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Abstract: We prove that the spectrum for a large class of TV-body Stark Hamiltonians
is purely absolutely continuous. We need slow decay at infinity and local singular-
ities of at most Coulomb type. In particular our results include the usual models
for atoms and molecules.

Section 1. Introduction

In this paper we prove absence of pure point and singular continuous spec-
tra for a large class of N-boάy Stark Hamiltonians. The model is the follow-
ing. We consider a system of N v-dimensional particles labelled \9...9N with
masses, charges, positions and momenta denoted by ml9ql9Xi9 and pl9 respectively.
The interaction consists of two parts. One part (the external part) is due to the
presence of an electric field <f, while the other part (the internal interaction) is
given as a sum of pair potentials each one, vlJ9 assumed to obey the (weak)
decay condition,

My)\ + \Vvtj(y)\=o(l) for 7-+00. (1.1)

Here and in the first part of this introduction we shall assume vtj to be C1. We
defer the discussion of adding local singularities to the last part of the introduction.
The total Hamiltonian reads

After the (standard) procedure of separating out the center of mass motion for H
we obtain a Hamiltonian H on L2(X\ where

ί N 1
X = 3X = (Xl9...9χN)\Xl e Rv, Σmίχι =01 .

I 1=1 J
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There are two main results in this paper proved under the condition (1.1) and

the assumption that ^ φ ^j- for some pair i,j ^ TV. The first is

9'9 (1.2)

i.e. that the pure point spectrum of H is empty. For the second one we need an
additional assumption on the second order derivatives. The statement is then

M#) = 0 ; (1-3)

i.e. that the singular continuous spectrum of H is empty. The proof of (1.3) involves
resolvent estimates of independent interest (in fact useful in [HMS2]). We obtain
globally uniform estimates.

The results above generalize some recent results [Sk, Tl-3] obtained in the case
of Vij in C1. The first of these papers needed an additional geometric condition
that was verified for N — 3 and for "atoms" for TV > 3. The others all needed a
stronger condition than (1.1), namely the short range condition given by replacing

the righthand side by O(\y\~ϊ~ε). Previous to the above works is [Si] that contains
(1.2) for Born Oppenheimer molecules. Here the condition of repulsion (between
electrons) and spherical symmetry was important in the proof.

As was the case for the above mentioned works we shall in this paper apply
commutator methods. We adapt the variant of the method of Froese and Herbst
[FH] used in [Sk]. The main difference between [Sk, T3] and our paper is that in a
certain inductive step one needs a certain statement for subsystems to be uniform
with respect to translations of the energy. While the other papers dealt only with
translations to the left (which is easier and in some sense elementary) we overcome
in this paper the problem of proving uniformity with respect to all translations (cf.
[Tl-2] for the case TV = 3). For that a result proved previously by one of the
authors [HI, Proposition 2.1] is very convenient. Once this point is circumvented the
somewhat sophisticated vector fields of [Sk] and [T3] are not needed. As a matter
of fact the vector field we use for proving (1.2) is the (contravariant) gradient field
corresponding to the function

= κ ι

The one we use for proving (1.3) is even simpler, namely the gradient field corre-
sponding to the function given by the second term on the right-hand side of (1.4).
We apply the Mourre method [M] to show (1.3).

As for local singularities we can include singularities of Coulomb type; for
example if we add to the previous type of pair potential (1.1) a potential of
the form

vιj = qιqj\Xi -Xj\~lm, v ^ 3 ,

then (1.2) and (1.3) remain valid. In addition we can treat sums of Coulomb poten-
tials with different centers of the singularities and in fact our results include the well
known Born Oppenheimer model for molecules with fixed nuclei. It should be no-
ticed that this kind of singularity is a borderline case from the point of view of our
methods. For example they assure relative boundedness while for slightly stronger
singularities this property does not hold (in TV-body Stark problems). The basic
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schemes for the proofs in the case of singularities are the same as before, however
there are some additional technical difficulties, for example while (1.4) can be used
again (for (1.2)) the simple vector field used for (1.3) does not work in the general
case (because of some troubles with the double commutator in the Mourre theory).
The latter problem is circumvented by introducing a more complicated vector field
that can be viewed as a modification of the vector field constructed in [T3].

We shall use the framework of generalized Schrodinger operators. Our results (in
the C] case) are presented in this framework in Sect. 2. The next section contains
preliminary results. The crucial uniform statement referred to above is formulated
as Lemma 3.6. A more general result of independent interest is Proposition 3.7. In
Sect. 4 we prove various estimates that we use to prove the result corresponding to
(1.2). In Sect. 5 we shall outline a proof of the result corresponding to (1.3) and of
some resolvent estimates. In Sect. 6 we discuss how to include local singularities.
For this purpose we have added two appendices. The first, Appendix A, concerns
the proof of Proposition 6.4 from which in particular we can infer that the Coulomb
singularity is the borderline case for relative boundedness (cf. the discussion above).
In Appendix B we construct the vector field mentioned above to obtain (1.3) and
resolvent estimates in the general case.

This paper is naturally viewed as the first in a series of two. Our second paper
[HMS2] will deal with asymptotic completeness for TV-body Stark Hamiltonians.

Section 2. Notations, Assumptions and Results

We consider a finite dimensional real vector space X with an inner product x - y,
and a finite family {Xa\a £ j/} of subspaces of Jf. It is assumed that this family
is closed with respect to intersection and that there exist am m,amax £ jtf such that
XΩmm = X and Xamax = 0. The orthogonal complement of Xα in X is denoted by Xα.
Clearly we can assume that Xα = Xb =$> α = b. Then we can order j/ by writing
0ι C 02 if ̂ ' CXα2. For given 0 we define #0 as the largest n G N for which
there exists an increasing sequence α — αn £ αn-\ ^ - ^ α\ = αmax. The largest
such n is N := #0mjn. The orthogonal projections onto Xα and Xα are denoted by
/7fl and Πα, respectively. The corresponding components for x eX are denoted
xα and xα. We use similar notations for the components of the momentum operator

p = — z'V = (/? ι , . . . , /?dim^Γ). We put (jt) = (1 + |*|2)5 \x 2 = x x. The notations
(/?} and (λ) for Λ, £ R are (formally) given by the same expression.

Let — A = p2 and E £ X. Then the Hamiltonian

H — — A — F r + V- V — V K11 — ^J Λ^ A ~τ p , v — / ^ v α •>

is essentially selfadjoint on Cξ°(X) C L2(X) under Condition 2.1 (1) below.

Conditions 2.1.
(1) For all a G d the real potential Va(xa] 6 Cl(Xa) obeys

dβVa(xa) = o(l) for xa -* oo and \β\ ̂  1 .

(2) For all a £ j/ /A^ potential Va(xa) admits bounded second order distribu-
tional derivatives.

By convention S^VQmm — 0.
Our main results are
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Theorem 2.2. Suppose Condition 2.1 (1) and Eή=0. Then the pure point spectrum
σpp(H) is empty.

Theorem 2.3. Suppose Conditions 2.1 (1), (2) and £ΦO. Then

(2) W > \ :

sup (JtezrX)-H-zΓ (*)- \\<oo , v
I m z φ O , R e z ^ O

ι
(RQz)v\\(x)-δ(H-zΓl(xΓδ || < oo; v < -- .sup

ImzφO, RezΞ>0

In particular the singular continuous spectrum σsc(H) is empty. Moreover in both
cases the (two) boundary values

\—δ — i / \ — δ — δ' — i / — δ1

Imz|(T)0 ' Imz|(T)0

exist in &(L2(X)) and are attained uniformly for Rez in compact sets.

We complete this section with some notations.
For flφflmin we introduce the sub-Hamiltonian

Ha = (pa)2 -Ea xa + Va; Va = Σ vb ,
bCa

and
Ha = p2 - E -x + Va = (pa)

2 -Ea xa+Ha .

Let
//o = p2 — E x .

For R > 0 the notation F( < R) stands for the characteristic function
of the interval (—oo,/?). The notation χ( < R) stands for a smooth function
χ : R -> [0,1] obeying χ(t < R) = 1 for t <* R and χ(t < R) = 0 for t > 2R. Let
F( ^R)=l-F( < R) and χ( > R) = 1 - χ( < R).

For ε > 0 the notation ηε stands for any function η E CQ°(R) obeying 0 ^
η ^ 1 and η(t) = 1 for \t\ ̂  ε and η(t) — 0 for \t\ > 2ε.

Section 3. Preliminaries

In this section we state various basic facts and prepare for an inductive proof of
Theorem 2.2 to be given in Sect. 4. All statements hold under Assumption 2.1 (1)
and for any fixed E G X.

Lemma 3.1. The domain @(H) C H2

OC, the local Sobolev space of order 2. More-
over

p(x)~ϊ(H — i)~l and p2(x)~l(H — i)~l

are bounded.

Proof. By the well known formula
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applied to h = (jc)~J we obtain for ψ 6 L2(X) and φ — (H- ί)~V tnat

Clearly

<<£, Re(h2H)φ) = Re(φ,h2(H - i)φ) ,

\\(H-iΓl I I ^ 1,

and for some C > 0,

\(φ,{h2(E.X-F)+\Vh\2}φ)\^C\\φ\\2.

Hence

which proves boundedness of the first operator.
As for the boundedness of the second operator it follows readily from the result

proved above. D

By a similar method one can prove

Lemma 3.2. Suppose 0 <£ A G C°°(Jί) 0wύf ι/f G ^(//) are gf/t ew ^wc/z that hHψ,h\l/9

E xhψ,(dj h)ψ e L2(X) for any component djh ofVh. Then

Lemma 3.3. Let R > 0 and μ G R\0. Then

\\F(\x\ < R)(HQ -λ- iμΓlF(\x\ < R)\\ -> 0 for \λ\ -> oo .

Proof. It suffices to look at the case μ > 0 only. By the formula

00

(7/o — λ — iμ)~] = i / elt^+ιμ"*e~ltH®dt,
o

it is enough to show that for any ε > 0,

• 0 for μi -* oo .< R}dt

For that we use the formula (cf. [HI, (3.10)])

and the well known expression

for the kernel of e~ltp . We write eltA = —j-j-te
lU and integrate by parts to obtain

the bound ^ ( - 1 ) . D
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In order to control the high energy behaviour (cf. Lemma 3.6) we also need
another bound for the free resolvent. It follows readily from a result of one of the
authors [HI, Proposition 2.1] by a simple interpolation.

Lemma 3.4. Suppose 0 < y\ < y2 ^ \, μ E R\0 and Π : X — > X is an orthogonal
projection. Then

uniformly with respect to λ G R.

Let {ja}, βφtfmaxί be a family of functions on X each one being smooth and
homogeneous of degree 0 outside a compact set. Moreover we assume that

Σja(x) = 1 for *\ larSe , (3.2)
a

for any fc <^ a
(x)

—£- is bounded on suppyα , (3.3)
( x 1 .

and (hence in particular) for any R > 0 and b (£. a,

F(\xb\ < R)ja = 0 for |*| large . (3.4)

Lemma 3.5. Let ε > 0. Then

(1) \\ηε(H - λ)F(\X\ <R)\\^Ofor \λ\^w;R > 0,

(2) \\F(\x\ ^ R){ηκ(H -λ)- η,,(Ha - λ)}ja\\ -> 0 for R -> oo,

uniformly with respect to λ G R; tfφflmax

Proof We pick
μ > Σ sup|Kβ(.x)| . (3.5)

Then to show the first statement it suffices, by multiplying by the adjoint and
applying the Stone Weierstrass theorem, to prove that

||F(|*| <R)(H-λ-iμlΓ
l-'(ff-λ-iμnΓ

lF(\x\ < *)|| ̂  0 for \λ\ -+ oo;

\μj\ = μ for j ^ n E N . (3.6)

For that we recall the Neumann series

oo

(H - λ - iμjΓ1 =(HQ-λ- iμjΓ1 Σ {-^(#o -λ- ψ/)~ l}m , (3.7)
m=0

which is convergent by (3.5). By truncating this series for each j and inserting into
(3.6) we can reduce the proof to a similar statement with H replaced by HQ and
with bounded functions between the (free) resolvents. For notational convenience
we look at the statement (3.6) with H replaced by HQ as the only modification. With
this change the proof is completed as follows. We pick 0 < γ\ < - - < yn = ^,
insert successively 1 = (x)~yi(x}yJ and apply Lemma 3.4 to obtain that it suffices
to show

-λ-iμλ)~λ(x)~n\\^Q for μ |->oo. (3.8)
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But (3.8) follows from Lemma 3.3 by inserting on the right-hand side

l=F(\x\ <R') + F(\x\ ^Rf) (3.9)

and choosing R' large.
To show the second statement we proceed similarly. By using (3.5) and (3.7) it

suffices to prove that for any b (jL a and finite products #/(λ), / = 1,2, of bounded
functions and free resolvents of the form (//o — / — iμj)~l,

^ R)Bλ(λ)VbB2(λ)ja\\ -> 0 for R -> oo ,

uniformly in λ G R . (3.10)

For that we can assume Vb to be compactly supported. Then we insert (3.9) to the

right and replace ja by (-7-7) ja, the latter justified by (3.3). As a result we need£1
. (χ)

to estimate

Aι(λ,R) = F(\x\ ^R)Bί(λ )VbB2(λ)- jaF(\x ^ R')
V W /

and
A2(λ,R) = F(\x\ ^ R)B,(λWbB2(λ)jaF(\x\ < R').

By a similar application of Lemma 3.4 as above we can show that

is bounded uniformly in λ G R. Hence A\(λ,R) = O(R'~t) uniformly in λ and R.
We fix Rf large. Then by the same argument we can write A2(λ,R] — F(\x\ ^

R)(x)~ΐAτ>(λ)\ A^(λ) bounded uniformly in λ. So clearly A2(λ,R) = O(R~*) uni-
formly in λ, which completes the proof of (3.10). D

Lemma 3.6. Suppose R > 0, amm φ& c d and σpp(Ha) = 0 for all b C a C d.
Then

\\η,(Hd - λ)F(\xb\ < R)\\ ̂  0 for ε -+ 0 ,

uniformly in λ G R.

Proof The proof is by induction in #d starting from above with #d = N — 1, in
which case the statement follows from Lemma 3.5 (1) (with H replaced by Hd)
and a compactness argument (see the first step of the proof below for details). For
notational convenience we shall assume the statement for #d > 1 and look at the
case d = amdx under this hypothesis.

Suppose first that also b = amax. Then clearly

\\ηE(H - λ)F(\x\ <R)\\ ^ \\ηι(H - λ)F(\x\ < R)\\

holds for all \ > ε > 0 and λ G R. By Lemma 3.5 (1) (applied with ε = 1) the
right-hand side goes to zero for |/| —> oo. Thus it suffices to look at λ in a fixed
compact set. But the convergence statement of the lemma holds uniformly with
respect to such λ by a compactness argument since by assumption σ P P ( H ) — 0.

To treat a general b as in the lemma we use the partition of unity introduced
above. By the statement proved for b = αmax and (3.2), (3.4) it suffices to prove
that for any α φ αmax with b C α

\\η,(H-λ)jαF(\xb\ <R)\\^Q for e -> 0 ,
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the statement being uniform in λ. For that we insert

ηe(H - λ)ja = ηc(H - λ){ηκ,(H - λ) - η&,(Ha - λ)}ja

+ ηB(H - λ)η£,(Ha ~ λ)ja', ε' ^ 2ε . (3.11)

As for the contribution from the second term on the right-hand side we use the
fact that

\\ηt/ (Ha - λ)F(\xb < R)\\ ^ sup | | fy e , (H* + v - λ)F(\x*\ < R)\\ . (3.12)
veR

By the induction hypothesis

\\ηe,(Ha-λ)F(\x?'\<R)\\^0 for ε' ̂  0 , (3.13)

uniformly in λ = λ — v E R. We fix ε' small accordingly to control the contribution
from the second term on the right-hand side of (3.11). The contribution from the
first term can be dealt with as follows. We need to estimate (cf. (3.9))

A^ε) = η£(H - λ)F(\x\ ^ R')fa(H ~ ̂  - ι?β/(ffβ

and

A2(λ,ε) = ηε(H - λ)F(\x\ < R'){ηΛH ~ λ) - η£>(Ha ~ λ)}jaF(\x*\ < R) .

By Lemma 3.5 (2) the norm of A\(λ,ε) is small for R' large uniformly in ε and λ.
On the other hand (for fixed R')

\\ηe(H - λ)F(\x\ < R')\\ ^0 for ε -, 0 ,

uniformly in λ, as it follows from the first step of the proof above. Hence the norm
of A2(λ,s) is small for ε small uniformly in λ. D

There is a slight generalization of Lemma 3.6 that we consider of independent
interest. Moreover it plays an important role in [HMS2]. Roughly the statement says
that shrinking in energy (in fact uniformly with respect to the center of localization)
implies spreading with respect to any coordinates not orthogonal to the direction of
the field. We anticipate Theorem 2.2 in its formulation.

Proposition 3.7. Suppose R > 0 and Π : X — > X is an orthogonal projection such
that TIEφO. Then

\\ηε(H - λ)F(\Πx\ < R)\\ -> 0 for ε -> 0 ,

uniformly in Λ, E R.

Proof We add the projection / - 77 to the family of projections Πa, a G ̂ /.
Possibly after another extension we obtain a new family of projections whose ranges
fulfill the requirements imposed in the beginning of Sect. 2. Hence the result follows
from Lemma 3.6 and Theorem 2.2. D

Section 4. Estimates

In this section we prove Theorem 2.2. This is done by showing by induction in
#a that σpp(Ha) = $ under the assumption that £ f lφO starting from above with
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#a — N - \ , in which case the statement can easily be extracted from the proof
below. For notational convenience we shall assume the statement for #a > 1 and
look at the case a — amax under this hypothesis.

We shall use a variant of the method of [FH] (see also [AHS] and [H2]), which
basically relies on the following computations.

For some smooth functions θ : R+ — >• R and / : X — > R+ to be specified below
we put

* = * ( A

and compute the commutator

= 4 A f θ ' A f ,

V / ,

1 - ,0 „ o
T4 = --Δ2f + V/ V((0'2 - θ ) |V/|2). (4.1)

Moreover

(H - λ - (θf2 - θ")\V/l2 + 2iθ'Af)eθ = e°(H - λ). (4.2)

We shall use these formulas with

where K ^> 1.
As for θ we have

Hence
T\ ^ 0, Γ4 = O(^)-1) for x -̂  oo. (4.3)

A computation shows that also

T2 ^ 0.

To deal with the term T^ we notice that

VF V(jc) =o( l ) for ;c->oo.

Hence

cβ) E + 0(1); εo = |£|2
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For the first term we have

Putting this together we obtain

T2 + T3 ^ ε0 - Σ VVa(xa) E - Re ( fτH\ + 0(1) . (4.4)
α:£βΦθ \ W /

Finally, by (4.1), (4.3) and (4.4),

i[H,e0Afe°]=e0{ .}e0

 9

o(l) . (4.5)

In the following applications we consider some further specified functions θ de-
pending on parameters. The estimate (4.5) will be uniform with respect to these
parameters. As above we suppress the dependence of K in the notation for / = fκ

Lemma 4.1. Let λ £ R, s > 0 and

0(0 = J log (t(\ + -\ ) μ>\.

Then for all sufficiently large K there exist a constant C > 0 and a compact
operator K such that

Vμ > 1,0 G C™(X) : (φJ[(H - λ),e°Afe
θ]φ) + C\\e°(H - λ)φ\\2

*±\\e°φ\\2-\\Keθφ\\2.

Lemma 4.2. Let λ G R, α0 ^ 0 and

-t\ μ>l, 7 > 0 , α ^ O .
K

Then for a (small) δ > 0 and all sufficiently large K there exist a constant C > 0
and a compact operator K such that

α - α o | ^ δ,φ G C^(X) :

/ / - 2 g; 1||^V||2-||^V||2.
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Proof of Lemmas 4.1 and 4.2. We compute

0'(0 ^ - , |0"(0| ̂  2 4 , |0'"(OI ^ ̂  (4.6)
ί t2- r

in case of Lemma 4.1, while

α

/c
|0"(OI ^ — » |0'"(OI ^ -4 (4.7)

Kt

in case of Lemma 4.2.
Thus by inspection we obtain for h — TΔ, given by (4.1) that

\h(x)\ ^ C{jc)"3; C = Cκ- independent of μ, (4.8)

under the condition (4.6), while

\h(x)\ ^ C(x)~l

C = C/v independent of μ,y,α , (4.9)

under the conditions (4.7) and 7 + |α — αo| ^ 1.
By (4.8) and (4.9) the fifth term on the right-hand side of (4.5) is 0(1) uniformly

with respect to the parameters. Similarly all statements below will be uniform with
respect to the parameter μ in case of Lemma 4.1 and μ,y,α in case of Lemma
4.2 (constrained as in the lemmas), and in addition with respect to φ G C^°(X).
For notational convenience we put αo = 0 in case of Lemma 4.1, introduce λ =
A + (α0)

2 and abbreviate the expectation (e°φ,Te°φ) = (T) for any linear operator
T.

As for the fourth term on the right-hand side of (4.5) we obtain from (4.6) and
(4.7) that

-Re I ̂ -H } = -Re \^-{H - λ-(θ'2 - 0")|V/|2} ) + O ( I x ) ' 1 ) .
\{*> / \(*) /

Hence by (4.2), the Cauchy Schwarz inequality and the same bounds again, it
follows that for any φ G Cξ°(X),

= -RQ/e°φ9-^<
\ (*)

^-κ2\\e°(H-
\ L W J /

^ -κ?\\e°(H-λ)φ\\2 + ( O ( ( x ) - } ) ) . (4.10)

As for the third term on the right-hand side of (4.5) we obtain by choosing R
large enough that it is estimated by

- Σ **(*) ^ - Σ
O

E. (4.11)
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We look closer at the first term on the right-hand side of (4.11). The idea is
to write

F(|jt*| <R) = ηε(H - λ)F(\xb\ < R) + δb

δb = (H- λ)ζε(H - λ)F(\xb\ < R),

ζ e ( t ) = Γl(l-ηe(t))9 (4.12)

and choose ε small to treat the first term by Lemma 3.6 and its proof. The appear-
ance of functions hb as factors is a minor complication since these are bounded. By
mimicking the second step of the proof of Lemma 3.6 (cf. (3.2), (3.4), (3.11), (3.12)
and Lemma 3.5 (2)) we can write

ηε(H - λ)F(\xb\ <R)=Σ n*(Ha ~ λ)F(\xb < R)ja + K\ K compact.
bCa

The first term goes to zero as ε —> 0 since (3.13) holds as guaranteed by Lemma
3.6 and our induction hypothesis. In conclusion for ε small enough

-Re Σ ηε(H - λ)F (\xb\ < R) hb ^ -^7 -K\ K compact. (4.13)

On the other hand for fixed ε we can estimate

\(δbhb)\ Z\\(H-λ)eβφ\\C\\eθφ\\

<C'\\(H-λ)eθφ\\2+ε'\\e°φ\\2

^ 2C'\\(H -λ- (θ'2 - 0")|V/|2 + 2iθ'Af)e°φ\\2

+ 2C'||({(αo)2 - (θ'2 ~ 0")\Vf\2} + 2iθ'Af)el>φ\\2 + ε'\\e°φ\\2

ε' > 0, C' = Ct')(;, .

As for the first term we use (4.2). To estimate the second term we notice the bound

θ' ^ CRT' .

Moreover

under the condition (4.6), while

|(α0)
2 - (θί2 - θ")\Vf\2\ ^ C((x)~l + κ~λ + δ)

under the condition (4.7). In both cases C is independent of K and the parame-
ters (constrained to y + |α — OCQ| ^ δ in case of Lemma 4.2). We apply the above
estimates for K large, and in case of Lemma 4.2 for δ small. (Notice the bound
\\2iθ'Afe

θφ\\2 ^ sup^).) As a result

-{Re Σ ^hb\^-εj\\e°φ\\2-C\\eθ(H-λ)φ\\2

(4.14)
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By combining (4.5), (4.10), (4.11), (4.13) and (4.14) we finally obtain that for
a constant C > 0 and compact K (both independent of μ, and in case of Lemma
4.2 also of y and α)

2
-λ),e0Afe

0}φ) + C\\e°(H-λ)φ\\

^ f l k V H 2 + {y)-ll^'Vll2 + {̂ } £ = <*!). <4.i5)

It remains to treat the last term on the right-hand side of (4.15). For that we
pick C", R > 1 independent of the parameters such that

h ^ -C'F(\x\ <R)-^ 9 (4.16)

cf. (4.8) and (4.9). Since for any σ > 0 the operator ησ(H)F(\x\ < R) is compact
we can estimate

-C'F(\x\ < R) ̂  -K - CfRe(Hζσ(H)F(\x\ < R)), (4.17)

where K is compact and ζσ is given by (4.12).
By an argument now familiar there exists a constant C > 0 such that

C \\Heυφ\\* ^

By choosing σ large enough we obtain from the bound ||(σ(//)|| ^ σ"1 and
(4.18) that

-C'Re(Hζσ(H)F(\x\ < R)) ^ --\\e°φ\\2 - ( ^\ - \\e\H - λ}φ\\2 . (4.19)
6 \ 2 /

Putting together the statements (4.15),(4.16),(4.17) and (4.19) it follows that

(φ,i[(H - λ),e°Afe°]φ) + C\\e°(H - λ)φ\\2 ^ -\\e°φ\\2 - \\Ke°φ\\2 .

Hence we have proved the lemmas. D

The previous estimates lead to

Lemma 4.3. Suppose (H - λ)ψ = Q λ e R, ψ G 3)(H\ Then

Vα ^ 0 : e*(x}ψ(x) G L2(X) .

Proof. First we prove
Vs ^ 0 : (x)s\l/(x) e L2(X) . (4.20)

For that we use Lemmas 3.1 and 4.1 to prove by an approximation argument that

φ\\2^ \\e°φ\\2, (4.21)

where C,K and θ are as in Lemma 4.1. If (4.20) does not hold we obtain a
contradiction by letting μ — >• oo in (4.21).

Now let
α0 = sup {α ^ Ol^i/φO ^ L2(X)} .

We need to show that αo = oo. Suppose this statement is false.
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If αo = 0 we come to a contradiction by using (4.20), Lemma 3.2, and Lemma
4.2 with α = αo. It is obtained by letting μ — > oo in an estimate similar to (4.21).

If αo > 0 the contradiction arises by the following use of Lemma 4.2. Let
δ > 0 be given in accordance with the lemma. Then we choose any α < αo such
that α0 < α + I and put γ = |. It remains to specify K. We choose it so large that
in addition to the estimate of the lemma the conditions

_ and ,,

hold. Now we proceed as above, that is by first using Lemma 3.2 to replace φ in
the estimate by ψ and then letting μ — > oo. D

Proof of Theorem 2.2. By using Lemmas 3.2 and 4.3 the statement follows readily
from the following formula valid for any φ E CQ°(X):

\\e*E'x{(H-λ)-V}Φ\\2

+ 4α2||£ pe*E ' xφ\\2 + 2a\E\2\\eCίE * xφ\\2 λ G R, α ̂  0.

Because of Lemma 4.3 we can apply it to φ = ψ if (H — λ)\jj = 0. This gives the
condition

\\e*E * xVψ\\2 ^ 2a\E\2\\e*E ' xφ\\2 ,

which clearly holds for all α ^ 0 only if ψ = 0. D

Section 5. Proof of Theorem 2.3

We shall outline a proof of Theorem 2.3. As for the first statement (1) of the
theorem we use the Mourre method [M] (see also [PSS]) with the conjugate operator
A = E p. Indeed the Mourre estimate holds for this example in fact uniformly
with respect to translations of the energy: Let p < \E\2. Then for ε > 0 small
enough

ηε(H - λ)i[H9A]ηs(H - λ) ̂  pηκ(H - λ)2 λ E R (5.1)

This statement follows easily from the computations in the beginning of Sect. 4
in conjunction with Theorem 2.2 and Lemma 3.6. In order to apply the abstract
theory of [M] one needs in addition to the positivity statement (5.1) a prop-
erty of the double commutator [[//,^],^]. In the present context this commuta-
tor is a bounded function by Condition 2.1 (2) and hence in accordance with
the assumptions made in [M]. It is now a matter of mimicking [M] and [PSS]
to obtain (1) with the weight (p)~δ replaced by (A)~δ. We apply (5.1) with
λ = Rez, where z is the resolvent parameter. Since (A)δ(p)~δ is bounded we
can then obtain the resolvent estimate with the weight (p)~δ as stated. The state-
ment about existence of weighted boundary values with this weight follows by the
same methods.

To obtain the part of Theorem 2.3 that involves the weight (x)~δ one can use

Lemma 3.1 to replace (x)~δ by (p)~2δ and thus reduce to the previous part. We
omit the details referring the reader to [Sk] where in particular a detailed proof of
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the low energy bound of (2) can be found. As for the high energy bound it suffices
to show that for any ^ < δ' ^ i,

This result follows by interpolating the result for δ' — | which in turn fol-
lows readily by a commutation and by the method used in the proof of
Lemma 3.1. D

Section 6. Coulomb Singularities

In this section we extend our results to cover particles interacting through Coulomb
forces. We will make use of the following conditions on the potential all of which
are satisfied for the usual models for atoms and molecules.

Conditions 6.1.
(1) For all b e ,$/ the real measurable potential Vb obeys

\Vb(xb)\ ^CbΣ\**-rj\-l+o(l)9

7=1

with r ι , . . . , r£ all in Xb, and has distributional gradient satisfying

\wb(χb)\ ^ QΣ |**-o r2 + o(i) ,
7=1

where 0(1) is a bounded function which tends to zero as xb —> oo.
(2) Outside a compact set in Xa, Va is C1 with bounded second order deriva-

tives.
(C) If F f lΦθ, /7 f l/7όΦθ, and Cb in (1) above is non-zero, then dim(Range

ΠaΠb) ^ 3.

We believe 6.1 (C) in unnecessary for αφ&. Although we will not show it,
it is unnecessary if the singularity in the potential and its derivative are slightly
weaker in an Lp sense. This can be proved with the techniques introduced below
in conjunction with Appendix B (or alternatively in conjunction with the ideas
of [ABG,T4]).

Our main results of this section are

Theorem 6.2. If Conditions 6.1 (1) and (C) are satisfied and Eή=Q, then σpp(H)
is empty.

Theorem 6.3. If Conditions 6.1 are satisfied and £ΦO then σsc(H) = 0. In fact
for δ > \ and δ1 > \ the limits (in @(L2(X)))

lim (p)-δ(H-zΓl(pΓδ, Urn (x)-*' (H - z)N j K / ^' Imz|(T)(Γ

are attained uniformly for Re z in compact sets.

For the proofs we need some preliminaries.
In the presence of an electric field, singularities present a much more chal-

lenging and interesting problem than with the usual Schrόdinger operator. This
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is because one is forced to prove bounds uniform in the spectral parameter.
Thus, if Π is an orthogonal projection with (1 — /7)£ΦO, one readily observes
that

\\V(Πx)(ffo ~μ- Oθ~Ίl = sup \\V(y)(-Ay -ΠE y-λ- ίyΓ'\\
λeR

As the following proposition makes clear, the Coulomb potential is on the borderline
for //o-boundedness.

Proposition 6.4. Suppose Π is an orthogonal projection onto a subspace of X with
dimension ^ 3. Then

(1)

\\\Πx\-l(H0-λ-iγΓ}\\ ^C, |y |- i ,

where C\ is independent of y, λ, and E.
(2) If V is a measurable function on ΠX with the property that

lim \V(Πx)Πx\ = oo ,
/7*->0

and if (I - Π)Eή=0 then V(Πx) is not HQ-bounded

Remarks. (1) If we define \Πx ~lδ(H0 - λ)\Πx\~l as a form on C™(X) x
by the formula

(φ9\Πx\-lδ(HQ -
40

then (1) of Proposition 6.4 is equivalent to the estimate

The existence of the limit above can be inferred from the proof of (1).
(2) Note that by scaling, the uniformity in E of the bound in (1) of Proposition

6.4 follows from the uniformity in λ.
Proposition 6.4 is proved in Appendix A, but see the remark after the end of

the proof of Lemma 6.5 for a simple proof of a weaker version.
We will make use of the following:

Lemma 6.5.
(1) Suppose Y is a subspace contained in X and f G LP(Y) with p ^ 2 and

p > d — dim Y. Suppose γ < α ^ 1. Let Π be the orthogonal projection onto

Y. Then

(2) Fix a,be<$/ such that ΠaΠbή=Q. Define

Vb= Σ Vc, H6 = HQ+VB, and Yba = Xb θ (Xb Π Xa) .
ΠcΠb=Q



Spectral Analysis of yV-Body Stark Hamiltonians 277

Suppose p ^ 2 and 2p > d — dim Yba. Let f and g be measurable functions
on Xa and Xb, respectively. Then

\\f(Πax)(HB - λ - iγΓ29(Πbx)\\ ^

where

Af = sup( / |/(M
\v£Xa

 Πaχb

Bg= s u p ( f \ g ( y
xa Yha

Remarks.
(1) Note that part (1) provides a large class of HQ -bounded potentials, but that

the Coulomb singularity just misses being included. Nevertheless the bound will be
useful. For a somewhat similar result (proved by the same technique) we refer to
[K, Lemma 3.1].

(2) Part (2) is a technical result which is crucial to our treatment of the Coulomb
singularity. Note that A/ is finite if / is bounded with compact support.

Proof. By (3.1),

\\f(Πx)e-lt(H^λ^f(Πx)\\ = \\f ehΔ* f \\e-< < ,

where the norm on the right is in L2(Y). A standard estimate [RS, p. 154],

\\fέ'Δγf\\ ^ \\f\\l»(Y)(^Γd/p, t > 0 ,

then gives (for y > 0)

||/(//o - λ - lyΓ '/H ^ 2|yΓ"-^>(l - d/PΓ
l\\f\\lr(γ)

after integration over t. It follows that

||/((//o - A)2 + y2H I I 2 = ||/((tfo - λ)2 + y2Γ7ll

= (2MΓ1 ||/[(Λb - A - /y)-1 - (//o - λ + iy Γ']/||

This proves (1) for α = 1. Part (1) (for -̂ < α < 1) then follows by using the

formula

oo

((//o - A)2 + 72Γα/2 = Cα / ((//o - A)2 + y2 + μ2Γl/2μ~*dμ
o

and keeping track of the constants.
The proof of (2) is similar except that we use [RS,IO]

^ AfBfle-Γ'(4πtΓd/p, t > 0 .
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Here

Af = sup / \f(Πay + Πaxb)\*>dy =

where C is the relevant Jacobian.
We now multiply by t and integrate to obtain the result for y > 0. D

Remark. The methods used to prove Lemma 6.5 yield a simple proof of a weaker
version of the first inequality of Proposition 6.4, namely that for fixed E and any
ε > 0,

\\\Πx\~\HQ-λ-iγ)~l\\ ^ C f i | y |~2( l + |y |~ ε ) .

In proving this there is no loss of generality in assuming Π — I. Then Lemma 6.5(1)
with / = F(|*| Ξ> 1) I*!"1 and p = d/(\ - 2ε) (with ε > 0 and small) yields

.1.
\\F(\x

Now let / = F(|JC| < 1) \x\~l, η(λ) = (λ2 + y2)-1. We obtain

fη(HQ - λ)f =
2π

Using the estimates \e-i\E\2fl\2 _ { \ ^ c\E\2δ/3\tδ and \eitE ' x'2 - \\ ̂  C\E\δ

\x\δ\tδ for δ e(0,l], we find

\\fη(H0 - λ)f - fη(p2 - λ)f\\ ^ C\\f\\2

LP(X} / \t\δ\t\-dIP\ή(t)\dt .

We take δ — 3ε, p — d/(\ + ε) (with ε > 0 and small) and obtain

\\fη(H0 - λ)f - fη(p2 - λ)f\\ ^ Cε|y|-'-2ii .

We have thus reduced the problem to the case where E — 0. We have

\y\\\fη(p2 - λ)f\\ ^ \\\*\~{{(P2 - ^ - iyΓ1 -(pt-λ -'

We learned an especially simple way of estimating the above norm from Ag-
mon [A]: First we can assume without loss that d = 3. (If d > 3 write x =

(y,z) with y E R3 and estimate I*!"1 ^ M"1-) In three dimensions the operator

(p2 — λ — ίy)~l has an integral kernel (4π|;c — y\)~l exp(/y//ί H- iy\x — y\), which
is pointwise bounded by the integral kernel of (— Δ)~l . Thus, by Hardy's inequality
(\P\2 ^ 4 j ) we have

and we thus obtain

\\fη(H0 -λ)f\\ ^

which gives the result. D

Let ̂  =
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Lemma 6.6. If Condition 6.1 (1) is satisfied, there exists for each a £ stf' a se-

quence a real-valued functions FJm) £ C£°(Xa) such that if

bCc

then
lim sup \\(HC - λ- iγΓ1 - (H(

c

m} - λ- iy)~λ\\ = 0 (6.1)

for each y £ R\{0} and each c G stf''.

Proof. We prove the result for c = amax. Introduce the matrix

Mab(z) = Wa(z - Ho)~lW_b, ImzφO ,

where Wa = \Va\^W_a = l^l^sgn Va. It follows from Lemma 6.5 (1) (with α = {}
that on the Hubert space

we have

\\M(z)\\ g -

if Imz| is large enough. As in [HI, Lemma 3.4] (cf. also [RS, p. 152, IO]) we
have for |Imz| large

a,b

Again, using Lemma 6.5 (1) and with the help of (6.2) we can approximate Wa

and W_a by real functions in C™(Xa) to show (6.1) for |y| large. But then (6.1)
follows for all y φ O using the resolvent equation. D

Corollary 6.7. If Condition 6.1 (1) is satisfied, then Lemmas 3.5 and 3.6 are also
true for the potentials being considered here.

Proof, Lemma 3.5 is valid for the Hamiltonians Ha. We use a simple approxi-
mation argument based on Lemma 6.6 to finish the proof. The proof of Lemma 3.6
uses only Lemma 3.5. Π

Lemma 3.6 is not strong enough for us in the presence of the Coulomb singu-
larity. We need the following.

Lemma 6.8. Suppose Conditions 6.1 (1) and (C) are satisfied and b £ stf is given
with QφO. Let g(xb) = \xb - r\~l with r G Xb. Then

lim \\ηε(H - λ)g(xb)F(\xb - r\ < ε^ll = 0 ,
ε,ε'|0

uniformly in λ.

Proof. Let B = ηε(H - λ)g(xb)F(\xb - r\ < ε7) and let b e jtf be given as in
Lemma 6.5 (2). Note that by inserting 1 = (H^ — λ — iy)2(H^ - λ - iγ)~2 we have

B = -y2ηκ(H - λ)(HB -λ- iyT29(
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where ||<fy | | — > 0 as γ — > oo uniformly in λ, ε, and s' for ε ^ 1. This follows from
Proposition 6.4. Thus we need only show that for fixed y > 0 the operator

Bf = ηe(H - λ)(Hε -λ- iγΓ2β(xbW(\xb - r\ < ε')

tends to 0 in norm uniformly in λ as c,ε' — » 0. If in the expression for B', ηε(H - λ)
is replaced by ηε(Hg - λ), the result is true, because

sup \\ηt(Hs - λ)g(xb)\\2 £ sup \\g(x")η2

ε((pb)2 - E* xb - μ)g( b

^ sup / \\g(x»)δ((pb)2 -Eb xb- μ - t)g(xb)\\η2

ε(t)dt ί Cε .
μGR

The last inequality follows from Proposition 6.4 (1) by a simple translation argu-
ment. Thus it suffices to show that for fixed ε > 0,

\\[ηe(H -λ)- ηε(H5 - λ)](HB -λ- iyΓ2g(*b)F(\xb - r\ < ε')|| -> 0 ,

uniformly in λ as ε7 j 0. By Lemma 6.6 we can approximate ηc(H - λ) - ηκ(H^ -

Λ-) by ηκ(H^ — λ) — η£(H^ — λ), where the superscript m indicates that each non-
zero Va has been replaced by a function in C^°(Xa). We now proceed as in the proof

of Lemma 3.5, first approximating ^ε(//(m) - λ) — ηe(H^m) - λ) using the Stone
Weierstrass theorem, and then expanding the resolvents which occur in a Neumann
series. Because we are dealing with the difference above, each term will contain a
potential Fβ

(m) G C^(Xa\ where ΠaΠb^O. Arguing as in the proof of Lemma 3.5,
we are reduced to estimating

where / is bounded with compact support. To obtain this estimate we use Lemma
6.5 (2). We must estimate BgF with dim Yba = d ^ 3. But if xb = y + z, with y €
Yba and z G Xb Π Xa we have g(xb) ^ \y - r'\~{ with r' the projection of r on Yba.
Thus choosing p G (^,d) with p ^ 2 it is obvious that as ε7 j 0,

ί vBgF^(SF(\y-r'\<B')\y-rr\-Pdy} ^0. Π
\γι» )

We are now ready to give the

Proof of Theorem 6.2. We follow the proof of Theorem 2.2 making adjustments
when necessary to deal with the singularities in V and VF. Our first task is to
prove the estimates of Lemmas 4.1 and 4.2. For notational convenience we assume
for all b G ̂  with Q>ΦO (see Condition 6.1 (1)) that k = 1 and r\ = 0. We first
redo the calculations leading to (4.5) with the result

i(H,eθAfe°] = et>{ }et>.

{• •} Z Γ, + ε0 - Σ (Wb(xb) E)F(\x»\ Z ε, )

. (6.3)
W
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Here 0(1) depends on βj > 0. It denotes a bounded function which tends to zero
as x —>• co. In order to obtain (6.3) we have used the simple estimate

\VVh(xb)\F(\xb\ <c , ) + o(l).
-/

As in Sect. 4, let λ = λ -f- #Q and write η( 2 = ^;2(// — λ). Let gb = \Vb(xb}\ -f
' » | , Fb = F(\xb\ < εi). We consider the last term of (6.3):

Σ (9bFb) = Σ ((n^9bFbη^} + {(I - ηE2

Lemmas 6.8 and 3.6 control the first term. We choose ε\ and £2, so that

Σ \(^

with δ' = ||. For the last two terms we have

Σ KO - η,2όeo/

^ Σ

λ + i)e0φ\\

ί C\\(H ~ λ)e°φ\\ (||(// - λ)e°φ\\ + \\el>φ\\) .

As in the estimates below (4.13), we obtain (in the more complicated case pertaining
to Lemma 4.2)

- λ)e°φ\\2 ^ 2\\e°(H - λ)φ\\2 + 2 ||(α§ - (θa - Θ")|V/|2 + 2iθΆf)e°φ\f

^ 2 \\e\H - λ)φ\f + C I ({*)-' + K-' + δ)e"φ\f + 4supθ'(Γ,) .

Here, as before, γ + |α — αo| ^ <5. We choose δ small and K large to obtain

Σ \(9bFb)\ ^ C\\e°(H - λ)φ\\2 + 2^||/φ||2 +

The other terms in (6.3) are estimated exactly as in Sect. 4. The term (y) in (4.19)

can be replaced by (-^-} without any change in the argument. Then

(φ9i[H9e°Afe°]φ) + C\\e°(H - λ)φ\\2 ^ ^\\e°φ\\2 - \\Ke°φ\\2 . (6.4)

In order to use (6.4) to prove that if (// - λ)ψ = 0, then e*^ψ 6 L2(X) for all
α we approximate ψ by a sequence χnψ of compact support functions in ^(//)
for which (6.4) is easily seen to be valid. Here χn(x) — /ι(*Λ09 X i ^ C'o0 w^m

χ\ = 1 for |jc| ^ 1. We then need to show

e°(H - λ)χnψ -+ 0 ,

\\pe°χn\l/\\ ^ const. (6.5)

Notice that Lemmas 3.1 and 3.2 remain valid.
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These facts and judicious choices of h are enough to prove (6.5) from which
we learn that (H - λ)ψ = 0 implies e*Wψ G L2(X) for all α.

To obtain a contradiction we follow the proof in Sect. 4. We rewrite a calculation
there as

** ' x' x(Ho -λ)φ\^ ||(//0 - e** ' xφ\ φ ,

where y — ^2u\E\2, λ — λ + of\E\2, and where α ^ 0. If we let β(y) = supμeR

TO — μ + OO"1]] and choose 7 large enough so that β(y) < ^ we have

~'x(H0-λ)φ\\-\\v<rE'*Φ\\
-λ + iy)e«E xφ\\ - β(y) \\(H0 - A + iγy* ' xφ\\

\\e*E xφ\\ . (6.6)

It is clearly enough to show that (6.6) is valid for the eigenfunction ψ to obtain a
contradiction. But the necessary approximations have already been discussed. D

Proof of Theorem 6.3. We shall use Appendix B. Absence of singular continuous
spectrum and existence of the first limits follow from Proposition B.4, Corollary B.6,
(B.5), and the abstract Mourre theory [M, PSS]. The remaining part of the theorem
follows from existence of the first limits in conjunction with the first resolvent
formula and Lemma 3.1 (cf. Sect. 5). D

Appendix A. Proof of Proposition 6.4

We shall prove Proposition 6.4 under the additional condition ΠEΦO. See the end
of the appendix for the case ΠE = 0.

Under the above assumption the strategy of the proof is (in both cases (1) and
(2)) to reduce (by a partial Fourier transform and Airy functions) to estimates of
explicit kernels. We shall extensively use the notation C for non-zero constants.

First we prove (1). Clearly we can assume that dimJf = 3 and (by a scaling)
that \E\ = 1. By a suitable choice of coordinates x = (x±,z) G R2 x R it is then
enough to bound each of the following expressions independently of λ and y:

:= v 2 — (-Δ+z-λ-ίy)

\)(-Δ+z-λ-iyγ

To bound D\ we conjugate by the partial Fourier transform with respect to JC_L,
denoted Fj_, to reduce the problem to a one-dimensional estimate. It is enough
to bound

V)( o = -—2 +z 9

independently of λ and y. For that we use the fact that the one-dimensional Stark
Hamiltonian Λ0 is diagonalized by the Airy function Aί( ). Explicitly the delta
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function δ(ho) = (2πi)~l\imί:^((hQ — iε)~[ — (/ZQ + iε)~l ) has the kernel

z,z') = CAi(z)Ai(z'). (A.I)

By (A.I) and a translation property of ho we obtain the following expression
for the delta function at any real energy μ,

δ(hQ - μ)(z,z7) = CAί(z - μ)Ai(z/ - μ) . (A.2)

We shall only need (for the proof of (1)) the bound (cf. [AS, 10.4.59-60])

\Ai(z)\ ^ C(z}-5; z e R . (A3)

By a standard application of the spectral theorem we can represent the square
of D\ as the norm of an integral (with respect to μ) of the function

(μ - λΫ + f

times the operator whose kernel is given by (A.2) times the factor l/(z)(z'). From
this representation we obtain readily by pulling the norm through the integral that
it is enough to bound the rank-one operator given by the kernel

—Ai(z - μ)Ai(z' - μ)— ,

independently of μ G R. But this is easy by the Hubert Schmidt criterion and (A.3).
It remains to bound £>2. For that we shall use the following expression for the

partial Fourier transform of the Coulomb potential (given for any z G R):

= C ; ' e R 2 (A 4)

We proceed similarly as before. The multiplication operator given by the
Coulomb potential goes into convolution (with respect to η) by the function (A.4).
Then the square of DΊ is represented as the norm of an integral of an operator
valued function involving the one-dimensional delta function (A.2). Explicitly we
shall complete the proof by bounding (uniformly in μ) the norm of the operator Kμ

given by the kernel

e-\Λ\n-ή\
Kμ(z9ηιZ'9η

f)= $F(\z\ < 1) Ai(z + ή2 - μ)

e~\z \\n~n \
x Ai(z + η2 — μ)—— —F(\z'\ < l)dη .

Clearly by (A.3) it thus suffices to bound the operator Gμ given by the kernel

, e-\z\\n-n\ e-\z'\\n-n'\

Since
sup (ή2-μ)-τ(ή2- 1)2 < oo,
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we only need to bound uniformly in μ > 0. For that we replace the factor

(ή2 — μ)~ϊ in the integrand by the (larger) expression \ή2 — μ\~Ί In this way
we obtain a family of unitarily equivalent operators as follows by the scaling

z —> μ~2z, η —» μ2η. Hence it only remains to show boundedness of the opera-
tor G given by the kernel

p-\z\\η-ή\ p-\z'\\ή-η'\

R2 i'/ - '/ι K/ - '/ i

For that we choose real α and β such that

]- > β > α > 0 . (A.5)

Then by the Schur test [HS, Theorem 5.2] G is bounded if

sup \z\«(ηγttG(z^zf,η'}\zf\-*(η

fΓβdz'dηf < oo .

Since

and (possibly with another constant)

00 / /

— oo

we are led to showing fmiteness of the following expression:

sup (η)βf f\ή2 — 1 |~2 \η — ̂ |-1~α|^ — ηf\0ί'~2(η/)~^dήdηf .

Obviously fmiteness is a consequence of the following two bounds which in turn
follow readily from (A.5) and Lemmas A.I and A.2 given below.

S\ή - η'Γ2(η'Γβdη' ^ C(η)"-l> , (A.6)

J\fj2 - l\-\η-ή\-*-*(if)*-lidη £ C(η)^ . (A.7)

As it holds for (A.6) and (A.7) the following statements involve only two-
dimensional variables.

Lemma A.I. Suppose 1 < k < 2 and 0 < / < 2 — k. Then

sup / \ή-ηf-k\η'2-\\-ldηf < oo .
\n'\<2

Proof. Only the contribution to the integral from the region ^ < \η'\ < 2 needs to
be considered. Changing to polar coordinates,

η' = (rcos$,rsin$), ή = (s,0) ,



Spectral Analysis of TV -Body Stark Hamiltonians 285

we have the bound

\ή-η\ ^ C ((r - s)2 + Θ2Y .

But

_

which by the Holder inequality can be estimated independently of s < 2. D

Lemma A.2. Suppose 0 < k, I < 2 and 2 < k + /. Then

Proof. We look separately at the regions

*ι .\n-η'\ <\\ή\,

R2 : \ή - η'\ ^ l-\ή\, \η' Z 2\ή\ ,

R3:\η' >2\ή\.

In case of the region R\, \η'\ > \\ή\, which permits us to estimate

/li j-i/rVΓW ^ 4(ήTΊ\ή-n'Γkdη'

In case of the region 7?2?

ί\ή-η'\-k(n'Γldn' ^ C\ή\-k$(η'Γldη'
R2 R2

Since the estimate of Lemma A.2 is obvious for ή in a compact set we conclude
that

S\η-η'-k(η'Γldη' ^C(ήγ-k-1 .
R2

As for the region RT, we estimate

I\ή-η'\-k(ri'Γldη'^2kf\η'\-k(η'Γldη'
R3 R3

^ c\ή\2-k-' .
So (again) we obtain

(ηrldη' ^C(ήγ-k-1 . D

We have proved (1) (for ΠE ΦO).
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As for the second statement (2) of Proposition 6.4 we proceed by assuming
fmiteness of the quantity

D := sup \\V(x)(-Δ + z - λ - i)~l\\
/GR

and then obtaining a contradiction. As in the proof of ( 1 ) we have chosen coordi-
nates x = (*j_,z) G R(ί/-1) x R for ΠX . The corresponding J-dimensional momen-
tum operator decomposes accordingly, p = (p^,pd) We introduce for λ > 0,

Kλ = -F(

As a family of bounded operators on L2(Rd) we shall prove the following result

from which in particular (2) will follow readily. Let K : L2(R(

η

d~l}) -> L2(RZ x

R^"1^) be the operator given by the kernel

K(z,η;η') = F(\z\ < \)F η12 < fz(η - η')e^-^(\ - η'2)-^-^-^2 ,

where fz(η) denotes the (d — 1 )-dimensional Fourier transform of the Coulomb
potential I*!"1 (with respect to x± for fixed z). We notice that K is bounded as
can easily be proved using the bound (cf. (A.4))

IΛOOI ^ ce

M"-2 '
Then

Lemma A.3. There exist partial ίsometries Uχ and Vχ and a (non-zero) constant
C such that

w — lim UχKt Vχ = CK .
/—*oo

Proof. First we conjugate by the unitary operator implemented by the scaling x —»

λ~ΐχ. Then we conjugate by the partial Fourier transform appearing also in the proof
of (1) to reduce the ^/-dimensional resolvent to a resolvent of the one-dimensional
Stark operator ΛQ which in turn is given by an explicit kernel in terms of the Airy
function. Using this expression we obtain that K; is given up to unitary equivalence
by the kernel

Kλ(z,η 9z',η') = CF(\z\ < \)F(zr < -λ)F (η'2 < 1

x fz(η - η')Ai(λ-τz

μ(λ) = λ- λη'2 + i .

By the asymptotics of the Airy function [AS, (10.4.59)]

z' - μ(λ)))\2dz' ~Cλ*e V ' / for λ -» oo,
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uniformly in ηf2 < ^. (This means that the quotient of the two expressions has a
non-zero limit as λ — > oo.) Consequently it suffices to look at the kernel

Gλ(z,η;η') = \)F η

x fz(η ~ η')Ai( (A.8)

As for the remaining factor given in terms of the Airy function we use the asymp-
totics [AS, (10.4.60)]

-η'2) *eλ2

x e

the statement being uniform in \z < 1 and η'2 < ^.
The leading contribution to the asymptotics of G;L is obtained by inserting (A.9)

into (A.8). The resulting kernel is a product of a factor independent of λ and the
product

α- for

(uniformly in η'2 < \). Clearly multiplication by the latter /-dependent factor can
be expressed in terms of an isometry. D

To complete the proof of (2) we write for any ε > 0,

for suitable positive constants Cκ and RE and estimate

liminf —(-A+z-λ-i)

Re)(-A +z - λ - i)

By Lemma 3.3 the right-hand side is equal to εD -f ε and since ε is arbitrary we
conclude that

1
liminf —(-A + z - λ - i)~ =0 (A.10)

(using the assumption D < oo).
Obviously (A. 10) contradicts Lemma A.3. So D = oo. D

Now we consider the case HE = 0. For (1) we can assume Π = I. Then since
we have strong resolvent convergence as E —> 0 the bound follows from the case
£ΦO by a simple scaling argument. (Alternatively, see the remark after the proof
of Lemma 6.5.)
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For (2) we note that (by another scaling)

\-l(p*-λ-iΓl\\2 = lira
/—»OO λ—*OO

lim \\\x\-l(P

2-λ-i)- * ' I m

Since the latter expression is non-zero we can now proceed exactly as above. D

Appendix B. A Mourre Estimate for Coulomb Singularities

The potentials considered in this appendix are assumed to satisfy Conditions 6.1.
We write V on the form

y — ψ _μ y .γ — vv ~r y smg 9

where Wa is C1 and Vising nas compact support in Xa for all a G ̂  . Assume £ΦO.
We aim at constructing an observable that commutes with the singular part of

the potential and such that it locally has a positive commutator with the Stark
Hamiltonian. The observable will be of the form

A = ^(E(x) p + p E(x)).

Our choice of the vector field E(x) might seem somewhat complicated so we have
devoted the beginning of this section to motivate it. The vector field E(x) can be
viewed as a modification of a vector field constructed in [T3].

When we write for operators A and B, A ~ B, we mean that locally in energy
the difference A — B can be made arbitrarily small by the use of Corollary 6.7.
Furthermore we will denote by M( ) bounded functions x — > M(x) with values in
the selfadjoint operators on X.

To begin with we assume that £αφO for all αφflm a x. (This is true for "atoms.")
A natural first choice of E(x) is

E(x)= Σ JaX(\x >R}Ea,
a Φ flmax

where ja is defined by (3.2-3). We compute

i[H,A] ^ χ(\x\ > R) min (\Ea\
2) + i[p2,A] + i[V,A]

a Φ «max

~ min (\Ea\
2) + p'(X)-lM(x)p + ί[V,A\ .

a Φ flmax

Since we can choose R large enough such that i[V,A] = i[W,A\ is small we are
almost done. The problem is the second term. In order to handle this term we add
to Ea the term Kx, K > 0, f = -Λ-, and compute

a φ «max

i H9 Σ JaX(\x\ > RWx p ~ ι/K{(xΓλI + 2x'}p - χ(\x\ > R)Kx VF

^ ptK(x)-{Ip - χ(\x\ > R)Kx VF ,
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where / denotes the identity. Here we used that the derivative x is positive and that
E x ~ //(jt)"1//?. By choosing K large enough one can estimate KI + M(x) ^
0. Our remaining problem is the last term. If we instead of x = V(jc) choose
the gradient of Derezinski's approximation to (x) which satisfies (Dl^) be-
low, we obtain χ(\x\ > R)Vr VF = χ(\x > R)\7r VW which is small for R
large.

The vector field we get under the above assumption on Ea is

E(x) = Σ JaX(\x\ > Λ) (Ea + KVr) ,
a 4= flmax

where K and R are chosen such that we obtain the desired properties. A similar
vector field (though constructed as a gradient field) was considered in [Sk].

In the general case where Ea can be zero we will need the concept of strings and
partitions of unity with respect to subsystems as introduced below. The construction
of the vector field is essentially the above one with alterations needed to suit the
general situation.

We will need partitions of unity j%, b ^ a defined for all subsystem a £ stf .
The partitions ja

b : Xa — > [0, 1] are smooth and homogeneous of degree 0 outside a
compact set. Moreover we assume that

Σ -/*(*")= l (B.I)
b^a

For any pair b, c C a such that bή^a and c (£_ b there exists C > 0 such that

\xc\^C\xal onsuppy | . (B.2)

We will use Derezinski's smooth approximation to x\9 [De, Proposition 4A].
For all a G stf we have a smooth real function ra on Xa satisfying

(Dl) ra is convex.
(D2) For all b C a we have

(D3) For all b C a there exists Ca^ > 0 such that

Vra(xa) V^(**)ΦO => \xb\ ^ Ca,bx
a\ .

(D4) Vα3Cα > 0 such that |d«(rfl(*fl) - (xa))\ ^ C^x0)'1.

We can without loss of generality assume that there exist an a' £ j/ such that

Xa = span{£"} (if not we can add subspaces to the family with zero potentials).
We define a string a — {flo> •••>#«(«)} to be a sequence of n(a) + 1 elements

from J3/ satisfying

(51) amax = flo ̂  Λ I ^ ^ α«(j).
(52) For / < n(ά) we have E0l = 0.

(53) Ean(aΊ = 0 implies an(S} = a'.

Denote the set of strings, which is finite, by S(,stf). For k ^ 1 we define the set
= {a G S(s/)\n(ά) ^ k} and an equivalence relation on Sk(<stf) by

a ~ ft <̂ > af = 6/ ? 0 ^ / ^ A: - 1 .
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We define partitions
j_(γ\— TT jak-ι (r

ak-\ \
Ja\X) — 11 _Jak \X ) -

For notational convenience we define for 1 ^ k ^ n(ά),

( \ ( \jά,k = ̂ n/r1 J (vyf1) ̂ π^r1 J

such that we have

Since strings can be viewed as being obtained inductively starting from #max by ex-
tending the sequence with smaller elements terminating the procedure when either
Ean φ 0 or when an = a' we obtain the following lemma

Lemma B.I. Let k ^ 1 and b G Sk(jtf) be given. We have

(i) Σ Λ - = i -

(2) Σ

: _ jbo A-2
Ja — Jb. •••A,

K

Notice that TV ^ 1 + max^^^) n(a), where TV is the "number of particles" in
the system as defined in Sect. 2.

We will need the following two results which can be proved in the same way
as for Lemma 3.1,

{*>-* ίo P(H + O"1 e ®(L\X)), (B.3)

and

i)-1 e ^(I2(^)) , (B.4)

-m- .where </0 is any bounded continuous function and z = xa = \ω) (ω\x)9 ω = -m- .

We aim at producing a conjugate operator that commutes with Fsing.
We define a function £ : S(X) ̂  X by

,_,, _, i "v«y "\«;
E(a) =<

I ht LL

Let

e = min \Ea\
2 .
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Lemma B.2. Let K ^ 1, a G S(^) and 6φflm i n be given. There exists R =
R(K,ά,b) > 0 such that we have

(1) F(\z\ ^ R)ja-Eκ(ά,x) VFMng(**) = 0.

(2) \F(\z\ ^ R)ja-Eκ(ά,x) VWb(xb)\ ^

where

Eκ(ά9x) = E(ά)

and

Proof. First consider the case Z? C an(ά).
If £fl;?(ίί) = 0 we have an^ = d — b by (S3). Thus we can by Conditions 6.1

choose R large enough such that (1) and (2) hold.
If Ean(d)ή=0 we have E(a) - VFMng(jt*) = E(a) VWb(xh) = 0. (D2) assures

that Vr£ V Fusing = 0. The properties (Sl-2) implies that a' ,b C an(ά)-\. This
observation together with (D3) assures that (2) holds by choosing R large enough.

If b (£_ an(ά) there exists 1 ^ k ^ n(ά) such that b C fl/t_ι and b <£_ a^. Since
\z\ > R =ϊ \xak~] I > R, by (S2), we can by (B.2) choose R large enough such that
on the support of

/- - ί ΠJa — I 1 1 7α

we have forced :c/7 out of supp(F^?sing) and out where VWb is sufficiently small.
(Notice that Vra is bounded by (D4).) D

For any K ^ 1 we define the vector field

E(x) = E(x,K) = χ(\z\ > ^) E ja(x)Eκ(ά9x) ,

where R = R(K) = maxfl-G5(,P/), 6φflmιn R(K,ά,b).
We thus obtain the following result

Lemma B.3. For any K ^ 1 we have

( \ ) E ( x ) VF s ing = 0.

(2) |̂ ) . VW\ g f .

By the construction we notice that

VodCα > 0 : \d*xE(x}\ ^ Cα(z)-min(1' |α |) . (B.5)

We wish to consider the observable

A = A(K) = λ-(E(x) p+p E(x)),

which by (B.5) is essentially selfadjoint on C
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Prosposition B.4 (Mourre estimate). Let 3f c IR be a compact subset. There exist
ε > 0 and K ^ 1 such that for all λ G Jf ' we have

ηκ(H - λ)i[H,A]ηε(H - λ) ̂  (H - λ) .

Remark. By [H,A] above we mean the extension to &(H) of the corresponding
commutator defined as a form on C£°(X\ Since we will use the proposition (in
Sect. 6) together with the abstract Mourre theory [M] we notice that this commutator
equally well can be understood as the extension from <&(H) Γ\ @(A). This follows
from an application of (B.5) in conjunction with [M, Proposition II. 1].

Proof. We write

i[H,A] = i[p2

9A] + i[-E x,A] + i[V,A] .

We compute the three commutators using Lemma B.3 (1),

ί[p\A\ = p'tf'W + E'W^p - A(V E(x)) ,

i[-E x,A] =E(x) E ,

i[V,A] = -E(x) - VW .

Notice that by (Dl) the second derivative of ra

κ is positive and since E(a) does
not depend on x we have positivity of the matrix E'κ(a,x). Using this observation
together with (D4) we obtain

i[p*,A]^p' Σ 2Re{V(χ(|z| > R^E^x^p + O((z)~l) .
αe SΌaO

Using Lemma B.I (1) we can estimate part of the second commutator by e
as follows:

i[-E - x9A] ^ χ(\z\ > R) Σ jά(e + V4(jc) E)
fl£S(.«0

= χ(|z| > R)e + χ(\z\ > R) Σ jάVr°κ (x) - E .
a€S(.aO

Keeping an application of Corollary 6.7 in mind we write using (S2) and (D4),

i[-E.χ9A]^e + χ(\z\>R) Σ J* Σ KN-k+O((z)-1). (B.6)

Let M(x) denote bounded matrix valued functions with bounded derivatives such
that M(x)' = M(x). After substituting x E = p2-H+V into (B.6) we obtain

T + i [ V , A ] , (B.I)

where

A = χ(\z\ > R) E Σ 2Re{7J,t£jf(5,*)} ,

Σ KN-*Mx?*-i)-lI ,
k^n(ά)

T = p'x(\z\ < 2R)M(x)p + E E TU + 0«z)-' )
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and

Tδtk =KN~kRe{[χ(\z\ > R)ja(^~λΓ\P\ ' P + *(\z\ > R}ja(^k^Γ\V - #)}

By summing over equivalence classes in Sk(.rf) and applying Lemma B.I (2-3)
we obtain

= X(W > R) Σ Σ Σ 2Re { J5ji { E ^-'(Vr*'-')' + E(b)> ]
*=1 [«Ί<

D2 = χ(\z\ > *) Σ1

k=\ [ά\

Adding D\ and D2 yields

A + D2 = χ(|z| > R) ξ1 Σ

where ^Γ — > M^^ ,K) is a bounded map from [l,oo) to the bounded selfadjoint
matrix valued functions on X and / is the identity. Thus by choosing a K ^ 1
satisfying

K > max sup sup ||M[J](jc,
- " ^

we obtain
Di +£>2 ^ 0 . (B.8)

Using Proposition 6.4 and (B.3^) we can write T as

Γ = Re{0«z) -')£},

where S is //-bounded. Using Corollary 6.7 (cf. Proposition 3.7) with Π = |ω) (ω|
we can find an ε > 0 such that the following inequality holds for all λ G Jf :

(B.9)

Combining Lemma B.3 (2) and (B.7-9) we conclude that the proposition holds
with the ε and K as introduced above. D

Denote by ad^ the operation of commuting with A. That is ad^(//) = [H,A\. By
(B.5) and the fact that

£(*)) + £(*) E-E(x)

one easily obtains

Proposition B.5. For n G {1,2} we have

where vn and v^n are continuous and bounded functions.



294 I. Herbst, J.S. Moller, E. Skibsted

This proposition combined with the properties (B.3-4) implies the following
corollary.

Corollary B.6. The operator ad^(//) is H-bounded for n e {1,2}.
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