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Abstract: The ring (Frobenius algebra) of local observables for topological σ-models
on IP1 with values in the grassmannian G(s,n) is known to be "the same as"
the quotient of the homology ring of the target space by the (inhomogeneous)
ideal generated by the so-called quantum correction. While the need for a quantum
correction comes from algebraic motivations in field theory, the aim of this paper is
to understand its geometric meaning. The simple examples of IP1 —»• IP'7 models tell
us that the quantum correction comes by restriction on the boundary of the moduli
spaces which allows to compute intersections on moduli spaces of lower degrees.
We will check this point of view for the case of F1 —> G(s,n) models, yielding a
proof of the algebraic result from physics in terms of the geometry of the σ-model
itself.

1. Introduction

A topological field theory (TFT) is an algebraic object; it is the datum of a
Frobenius algebra [D], together with its deformations. There are some TFTs di-
rectly connected with geometry (which will be called geometrical TFT or GTFT,
for short). These are actually the first examples of topological field theories (see e.g
[W, G, I, V]), with concrete realizations in terms of σ-models, topological
Yang-Mills theory and topological gravity. The mathematical interest of these ex-
amples is that the expectation values of physical interest are actually intersection
numbers in some homology rings. The ring of "topological observables" in all
known GTFTs is identified in the physical literature with the quotient of the ho-
mology ring of suitable moduli spaces by the (inhomogeneous) ideal generated by
the so-called "quantum correction."

We immediately have a problem: to understand for a given GTFT the geomet-
rical origin of the quantum correction. The aim of this paper is to give an answer
in the case of topological σ-models on the Riemann sphere P1 with values in
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grassmannian manifolds. In these models the quantum correction has already been
computed by means of the algebraic techniques of field theory [I].

The simplest example is the P1 —> P1 models (see [FR] for details). The "mod-
uli" space is the space of holomorphic maps of degree d from the Riemann sphere
IP1 to itself, which is isomorphic to jp2ί/+1. Loosely speaking, there is a sequence
of inclusions IP1 C IP3 C C P°°, thanks to the fact that a degenerate map of
degree d is generically the same as the datum of a map of degree d - 1 (see e.g.
[ACGH]) together with the datum of the degeneracy point, which we keep fixed.
Now the homology of P°° is generated by the hyperplane class ω, with no relations.
According to the rules of TFT, the expectation value (ωk) gets contributions from
all instanton sectors, i.e. we have (ωk) = J]ί/ω^[F2ί/+1], where each term of the
r.h.s. is the intersection number of ωk on P2ί/+1. As this vanishes when kή=2d + 1,
we get a single contribution (ω2ί/+1) = ω2ί/+1[P2ί/+1] = 1 from the intersection of
2d + 1 hyperplanes on P2ί/+1. The geometrical origin of the quantum correction in
this example is as simple as setting ω2d+l = ω2(ί/-1^+1ω2 and noticing that ω2 is
represented by P2^1 C P2ί/+1; accordingly we have ω2ί/+1[P2ί/+1] = ω2rf-1[F2ί/-1],
which is formally the same as setting ω2 = 1 in the word ω2ί/+1 and evaluating the
quotient word on P2ί/-1. This procedure can be iterated down to d = 0.

More examples are given by the P1 —> Pπ* models. Here again the "moduli"
spaces of maps of degree d are isomorphic to jp(n+W+n

t The chain of inclusions
p(Λ+ι)(</_!)+„ c jp(rt+ι>/+Λ tdls us that jp(«+ι)(</-!)+« in p(/ι+ιw+/ι represents α/+1

which therefore can be set to 1 as above.
Less obvious is the geometric meaning of the quantum correction for

P1 —» G(s\n) models (here G(s\n) denotes the grassmannian of the s-planes in an
n dimensional complex linear space V). First of the "moduli" spaces 01 d of maps
of degree d to G(s\n) are a bit more subtle, bringing into the game certain Quot
schemes [Gr]. The basic fact for us is that on Xd = P1 x βfcd there is a universal
exact sequence [S]

O^A-+Vχd^B-^0,

where Vχd = Xd x V. Once restricted to the locus X(

d

s\ where B is locally free,

this sequence is the same as the datum of a holomorphic map fd : Xd —» G(s\n\
called in the physical literature the "universal instanton." Since, as we will show,

the degeneracy locus Xd~
l = Xd\X^ °f B nas codimension r + I = n — s + I ^2

in Xj, fd can be considered as a rational map on the whole of Xd. The induced
map fd : A(G(s\n)) —> A(Xd) of the Chow rings is not a ring homomorphism and
will possibly account for the correction to Fieri's formula found in the physical
literature [I] on purely algebraic grounds.

In this paper we will concentrate on an example of this phenomenon, which
is relevant in understanding the quantum correction. We will study the intersection
τ = (fd~

lσr) (fd~
lσ\^\), where σβl,...Av denotes a Schubert cycle in G(s n) (see

[GH] for notations). This is interesting since, although Pieri's formula tells us that
GΓ oχ...,ι — 0 in A(G(s',n)\ τ does not vanish in A(Xj). By Kύnneth decomposing
τ = {p} x a + P1 x 6, we see that the "local observable" b can be represented by

a sub variety b of codimension n in ^/. We will prove that

1) there is a rational map gp : 0td-\ —> $d whose image covers a component

of b (see Proposition 4),
2) given a word P ( s \ , . . . , S k ) 9 with fd~

lσι = {p} x α/ + P1 x s/ £ A(Xd\ of
codimension n(d — \) + rs, the word P(s\,...,s'k) with fd_{σ/ = {p} x α/+
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IP x Sf G A(Xd-\) is such that

(P(sl9...,sk) b)jd = (P(s\9..

(Proposition 9).
Accordingly, the quantum correction "is the same as" setting to 1 the homology

class b on ̂  and compute expectations at degree d — 1 . Section 3 will be devoted
to explain this result in full detail.

There are still open problems to be answered:

1) to show that one recovers the full quantum correction to Fieri 's formula in
the grassmannian case,

2) to extend the above constructions to algebraic homogeneous spaces G/P9 with
G semisimple complex Lie group and P a parabolic subgroup,

3) to compute expectation values of non-local observables as intersection num-
bers, as a clue to set up non-formal perturbation theory.

2. Parametrized Rational Curves on Grassmannians

2.7. We start recalling a natural compactification 0td of the moduli space 0$ of

degree d instantons / : IP1 — >• G(s\n) with values in the grassmannian of s -planes in
an ^-dimensional linear space V (we will omit the index d whenever convenient).
To this end we need to master simultaneously several descriptions of a map to a
grassmannian. Let us recall for completeness the following well known facts:

Proposition 1. There is a one-to-one correspondence between:

i) holomorphίc maps f : P1 — > G(s\ή) with deg/ = d9

ii) locally free quotients B of V^\ (V^\ = IP1 x V) with rank 7? = r —: n — s,
deg B = d,

iii) maximal rank morphisms φ G H0(W\A* ® Fjpi ) of a locally free sheaf A
(with rank A = s, deg A = —d) into Fpi, modulo automorphisms of A.

Proof. We will sketch the proof in terms of the vector bundles corresponding
to the locally free sheaves above. Pulling back to P1 the universal exact sequence
on G(s9n)9

0-+S -+G(s,n)x F - * β ^ O ,

one gets that B = f*Q is a locally free quotient of f*(G(s',n) x V) with the right
rank and degree. Clearly, Bj = f*Q, (i = 1,2) coincide as quotients iff f\ = /2.
Conversely, given a B as in ii) there are sections s\9...9sn G V C 7/°(P,7?) such that
the evaluation map eυp : V — >• Bp given by evp(v\9...9vυ) = Σvisι(P) *s surjective
on all fibres Bp of B. Then setting f(p) = kerevp C V gives the desired map to
G(s\n). Obviously enough, such a map does not depend on the sections sl9 provided
they span all the fibres of B, and therefore there is a unique map / for any such
B and moreover f*Q = B. As for iii), notice that setting A = kerev C FΠ> there is
a canonical exact sequence

Now, for any automorphism a of A, we get a morphism φa = φ o a : A — > FΠ> with
the same cokernel B. Then we see that the datum of i) or ii) correspond bijectively
to the datum of iii).
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Remarks. 1) The set $^ is a smooth complex manifold [S]. Therefore its dimen-
sion is equal to the dimension of the tangent space to a point / which is isomorphic
to H°(ΊPl,A* 0 B\ A and B being the sheaves associated to / by Propositon 1. This
can be computed from the sequence

which is exact, because A is locally free. The associated cohomology sequence reads

0 -> H°(P9A* 0Λ) -> H\JP,A* 0 FΠ>) -> H\V,A*®B) -> H*(JP9A* ®A) -> 0 ,

because Hl(]P,A* 0 F) = 0. Indeed, by a theorem of Grothendieck's, we know that
for any locally free sheaf A on IP1 with degyί = —d there is a unique non-increasing
sequence of integers d\ ^ ^ ds such that ^4 c± @\&(—dt\ with Σ^i = dS9

A being a subsheaf of a trivial sheaf, for every / d[ ^ 0. From the cohomology
sequence above, it follows that dim//°(P,^* 05) = χ(Λ* 0 V) - χ(A* ®A). From
the Riemann-Roch theorem we have:

dim &(s} = nd + sn- s2 = nd + r(n - r) .

2) As A = 0*0(-</,) (dl ^ 0), we have isomorphisms HQ(W\A* 0 FPι) ~

/^(P1,0ι $0/0 0 F j p i ) ~ 0*#°(P^0(</I )
(/I)), where the apex (Λ) denotes the di-

rect sum n times. Accordingly, every morphism φ : A —> Vw\ can be represented as

an s-tuple (φ}9...,φs) of morphisms φt : (9(—dι) —>• F. In other words, if z is an

affine coordinate on P1, φt is a vector whose entries 0f(z) are polynomials of de-
gree di. If φ has maximal rank as in iii) of the proposition above, the whole s x n
matrix Φ(z) with entries 0f(z) has maximal rank for z in a suitable neighborhood

k
of 0. In particular Φ(0) will have an s x s minor Φ^(0), with entries ψ/(0) la-
belled by a multi-index A^ = (&ι,...,£5), which is invertible. Then there is a unique
a G Aut(^) such that the matrix Φa corresponding to the morphism φa = φ o a will
have the minor (Φa)κ(Q) equal to the identity. For instance if this is the first minor
(i.e. K — (1,...,-s1)) we can write

Φ(z) =

/ - \
1 + P

2(z)

where the p\(z\ g/(z) are polynomials of degree di9 the pl

k(z) vanishing at z = 0.
We can now count directly the number of free parameters in such a matrix; for
each / = I 9 . . . 9 s there are sdl parameters for the p\(z) (k = 1,...,,?) and r(dl + 1)

parameters for the qlj(z) (j = 1,... ,r) adding to a total of (s -f r)d + rs = άimR(s\
This numerical coincidence comes from the fact that, whenever the polynomials
occurring in Φ are generic enough, the closure of the image of the map / : (C C
P —> G(s n) corresponding to Φ is actually an instanton of degree d. If we write
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Φ(Z) = (Φκ(z)\Φκ,(z))', K = (\,...,s), K' = (s+\,...,s + r), the minor Φκ(z),
being invertible at z = 0, is invertible for |z| < ε and we have

the rs entries of the matrix Γ(z) giving a local representation of the map / in terms
of rational functions.

2.2. It is clear that &^ is not compact, as a family of maximal rank morphisms
φt : A —> Fpi, (t G (C, 0 ^ ί| ^ 1), niay degenerate to a morphism φo of lower
rank. Equivalently, a family £, of locally free quotients may degenerate to a coherent
sheaf BQ which is no longer locally free. Of course, to get a sensible compactification
of <2?(ιS) we will consider flat families only. Notice that such degenerate quotients
do not give rise any more to holomorphic maps to G(s\n)\ nevertheless they will
play a crucial role in the following.

The obvious thing to do is to extend 0t^ to the set ^ D 2fc^ of coher-
ent quotients B of VΨ\ of degree d and rankr, that is with Hubert polynomial
(m + 1 )r H- d. The set ̂  is actually a Quot scheme [G], which turns out to be [S]
an (irreducible, rational) smooth projective variety, giving a projective compactifi-
cation of @(s\

We next summarize some of the ideas in [S]. By Proposition 1, the datum of a
morphism / : P1 — > G(s n) is equivalent to the datum of a locally free quotient B
of Fpi of degree d and rankr = n — s. The Hubert polynomial of B is defined as the
asymptotical expression of the Hubert function dim(H°(B 0 O(m)) — dim(Hl(B ®
O(m)) ~(m+l)r + d. Such a polynomial is constant on flat families of quotients
[H], but such quotients may degenerate to a quotient which is no longer locally

free. The Quot scheme Rj = Quot™^ [Gr] is a scheme parametrizing all the

quotients with fixed Hubert polynomial in an universal way. It gives rise to an
universal short exact sequence on Xc\ — P1

where B is flat on Rj (with respect to the projection p2 : Xd -* Rd\ has Hubert
polynomial χ(B(m)) — (m -\- l)r + d on the fibres of p2. The universality property
is that for every flat family of quotients of VΨ\ parametrized by a scheme Γ,

with Hubert polynomial (m + l)r + d on the fibres of p2 : IP1 x T — > Γ, there is a
morphism ξ : T — » Rj such that the last sequence on T is the pull back via ξ of the
universal one. In other words Rj "represents" the functor of flat families of such
quotients. It turns out that the scheme R^ is an irreducible, rational, non-singular,
projective variety with dimension nd -f r(n — r ) = nd + dimG(s; n).

One can give an explicit description of the scheme Rj. Following [S] let us
denote Bm (Am) the coherent sheaves p2*E(m), E(m} = E 0 p\Θw\(m) for E = B,
(E — A resp.). Bm is locally free with rank (m + l)r + d whereas Am is locally free
with rank (m + 1 )s — d if m ^ d — 1 , as follows from the Grauert and Riemann-
Roch theorems plus the obvious fact that H\A(d - l ) | ι p χ p ) = 0 for all p G .̂
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Let us set Vm — Vw\ ®H®((9^\(m)) and Vm = p^V(m). The push forward on Rd

of the universal sequence reads

0 -> Am -> Vm -> Bm -» 0 .

This in turn induces a morphism Rd —> G((m + \)s — d', n(m -f- 1)) = Gw in such a
way that it is isomorphic to the pull back of the tautological sequence on Gm,

o -> sm -> Fw>Gin -> ρm -* o .
For each m ^ 0 there is [S] a natural exact sequence on IP1,

inducing a map jm : Vm-\ —» Vm (g)//υ($(l)), and a diagram on G = Gm-\ x Gm,

^ v^w—i )G V ' A W — i JG v t^Aπ—i/c ^

It is a very nice fact ([S] Theorem 4.1) that there exists an isomorphism between
Rd and the zero locus of the composite map σ = pm o jm o ίm-\. In particular the
class of Rd in G is the square of the top Chern class of the bundle S^_{ 0 Qm. We
will need the following simple remark.

Proposition 2. Let A, B be the universal subsheaf and the universal quotient of
Vχd in the sequence above. Then

i) A is locally free of ranks,

ii) B has a torsion subsheaf with support on the locus Xs

d~\ where φ has
rank < s — 1.

Proof. As for i), as a subsheaf of a locally free sheaf, A is torsion free. By flatness,
the injection of Aχd into Vχd restricts to an injection on P1. Since torsion free

sheaves on IP1 are locally free, the rank of A is constant on IP1 x p for every
p G 3i. By base change, the restriction of A to p x ^ is flat on ffl and hence
locally free. Therefore the rank is constant on X^ and by Nakayama's lemma A is
locally free. Finally ii) is a direct consequence of i) and Proposition 1, iii).

3. The Quantum Correction for Grassniannians

3.1. As we learned from the example of the IP1 model recalled in the introduction,
the quantum correction is actually a device to reduce the computation of intersection
numbers on the moduli space of degree d instantons to a similar computation on the
moduli space of degree d — 1. To see how this goes in the present case, we need
to find a map gp : &d-\ -* &d and to compute the homology class of its image.

We will be actually a bit more general and work on Jζ/. This will help in
keeping control of the "non-local observables" as well as of the local ones. To
construct gp9 we will adopt the following procedure:

i) We will blow up an open sub variety X^ C Xd on a suitable locus, get-

ting a holomorphic map / : Bl(Xd) —> G(s\n) from this blow up to the target
grassmannian (Sect. 3.2).
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ii) We will study the cycles / lσr and / 'σi,...,! in Bl(Xd), which are Poincare
dual to the top Chern class and to the top Segre class on G(s\n). We will find that,
although σr and σιv..5ι do not intersect on G(s\n) and therefore f~]σr and f~lσ\,...,\
do not intersect in Bl(Xd), both these last two cycles intersect the exceptional

divisor in Bl(Xd). So, setting Ss = π * ( f ~ l σ ι , , , , t ι ) = /~Vι,.,ι)> Cr = π*(f-}σr) =
f~λ(σr\ where π : Bl(Xd) —» Xd is the blow-down map, we get that the intersection
Ss C, is not empty and has codimension n = r + s in Xd (see Sect. 3.3).

iii) We will next show that, for any p G P1, there is a birational map gp :
{p} x Rd-\ -> Cr Ss ({p} x ®d) (Sect. 3.4).

We will first give an intuitive clue to these facts. The proofs require a slightly
different set up and will be given at the end of this section.

, _ ^ / Λ . \

3.2. We will denote by X% the locus in Xd where rank</> ^ k, while as above X^

denotes the locus where φ has rank strictly equal to k. Given (/?,po) G X^~ , the
moφhism φQ = φ( ,p0) will have rank s but at isolated points in P1, including of
course the point p itself. If not, B\PQ would have a rank strictly larger than r. It will
be enough for our aims to study the generic case in which ΦQ is non-degenerate on
P1 — {p} and degenerates "of order 1" (see below) at p. Indeed the non-generic

locus has codimension ^ 2 in X^~ and we can forget about it while studying
rational maps. Since rank0o(/0 = s — 1, its image at p will determine a point
Q G G(s - l w). Let us consider the set of all s-planes W G G(s\n) containing Q\
this set is clearly isomoφhic to the projective space Pr, as the choice of such a W
is the same as fixing a vector in V/Q - {0} ~ <U+1 - {0} modulo homotheties.

Lemma 3. For every XQ = ( p 9 p ) G X^ \ the fibre at XQ of the normal bundle

N^ lγ(X-\) to X^~ in Xd is isomorphic to V/Q, with Q = Imφ(ρ,po).

Q and choose w G V, w £ Q such that W =Proof. Set JCG = (p,po), fiχ

C{w} 0 Q. It is enough to construct a curve xt(w) C X^s) for / φ O with XQ(W) =.
Assume ^ | jpi X { P o \ — Θ^(—fi?/ ) and choose a basis of V such that the first s - 1
vectors span Q and es = w. There are automorphisms a of A such that φo o a =

(</>ι , . . ,φs) has φs = 0. If z is a local coordinate centered at p, φ$o a will have a
matrix representation

Φ(z)=

\
p

whose columns are the φt (i=\,...,s) and the polynomials p^ vanish at z of

order 1 while the q'j are generic (by this we mean that φ are degenerate of order 1).

Then the moφhism φt(w) with matrix representation Φt(w) = (φ\,...,φs + tw) is
non-degenerate for f = t = 0 . The proof then follows by dimensional reasons.
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From the matrix representation above, it is clear that Xs

d~
λ has the "correct"

codimension r -f 1 in Xd. Moreover [ACGH] the singular locus of Xs

d~
l is contained

in Xs

d~
2, hence X^5~l} = Xd~

{\Xd~2 is smooth. Set Xd =: Xd\Xs

d~
2. The holomor-

phic map / : Xd —> G(s n) uniquely defines a holomorphic map / : Bl(Xd) —»

G(s'9n)9 where Bl(Xd) denotes the blow up of Xd on Xd

s~l\ with the ex-

ceptional divisor the projective normal bundle FA/^ ,x(*-i) If π:Bl(Xd)-*Xd

is the blow-down map, / is given by f ( x ) = f(x) for x = π(x)£χ(s~^ and

/(*,v?) = limt^Qlm(φl(/?),...,</>5(/>) + fw) for jc = (p,P) £ ̂ r(5~1), where </>, are

the components of the morphism corresponding to p with </>5(/?) = 0. Notice that
since

Λ ••• «\
(</>,(/?),...,0 + /w) = (<£,(/?),...,w) : : : ,

Vo - • - f /
the image does not depend on / for all ί=t=0 and the limit above exists.

3.3. We want next to study the preimages of the top Segre and Chern classes on
G(s n) under the map fp. Recall that

- a Segre cycle σι,...,ι C G(s;n) is the set of ^-dimensional subspaces of V contained
in a given hyperplane H C V. It is therefore isomorphic to G(s\ n — 1) and has
codimension s9

- a Chern cycle σr C G(s\n) is given by the subspaces containing a given line L
of V\ it is isomorphic to G(s — 1 « — 1) and has codimension r.

Since generically L tfL H9 one sees that they do not intersect, i.e. σr OΊ^I = 0

on G(s n), nor will their preimages intersect under /, i.e. (f~lcr) (f~lss) = 0
on Bl(X). However, setting Ss = π*(f~lσ\,...,\) and Cr = π*(f~lcr) (where π is
the blow-down map), we see that the locus Cr Ss C X is given by the set of
points xeX such that both f~lσr and f~lσ\^\ intersect the exceptional fibre
π-1(jc) C Bl(X). Since the last two cycles do not intersect outside of the exceptional
components, the generic point x e Ss Cr must belong to X^s~}\ Conversely, given
jc0 = (P,PQ) G χ(s~1^ corresponding to the morphism </>o = φ( 9 p o ) with Im^o —
Q9 look at / on the exceptional fibre π"1^) c± IPr. We obviously have f(x0,w) =

IΪΆ($I(p), ?w), where w (modβ) is now considered as a set of homogeneous
coordinates on Pr. Take H C V to be the span of the last n — 1 basis vectors for
V and L the span of the first, e\ say. Taking w = e\ we have that f(xQ9 e\) D Z,
and hence f ( x Q 9 e \ ) G cr, but in general there will be no w such that f(p9w) C

//. This will happen precisely when Q C //, i.e. when (φj(p),e\) = 0 for all / =
2,.. .,5- (since φ\(p) = 0 identically) giving us s — I extra conditions. So we see
that Ss Cr has codimension s — 1 in Λ^"1* and codimension s—\+r+\=nm
X.

3.4. Next we want to study the locus Cr Ss C X. First of all, let us decompose
the relevant cycles as follows:

Cr = {q} x iv-i +IP1 x cr ,
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The locus us-\ C &ί corresponds to the set of morphisms φ( ,p) such that the
polynomials φ] (z = l,...,s) have a common zero. It is therefore a component of
the set determined by the s - 1 conditions Σ(φ\,φl

t) = Q (/ = 2, ...,

is the Sylvester determinant. Recall that [ACGH] two polynomials α(z) =
b(z) = Σ"\biZl have a common zero if and only if

where Σ
z

a\

0 b0

a\

a\

A

A
U

bm

o
n i ΠU-i U

o

• 0 \
A

dι
A

• 0

7 I0 b0 I

Generically, a common root is simple at q, say. The same holds for vr-\ C ̂  this
is the set of morphisms such that φ\ ( / φ l , / = / Ί , . . . , / V ) have a common root, i.e.

it is a component of the locus determined by the r — 1 conditions Σ(φlj , φ ̂  ) = 0
(k = 2,...9r). Again generically the common root is simple. The cycle ss arises
as follows; for any p G P1, consider the set Hp of φ's such that Im φ(p) C //,

i.e. φ j ( p ) = 0 (7 = l,...,s) and notice that LLeipi^/? — IP1 x (y. In the same way

consider the set Lp of φ's such that lmφ(p) D Z, whence ( J i — P1 x cr. Let
us now look at the intersection

Cr Ss = {q} x (ιv_ι MS_! ) + P1 x cr

This has clearly two components, the second one corresponds to a local observable
in the topological σ-model, while the first corresponds to a non-local observable (the
"second descendant" of the local observable, according to the physical terminology).

From now on we will concentrate on the study of the "local component" and
give a geometrical description of the locus ss cr C ̂ s~}\ For any fixed p G P1,
let fp : {p} x & — > G(s,n) be the universal instanton evaluated at p. Obviously

f p ~ l σ r — cr and — ss and cr ss — Cr Ss ({p} x For a generic
point p G βfcd-\ corresponding to the morphism φ = φ( ,p), we consider the mor-

phism ΦQ = φ( , PQ) =: (zpφl,φ2, ...,φs), where zp is a section of (9W\ (1 ) vanish-
ing at p (modulo homotheties). Notice that φ0 is clearly of degree d — 1 + 1 = d
and degenerates at p. On the other hand, since p is generic, one can always as-
sume that φ]

ί(p)ή=0 (ί ^ 2) and therefore Imφo(p) C H. We get in this way a
map gp : 9td__λ -> ^/.

Proposition 4. 1) lmgp ~ cr ss, 2) Λ bίrational isomorphism.

Proof. 1) Easily follows because the matrix representing φo(p) has both the first
row and the first column vanishing. So, as in the proof of Lemma 3, there are two
vectors e\,w such that lmφt(e\) G σr and Imφt(w) G σ\^\.

2) The map hp : cr ss -* 9td-\ given by hp(φo) = φ with φ(q) = φo(q),
(qή= p) and lmφ(p) = \imq^plmφo(q) is an inverse of gp, wherever defined. In-
deed, if φ( - ,gp(ρ)) = φo( - ) and φ( ,hp o ̂ (p)) = 0ι( ) then

Im = lim = lmφ(p) .
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Remark. It is easy to show that ss and cr intersect transversally where gp is well
defined. Indeed the codimension of ss cr is n(= dim^/ - dim^/_ι) and we can
find n vectors normal to this locus as in Lemma 1. The vector w\ = (φ(p,po)9e\)e\
is tangent to cr9 while Wk = (φ(p,po),efc)efc with k = 2, . ..,« give n— I vectors
tangent to ss.

3.5. We have now in our hands the basic tools to understand the quantum correc-
tion for the case under consideration. First of all, let us recall some results of [S]
about the Chow ring st(9K) of 9t. Every cycle 5/ G j/(PJ x ^) can be decom-
posed as St = {p} x w/_ι + F1 x s /. It is clear that the cycles st represent the local
observables of the TFT. Recall also [S] that there is a surjection of the graded ring
Z(s\9...9sS9u\9...9us-\) onto j/(^) which is an isomorphism up to degree d.

One can again use a sketchy argument to conjecture that Proposition 9 below
holds true. We would like to prove that the intersection of a cycle s/ with the
locus ss cr gives exactly the cycle si on Rd-\. This is a bit delicate because
on ss cr the universal instanton fp is not defined at all. In other words the
representatives we just defined for the cycles s / do not intersect transversally with the
cycle ss cr. The naive idea is to change the representatives. Consider "deformed"
cycles st(pr) :— f*(σ\ ,...,ι), where, as usual, fp/ is the universal instanton evalu-

ated at p' . It is clear that Sΐ(p) ~ s t ( p f ) in A ( R j ) for every p9 p' G P1. Moreover
if a quotient p0 in ss cr is represented by a couple (H9p) with p G Rd-\9 we have
fp'(Po) = Im0(/>P) if P*P', and hence timp,^p fp,(p0) = limp/^plmφ(//,p) =
Imφ(p,p) = fp(p)9 where fp : {p} x 3%d-\ ~^ G(s9ή) is the universal instanton

of degree d — I. Notice that, if we set sf

t — f'~{σ\ \ on Rd-\9 we finally get
(P(sl9...,ss) (ss cr))Rd = \imp^p(P(t,(P'\...,ts(p')) (ss cr))Rd = (P(f^

(σ\\...,fp~\σ\_ι)}}R[i_l = (P(s/

l9..9s
t

s))Rd_r To give an effective proof of
Proposition 9, one needs to be more cautious and check a number of facts which
are the content of the following four lemmas.

Lemma 5. Let P = {p\, . . . , pN} be a N-tuple of points P1. The locus 3t%~\P) (s -
h = (s — h\9...9s — h^))9 where rank φ(pi) ^ s — hi has the expected codimension

Proof. A standard argument (see e.g. [ACGH]) tells us that the expected Co-
dimension is Σj /*/(/ + hi). It is then enough to prove that &s

d~
h(P) has a codimen-

sion larger or equal to the expected one. Now &s

d~
h(P) is a finite union of sets of

the form &d,(s-k),k' w^m k,k' G N^ and k( ^ kt ^ hly where Imφ(pι) has dimen-
sion s — kt. As for the meaning of k[9 at a point p G $d,(s-k\k' we have an exact

sequence on P1; 0 — > 0^^ (/?/) — > B — > B — > 0, where y^ (/?/) is the skyscraper

sheaf with stalk C^ supported at {/?/} G P1. The quotient B is locally free around
all the p^s and corresponds to a point in &d-Σk'' Aroun<^ P ̂  ^^(s-k^k7 we have

a map F : ^^(s-kxk' ~^ ^d-Σk' ^e nee(^ on^y to estimate the dimension of its

fibres, that is the dimension of the space {φ G Hom(^4,0y^(/77))|for alh',ker^ D

ker φ(pι)} of deformations of the sequence 0 -^ A — > ̂  -̂  Θ^ (A) ~^ 0» preserv-
ing that the support of the quotient is P C P1. So dim ̂  (s_k) k/ ^

-*) and
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Remark. In the proof of Lemma 5 we will use the fact that Z^~h — : [Jp ^~h C ̂
has codimension larger than Σ^ί(r + ///) — N. We denote by ^/,smg the locus of
non-locally free quotients.

We want to look at the Chern classes, now denoted by [AW/], of the quotient
Q in the sequence 0 — > S —> V — > Q — » 0 which generate the Chow ring of the
grassmannian. We denote by A\ the space of the analytic representatives m\ of the
classes \m{\ and set TV/ = dim A\. Let c/(/O be the closure of their preimages under
the universal instanton restricted to {/?/} x ^/.

Lemma 6. 77/ere are choices of the data ( A W / , , / ? / ) G Λ/ 7 x P1, (/ = 1, . . . ,7V)

^fl/ ch(p\ ) n - . n cιN(pN) c

whenever Σ h

Proof. We use again a dimensional argument. Let U = x£Lι(Λ// x IP1). For every
u G U let F(w) = c/, (/?ι ) Π Π cιN(pN) be the intersection of the analytic repre-
sentatives parametrized by u. Suppose that, for all u G £7. K(w) Π ̂ ^ smg =: 5(w)φ0
and call Y = \JueuS(u) C ^/,sing Look at a component 7o of 7 and suppose that

the generic point of 70 belongs to Z =: Z^~h for some degeneracy multi-index h.

Consider the set Z = {(M,Z) G U x Z z G S(w)} which, by hypothesis, cannot be
empty. We need to estimate the dimension D of the fibres of the second projec-
tion π2 : Z — > Z. Take z G Imπ2 and notice that the points of π^"](z) = {w G t/|z G
F(w)} correspond to all the choices of points /?!, . . . ,/?# and analytic representatives

c / 1 ? . . . , c / ^ such that </>(/?,) G c/ 7 . Then Z) ̂  D\ =: Σ^Wi, ~ h' + ^/r)' ^n ^act we

can move the c/y in a 7V/; -dimensional variety and asking that the c/ ;'s pass through
a point of the target flag manifold imposes // conditions. The extra contribution to
the codimension comes from the freedom of choosing subspaces of V which con-
tains the degenerate image of </>(/?_/). This is the estimate from above of D. On the

other hand D ^ D2 = dim U - dimZ = N + Σ^// ~ dim^/ + Σ hi(r + ht)-N.

Now, since Σh =dim^? ί/, we have £>2 — D\ =Σ^i which is strictly positive
leading to an absurd.

Let us now look at the intersection Wj ='. ss(Q) cr(0) C ̂ . The next lemma
we need is

Lemma 7. W^ is an irreducible subvariety of $4 of codimension n.

Proof. The codimension is obviously smaller or equal to the stated one. We prove
that it is also greater or equal to n. Notice that Wd C ^d~

l and that, since ss is given
by the locus where Imψ(O) is contained in a fixed hyperplane H C F, the same
is true for all p G Wd. Suppose now that p G Wd Π 3td,(S-h),h'(Q) with h' ^ h ^ 1.

As in Lemma 5, we have that #|{pjxIPι = ^l{p}χπ>ι θ ^h (0), where the quotient

B gives a point p G $d-h' ^ is a simple computation to check that the condi-

tion p G ss imposes s — h conditions on the torsion part £fh (0). Thus codim Wd ^
codim ̂ d~

h +s-h = h(r + h) + s-h ^ hr + s ^ AI, the equality holding if and

only if p G ̂ -1) Π ̂ / := ^/,^-i). Summing up, we see that this last set is dense
in Wd and that there is a rational dominant map G : W^ —> $d-\ given by "forget-
ting" the torsion part of the quotients in Wd^s~l\ Since the two varieties have the
same dimension, the general fibre of G is zero dimensional. It actually consists of
a single point, in fact for a generic quotient p G 3fcd-\ the quotient p G Wd such
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that G(p) = p is uniquely determined by the conditions,

I m i * , i f

In conclusion, G is a birational map to an irreducible variety and hence Wd is
irreducible as well.

Remarks, a) A direct inspection of the conditions imposed on the Zariski tangent
space shows that the varieties ss and cr intersect transversally at a generic point. We
can then suppose that Wd is the scheme -theoretic intersection of the two varieties
giving a representative of the class [ss cr].

b) As usual, for every p G W(

d

s~h} =: Wd Π ̂ ~h\ forgetting the torsion part we
get a quotient in Wdι, with d'^d — h. Now the codimensions of Wd in @td and of
Wdι in &ίdι are the same and the number of parameters of the torsion part does not
change; hence the degeneracy loci of the bundle map φ on P !x% have the expected
codimensions and the same proof of Lemma 7 shows that the following also holds;

Lemma 8. There are choices of the data (cι/9 PJ) E Λ^ x P1, (7 = 1 , . . . , J V ) such

that, whenever Σy/y = dim Wd,

wd n cιλ(pλ ) n n ctN(pN) c wd ,

where the quotients B are locally free but at {0} with the minimal degeneration.

From these lemmas it follows that

Proposition 9. Given a word P(s\ , . . . , SN ) in A($d) of degree equal to dim^/_ι,
we have that

..,sN - ss - cr#d = s,...,sN#d_λ .

Proof. Obviously on Wd the birational map G is well defined. Thanks to Lemma 6,
we can suppose that both the intersections live in the locus where the map G is an
isomorphism and where &td-\ represent maps to grassmannian.
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