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Abstract: We continue and conclude our analysis started in Part I (see [CLMP])
by discussing the microcanonical Gibbs measure associated to a N-vortex system
in a bounded domain. We investigate the Mean-Field limit for such a system and
study the corresponding Microcanonnical Variational Principle for the Mean-Field
equation. We discuss and achieve the equivalence of the ensembles for domains in
which we have the concentration at β -> (-8π)+ in the canonical framework. In
this case we have the uniqueness of the solutions of the Mean-Field equation. For
the other kind of domains, for large values of the energy, there is no equivalence,
the entropy is not a concave function of the energy, and the Mean-field equation
has more than one solution. In both situations, we have concentration when the
energy diverges. The Microcanonical Mean Field Limit for the N-vortex system is
proven in the case of equivalence of ensembles.
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1. Introduction

A systematic rigorous study of the Statistical Mechanics of point vortices as a
possible approach for the understanding of the 2-D turbulence has been approached
only recently, more than forty years after the first proposal due to Onsager [O].
Namely the authors of the present paper [CLMP], and M. Kiessling [Ki], studied
the Statistical Mechanics of the point vortex system in the Mean Field Limit, making
rigorous previous results obtained in a purely physical setup [Mo, MJ], and outlining
new interesting features like possible concentration phenomena at β — — 8π. Later
on G. Eyink and H. Spohn [ES] started the study of the microcanonical ensemble,
developing the theory for bounded interaction potentials (see also J. Messer and
H. Spohn [MS] for a previous analysis of the Mean Field Limit of the canonical
ensemble for bounded interactions).

In the present paper, which is the sequel of our previos study [CLMP], we want
to go further by studying the microcanonical ensemble for the point vortex system
and the stationary solutions of the incompressible Euler equation (also solutions of
the Mean Field Equation), arising in the Mean Field Limit. They are solutions of a
variational problem (the Maximum Entropy Principle) whose physical relevance has
been recently outlined by numerical experiments due to Montgomery et al. [MMS].
Indeed in simulating the 2-D Navier-Stokes flow in a torus, solutions of the Mean
Field Equation (MFE in the sequel) are closely approached in a suitable time scale.
A heuristic explanation of this feature can be done by observing that the entropy
production and energy dissipation rates are

vf\ω\2dx, (1.2)

respectively. Here we are concerned with a positive vorticity field ω in all IR2,
for which the entropy and the energy are defined by — Jωlogω, and —^fωA~lω
respectively. Here v > 0 is the viscosity coefficient. Notice now that the term ex-
pressed by (1.1) is much larger than that given by (1.2) for "most" of the ω's, so
that the solution of the Navier-Stokes problem tries to make the entropy as large
as possible for a practically fixed energy on a suitable time interval before the flow
disappears because of the viscous dissipation.

A rigorous and detailed analysis of the dynamical problem seems, at the moment,
too difficult, however a statistical analysis in terms of the vortex theory can indeed
be performed and this is the main objective of this paper.

We do not wish to give further physical motivations for the present analysis and
address the reader to Refs. [CLMP, Ki] and especially [ES, MP] for a more detailed
presentation of the matter and additional references.

We conclude this section by outlining the contents of the paper. In the next
section we establish and study the Microcanonical Variational Principle. In Sect. 3,
we discuss the Thermodynamics of the solutions of the MFE and derive preliminary
properties. In Sect. 4, we prove the validity of the MFE in the Mean Field Limit of
a point vortex system in the Microcanonical Ensemble in the case of equivalence
of ensembles. Section 5 consists of a short remark concerning the problem in the
whole plane. In Sect. 6, we discuss the behavior of the solutions of the MFE for
domains in which there is no concentration at inverse temperature — 8π. In Sect. 7,
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we prove a non-uniqueness result for the solutions of the MFE. Finally in Sect. 8,
we give an explicit example of concentration.

2. Microcanonical and Canonical Variational Principle

In this section we introduce the Microcanonical Variation Principle (MVP later on)
and prove that for any value of the energy E > 0 there exists a solution. Then we
show that any solution of the MVP is a solution of the MFE.

In all that follows A c IR2 will be a bounded open connected set with smooth
boundary. Moreover, we shall assume \A\ — meas/l = 1, the general case being
easily recovered by scaling.

The entropy and energy functional are defined respectively as

A 2

where p is a probability density, i.e. p ^ 0, fλ dx p — 1, and

VP(x) = fV(x,y)p(y)dy, where V(x,y) = -— log x - y\ + y ( x 9 y )
Λ Zπ

is the Green function of the Poisson problem with Dirichlet boundary condition on
A, and (,) denotes the scalar product in /^(Λ).

Let us consider the MVP

S(E) = sup S ( p ) , (2.2a)

where

PE = \P\P ^ 0 a.e. in Λjpdx= 1, E(p) = E\ . (2.2b)
I Λ )

In the next proposition we prove that the problem (2.2) has a solution for any value
of E > 0.

Proposition 2.1. For any E > 0, S(E) < +00 and there exists p £ PE , such that
S(p) = S(E).

Proof, jclog c > -C implies S(E) < +00. Moreover, let ρn G PE be a maximizing
sequence for S(E), with ^(pΛ, Vpn) = E and p a weak limit (in the sense of the
weak convergence of measure). Then we have p G L\ because of the bound on
f pn\ogpn. Moreover S(p) ^ S(E) by the upper semicontinuity of the entropy.
This implies S(p) = S(E) if it can be proved that:

-(p,Vp) = E. (2.3)

Let us consider
ίp,(x)V(x, y)pn(y) = I(ε) + Γ(ε), (2.4)

where

1(6) = / ρa(x)V(x,y)pa(y), Γ(ε)= / pa(x)y(x,y)pll(y). (2.5)
\x—y\<κ \x—y\>ε
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Therefore, for ε small enough,

0 ^ 7(ε) ̂  - C / pn(x)pn(y) log x - y\
\x-y\<ε

£-C / \x-y\-llog\x-y\
\χ-y\<ε

+ C / Pn(x)pn(y) lOB(pn(x)Pn(y)) , (2-6)

\χ-y\<ε

where we have used the properties of the function γ(x,y) in order to obtain the
first inequality. The second inequality follows by splitting the integration domain
into two parts: pn(x)pn(y) < \x — y\~l and its complement. So we have

7(ε) ^ -C / I* - y\~l log \x-y\ + 2\S(pn)\ sup / pn(y) ^ w(ε) , (2.7)
|jt— y\<ε x \x—y\<ε

where w(ε) — > 0 as ε — > 0. Indeed, by the L\ bound on pn\ogpn (entropy) sup^
f\x- \<εPn(y) g°es to 0 as ε goes to 0, uniformly in n. This completes the proof
since

7c(ε) -> / p(*)K(jc,>OpOO) -» (p, Fp) and (2.3) is proven. D
Λ— »oo J £— »oo

\x-y\>c

Now let us give some properties of the entropy function.
It is useful to define EQ = ^(1, Fl) = ^ fλ2 V(x,y) dx dy. Notice that, in gen-

eral, S(E) ^ 0 by convexity, \Λ\ = l, fλp=l, and S(EQ) ^ - /^ 1 log 1 = 0.
Hence S(EQ) = 0 and p = 1 is indeed a maximizer of S(p) for E = EQ.

Proposition 2.2. ̂ (.E1) w ^ strictly increasing negative function for E < EQ, and a
strictly decreasing negative function for E > EQ.

Proof. Let us remark that, if E^EQ a maximizer p of S(E) cannot be p = 1, and
therefore S(E) < 0. Consider now the one parameter family of densities defined by

pλ = (l-λ)p + λ; λe[0,l]9 (2.8)

for a given p solution of the MVP at energy E. Since S(p^) is a concave function
of λ, we have

S(pλ) ^ λS(pQ) + (1 - λ ) S ( p } ) = λS(E) > S(E) , (2.9)

while E(pλ) is a convex function. In particular E(pχ) is a continuous function with
respect to λ and E(PQ) = E, E(p\) = EQ.

Now let us consider the case when E > EQ. Because of the continuity of E(pχ\
given E' E (Eo,E) there exists λ' G (0, 1), such that E(pχt) = E' . Furthermore by
(2.9), we have S(ρλ>) > S(E), and this implies S(E') > S(E).

If E < EQ we proceed in the same way. D

Proposition 2.3. Let p be a solution of the MVP at energy E, i.e. |(p, Vp) = E
and S(p) — S(E). Then there exist β £ IR, such that p solves

e-βv,
P = (2 10)
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or, if we denote by Ψ the solution of the Poίsson equation,

-AΨ = p, Ψ = 0 on dΛ, (2.11)

then (2.10) is equivalent to

e-βψ
-AΨ = Γ _κψ, Ψ = 0 ondA. (2.12)

J e '

Equation (2.12) is called Mean Field Equation, (MFE in the following).

Remark. Notice that even though (2.12) is formally the Euler-Lagrange equation
associated to the MVP, a rigorous derivation of this fact is not straightforward
due to a possible singularity of the functional derivative of S(p) that is —log p.
Actually the main point of the above theorem is to prove that a solution of the
MVP cannot vanish, because as we shall show later on, this is enough to apply the
usual Lagrange Multipliers method.

Proof. The idea of the proof is simple. If p = 0 in some non-zero measure subset
of A, we can move some mass to this set so that the entropy greatly increases, (in
particular the entropy increases more than linearly in the added mass) and in such
a way that the energy does not decrease when E > EQ or does not increase when
E < EQ. Thus let us suppose (by absurdum) that A = A ( J A C , where

A = {x\p(x) > 0}, Ac = {x\ρ(x) = 0}, meas(y4c) > 0 . (2.13)

Then we shall prove that

Ψ = 2Ea.e. in A. (2.14)

Let us consider first the case E > EQ. Suppose that (2.14) is violated. Then we
can show that the sets:

£+ = {x e A\Ψ(x) > 2E + ε}, B- = {x e A\Ψ(x) < 2E - ε} (2.15)

have both a positive measure, for ε sufficientely small. Indeed we have only to prove
that meas(y4 — BQ) > 0 and meas(^4 — B Q ) > 0. For instance if meas(^4 — B^) = 0,
then Ψ(x) > 2E a.e. in A and

2E = fpΨ = fpΨ > 2Efp = 2Efp = 2E (2.16)
A A A A

so the contradiction proves our claim.
Next, let us consider the two-parameters family of densities defined as

- - - — - - ̂ c\ > (2 17)c,
meas(£+ )

for oci > 0, o<2 > 0, αi + α2 = α < 1

where !# is the characteristic function of the set D, and where we have replaced
B* by B+ for simplicity. Let us now compute the energy and the entropy of pαι,α2
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The energy is:

- 2E) + o(α) ,

(2.18)

Γ ^
where (Ψ)o = measφ) ^ne last step follows from tha fact that Ψ > 2E 4- ε in

#+, and that *F is non-negative in A. Now let us fix λ G (0, 1) such that

A>- (2 ">1 — λ β

and set αi = λoc, α2 = (1 — λ)a. With this choice, if α > 0 is sufficiently small, we
find

2 ) > E . (2.20)

On the other hand, the entropy of pα,,α2 is given by

) = - / (1 - α, - «2)p + α, lg + «2

ι i , Λ x 15+ l / f C
log (I -αi -α2)p + αι —— + α2' meas(5+)

/ O O I Λ

c,
 (2 21)

Therefore:

S(ρyι,«2 ) = 5 + ciαi + c2α2 - «2 log - ̂ r + o(α) , (2.22)
Lmeas(^4 j j

for some constants c\ and c2. By (2.22),

5(pα i fα2) = 5 + c(λ)α - (1 - λ)αlogα , (2.23)

where c(λ) is a constant depending only on λ. Therefore we deduce, for α suffi-
ciently small:

a2) > S - (2-24)

Thus we proved (2.14) when E > EQ. If E < EQ we proceed in the same way,
replacing B+ by B~, with the only difference that we want to exihibit a density p'
such that E(p') < E and S(ρ') < S(ρ).

To conclude the proof we must consider again separately the cases E > EQ and
E < EQ.
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If E > EQ we introduce

PA = — ̂ 7-77 - (2.25)
meas(^)

If E > EQ we consider:

Pλ = (l-λ)p + λpA, λ 6 [0,1], (2.26)

a one-parameter family of densities. The entropy S(p/) has its maximum value for
λ = 1. By concavity, when λ > 0, we have

S(pλ) ^ (I - λ)S + λ S ( p λ ) = S + λ ( S ( p λ ) - S) > S, (2.27)

(since S < S(p\)). The energy E(p A ) is given by

E(pλ) = (I ~ λ)p + λ v(\-λ)p + λ ( . (2.28)
2 \ meas(^) |_ meas(^)J

Since Ψ = 2E a.e. in A9 we have:

dλ λ=Q ~ J

Λ

 Λ

 A

Therefore, because of the convexity of the energy functional

= E + cλ2, (2.30)

where c ^ 0 and c = 0 if and only if p = mea^.. Hence, for any λ E (0, 1 ) we have

5(p;t) > S and £(p;t) > E and this contradicts Proposition 2.2. Therefore we have
Ψ = 2E in A9 and p — m^Ay But this is impossible. In fact p = mea^. implies

P £ ^oo (^), therefore, by elliptic regularity, Ψ £ W2'P(Λ) for any /?. This implies
that Ψ is two times differentiable a.e. in Λ, implying p(x) = —AΨ(x) = 0 a.e. in
A. Since p = 0 in Ac by definition, this is impossible. Therefore we have proved
that when E > EQ, p > 0 a.e. in Λ.

Now, let us consider the case E < EQ. Let us recall that Ψ = 2E a.e. in A.
Notice also that there must exist some non-zero measure set B,AC D 5, such that
Ψ < 2E ~ c in B for some ε > 0. If it is not so we would have Ψ > 2E a.e. in
A and this is impossible because Ψ G HQ(Λ).

Let us consider the one parameter family of densities defined as

(2 31)

If we compute the first derivative of E(p^) with respect to λ we find

IT = ίψ ( l*,π -P}= W* -2E <2E-ε-2E = -ε<0. (2.32)dλ J

Λ \meas(B) )

Therefore, if λ is small enough, £(p;t) < E. For the entropy S(p/J we find

= -lf, log* = -/(I - A)P log[(l - A)p] - l/ log

(2.33)
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where c is a constant that does not depend on λ. Therefore, when λ is sufficiently
small, S(p;t) > S, and this combined with the fact that E(p^) < E leads to a con-
tradiction.

We now complete the proof. Let p* be a maximum for S(E). Then taking
variations p* — >• p*(l + φ) = p we find:

E(p) = E(p*) + (p>, Fp*) + i(p>, Kp» , (2.34)

m(ρ) = m(p*) + Jp> (where w(p) = /p) . (2.35)

The conditions p* = 0 a.e. and Vp* = Ψ* = const a.e. in A are both impossible
(indeed Ψ £ //^(/l)) so that the two functionals £ and m are linearly independent
(as follows by computing the derivatives of m and E in p*). This allows us to
compute the variations of S(p) in p* which are compatible with the energy and
mass constraints, and find:

p*logp* = α < F * p * + y p * . (2.36)

Again by p* > 0 a.e. we conclude the proof. D

As a consequence of the MFE we can prove:

Proposition 2.4. S = S(E) is a continuous function.

Proof. The monotonicity of S(E) for E > EQ implies that there exist left and right
limits of S(E' ) given respectively by

lim S(E') = S~(E), lim S(E') = S+(E) (2.37)
E'-*E- Ef^ε+

where S~(E) ^ S(E) ^ S+(E). We shall prove that S+(E) = S(E), and next that

Let p be a solution of the MVP at energy, E, then, by Proposition 2.2, there
exists /, with // = 0, such that

E(p + ε/) = £ + εE'f + o(ε), S(p + ε/) = S + ε^ + o(ε) , (2.38)

where E'j ,S'j are the derivative of the energy and entropy functional w.r.t. ε at

ε = 0, and where S'f = aE'f. This means that for E' > E (with E' - E sufficiently

small) we have
S(E') ^ S(E) -h β(E' -E)-}- o(Ef - E) , (2.39)

therefore by taking the limit of both members of (2.39) we find S+(E) ^ S(E).
Since we know that S+(E) < S(E} we have that S+(E) = S(E\

Now let pEf, with E1 < E, be solutions of the MVP at energy E' . Let us consider
the limit E' — » E~ of pE/. By repeating here the argument used in Proposition 2.1,
in order to prove the existence of a solution of the MVP, we find that pE/ — > p*,
up to the extraction of a subsequence, weakly in the sense of measure. Moreover
p* and p* log p* are in L\(Λ) and E(p*) = E. Finally by the upper semicontinuity
of the entropy we have

5(p*) ^ lim supS(p£/) = S~(E) , (2.40)
E'-+E-

and since E(p*) = E then S(E) ^ S~(E) which achieves the proof. D
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3. Free Energy and Entropy Functίonals

In this paragraph we recall some facts about the Canonical Variational Principle
(CVP later on) introduced in [CLMP] and [Ki]. Moreover we establish a corre-
spondence between the solutions of the MVP and CVP (whenever possible).

Consider the free energy functional

f β ( p ) = ~+E(p) = -Jp\ogp+\(p, Vp) (3.1)
P Λ

and the associated CVP that is the study of

( m f f β ( p ) ; β > 0
' fl , (3.2)

(sxφfβ(p); β < 0

where the extrema are taken on

P={p^0,fp=l, /plogp < +00} . (3.3)
I A Λ )

In the sequel we shall use the notation fa instead of / (see (3.2)), when the
dependence on the domain A has to be stressed. It is useful to analyse also the
functional

ψ

9 (3.4)
Λ A

with the associated variational principle

d(β) = 9λ(βϊ = sup{gβ(Ψ)\Ψ e Ht(Λ)} . (3.5)

Notice that the MFE (2.10) is also the Euler equation associated to the CVP.
Therefore we have two different variational principles, CVP and MVP, which corre-
spond to the same Euler equation. As we shall see later on this fact is not sufficient
for the equivalence of the two sets of solutions.

We now summarize some known results [CLMP] which will be useful in the
sequel. Before to do this let us recall that a domain A is strictly star-shaped if
(modulo translations of the origin) there exists α > 0, such that

x v(x) ^ α > 0 when x G dΛ ,

where v(jc) is the outer normal to Λ in x.

Theorem 3.1.

i) The variational principles (3.2) and (3.5) have solutions in the range of
inverse temperatures β G (— 8π, +00), satisfies the MFE.

ϋ) g(β) = f ( β ) < +00, far any β G [-8π,+oo).
iii) If A is strictly star-shaped then there exists βP < 0 such that, for β ^ βp,

there are no smooth solutions of the MFE.
iv) If Λ = AQ is the disk (with measure one), then there are no solutions of the

MFE when β ^ — 8π. In particular when β = — 8π, if pn is a maximizing sequence
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for IΛ() = /Λ0(-8π), then

Pn —> <5jc0? weakly in the sense of measures , (3.6)

XQ being the center of the disk.
v) For x G A, let us define

IΛ(x) = sup <^ limsup/_8π(pΛ)|pΠ ^ 0,/pn = l,p -> δx

I «

weakly in the sense of the measures > , (3.7)

where δx is the delta measure supported at the point x. Then:

lΛ(x)=^y(x,x) + lΛ0 (3.8)

As consequence, if we define I A = sup//(#), we have
X

/Λ = 27(*o,*o) + / Λ 0 , (3.9)

where XQ is a maximum point for y(.x,jc) (we can say, formally, that I A is the free
energy of a delta function at inverse temperature β). Clearly it is f_%π(Λ) ^ IA.

The following alternative holds'.

a) If fA(—$π) > I A, then for every maximizing sequence ρn for /ι(—8π)

Pn ^P (3.10)

(up to the extraction of a subsequence, and weakly in the sense of measure) and
p is a smooth solution of the MFE.

b) If /ι(—8π) = I A, then it is possible to find pn, a maximizing sequence for
//ι(-8π), such that

Pn —» <5jt0> where XQ is a maximum point for y(x,x). (3.11)

Remark, Both possibilities in the alternative expressed in the above theorem can
occur. For instance if A is a disk, the solutions of the MFE can be studied explicitly
[CLMP] and the concentration (pn —> δXQ) does occur at β = —8π. Furthermore, as
we shall see in Sect. 8, the concentration also occurs in a simply connected domain
sufficiently close to a disk. On the contrary there are regions (for instance rectangles
when the ratio between the sides is large enough) for which the concentration does
not occur [CLMP]. We are not able to characterize the behavior of the solutions at
-8π fully.

In the sequel we shall call domains of the first kind those for which the con-
centration at — 8π occurs, and domains of second kind the others.

Theorem 3.2.

i) The solution of the MFE for β ^ 0 is unique.
Let A be a simply connected domain, then

ii) The solution of the MFE for β E (—8π, 0] is unique.
iii) The set of solutions {Ψβ,β G (—8π,0]} is a regular branch (see [Su]).

The uniqueness for positive β follows by D. Gogny and P.L. Lions [GL]. For neg-
ative β the situation is much more intricate. Point ii) and iii) follows by T. Suzuki
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[Su]. In [Su] it is considered the equation

-Δu = λeu in A ,

u = 0 on dλ. (3.12)

In particular, if Σ = λfΛe
l{, then by [Su] Lemma 1 and Lemma 2 it follows that

there exists a unique solution of (3.12) for Σ E [0, 8π), and the set of these solutions
form a regular branch. This implies immediately ii) and iii). In fact, if (β, Ψ) solves
the MFE if we set

A = , u=-βΨ. (3.13)

Therefore, there exists a unique solution of MFE when β E (— 8π, 0], and the set
(β, Ψ\ β G (-8π,0] forms a regular branch.

Let E = E(β) be the energy of the solution of the MFE at inverse temperature
β > — 8π. Then if A is a domain of the second kind, we define Ec = E[(— 8π)+] <
+00, while if A is a domain of the first kind we define Ec = +00. For these domains
we are now in position to prove the complete equivalence between the MVP and
CVP, while for the others, as we shall in the sequel, we have the equivalence of
the ensembles of solutions for the set of energies E £ (0,£c) (in both cases A is
assumed simply connected).

Proposition 3.3. Let A be a simply connected domain, then
i) F(β) = —βf(β) is a strictly convex, decreasing function, defined for

β ^ -8π.
ii) F is differ entiable for β > — 8π and E(β) — —F(β) — \(pβ, Vpβ), where

Pβ solves the MFE at inverse temperature β. In particular E(β) is a continuous
function.

m)S(E) = mfβ{F(β) + βE}, (3.14)
and hence S is a smooth concave junction of E.

iv) If PE is solution of the MVP then Pε(β) — Pβ In particular PE solves the
MFE (equivalence of the ensembles for E < Ec) and the solution is unique.

Proof.
i) The monotonicity of F was proven in [CLMP] (actually it is an easy con-

sequence of the Moser and Jensen inequalities). The convexity follows by a direct

inspection. For β = ^ ̂ 2 ,

F(β) = ~S(p) + ^-E(p) - l-S(p) + ^j-E(p) < l-F(β, ) + ±F(β2) . (3.15)

ii) We have:

= F(βι )-(β2- )

F(β\ ) ^ S(p2) - β\E(p2) = F(β2) - (βι - β2)E(p2), (3.16)

where pt maximizes F at ft, / = 1,2.
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(3.17)

F(βι)-F(β2) if jδi > β2 . (3.18)

On the other hand, if β\ — >• βi, E ( p \ ) — > E(p2). Indeed Ψ\ — Vp\ is a maximizing
sequence for F(β2) and converges in //J for subsequences. The uniqueness of the
solution in β2 gives the assertion.

The continuity of E(β) is a consequence of the regularity of the branch of
solutions {Ψβ9 β G (-8π,0]j, see Point ii) of Proposition 2.1.

iii) The function E(β) : (— 8π, +00) — > 1R+ is a decreasing continuous function
whose inverse will be denoted by β = β(E}. Therefore we have

inf{F(β)
β

βE} g F(β(E)) + β(E)E = S(β(E» g

and if S(E) = S(p) then:

= S(p) + βE-βE ^ -βE', (-8π, +oc) ,

implying iii) by general arguments on the Legendre transform.
iv) By the previous step we have, for all E G IR+:

F(β(E))

(3.19)

(3.20)

(3.21)

so that there is a one-to-one correspondence between the MVP and the CVP solu-
tions due to the fact that E — > β(E) is bijective in from (0,£c) to (— 8π,+oo).

Remark. The equivalence of the ensembles when E G [0,/ic] holds for A bounded
regular. In fact, in this case, i.e. when β > 0, the MFE admits a unique solution
(see point i) of Theorem 3.2.

In Figs. 1,2,3 is plotted the qualitative behaviours of F(β\ E(β), S(E) respec-
tively.

Fig.l.
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Fig. 2.

Fig. 3.

The above analysis allows us to perform the limit for the vortex system in the
microanonical ensemble when A is a simply connected domain. Notice that, by the
concavity of the entropy, we have a single value EQ for which S'(EQ) = 0. EQ is (in
general Sf(E) = β) the energy which corresponds to β = 0 (infinite temperature).
Therefore if E > EQ, β < 0 and

S(E) = ^ E} ,

while if E < EQ, β > 0 and

S(E) = sup{S(p)\E(p) ^ E} .

(3.22)

(3.23)

4. The Microcanonical Mean Field Limit

The arguments we present in this section work for those values of the energy
E satisfying 0 < E < Ec that is whenever the equivalence of CVP and MVP is
ensured. We remark that for domains of the first kind any value of the energy is
allowed. A is always assumed to be simply connected.

In A we consider a vortex system given by the Hamiltonian

(4.1)

where V(x9y) = — ̂  log |jc - y\ + γ(x,y) is the Green function of the Poisson equa-
tion in A with Dirichlet boundary conditions.
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Given E > EQ, (E < Ec) let us consider on the phase space AN

 9 the micro-
canonical measure μ^E(dx\9...,dx^) defined as

μNJS(dXN) = -dXN, (4.2)
U+(h)

where

. (4.3)

Now we shall characterize the microcanonical measure in the mean field limit, i.e.
in the limit TV — > oo.

Before doing it, it is useful to recall some known results [CLMP, Ki] about the
mean field limit for the canonical measure.

The Gibbs measure at an inverse temperature β for the Hamiltonian system (4.1)
is given by

e-βHN(XN)

mN

β(dXN} = ———dXN , (4.4)
ZN(P)

where ZN(β) = fΛN e~^HN(XN\ is called partition function. The following theorem
holds.

Theorem 4.1.
i) 0 < ZN(β) < oo if and only if β £ (-8π,+oo).

ii) If β E (-8π, +00) then there exists lim/v^oo ^ logZyv(β) = /(/?); where
f ( β ) is defined in (3.1) and (3.2).

iii) Let us define the n-particle correlation functions for n < N, as

n+ι...dXNn$(XN). (4.5)

Let {dpn}^ be a weak cluster point, in the sense of the weak convergence of
measures, of the sequence pn

N, i.e. there exists a subsequence N^ for which

jdpn(Xn)φ(Xn) = lim j dXnp
n

N(Xn)φ(Xn) (4.6)
&— »00 κ

for all bounded and continuous φ and all n ^ 1. Then, the measures dpn are
absolutely continuous, i.e.

(4.7)

and the following representation holds:

) , (4.8)
k=\

where v is a Bore I probability measure on L\(A) endowed with the weak topology.
Furthermore, v is supported on the solutions p £ L^A) of the CVP (2.11).

Now we can characterize the Mean Field limit for the microcanonical ensemble.
We first prove:
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Theorem 4.2. Let E > E0 (i.e. β < 0). Then:

(4.9)

Proof.

β ) , (4.10)

where ZN(β) = fe~βHκ, and we choose β such that -8π < β < β(E) and β(E)
is the inverse function of E(β) given by ii) of Proposition 3.3. Then

1 O+/Z7Λ I Ύ ( Ω\ 1 ^ v 'v^ ' I ^ 1 ί?^ / Λ /'/I 1 1 Λ

N N N N pN,.. \ ΛΓ β

(where EJ indicates the expectation with respect to the probability measure m^),

β) + I)/ . + T7 log^te), (4.12)

(by Jensen inequality).
Notice that by the uniqueness of the MFE and Theorem 4.1 we know that

η^ — » E(β) a.e. with respect to the Gibbs measure wjgf, and hence E β ( χ E ) — > 1 if

E1 < E(β). Moreover by Theorem 4.1,

, (4.13)

and therefore:

liminf^ logί2+(^) ^ 5()8) , (4.14)

for any β G (-8π,j8(^)). This implies

liminf— logΩ+(£) ^ sup S(j8) = ̂ (^) . (4.15)

In addition, by (4.11), since β < 0, we have:

- β(E(β) - E) .

(4.16)
If we take the infimum over all values of β we obtain (4.9).

Remark. When E < EQ (that is for positive temperatures) we can obtain the same
result by defining

Ω~(E) = fdxNXE(XN), IE(XN) - χ({HN < EN}) . (4.17)

Theorem 4.3. Let us define (for E < Ec\ the micro canonical correlation functions
as (see (4.2))

^N(Xj) = jμN

E(XN)dXj+λ....dXN , (4.18)
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and let pE(dXj) be a weak accumulation point. Then:

i) pE(dXj) = ρJ

EdXj that is the correlation functions are absolutely continuous
with respect to the Lebesgue measure,

ii) pj

E(Xj) = Πi=\p(xk), where p is the solutions of the CVP (4.1) at inverse
temperature β = β(E\

Proof. The argument is the same as in [MS] (see also [CLMP, Ki and ES]). The
subadditivity of the entropy implies

-.ΪPJ

E\o%pJ

E ^ ^Klogμ£ = -llogfl(£,tf). (4.19)

we know that the right-hand side converges. This implies that the left-hand side is
uniformly bounded and we deduce i).

Moreover, for all 7,

--fpJ

E\ogpJ

E ^ lim~logΩ(E,N) = S(E), (4.20)

which implies:

//(φ)/plogp < +°° , (4 21)

and therefore
(4.22)

Finally, by the fact that VE is supported on those p for which E(p) ^ E, we obtain
ii). D

It is obvious that the same analysis can be performed in the case when ///v <
NE, that is when β > 0.

We would be really interested in the microcanonical measures defined by

"*" (423)

Ω(E) - fdxNδ(H - E} . (4.24)

Clearly the definition we have used here allow us to avoid the problems due to the
singularity of the ^-function. It is possible to extend the proof we gave above to
the case

,,N(Y Λ

'9 (4.26)

where / = (E\,E2)9 0 < E\ < £2 < Ec, is an energy interval, and χ/(X/^) = χ

(-$- G / j . By the previous arguments we obtain

lim — logΩ(/;#) = supS(£). (4.27)
N^OO N ££/

Now using the continuity of the function S(E) we find

lim lim —logΩ(I;N) = S(E). (4.28)
I^{E] N-^oo N
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5. Microcanonical Ensemble in all R2

When A = R2 and the additional invariance of the momentum of inertia is explicitly
taken into account, the MFE reads as:

being β G (-8π,+oo), λ < 0, VΨ -> 0 as |Λ:| -> oo.
This is probably the most interesting situation from a physical point of view.

In this case, we have unique radial solutions, concentration at (— 8π)+ and no
radial solutions for β < — 8π (see [CLMP] and [CK]). So everything goes on as
for domains of the first kind. Indeed all the considerations we have developed so
far extends with some care to the present case. For instance the variational principle
(3.4), (3.5) is not well posed due to the obvious divergence of HV^H^ However
the variational principle (3.1), (3.2) makes sense and can be solved (see [CLMP]).

6. The MVP in Absence of Concentration

The theory of the MVP and its connection with the vortex theory has been achieved
in the previous sections for domains of the first kind and for domains of the second
kind when E > Ec (in both cases for A simply connected). For domains of the
second kind when E > Ec, the situation is more involved. In particular the Micro-
canonical solutions at energies larger than Ec do not correspond to any solution
of the CVP so that the equivalence of the ensembles does not holds. In this sec-
tion we analyse this range of energies. We start by considering the behavior of the
entropy function S(E) and of the solutions when E —-» oo and prove that, in this
limit, the corresponding solutions of the MVP concentrate to a delta function. The
non-equivalence of the ensembles and the concentration for the MVP will allow us
the prove a non-uniqueness theorem for the MFE in a star-shaped domain of the
second kind when β ^ — 8π and this will be the argument of Sect. 7.

Proposition 6.1. Let E ^ Ec, then there exits C\9 €2 such that

-8π£ + Ci ^ S(E) ^ -8π£ + C2 (6.1)

where C2 = S(EC) + 8πEc = /(-8π).

Proof. Let p be such that E(ρ) = E, E > EC9 and S(E) > S(EC) - 8π(£ - Ec) (by
contradiction). Then

/-βπ(p) = ^~[S(E) + 8π£] ^ ~^[S(EC) + 8π£c] = 8π/(-8π) . (6.2)
oπ oπ

This is clearly false by the definition of CVP so that the inequality from above in
(6.1) is proven.

The estimate from below is obtained by estimating from below the Entropy
functional by using a suitable p. Let us consider a circle BXQj of center XQ a maxi-
mum point for y(x,x), and radius ε,ε such that the BXQtE is contained in A. Let
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be the solution of the MFE in the circle BXQtC9 at inverse temperature β. Then, let
us construct a density function in all A by extending pββ in all Λ, i.e.

Λ (6-3)in A — B

The entropy of pβ^ in A is the same as pββ in 5, that is

SA(pβ,Λ) = SB(pβ,B), (6.4)

while the energy is different because of the contribution due to the regular part of
the 7 function, i.e.:

EΛ(PPΛ) = EB(pβ,β) + fpB,β(χ)yλ(χ, y)pej(y) - ΊB . (6.5)
B

Here the last term is the values of the y function on the circle, that is constant for
radial solutions. But in the circle, thanks to the equivalence of the ensemble, we
have, for any β > 0,

SB(E) = SB(E0) + fdE β(E) ^ SB(E0) - 8π(£ - E0) , (6.6)
£o

where we have used β(E) > — 8π if E < oo. Hence,

) + C , (6.7)

and (6.1) is proven. D

The main result of this section is the following:

Theorem 6.1. Let pE be the solution of the MVP at energy E. Then, up to the
extraction of a subsequence,

PE —> δXQ(weakly in the sense of the measures) , (6.8)
E— >oo

where XQ is a maximum point for γ(x,x).

We shall prove Theorem 6.1 later on. For the moment, notice that as a corollary
of the above two propositions we have the

Proposition 6.2. In a domain of the second kind, i.e. in a domain in which IΛ <
//ι(— 8π), S(E) is not a concave function.

Proof. This corollary is an immediate consequence of the two previous propositions
and of Theorem 3.1.
In fact, since PE —> δX(], we have, by point v) of Theorem 3.1 that /_8π(p£) =

E^oo

S(PE) + Sπp^ satisfies
limsup/_8π(p£) = I A , (6.9)

£"— »oo

and

/-8π(p/fc) = /-8π, (6.10)

while we have by assumption /_8π > IΛ. This means that f-sπ(pE) cannot be
concave. The same is true for S(E) that is obtained by adding a linear function of

E tO /_8π(p£) Π
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Sffc)

Fig. 4.

A possible qualitative behaviour of S is plotted in Fig. 4.
We now prove Theorem 6.1. Before giving a rigorous proof of this fact we

want to give an idea of why there is a concentration phenomenon when the energy
diverges. When the energy is large then the vorticity tends to concentrate. It is also
clear that this concentration may be obtained in many ways. For example, the whole
vorticity may concentrate in a unique or in many clusters. In the following, we want
to show (heuristically) how the concentration of the vorticity in a single cluster is
selected for a thermodynamical reason, (for analogous ideas for the gravitational
case, see [Ki]2).

Let us consider the two cases in which the vorticity clusters into:

i) A unique cluster
ii) Two identical separated clusters.

For the sake of simplicity we think that the clusters are circular and that the vorticity
is constant in the circles. In the case of a unique cluster we have all the vorticity is
in a circle of radius r\ . Thus the energy will be approximately (modulo an additive
constant) given by:

. (6.11)
4π

In the second case the energy will be given by the sum of the energy of the two
clusters plus the interaction energy between the two clusters. The interaction term
will be negligible in the limit E — ->• oo, because this term is bounded by a constant;
we have in fact assumed that the two clusters are well separated. Therefore in this
case we find

£2 «-^ log fo). (6.12)

Hence if we want E\ = E2 — E we find r\ « exp(—4π£), r2 « exp(—SπE1), which
implies for the entropies,

5, « Iog(n2) = 21og(n)~-8π£,

S2 w Iog(r2

2) = 21og(r2) « -16π£. (6.13)

So it is clear that when E —> oo the vorticity should not separate into two clus-
ters. Therefore, we expect that when E —> oo, the solution concentrates in a single
point (becoming a Dirac mass at the point). We can finally note that this heuris-
tic argument gives the right behaviour of S(E) at large values of the energy, say
C r^o <-*~>
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Fig. 5.

The rigorous proof follows this idea. We shall use the following lemma.

Lemma 6.1.
i) Let A be a bounded domain, and f ^ 0 such that fΛf = m ^ l If

define
we

1
E(f) = -rϊf(χ)V(χ,y)f(y\ s(f) = -//log/, (6.14)

4π,2 Λ

we have

S(n < -£
where C2 is a constant defined in (6.1).

ii) Given f\ ^ 0, /2 ^ 0, we set:

1

-m log m\

j(y)> 0 ^ iJ ^

(6.15)

(6.16)

E\2 < \iE\\En- (6.17)

Proof. The proof of inequality (6.15) is consequence of Proposition 6.1 and an
obvious scaling. The inequality (6.17) is nothing but the Schwarz' inequality.

Lemma 6.2. Let A,B be two disjoint subsets of A, such that d(A,B) > 0.
(d(A,B) = infX£Aty€B x ~ y\) Then, let ρE be a solution of the MVP at energy E,
and let us define mD(pE) = fDpε Then we have:

lim mm(mA(pE),mB(pE)} = 0 . (6.18)

Proof. Let us consider a solution p of the MVP in a domain A at energy E, and
let us suppose that there exist two domains A,B in Λ, such that fAρE = εA > 0,
fBPε = £>B > 0, with d(A,B) = d > 0. Let us define C = A-AUB,px = χxp; we
obtain p = pA + pB -f pc

With this definition the energy may be written as

E = , y)p(y) = EAA + E
BB

2EAB
(6.19)

where

(6.20)
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We can note (and this is the key point of the proof) that EAB is bounded; i.e.

EAB = ~ f p A ( x ) V ( x , y ) p B ( y )
^XY

= -7- $ PA(X) log|* - j>|p*0>) + ~fpA(χ)y(χ,y)pB(y) < c2. (6.21)

This allows us to write:

E ^ EAA + EBB + Ecc + 2EAB + 2EAC + 2EBC + c2 . (6.22)

For the entropy we have simply

S = SA+SB+Scl Sx = -fp log p. (6.23)
x

Moreover by Lemma 6.2 we can write the following inequalities:

Sχ^ -*nEx + Cλ. χ=AfBίC} (624)

πiχ

and
EXY^^/E^\ X9Y=A,B,C. (6.25)

We shall check that (6.22-25) imply that

S(E) ^ -(8π + c3 )E + c4 (6.26)

where £3 > G CS, c^ do not depend on E, then, as we will see, the assertion follows
rather easily.

Let us prove (6.26). Let α, b, c are such that EAA = a2, EBB = b2, ECc = c1-
Then we may write

E ^ a2 + ̂ 2 + c2 + 2αc + 2Z>c + c2 , (6.27)

while for 5, using (6.15) and (6.17), we may write

-8πα2 + CΛ -8πZ?2 + CΛ -8πc2 + Q

o ^ mA

a2 b2 2

= -8π I — + — + — ) + c 3. (6.28)
\ niA WB me J

Hence, the proof of (6.26) is reduced to an eigenvalue problem between two
quadratic forms.

In fact let us define the matrices

i ^ ? ° ^ ί { ° l\5 = | ° ^ ° , £ = 0 1 1 , (6.29)

' ° i/ V i i i /
then (6.26) is implied by

sup ϋ> V < λ < 1 . (6.30)
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This fact is easily proved by noting that S and E are positive matrices and that
the eigenvalue equation D(λ) = \E - λS\ = 0, with some straightforward algebraic
manipulations yields

—λ3 + λ2 — (MA + mβ)λ — niAinBmc — 0 . (6.31)

This equation has no solution for λ ^ 1. We then conclude easily, since we know
from Proposition 6.2 that S(E) §: —8πE + €2, and therefore we find a contradiction
with (6.19). D

Remark. In Lemma 6.2 we have proved that it is not possible to find two distinct
regions in Λ, that are at a distance larger than 0, in both of which the mass is
different from 0 definitively for E — > oo. As an almost immediate consequence of
Lemma 6.2 we can prove Theorem 6.1.

Proof of Theorem 6.1. Let ρE be a solution of the MVP at energy E, and given a
domain Z), let us define m^(Z)) = fDΠΛpE- Let Br(x) be the ball of center x E A,
and radius r, and let us consider the function mE(Br(x)). Let XE(F) be a maximum
point for niE(Br(x)). By Lemma 6.2, we see that mE(B2r(

χr(E)) — > 1 when E goes
to infinity; in fact niE(Br(x)) > cr, where cr is a constant that does not depend on
E, implies that the mass out of a ball B2r(xr(E}) vanishes as E — > oo. Furthermore,
by the compactness of Λ, we may assume, extracting subsequences if necessary, that
χE(r) —* x(r)- It is easY to prove that niE(Bτ)r(x(r))) — * 1; in fact xr(E) —> xr,

E—>oo E — »oo

implies \xr(E) — xr\ < r for r large, so we have that B^r(xr) D B2r(χr(E)) for r
large.

Now, let us consider the sequence jtr, as r goes to 0. We have obviously xr —
xrr\ ^ 6min(r,r'). Hence xr — > c E A. It is clear by construction that for any r > 0

r^O

we have niE(Br(x)) — > 1, and thus PE — -> δx as E — > oo.
£— »oo

Next there remains to prove that x is a maximum point of y(jc,;c). This last
point may be shown by contradiction. Let x* be a maximum point of y(x,x) and
let P£ converge weakly to δxr, where x' is not a maximum point of γ( •)• Then,
see point v) of Theorem 2.1, we have that

lim sup/_8π(P£) ^ IA(xf) < IA(x*) (6.32)
E — »oo

while we have shown in Theorem 3.1, (see point v)) that it is possible to find a
sequence p'E, such that E(p'E) — >• oo and f-%π(p'E) — » /^(Λ:*). So, for E sufficently
large we find /-sπίps) < f-%π(pΈ\ an^ tnis lea(ls to a contradiction with /_8π =

D

7. Non-uniqueness of the Solutions of the MFE

Let Λ be a domain of the second king (that is a domain for which there is no
concentration at (—8π)+) and strictly star-shaped. Thus, (see Theorem 3.1) there
exists βp such that the MFE on A does not admit solutions if β ^ βp. For these
domains we shall prove the following alternative.



Stationary Flows for 2-D Euler Equations 251

-β

Theorem 7.1. Either

i) the MFE has at least two solutions at — 8π, or
ii) the MFE has a unique solution at -8π, and there exists a sequence of in-

verse temperature {βn}^\ '- βn < — 8π, βn — » — 8π as n — > oo, /or which the MFE
has at least two solutions for each βn.

The strategy of the proof is the following. We know that we have a unique
solution of the MFE up to — 8π (not included). Let us consider the set of limit
points of these solutions when β — > (-8π)+. In the case of non-uniqueness of the
limit point, we can easily show that there exists a continuum of solutions of the
MFE at β = — 8π. Otherwise, if we have a unique solution at — 8π, say w*, we
can show, by using the Leray-Schauder toplogocial argument about the existence
of continua of solutions, that it is possible to continue this solution beyond — 8π.
Namely we can prove that there exist an ε > 0 and a connected set of solutions
up to — 8π— ε. Then, we consider the solutions of the MVP as E — > oo. By using
a result by Nagasaki and Suzuki [NaSu] and the fact that the solutions of the
MFE concentrate to a Dirac delta as E — » oo, (see Theorem 6.1) we obtain that βE

(the inverse temperature of these solutions) accumulates at — 8π. Hence we have
solutions of MFE, close to u*, for any β G (— 8π— ε, — 8π] and there are solutions
of the MFE with βE that accumulates at — 8π (observe that βE < — 8π because of
the uniqueness up to — 8π). So, for any of those βE, we have at least two solutions
of the mean field equation, see Fig. 6.

Proof. In order to prove Theorem 7.1 it is useful to recall some facts.

Fact 1. If β > — 8π, there exists a unique solution Uβ of the MFE.
This result is a consequence of [SU] and we have already described this result in
Theorem 3.1.

Fact 2. Application of Leray-Schauder topological argument.

The MFE can be written in the form u = T(—β,u\ where

(7.1)

where UQ = (— A)~l 1, is the solution of the MFE at 0 inverse temperature; in fact

e-β(u+uQ)

T(-β,u) = u if and only if - Δ(u + w0) = r -β(U+UQ) - (7 2)
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Because of compactness of T : R x IB —>• B, where IB may be chosen, for our pur-
poses, as C ](/t) equipped with the usual norm denoted by || ||, and because of
the existence of the solution 0 = Γ(0,0), we know, by Leray-Schauder topological
argument [LS] that there exists a connected unbounded component C of solutions
(-β,u) in [0,+oo) x IB, containing (0, 0).

Now because of Fact 1, C Π ([0,8π) x IB) is the curve (β,uβ) for β G (-8π,0].
Then, two cases are possible:

Case 1: As β —> —8π (β > —8π), Uβ has, up to the extraction of subsequences,
several limit points in B. In this case, let C_gπ be the set of these limits:

C-8π = {u\3βn > -8π, βn -> -8π as n -> oo, uβn -> u} . (7.3)

Obviously, if u G C_sπ? then u is a smooth solution of the MFE at — 8π. This means
that in Case 1 we have non-uniqueness at — 8π. Furthermore, when β > — 8π, Uβ
induces a continuous function (—8π, 0] —»IB. If Uβ does not have a unique limit
point it must have a continuum of limit points. Therefore, in Case 1 we have a
continuum of solution at — 8π.

Case 2: Uβ converges to some u* as β —»(-8π)+ . (7.4)

In this case, we shall prove, using the fact that C is connected and unbounded,
that the following statement holds. Let us also mention that we make a systematic
use in all that follows of the elementary observation: if (βn,un} is a bounded se-
quence of solutions in IR x B of solutions of MFE then un is relatively compact in
B by elliptic regularity.

Statement 1. i) There exists ε > 0 and a family of solutions Uβ G C for any β G
(-8π-ε,-8π).

ii) There exists a family of solutions such that β < —8π, Uβ —> u* as β —> — 8π.

First of all we prove i). Let y = C Π ([0,8π] x B), and let us suppose that i)
is false, that is for all n there exists βn G (—8π — ^,— 8π) such that there are not
solution Uβn of the MFE at inverse temperature βn in C. Then

Γl

n = C Π ([βp,βn] x B) is a closed subset of C , (7.5)

and
Γ2

n = C Π ([βn, -8π] x E) is a closed subset of C . (7.6)

Therefore, Γ\ Π Γ2

n = 0, and Γ^ U Γ2

n = C. So, since Γ2

n Φ0, and C is connected,
we find Γ^ = 0, therefore there are no solutions of MFE in C\, at inverse temper-
ature β ^ βn.

Now, taking the limit n —> oo, we find C = y. This is a contradiction with the
fact that C must be unbounded and i) is proven.

Now, given β, let Uβ be a minimizer of Min {\\u - u*\\: u\(β,u) G C}.
We shall now prove that Uβ —> u* as β —-> — 8π. If this were not true, then we
could find βn —>• —8π, βn < —8π, /Jw increases, \\Uβn — u*\\ > α > 0. This implies
that HH^H —> oo; (otherwise we could take a limit, up to subsequences, of Uβn —> zϊ
which would be a solution at — 8π).

We still have to show, that \\Uβn\\ cannot go to +oc. Let us consider in IR x B
the rectangle

Ru* = H8Λ,-8π]x£(κM), (7.7)

where B(u*, 1) is the closed unit ball in B centered at u*, see Fig. 6.
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Case 2

Fig. 7.

Then ΘRU* Π CΦ0; because C is connected and unbounded. Hence, there exists
> u n ) £ dRu* Γ) C. There are two possibilities:

a) yn — βn, see Fig. 7. This is impossible, since for n large

+00, (7.8)

and this contradicts the definition of Uβn.
b) There exists (yn,un) in C, where γn G [-/?„,-8π], and \\un - u*\\ = 1, (see

Fig. 7). This is also impossible. Indeed, we can consider the sequence un as n —» oo,
which is bounded because \\un — w* | | — 1. Then, un —> w in IB (up to subsequences),
and z2 is a solution at —8π and \\ύ — u*\\ = 1, and this is impossible in view of the
uniqueness of the solutions at —8π. This completes the proof of Statement 1.

There remains to prove that the microcanoical solutions have inverse temperature
β and accumulates to — 8π when E —-» oo (see Statement 2).

Let us recall the Nagasaki-Suzuki result [NaSu]:

Fact 3. Let us consider the following problem

— Δu — λeu in A,

u = 0 on dA'9

and let us denote by

(7.9)

Σ = λfeu . (7.10)
A

By [NaSu], see also Thm. 1 in [Su], we have that if (un,λn) is a sequence of
solutions of (7.9) such that λn -» 0 as n —> oo, then, extracting subsequences if
necessary, Σn converges to 8πm;m G 0 U N U {oo}; where

m = 0 if and only if \\unn L

0 < m < +00 if and only u\s

0 as n

oo,

oo,

and
i loc

setOΓ some

m-points, (m-points blow up),

m = +00 if and only if u(x) — > oo for any x in A.
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Now, because of the concentration phenomenon, we are able to prove the following:

Statement 2. Let pE, ΨE = (—Δ)~λ pE be the solutions of th MVP at energy E, and
let βE be the corresponding inverse temperatures. Then, as E —> oo, βE converges
to -8π.

Proof. As we have seen in Sect. 3 if (/?, Ψ) is a solution of MFE then

λ = ' u = ~βψ> (7 Π)

solves (7.9), and Σ = —β. Furthermore, let us note that we know that pE —>• δXQ as
E —» oo and;

«/„ __v pΎr γn\ — ί—Λ\~^ αe /7 _» nn f7 1 9 ^T £ r Y ^Λ, Λ() _/ — ^ /-I) ^Xf) ^^ -̂  ^̂  v ' A ̂  /

Next, given a solution of the MVP (βE, ΨE)9 we set λE = f .β

E

Ψ> UE = -βεΨε,

ΣE — —βE. We shall now prove that λE goes to 0 when E -^ oo. Because βE is
bounded (indeed βp < βE < —8π) this is equivalent to prove that fΛe~fJEψE —> oo.
If it is not the case there exists a constant c such that

C. (7.13)
/I

By Fatou's Lemma,

c > liminf fe-
βEΨε > liminf Γβ8π^ > fe*

πy(x^ = +00, (7.14)
- E^co \ ~ E^ \ ~ \

Therefore, as E —» oo, λE —» 0 and by Fact 3, βE = ΣE accumulates at —8πm.
Finally, m = 1 because βE G [/J/>, — 8π) and we know that we have a one-point
blow up. This completes the proof of Statement 2 and therefore the one of
Theorem 7.1.

Remark.
1. In the case when there exists a unique solution at — 8π, we have shown that

there is a set βn, βn G (—8π—ε, —8π) for which we have constructed two solutions
of the MFE. One of these solutions is close to u*9 the unique solution at — 8π, while
the other is close to the "singular solution" describing the concentration, see Fig. 6.

2. In the case when the set of limit points of {uβi β G (—8π,0]} is not a single
point, we have shown along the proof, that we have a continuum of solutions of the
MFE at — 8π. In fact, working a bit more we may replace i) in Theorem 7.1 by i;)
the set of solutions at — 8π of the MFE is unbounded and contains a continuum of
solutions.

8. Concentration for Solutions of the CVP at β = -8π for Simply
Connected Domains Close to a Circle

In this section we shall consider the problem of the concentration in the case in
which A is a simply connected domain sufficiently close to a disk. In this case it is
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possible to prove that the concentration does occur just by exploiting an argument
due to Suzuki and Nagasaki [SuNa]. We first present this result and then we give
an alternative direct proof of the concentration, for a particular class of domains
close to a disk, based on variational argument. This second proof is a consequence
of some result upon the concentration in a circle in the presence of an external
field.

Let us recall some known facts.

Fact L As we have shown (see Theorem 3.2), Lemma 1 and Lemma 2 of [Su]
implies that, if A is a simply connected domain, the MFE admits a unique solution
for βe(-8π,0].

Fact 2. T. Suzuki and K. Nagasaki proved (see [SuNa] Thm. 3) that if A is a
simply connected domain sufficiently close to a disk, then there exists a branch
of solutions (β, Ψ\ blowing up, (that is it concentrates at — 8π) from above (i.e.
β > -8π), at β = -8π, containing the solutions β = 0, Ψ = (-ZT1)!.

As in the case of Theorem 3.1 the result due to Suzuki and Nagasaki is formu-
lated for Eq. (3.12). In order to obtain the above mentioned result it is sufficient to
exploit the correspondence with MFE, see (3.12) and (3.13).

The concentration for simply connected domains sufficiently close to a disk is
an immediate consequence of these facts. Indeed, we have:

Theorem 8.1. If A is a simply connected domain sufficiently close to a disk, then
the solution pβ of the CVP at inverse temperature β in A concentrates to a Dίrac
mass as β — » — 8π.

Proof. Fact 2 says that there exist a branch of solutions (β, Ψ) that concentrates to
a point when β — > — 8π. Furthermore, this blow up happens form above, that is for
β > — 8π. Therefore Theorem 8.1 follows by the uniqueness of the solutions for
β > -8π (Fact 1). D

A more direct analysis shows this is result for a special class of small deforma-
tions of the unit disk. Let us consider first the problem for a disk in the presence
of an external field. Consider the disk AQ = {x\\x < 1} and two functionals

f i β ( P ) = (P, VP) - fdxplnp - -fp\x * (8.1)-β

with the constraints p ^ 0 a.e.; f dx p = 1 and

9},,β(Ψ) = ~Sdx\Ψ\2 --β\ogjdxe-l!ψeλ^ . (8.2)

For β < 0 we maximize each functional and we obtain the same mean field
equation

-βψeλ\x\*

It is important to notice that the CVP (8.1), (8.2) and the corresponding Mean
Field Equation (8.3) can be naturally obtained by considering the Mean Field Limit
for the Canonical ensemble for point vortices in a circle under the action of a radial
external field U(x) = |*|α.
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Here we want to study the behavior when β approaches — 8π. We note that, when
λ > 0, the external field is repulsive. Therefore we have a competition between
the free energy functional without the external field, that induces a concentration,
and the external field which has the opposite action. In the following theorem
we show under which conditions there is concentration. As usual in this paper,
by concentration we mean that there exists a maximizing sequence pn of /£_8π,
converging weakly (in the sense of the measures) to δXQ up to the extraction of
subsequences, (see Theorem 7.1 in [CLMP]).

Lemma 8.2.
i) If λ < 0 and α > 0 there is concentration at 0.

ii) If λ > 0 and α ̂  2 there is no concentration.
iii) If λ > 0 (λ sufficiently small, for a given α), and α > 2, there is concen-

tration at 0.

Proof. The first point is obvious; in fact both the terms appearing in the free energy,
the free energy functional without the external field, and the external field itself,
are maximized when the solution concentration to <5o

ii) Let us consider an inverse temperature η close to — 8π and the radial functions

(8 4)

If we evaluate explicitly the free energy /2

;;_8π(P^) f°r Pη at me temperature — 8π
when α = 2 we find

(8.5)
^ΊiJD

It is easy to note that when B ^> 1 (that is η + 8π <C 1)

(8.6)

where IAO is, by construction the free energy of the Dirac delta in the center of ΛQ.
This fact ensures us that there is no concentration for α = 2; we have in fact

exhibited a test function whose free energy is greater than the free energy of SQ
(recall that if there is concentration, concentration must take place as 0, i.e. the
maximum point in Λ of γ(x,x), by the same argument used in the case without the
external field). Moreover, when α < 2, we note that

and ii) is shown.
iii) Suppose that the solution is radial (see later). We multiply both sides of

(8.3) by r2 4^, and integrate on r. Then we integrate by parts and use the Stokes

Theorem to evaluate ^\r=\ We have:

Z = fdxeSπ(Ψ + Γr«)ι (8.8)
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where Γ = — ̂ , r — \x\. ((8.8) is indeed the Pohozaev identity [Po] written for a
radial Ψ).

Let us now assume, arguing by contradiction, that there exists a smooth solution
Ψ(Z < oo). Using the fact that Ψ is radial, by the Stokes theorem we find that
\drψ\ g (2πr)-] and since Ψ(r = 1) = 0 we have

Ψ ^ --Llog(r). (8.9)
2π

Therefore, from (8.7) we find

L £ _ oil Γ „ fv_ι Uπr, y ^ oil e ,„ * ~^

Therefore, if Γ is small we find a contradiction: in fact (8.10) cannot be satisfied
unless Z — oo. In conclusion, if λ is sufficiently small, the solution must be a
Dirac delta. Actually we have only proved that if the solution is radial then Z
must diverge. But this is sufficient by Theorem 7.1 of [CLMP] (which also applies
here with the same proof) that ensures that if β = — 8π, Z = oo, then the solution
concentrates.

Finally, we must prove that the solution is radial. We do it by using a theorem
due to B. Gidas, W.M. Ni and L. Nirenberg [GNN] which states that if u solves
the equation

— Au — g(r, u) on AQ ,

u = 0 on dλo, (8.11)

where AQ is the unit ball in R2, u > 0 in AQ, and g is locally Lipschitz in u and
strictly decreasing in r, then u is radial. To apply this result we define

Φ=Ψ-^(r*-\). (8.12)

Hence, (8.2) yields the following equation for Φ:

2 onΛ
°>

(8.13)

Then, we observe that, since α > 2 and β < 0, 4α2rα~2 is a strictly decreasing

function of r. Therefore, in order to apply the theorem by B. Gidas, W.M. Ni and
L. Nirenberg there only remains to prove that Φ is strictly positive in A. Suppose the
contrary. Let us assume also that there is no concentration. Then, taking the limit
as λ goes to 0 we find that Ψ, extracting subsequences, if necessary, converges

to some Ψ* in C2, while 4£ -> ̂  < 0(^ < 0 is due to the Hopf Lemma
[Ho] applied to a solution of (8.13) when λ = 0). Then, since Φ = 0 and dA$, and
ϋ = ̂  + O(λ\ we find Φ > 0 near dA0 for λ small. Furthermore, we can note
that on any compact subset of AQΦ — > Ψ* > 0, therefore, for λ small, Φ > 0 in
AQ; and this concludes the proof of Lemma 8.2. D
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Fig. 8.

Remark. Lemma 8.2 with α = 2, any λ, applies to a physically meaningful system:
point vortices in a circle, studied in the mean field limit when we take into account
the moment of inertia as in Sect. 5, see [SON].

We now use the results obtained above in order to prove the existence of a class
of domains, close to the circle in a sense we shall specify later on, for which there
is concentration.

Let A be a simply connected domain such that \Λ\ — \ΛQ , where AQ is the
disk of unit radius centered at the origin. Let / : A —>• AQ be a conformal transform
of A in AQ, and let ZQ be the pole of this transformation. The Jacobian of this
transformation is (when z G A)

J(z) = exp[-4πy(z,z0)]{l + (2π)2(Vγ(z,z0))2(z - z0f

+ 2(2π)2Vy(z,zo)(z-z0)|z-z0 |
2}. (8.14)

Let us choose the zero of the transformation to be the maximum point of y(z) =
|y(z,z). We obtain the following inequalities:

(8.15)

Generically α — 2, but there exists a class of domains for which, because of par-
ticular symmetries, α > 2. For example, see Fig. 8. if the domain is invariant by
rotations of an angle | then α = 4.

The free energy functional may be written, through the conformal map, on /
as

9β(Ψ) = -

- ~ log (8.16)
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Therefore, we can estimate from above the free energy functional A by the free
energy functional in ΛQ in the presence of a suitable external field; that is

, (8.17)
P ΛQ

with a suitable choice of λ and α < 2.
Let g^β(Ψ) be the last term of inequality (8.17). Because of Lemma 8.2 (see

point iii)

= IAQ (that is the free energy of the Dirac delta for the circle), (8.18)

and therefore

f-sπ(Λ) ^ !ΛO + ^y(zo,*o) = IA (8.19)

This implies the concentrations by point v) of Theorem 3.1.
Note that in Theorem 3.1 we deal, for the sake of simplicity, with domains of

area 1, so in Theorem 3.1 ΛQ is a disk of area 1 and not, as it is here, the disk
of radius 1 whose area is π. Nevertheless it is easy to convince oneself, by simple
scaling arguments, that (3.9), i.e. IAQ + ^J(ZQ,ZQ) = IΛ, holds also for domains of
general area, where ΛQ is the disk whose area is the same as Λ. D
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