operators can be equivalently formulated as intertwining operators

between modules of derived quantum affine Lie algebra U'q(D(n^) of the form:

Φμχ : V(λ) -> F(μ) 0 F ,

Φy

λ

μ : V(λ) -> F <g) F(μ),
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where the space V(μ) = Πv ^(/Όv *s a completion of V(μ). Equivalently, we con-
sider the vertex operators:

φ"(z) : V(λ) ^Vz® V(μ) ,

viewed as U'q(Dn )-modules. Then the operators

φf(z) = φλ

μ(z)zΔ»-Δϊ (3.14)

satisfy the relation:

(d 0 l)Φf (z) - Φf (z)d = -(zl- + Δλ - Δμ] Φf (z) . (3.15)
\ az J

Here we set Δχ = (λ\λ -f 2p)/2(k + A), where & = 1 is the level and h — 2n — 2 is
the dual Coxeter number for the Lie algebra g = Dn. We have explicitly

. _ A -
ΔΛn_} — g, ^/l/; — g

Let V be the natural representation of Uq(Dn) with the basis (see Sect. 2):

We define the components of vertex operator in the following manner. For

Φμ/ : V(λ) -> V(μ) 0 Vz, we write

n n

/ V / l ^ / / J λ j \ S\ I ^ / ' / J ι~ι ^ / I / ̂  / ' \~^ ' ^/

7=1 7=1 "7

for u) G F(Λ). The components of type II vertex operators are defined similarly.
We also consider the intertwining operators of modules of the following form:

Φ^F(z) : V(λ) 0 Vz -+ V(μ) 0 C^z"1]

by means of the vertex operators with respect to the dual space K,*:

Φμ

v(z)(\υ) 0 fy) = Φ f (z)\v) (3.17)

for \υ) G V(λ) and / = 1,...,«,!,...,«.
Using Proposition 3.3, we know there exist vertex operators only between

modules V ( Λ } ) and V(Λl+\) for / = 0 or n—l. The normalization takes the
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following form:

Φ^+lV (z)\At) = \Al+\) 0 v-^ + higher terms in z ,

ΦΛ^(z)\Λl+\} = \At) 0 ΌI+I + higher terms in z ,

Φ^+lί/*(z)|Λ) = |Λ +ι) 0 ι>;+ι + higher terms in z ,

φJ^(z)|Λ+ι> - |Λ) ® t;*— + higher terms in z , (3.18)

where i = Q,n — 1 . For type II vertex operators we take a similar normalization.
For example,

Φ^ l+1(z)|Λ> = |4+ι) ®i£π+ higher terms in z . (3.19)

Proposition 3.4. TTze vertex operator Φ of type I is determined by its component
Φy(z). More explicitly, with respect to Vz, we have:

Φi(z) = [Φ,+ ,(z ),/,]„ fori=l,...,n-l,

Φπ_,(z) = [Φn(z ),/„_,], = [Φ Kz ),/„], , (3.20)

w/ϊ/z respect to V*, we have:

Φ;+1(2) = L/;,*;(Z)]?_, /or / = ι,...,« - 1 ,
φί(z) = [/,,%(z)]?_, far i = !,...,«- 1 ,

(3.21)

Proof. The natural representation K of Uq(Dn) is described by (2.16), which implies
that for 1 ̂  i <Ξ « - 2,

Φ(z)(fiU) = ΦI(/ M) ® ϋi + + ΦB(z)(/ κ) ® ι;n

= (Δft)Φ(z)u

= Φ,(z)u ® ϋ,+, + Φ-pj- + Φ-pyίzίw Θ VΊ + fiΦι(z)u ® ί-

Thus we deduce
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Using the intertwining property

Φ(x)(ftu) = (Aft)Φ(z)u

for / = n - \,n we obtain the remaining relations of (3.19). The case of V* can be
proved similarly. D

For the type II vertex operators, we have the following similar result.

Proposition 3.5. Let Φ(z) be a type II vertex operator with respect to Vz : V(λ) — >
Vz ® V(μ). Then Φ(z) is determined by the component Φ\(z). More precisely, with
respect to VZ9 we have:

/ =

en^]q = [Φn(z\en-\q , (3.22)

and with respect to V* , we have:

Φ;(z) = 42[e,,Φ;+,(z)Vι far i=\,...,n-\ ,

Φ;_l(z) = c,2[e!1,Φ*w(Z)]ίl-l = q2[en.,,Φ:(z}}^ . D (3.23)

3.3. Bosonization. To further determine vertex operators, we express them in terms
of Heisenberg generators and group algebra of the weight lattice. To this end, we
find the relations between Drinfeld generators and vertex operators.

Theorem 3.6. Let Φ(z) : V(λ) — > V(μ) 0 Vz be a vertex operator of type I,
where (λ,μ) = (ΛQ,Λ\),(Λ\,ΛQ),(Λn-\9 An)9(An, Λn_\). Then we have for each
j =!,...,«,

w)] = 0 ,

[aj(k\ΦΊ(z)] = δj}-q-kzkΦΊ(z) ,

/-/0,Φτ(z)] = δjλ

[q-^kz-kΦ-λ(z) . (3.24)
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Proof. From the partial comultiplication formulas in Theorem 2.3, it follows that,

Φ(z)X+(k)u = Σ Φ,(Z)X+(k)u ® v,

s / J * V x ^ l '

Then from the action of X^(l) on the evaluation module Vz, we see that no terms

containing the vector i y will survive the action. Hence Φy(z) commutes with X^(k).

As for the relations between aj(k) (k > 0) and Φγ(z), we consider

Φ(z)aj(k)u = (aj(k) 0 7^/2 + y3k/2 0 αy(A:) + ) Σ Φ/^)" ® ϋ,

which yields

c [k] 4ι,-l, , ~
[βy(A:), Φy(z)] = όy i —q 2 Λz Φγ(z) .

The remaining relations can be proved similarly. D

The same argument will lead to the following result.

Theorem 3.7. (a) If Φ(z) w a vertex operator of type II associated with the
evaluation module Vz, then

[αy(-t),Φ,(z)] = -δ^^-^z^ΦKz) . (3.25)

(b) If Φ(z) is a vertex operator of type I associated with V* , then

-1 = ?

ί/'Φ 1(z),

(3.26)
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(c) If Φ(z) is a vertex operator of type II associated with V*, then

ίΦϊ(z),χ-(w)] = 0,

j ' i J k }

In order to construct an operator satisfying the commutation relations, we intro-
duce some auxiliary Heisenberg operators.

Lemma 3.8. Let

7 _ ΠJH /«-2 Γ7/W _ i _ ΠJH \

TTzew <9ft /Λe Heisenberg algebra Uq(t)), we have

, . (3.29)

Proof. Write υ = qk, then [$I^$ = ^~l~λ + v~n+I+l. It follows from the Dynkin

diagram of the Lie algebra D(

n

l} that

*[(»-!)*] /[2(»-2)*][2*][*] [2(n-3)k][kf

v"~] + v~"+>

1 .

[(n-2)k]k [(n -

((vn~2 + v~n+2)(v + t;-1 ) - (vn~3

The rest of the relations are shown similarly. D

Proposition 3.4 asserts that the vertex operators of type I are determined by their
1 -components, and the type II ones are given by their 1 -components. The following
result thus completely determines the vertex operators.

Theorem 3.9. The \-components of the vertex operator Φ(z)Λ

l of type I with

respect to Vz : V(A^ — > V(Λi±\°)<8 Vz can be realized explicitly as follows:

Φτ(z) = exp (Σ ψ,^a,(-k^} exp fe^-^-K*)*-*)
V κ / \ κ /

xeλ<(q2"-]z)B^+ab, (3.30)
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where 0 = 0,1,1/2,1/2,6= 1,1, 1, (-I)71-1 for the case of K(Λ0)-> V(Λι\V(Λ\)
-> F(/lo), F(Λ-ι) -> ^(Λ) ΛAIU? F(ΛΛ) -> F(A-ι). /w f/κ? vertex operators of
type I associated with the dual evaluation module V*, we have correspondingly

exp
/

xeλl(qz)dλι+ab, (3.31)

a is the same as above and 6 = 1 , g2""2, (-^)π~1, qn~l, respectively.

Proof. The idea of the proof is to verify that the given operator satisfies all the
commutation relations of Theorem 3.6 and the normalization.

Consider the situation associated with Vz first. Since the proof of the four cases
are similar, we look at the case of V(A$) — > V(Λ\)<8> Vz. The commutation rela-
tions with Heisenberg generator aj(n) are clearly satisfied due to the two exponential

factors in Φj (z) and Lemma 3.8, as in the usual situation of the theory of vertex

operators for aίfine Lie algebras [FLM]. The factor eλ* guarantees the commutation
relation with tj for j = !,...,«. To see the commutation with X^(z), we need to
use the notion of bosonic normal operators of vertex operators, which rearrange the
monomials in Heisenberg generators cij(n) and eα,dα so that the aj(n) (n G N) and
3α appear first. Thus we have

ΦΊ(z)X+(w) =: Φτ(z)jr/(w)

where ε is the cocycle associated with the central extension (3.2). Moreover, we
have

{(q2n~lz - w)δJiε(λl9<*j) - (w - qln-lz)όJ^(QLJ9λl )} = 0 ,

since 6(Ai,a 7 )e(ay,Ai) = (-l)( ;-ιl a/) .
Finally, we note that

Φ^[(0)|ylo) = l®^ =\A{),
ΛQ[

which gives the exact normalization required.
Since the verification of commutation relations for the other three cases are quite

similar to the above, we only check the given operators satisfy the normalization.

Again we look at the case of Φy = ΦΛ^V to illustrate the idea. To this end, we

observe that in this case,
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Note also that

Φτ(0)Jff (0) - X-_2(0)X-(0) X-(0) 1 <8> eλ^

= Φτ(0)Xf(0) X~_2(0)X-(0) ZΓ(O) I ® e-*>eλ>

= Φτ(0) 1 ®e-"l — -α»-2ί>-»Π(e-/.,+«l+-+«n-i)-ι

= 101 ,

due to ( A ι | A ι ) = 1 and the appearance of the factor (<72"~'z)6;ι+1 in Φ^°y. Now

we notice that any nontrivial permutation of the product of

Φτ(0)Λff (0) X-_2(0)X-(0) Xf(O)

will annihilate the vector \Λ\). Thus we have

The normalization of ΦΛ"~l is given by Proposition 3.1:

By the same argument, we get the realization for the vertex operators of type II.

Theorem 3.10. The \-components of the vertex operators Φ(z)^Λ' ^ of type II with

respect to Vz : V(Λt±\) — » Vz 0 V(Λι) can be realized explicitly as follows:

z) = exp - α τ(-)z exp -

λι+ab, (3.32)

where a = 1,2,3/2,3/2, b= \,l,l,(-\)n-lforthecaseofV(Λ})->V(ΛQ\ V(Λ0)
-* V(Λ\\ V(Λn-\) -> V(An) and V(Λn) -> F(Λπ_ι). .For /Λe ϋerίex operators of
type II associated with the dual evaluation module V* , w£ Aαί;^ correspondingly

x exp -Σ ^T(^)2- e-^ίί-^zΓ n , (3.33)
V κ /

where a = 1,3,3/2,3/2 and b = \,q-2n+2,(-q)-n+\q-n+λ for the four cases.
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4. Integral Representations for Correlation Functions

In this section, we derive an integral formula for the correlation functions of the

vertex models associated to the vector representation of Uq(D(n^} as an application
of the bosonization of the vertex operators.

4.1. Vertex Models. We give the mathematical definition of the vertex models
following [DFJMN] and [IIJMNT]. As explained in the introduction, we take

V(λ)) <* V(λ)®V(μ)*

as the space of states 2F , where Ω = {ΛQ,Λ\, Λn-\,Λn] and ̂  means a suitable
completion. In the following, we use λ and μ as an element of Ω. We give the left

and right action of Uq(Dn ) on 2F as follows:

X f = Σx(D°foS(x(2)\ f * x = ΣS~l(X(2))° f °*(1) >

where / G 2F , x <E U, Δ(x) = Σ x^) ®JC(2). The space 2F regarded as the right
module is denoted by ̂ r . Let

), V(λ)) ^ V(λ) 0 V(μ)* .

There is a natural inner product between ^£μ and 3Fμχ as follows:

where p = Σ"=o Λ It is invariant under the action of Uq(D^\ i.e. (fx\g) = (f\xg)

for all x G Uq(D^). We use the vertex operator

φf (z) : V(λ) -+ V(μ) 0 Vz

to incoφorate the local structure into 3F . We need the following proposition.

Proposition 4.1.

O Λ Λ Λ Λ /• Λ o°
2) Φ" (Z)Φ-(Z) = (^ PMftP

for (λ,μ) = (Λ0,Λι),(Λι,Λ0),(Λa-},Λn),(ΛH,Λll-ι), where ξ = q2n~2,(a;

Proof. Using our bosonization formulas, the proposition can be proved by a direct
calculation. However, it is very cumbersome. In [DO, Appendix], the explicit forms
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of the 2-point functions of the vertex operators for level 1 modules for Uq(Dn )
case are calculated by solving the quantum Knizhnik-Zamolodchikov equations in
[FR]. The proof is done in the same way as in [DFJMN, IIJMNT]. D

Setting z = 1, we obtain the U'q(Dn )-module homomorphism

φf : V(λ) -+ V(μ) 0 V .

Let

Φ; } := Φ\(N-\) '-Φλ

λ, Φ\ ,

where the sequence (λ(m)) is given by (Λ ( m )) = (A^A^A^A^...) or (λ(m}) =
(A\9AQ,A\,AQ,...). Note that the sequence (λ^) = (λ,λ',...) is determined by the

first / ([cf. [KMN]). Then Φ; converges and gives the following isomorphism by
Proposition 4.1:

^hl = V(λ} 0 V(μY ^ V(λ(m}) 0 V <g) 0
'"A* ^ ' M X V S .

N— times

Using this isomorphism, the space ^ is equipped with the local structure. Now, we
define the local operators. For L G End V®N ', let

By Proposition 4.1, we know

,*<"),_,
(Φλ }

where Φ;j/ = Φ ̂ (l). The action of L on « μ̂ is defined as follows:

By the above considerations, ̂  is understood naively as the subspace of the infinite
tensor product K®°°. Using the dual vertex operators (essentially the same as the
type I vertex operators, e.g. see [DFJMN])

we define the shift operator T : ̂  — » ̂  by

T : &M = V(λ) 0 V(λ')* ^ V(μ) 0 V 0 V(λ')* ^

The Hamiltonian ffl is defined by

$e = negative const, x (T2dT~2 - d) .

The space ^^ has the unique canonical element idV(λ}- We call it the vacuum
and denote it by |vac);L G ̂ χχ, ;.{vac| G ̂ yr In fact, the vacuum vector is the
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eigenvector of ̂  which has the lowest eigenvalue 0 (cf. [DFJMN]). We denote
the correlation function ^(vac|L|vac)/ by (L)(λ\

4.2. Integral Formulas. In [JMMN], an integral representation of correlation func-
tions of the XXZ-model was given using the bosonization of the vertex operators

for the level 1 modules over 6^(5/2). We can apply the same method to our case.
Let

I ξ )oo(

where ~p is the classical analogue of p. Then we have

In the following, we only concentrate on one-point functions (TV = 1 case)

h(z) = (z;

k(z) = (z;

Then, using the same technique developed in [JMMN], we obtain the following:

where

β =

1 (-!)"-' (-1)"
r> ~^ - >~^\ q"zηn-\ q"zη'n_

.
' for i =0, l ,n-

ηι ιΊ



Vertex Operators of Quantum Affine Lie Algebras 391

for l = 0,...,n-2, and η0 = qz, η'0 = q2"~lz,

CΛ - /a f 10101212 2 ηn-3η'a-3li'-\1n-\ 2 ^-2<-2 2 f«-2fl,-2 2\

' ~ '( tori? y'"" (M,',_2)
2 y ' C?«-,)2 y ' «_,)2 ' >/ '

for ;=!,.. .,«-!

x
i-^η^ηi+^η^η,^ . . . t- — V~ for 7 =!,...,«- 1 ,

7=y (1 -42)(1 -,

R(ηι-ι,ηι,ηι+ι,ηΊ,η'M) = {(ηΊ - qηι-\)(η'ι - qηι+\)(η'ι - qη't.

-q(ηi-\ ~ qη'ι)(ηι+\ - qη'ι)(η'ι+\ ~ qn'i) x (*l'ι ~

n-2 _! w-2

7=0 7=0

7=0 7=0

K(m,mf) — 0 otherwise .

All the contours of the variables η\,..., ηn-\, η\,..., rfn_\ are counterclockwise and
are in the following region:

( i ) f o r ( m X ) = (/J),

(ii) for (m,w ;) = (jj\

g2 < w<4) < I,...,?2 < w<4Λ < 1,9

2 < WJ4) < I,...,?2 < ^Λ < 1 -

Remark. When N = \9 the integral does not depend on the spectral parameter z. In
fact, z disappears after rescaling the integral variables. It remains to calculate the
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explicit form of one-point functions as in [JMMN] and [Ko]. At present, it seems
to be difficult. The trace tr q~2p in the integral can be expressed by using the above
theta function. If we can calculate the integral, the constant related to the Θl will
be cancelled with the trace trq~2p.
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