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Abstract: The propagator for a noninteracting many electron system in a constant
magnetic field in three space time dimensions is computed. This formula and the
results of [FT 1,2] are used to give a microscopic derivation of a BCS-equation with
magnetic field. It is shown that this equation has no solution if the magnetic field
is sufficiently large. Perturbation theory in the interaction around the magnetic field
propagator is discussed.

I. Introduction

In this paper, we consider the model of a many electron system in a constant
magnetic field in three space time dimensions described by the effective potential

s , (I.I)

where the interaction

nψ,Ψ) = Σ Jdξdξfφ0ί(ξ^(ξ)V(ξ - ξ%(ξ')ψβ(ξ') (1.2)

is assumed to be short range and rotation invariant. Here, dμs is the Grassmann
Gaussian measure with covariance S, where S is the exact propagator for a free
many electron system in a constant magnetic field,

r - e -9 τ, x τ ) — e i _^n ~
2π /f=o 2

x e-Ba(τ-τ'\θ(-εn)θ(τ' - τ) - θ(εΛ)θ(τ - τ')]

= e^(yx'-χyf)D(x - x', τ - τ') , (1.3)
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see Lemma II.2. That is, we will consider the interaction as a perturbation, but the
magnetic field is treated exactly without using linear response theory.

We will prove (see Theorem II.3 for the notation) that the translation invariant
part D of S can be written in momentum space as

I oo
ΐ—τ^μB(s)e ¥ [0(-e(M))0(-τ)-0(e(k,s))0(τ)]A
ch -y o

(L4)

which may be compared to the free electron propagator without magnetic field,

C(k, τ) - e-e(k}τ[θ(-e(k))θ(-τ) - θ(e(k))θ(τ)] . (1.5)

Using formula (1.4) and the results of [FT1,2], we derive a BCS-equation with
magnetic field (III. 2. 6) from which the existence of a critical magnetic field follows,
see also the curves in Sect. III.

As a first step towards rigorously justifying this BCS-equation and its predic-
tions, we consider the perturbation theory of the model defined by (I.I). We show
that graphs containing no two or four legged subgraphs are bounded by const'7,
four legged subgraphs produce wl ' s , n being the order of perturbation theory, and
two legged subgraphs have to be renormalized. Furthermore, there is convergence
graph by graph to the B — 0 model. The main problem in proving this is to get
the correct propagator estimates. Once this is done, one can apply the machinery
of [FT1] to get the stated results.

In Sect. II we compute the magnetic field propagator in the symmetric gauge
and prove formula (1.4). Since we are interested in small magnetic fields, effects
coming from the filling factor of the highest occupied Landau level are neglected.
The BCS-equation with magnetic field is derived in Sect. Ill, and Sect. IV contains
a short discussion of perturbation theory.

In this paper, only the main computations are given. The reader who wants to
see more is refered to [Le], where all calculations are done in great detail.

I thank J. Feldman and E. Trubowitz who suggested this interesting problem
to me and the ETH Zurich for financial support during the time this work was
done.

II. The Magnetic Field Free Propagator

The one particle Schrodinger equation for an electron in a constant magnetic field
B = (0,0,5) in two dimensions without spin is

i
(II. 1)

where μ denotes the chemical potential. The propagator S will be calculated in the
symmetric gauge

— V — eA \ — μ } ψ = εψ ,
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A computation in a nonsymmetric gauge A(x, y) = (—By, 0,0) is given in [Le]. In
the first case, the eigenfunctions of (II. 1) are labelled by two discrete parameters
whereas in the second case one gets one discrete and one continuous parameter. So
in the first case the calculation of the covariance involves two infinite sums and in
the second case there is one integral and one infinite sum which of course yield
the same result up to the phase factor

which is due to the gauge transformation

A(x,y) = A(x,y) + V ί -xy ) . (II.4)

Here ξ = (x,τ) = (x,y,τ).
For simplicity, the computation is done in infinite volume and it is assumed

that the highest occupied Landau level is fully occupied with electrons, that is (see
(II.6) below) εn φO Vπ 6 N, so effects coming from the filling factor of the highest
Landau level are neglected. This should be no restriction in considering magnetic
fields concerning superconductivity, because there the number of Landau levels is
of order 104 or 105 (for BCS superconductors).

We now present the calculation of S in the symmetric gauge. In Sects. Ill and
IV all calculations are done with S. The following lemma summarizes the properties
of the eigenfunctions of (II. 1) which are well known.

Lemma II. 1 (Eigenfunctions). Put eji and the electron mass to one and iden-
tify (x,y) with z = x + iy. Then the normalized eigenfunctions 0/(Iί.l) in the
symmetric gauge (II.2) are given by

with energy eigenvalues

where n,m E {0, 1,2, . . .} and m — n has the meaning of angular momentum. They
have the following properties:

φnm(z)*=(-l)n-mφmn(z), (Π.7a)

φnm(k = k{ + ι*2) = ̂ (-iγφnm (~ik) , (ILTb)
β \ ΰ J

Σ Φnιm(Z} )Φn2m(Z2T = ( ̂ } * Φn^fr ~ Z2)e^/m(z^ . (Π.7c)
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Lemma II.2 (Propagator). The magnetic field free propagator with imaginary time
in infinite volume and symmetric gauge is given by

oo 7

S(ξ,ξ')= Σ Φnm(z)Φnm(zΎe-K"(τ-τ\Cn,τ-τf]

ξ'), (Π.8a)

where the translation invariant part D of S is given by

B °° /Br 2

Here, ln(v) = Ln(v)e 2 denotes the Laguerre function,

( -1 ifεn > OΛτ > 0

1 ifcn < θ Λ τ < 0 (Π.8c)

0 else

and εn — B(n + |) — μ. The spatial Fourier transform of D is

D(k,τ) = Σ 2(-l)Λ/Λ ( — ) e~ί;'7τ[εn,τ] , (II.8d)
n=0 V ^ /

where k = (&ι, &2).

Pr<9o/ By definition (see for example [FW]), the imaginary time propagator is

S(ξ,ξ') = EΦnm(z)φnm(z'Te~κ"(τ-τ/}[θ(-8n)θ(τf - τ) - θ(εn)θ(τ - τ')] ,
nm

where θ(υ) denotes the step function which is one for υ > 0 and zero otherwise.
Use (II.7c) to perform the m-sum:

00 # f R\7 7f

V^ JL / _ Λ J L / _ / Λ * ^ r #\Z -Z
* » * » ~n

m=Q 2π \ 2

The Fourier transform is computed with (II.7b) for n = m\

2π., .,„, /2k2

π 2 ;ι w- ^
thus (Π.8c) follows. D

The free B = 0 propagator in the mixed representation, that is in (k, τ) =
(£ι,£2,Ό-space, is given by

with
2

(11.10)
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It is hard to see from (II. 8d), how (Π.9) is obtained as B goes to zero. From the
following representation (11.11) of D the limit B — > 0 can be read off. The main
use of formula (II. 1 1 ) below is that it simplifies the evaluation of Feynman graphs
in momentum space, in particular, the computation of the critical magnetic field
in Sect. III.

Theorem II.3 (Propagator). In (k,τ)-space, the translation invariant part of the
magnetic field free propagator is given by

)— ̂ -2
cn T °

(IL11)

where ch, th are the hyperbolic cosine, tangent, ln(v) = Ln(v)e~^ is the Laguerre

function, e(k,s) — ̂  — μs, εnβ = B(ΠB -f \} — μ and

(Π.12)ns= + ,

where the square brackets in (11.12) are Gauss brackets, thus 0 ̂  εnβ ^B.
Furthermore,

(11.13)

is a δ-sequence with limit δ(s — 1).

Remark. The second term on the right-hand side of (11.11) converges pointwise
to zero, since for s ^ β > 0 there is the estimate |/n(5 )| ^ ^T- and HB goes to

infinity if B goes to zero.

Proof, nβ is by definition the smallest natural number such that εnβ > 0. Thus

» nB-\ /ιι,2\

ΰ(k,τ) = „„<-»"<• Vr -'"«->

We will now prove the formulae:

n— 1

k=0

and for \t\ < 1 it is

+ '

t

n(-\}»ln(x) ,

(11.14)

(11.15)
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The following proof is short, but one has already to know the answer. An alternative
proof which makes clear how the above formulae have been found is given in [Le].

For I / ) < 1, let

G(x,t) =

be the generating function for the Laguerre functions. We have

where

Hence

which gives the recursion relation

2/J + /o = 0, 24 - 2/i_, + lk + /A^-i - 0, * ^ 1 .

Now let sn(x,t) be the left-hand side and in(x9t) be the right-hand side of (11.14).
Then

Dsn(x,t) =2l'0(x) + h(χ)

and

DιΛ(Λ,0 = 2 -(-tγia(x) - 2(-tγΓn(x) -

where in the last line the recursion relation has been used. Therefore, the difference
An(x, t) — sn(x, t) — in(x>t) obeys DAn(x, t) — 0 which gives

But ([GR],7.414.6)

l+t 1
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thus

161

i

1 -h f 1 -M Λ:=0

which proves (11.14). Formula (11.15) is obtained by writing

k=n

and

-2t"JdS(-l)Ίn(s)e-
o

1 _i=ί£ /

I - / \

\+t 2

l+t O2

Now put f = e~^T, x=^- and w = ̂  in (11.14, 15) and substitute the integration

variable s by v = -j^s to obtain the final result (11.11). A detailed discussion of the

<5-sequence is given in [Le]. See also the curves below. D

In comparing (II.8, 11) with (Π.9), one can see essentially three differences.

(i) The magnetic field propagator is no longer translation invariant. This is due
to the fact that linear momentum is no longer an eigenstate but angular momentum.

(ii) In momentum space, there is no longer a sharp fermi surface (or Fermi
circle, since we are in two dimensions). Rather, the Fermi surface is smeared out
with the delta sequence δβ(s) so that the density of states in momentum space

k:
θ(μ-%) is substituted by f£°dsδB(s)θ(μs-£) = 1 - ft" dsδβ(s), see the fol-
lowing curves.

«*(•)

, = 30
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th —
(iii) The imaginary time variable τ is substituted by —^-. This is the most

important effect (for our purposes), since it changes significantly the values of
the Feynman graphs. Graphs containing two legged subgraphs become finite and

the flow for the four point function is expected to be convergent for B ^ e r~9

th^Σ ~

see Sect. III.3. Furthermore, the factor —f- appears directly in the BCS-equation

with magnetic field (IΠ.2.6), and is responsible there for the existence of a critical
magnetic field. To see this factor, it is necessary to compute the infinite sum over the
Laguerre polynomials, since, mathematically, it comes from the generating function
for the Laguerre polynomials. Physically, it expresses the fact that electrons are
localized by a magnetic field.

Finally, the factor e~κ"Bτ requires a short discussion. The assumption that the
highest Landau level is fully occupied with electrons means that there is no n G N
such that εn = 0. ΠB is by definition the smallest natural number such that εn > 0.
Then 0 < εnβ < B, so one can write

εnB=<xB (Π.lόa)

with some 0 < α < 1. However, for α arbitrary close to 0 or 1, the τ-decay of
the second term in (11.11) becomes arbitrary bad, although it converges point-
wise to zero. In order to keep the estimates of the following sections (for ex-
ample the estimate for the second term in the BCS-equation (III.2.6)) uniform,
assume

ε ^ α ̂  1 -f i (Il.lόb)

or• equivalently define the set of admitted magnetic fields to be

= u (Π.lόc)
n+ ±- ε n- £ +,

Then the measure of the set of neglected fields can be made arbitrarily small since

^ ( V V \ o v^ l ^Σ I ϊ i — 2με ̂  p- ^ const ε .
Λ=! y ~r 2 2 / «=1 V -Γ 2 ^ ^

III. The Existence of the Critical Field

7/7.7 The 5 = 0 BCS-Equation. In [FT2], Feldman and Trubowitz obtained the
BCS-equation (without magnetic field) in the following way:

Consider the effective potential for an interacting many electron system which
is given by

^)φc(ιA></'), (III. 1.1)
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where C is the free propagator corresponding to the normal ground state

C(ξ, ξ') = C(ζ -ξ') = f -e>^-*ϊe-
eMτ-τ>(θ(-e(k))θ(-τ) - θ(e(k))θ(τ)]

_ f d2k - θί*0 ,k(x-x')-i*o(τ-τ')__L_ Πττ , ^

~ j (2π)2 j 2πβ ik0 - e(k) (UU2)

and e(k) =j — μ. The quartic interaction y is assumed to be short ranged. They
started to anlayse ^ in perturbation theory [FT1]. It turned out that all graphs con-
taining no two or four legged subgraphs are bounded by const", n denoting the order
of perturbation theory, that all graphs which contain no two legged subgraphs are
bounded by n\ const", and that graphs containing two legged subgraphs are in gen-
eral infinite. They introduced a localization operator L, which acts nontrivially only
on quadratic and quartic monomials and isolates the singularities and nΓs produced
by the two and four legged subgraphs. Then all graphs contributing to (1 — Uβ are
bounded by const". In [FMRT] and [FKLT1,2] it is shown that (1 - L)<8 is indeed
an analytic function at λ = 0 with a fixed, volume independent positive radius of
convergence.

The relevant part L% of the effective potential is analyzed by a renormalization
group flow [FT2]. If one expands the kernel F(/z) of the quartic part of L^(/z) into
a Fourier series,

F ( A )(fV) - F(A)(cos 0) = £ λ(

7

Λ) cos Iθ ,
/=0

where kf = (O^FTΠΠT) denotes the projection onto the Fermi surface, one obtains

in the ladder approximation the following flow equation for the coefficients λ\h\
see [FT2]:

λ(»-» = λ (

/

A )-fj8 ( Λ )(λ (

/

Λ )) 2, / ̂  0, (HI. 1.3)

where

β(h} =

approaches the limit

1 00 1

β = 7^2r!dy-ip2(M~2y2ϊ-p2(y2κ (m.ι.4b)(2πγkF

 J

0 y

and p(jc) is some Cξ° function, which is one if c £Ξ 1 and zero if x ^ M2, M being

some constant bigger than one. If one starts with A; > 0, which corresponds to
an attractive potential, then the sequence generated by (III. 1.3) diverges to infinity
which is interpreted as: the normal ground state is not stable. In order to get a well
defined effective potential, one introduces a Δ in the following way:

Define the two component Nambu fields
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or in momentum space

Then the Grassman Gaussian measure becomes dμc(Ψ,Ψ) with co variance matrix

C(ξ,ξ') = (Ψ(ξ)Ψ(ξ')) = / -^-*'ϊ-<k^- - e(k)σ3Γ' ,

and the effective potential can be written formally as

Then add and subtract J^ Ψ(k)Δσ{Ψ(k) to get

',**) = log i/VΓ ;

= log . (ΠLL7)

where now

- β(k)σ3 -

The new covariance is bounded by ^p, which has the consequence that now all
graphs are finite. But if A is going to zero, graphs containing two legged subgraphs
diverge. To produce an expansion uniform in A one has to renormalize, that is, one
has to add counterterms

(HI. 1.9)

to the exponent in (III. 1.7). But then, to recover the physical effective potential,
one has to impose the constraint

A = -D(λ,μ,A)9 (III.l.ll)

which, in first order, gives the BCS equation:

Δ = -D(λ,μ,Δ} = -Tr[σ !( lί0=o,|k|=*F]
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where k'= (Q,kF fo). Taking (k',p\V\p,k') = θ(ωD - e(ί)\)θ(ωD - |e(p)|), one
obtains the familiar equation

1 = -λ const Jd2pθ(ωD - |e(P)l)
e(p)2 + A2

ωD/A ι

= -Aconst / dυ (IΠ.1.13)

u U A _const
which gives A = cope * .

HI. 2 The BCS-Equation with Magnetic Field In the case with magnetic field, one
can proceed in an analogous way. However, because the Hamiltonian is diagonal
in (n, w)-space, one has to work in this space rather than in momentum space. In
(«,m,&o)-space, the covariance is

ikQ - εn

Introduce the two component fields (ΠI.1.5). Since φnm(z)* = (-\)n~mφmn(z),
the two component fields in (Xw)-space are given by

Ψ(n,m,ko) =

and the covariance matrix becomes

S(W,/H,*O) = (ikol - εnσ
3Γl - (III.2.3)

Then writing the integration measure formally as

exp<- Σ J^Ψ(n,m,k0Kik0l-εnσ
3)Ψ(n,m,k0)\d(Ψ,Ψ),

[ /ι,w=0 2π J

and adding and subtracting the term

00 fJlr

Σ S-±Ψ(n,m,ko)ΔσλΨ(n,m,ko), (IΠ.2.4)
«,m=0 ^π

one obtains the new covariance

which becomes in coordinate and momentum space

SΔ(ξ,ξ')= E φnm(z)Φnn,(z')J~e->k^-τ'
n,m=Q 2π
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where xx/J~ = yx' - xy',

= y In \
2π Π=0

 Λ \ 2

oo / 2k2 ^

Then the BCS-equation with magnetic field is given by the first order approximation
to the constraint

A = -D(λ,μ,B,A). (ΠI.2.5)

Theorem IΠ.2.1 (BCS-Equation with Magnetic Field). Lei (k,p\V\p,k) = θ(ωD -
|e(k)|)θ(ω£) — e(P)l) 77z£W, w^/wgf /Λe approximation δβ(s) ~ δ(s — 1), //ze //r^s1/
orJer approximation to the constraint (III.2.5) is given by the equation

f D t r / ] \ R - ι ' \
B ~Λ ,+ _o^tv,-£i ^ . ί B sn[i 5 — oO^fJ I

1 = const λfdtJo(t) < chα—

(ΠI.2.6)

where J$ denotes the zeroΐh Bess el function and α w defined by εnβ = uB, ε ̂
α ^ 1 -ε, see (11.16).

i

without magnetic field reads

Remarks. 1) Substituting -jL= = f^° JQ(t)e'υtdt in (III. 1.13), the BCS-equation

00 1 ωD

1 - c o n s t λ f d t J 0 ( t ) - ( l - e-—1) (IΠ.2.7)
o t

and is the 5 —> 0 limit of the above equation.
2) For zero magnetic field, one has a pairing between (k,|) and (—k, |). With

magnetic field, linear momentum k is no longer an eigenstate, but angular momen-
tum l — m — n is. Then the zίσ^term in (ΠI.2.4) gives a pairing between (/, |)
and (-/,|).

Proof. In the case with magnetic field, the graphs contributing to D(λ,μ,B,Δ) have
to be evaluated in (#,m)-space at n — n% and k$ — 0. A two legged graph G is
expanded as follows

n,m=0

G(n,*o) = jdxdydτl,, eik«τG(X,y,τ)
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With (k,-k\V\p,-p) = 0(ωD - e(k)\)0(ωD - |e(p)|), one obtains to first order

--Ί

'?'

Q
' =/

λfdsδB(s)f ~0(ωD - \μs- μ\)θ ( ωD -

A

Now, using OB(S) ~ δ(s — 1) and performing the po-integral, one gets

D(λ,μ,B,A}=constλ J d
-c)D

(ΠI.2.8)

To compute the infinite sum, use the fact that the Laplace transform of the zeroth

Bessel function is (s2 -f- 1 ) ~ 2 5 that is

(III.2.9)

The resulting sum can be computed using Theorem II. 3. One obtains

2(-iy/ π

2s
ch τ

l'1"" - D(p,-0 -D(p,

^~l"2

+ 2 (IΠ.2.10)
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Write εnβ = aB with ε < α < 1 — ε (see (11.16), and again neglect the smearing in
the chemical potential. Then (ΠI.2.8,10) yield

D(λ9μ,B,A)=constλAdtJQ(At) d - μ
0 -o)D

ch2f
μ-

V
5

/I sh f/

Γand again CB = J ω£ dsδβ(s) may be approximated by one, which gives the stated

equation. D

In order to have the B = 0 BCS-equation (III. 2. 7) a solution A, the exponent
^ must be chosen large. In (IΠ.2.6) however, the magnitude of the exponent is

determined by the ratio ̂  because the A appears in the hyperbolic tangents which
is always bounded by one. Thus in order to get a solution A, B has to be sufficiently
small. This becomes clear in considering the following curves:

shr

. B ωD I
, t> = — . h — - , α = -

ωD

y Δ ' 2
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For the computation of the critical field, let b = -̂, h = ^j and let A —> 0 or

h —» oo. (III.2.6) becomes

00 / τ λ ί '= const λ f d τ J o ( — } < chατ :

π \bhJ

l sh[(+-α)τ]

shτ

^oo .7, ί ' l-e-* t h* , l sh[( i-α)τ]\
— >• const Λ / ατ < chατ -- --- *—. - >

o \ shτ 2 ch±τ J

and one computes

Bc — const ω/)β~^^tΊ = const A . (IΠ.2.12)

III. 3 The Flow of the Four Point Function. In the preceding paragraph, it has
been shown that the appearance of the hyperbolic tangents f thy instead of τ in
the magnetic field free propagator is responsible for the existence of a critical field.
Thus, one would expect that the flow of the four legged part of the effective potential
behaves differently than the B — 0 flow (III. 1.3, 4) if one takes the approximation

2 [e(k),τ]=D(k,τ)
en -χ~

for the exact propagator (II. 8, 11) and neglects the phase factor in (II. 8a). This is
indeed the case.

Lemma III.3.1. Substituting the B = 0 propagator C by D, the flow equation in
the ladder approximation (III. 1.3) becomes

(IΠ.3.2)

where contrary to (IΠ.1.4b) the β(^s satisfy

Σ β(

B

h} = const ( log^ + const ) . (IΠ.3.3)
h=-oo V B J

Proof. The β(/z)'s become

β(

S

h) = /^^l^"^)!2 - \D(<h\p)f) , (ΠI.3.4)

where

-^ w,v,-j^
cn ^

and p as in (III. 1.4). One computes

2/B / o2

= fdv - —v
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Hence (IΠ.3.4) gives

oo 2/B / n2

β(

B

h} = const fdyfdυ(\- — υ2

o o V 4

y - /ι)2) - p2 (M-2h(y - μ)2)} . (IΠ.3.5)

These βB s show a different behaviour than (IΠ.4a, b) since

0 oo 2/B / r>2 \

£ ^A) = const fdyfdυll- — v2 e'2^^ 'p2(M~2(y - μ)2)
h=-oo 0 0 V 4 /

i l-e~4^u ( 1 λ
= const fdu(l — u ) - = const I log— + const I

o u \ & J

in contrast to lim/z^_00^
(/z) = /?. D

It has been shown in [FT2], that if

supmΠ) Σ β(Bh} £ y < i , (πι.3.6)
/^O Λ=-oo

then all sequences of ^A)(5)'s generated by the flow equation (ΠI.3.2) converge

irrespective of the sign of λ] . That is, if (III. 3. 6) is satisfied, then the normal
ground state is stable, no matter whether the potential is attractive or repulsive

provided λ is small enough. Since λ^ is proportional to λ and because of (IΠ.3.3),
condition (III. 3. 6) implies

λ I const log — h const, , < 1 or B > const e
B

in agreement with (ΠI.2.12).

IV. Perturbation Theory

In this section, we summarize without proof (for details, see [Le]) the results con-
cerning perturbation theory of the model (1.1,2,3), where V is assumed to be a
rotation invariant potential in Ll(R3). Spin indices are neglected. Since one is in-
terested in bounds which are uniform for small B, the strategy is the same as in
the zero magnetic field case. For B = 0, it is proven in [FT1] that

- the ultraviolet parts is irrelevant, that is each graph is bounded by const" in the
ultraviolet regime;

For the infrared part, one obtains
- two legged graphs are in general infinite, they have to be renormalized;
- four legged graphs produce nΓs.
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In the case with magnetic field, one obtains the same results uniform in 0 ^
B <; #o, that is

- the ultraviolet part is irrelevant, each graph is bounded by const77 with a B-
independent constant;

For the infrared part, one obtains

- two legged graphs are finite, but they blow up for small B, so they have to be
renormalized;

- the values of all graphs without two legged subgraphs converge to the correspond-
ing values of the B — 0 graphs as distributions. The same holds for renormalized
graphs if there are two legged subgraphs. Graphs containing four legged sub-
graphs may be bounded by constg, but in the limit this jumps up to const"nl
which is the uniform bound.

The ultraviolet and infrared part of the model are defined by the decomposition

i=JB

where the ultraviolet part is given by

D

(IV.l)

and the infrared part at scale j is

Ώ 00

r- Σ'/i
2πΛ = 0

where h is a smooth monotone function obeying

' 0 if x < 1

M is a real number bigger than one and

_2 J h(x) if x ^ M2

\ 1 -h(M~2x) if jc ^M2 ,

has support in [1,M4], thus f(M~2Jχ) forces M2^ ^ jc ^ M4M2^ and

1 - Λ(jc) + E f(M~2jx\ x > 0 . (IV3)
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JB is determined by MJB+2 — εB, εB ^ εnβ rg (1 - ε)B. The basic estimates are
given in the following

Lemma IV.l (Covariance Estimates).

a) There is the decomposition D(0\ξ) = D(

r^(ξ) + D(^g(ξl where

Z const i , (IV.4)

p G C^° being one for ξ < 1 #«£/ zero for \ξ\ < 2.
b) Le/ 7β ^7 ^ — 1 tfftflί Λ^TV7 G N arbitrary. Then there are μ dependent con-
stants CΊ > c\ > 0 and a constant const = consttyw'.Λ/,/* swc/z

D(j\ξ) ^ const c maxc j /„ ( ̂  ) JM^l + (MV)^]'^! + (Mj\τ\)N/Γ} -
c-β =n=-jj- U \ / J

(IV.6)
c) There are the pointwise limits

lim £>(0)(0 = C(0)(0, lim Du\ξ) = C(j\ξ) , (IV.l)
B-+0 B-^0

where

ίί the ultraviolet part and

is the scale j infrared part of the B = 0 propagator.

Inequality (IV.4) is the same as the B = 0 bound and ( IV. 5) is smaller than

the B = 0 bound which is -ρ(ξ)^Γτe
μτe''^θ(τ). Thus the fact that the ultraviolet

part of (1. 1 ) is irrelevant is an immediate consequence of the corresponding result
of the 5 = 0 model. Equation (IV.6) differs from the B = 0 bound only in the

factor maxq^^c^ I \ln ί^rj > which would be substituted in the latter case by

(1 + r)~2. However,

max ί const !—Γ, (IV. 10)

since the estimate fails near the turning point of the Laguerre function where the

decay is only r~3 ? so the decomposition

!—_ ^ ^ constM^β-M"(1+r) , (IV.l l)
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which is done to estimate the B — 0 graphs, has to be substituted by a suitable
decomposition of the Laguerre function. This can be done (see [Le], Lemma IV. 1.3).
The net effect is, that, as in the B — 0 model, the bound on a labelled graph, that
is a graph with scales on all lines, in 2 + 1 dimensions can be reduced to the one

dimensional case where the covariance Cf at scale y/ ? / being some line of the
graph, obeys

\cγl\y)\ ^ Mϊjig(MJly\ g G Ll (R) Π L°° (R) . (IV.12)

The power counting of such graphs is given by the following

Lemma IV.2 (Power Counting). Let G2q be a connected amputated graph with 2q
external legs build up from generalized vertices or subgraphs I2qv obeying

III/2JH0 ΞΞSUpSUp^ \I[fddXj\ \l2qfci,... 9X2qv)\\ < OO .

For S C {1,...,2#}Φ0 and testfunctions fk G Ll(Rd) ΓiL°°(Rd\ introduce the
norm

Suppose each line of the graph has a covariance C^ with

\Cu\x)\ ^ Mτ'g(MJx\ g G Ll(R

Then there are the following bounds

\\\G2q\\\s £ c-v
^e^mt

x Π (III^JIkM^^-^^OM-?^-^^, (IV.14)

where c = max{||0||Lι, ||^||LOO}. Thereby a vertex is called external, if at least one
of its legs is integrated against a testfunction.

Iterating (I V.I 3, 14) for different scales, one gets a summable decay for qυ ^ 3,
a marginal situation which produce ftl's for qv = 2 and an exploding factor for
qυ = 1, that is, in the case of two legged subgraphs. They have to be renormalized.
Since the magnetic field propagator (/&o — εn)~{ has its maximum at k$ = 0 and

n — nB, the local part of a two legged diagram G(ξ\,ξ2) — e z 2 χ ι χ 2 G(ξ} — £2) is

given by

= G(n =

where

G(n,ko) - fdτe'k°τfd2rln ~ G(r,τ)
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Then a renormalized graph (1 - lj)f dξ\dξ2G(ξ\,ξ2)ψ(ξ\)ψ(ξ2) has indeed an im-
proved power counting since ([Le], Lemma IV.3.6,7)

|G(/ι,Ao)-G(/ι*,0)| ^ (N + |εΛ-βπB | ) | | |£ |G(ξ) | |/,ι ^M^M^M^ (IV.17)

which is an improvement of MJ'~IG since j < /<;, ΪG being the lowest scale of
G, because the renormalized tree expansion produces renormalized subgraphs RG
only with scale IRQ > j whereas counterterm subgraphs LG have scale IIQ ^ j.
To review the formalism of renormalization, see for example [FTl] or [FKLT1,2],
where an inductive treatment is given.

Using (IV. 17), one can prove ([Le], Lemma IV.3.8) as in the B = 0 case ([FT2],
Lemma II.2), that a string of two legged subgraphs (renormalized and counterterm)
may be substituted by a single covariance. Then one can apply the power counting
lemma without having qυ — 1 to obtain

Theorem IV.3. Let G = G(B) be a (necessarily connected and amputated) nth or-
der graph with 2q external legs contributing to the renormalized effective potential

dξ(ψ+ψe)(ξ)(ϊ+ψe}(ξ}d ,,
^ \Y •> Y J A V y& rγ J ^ Uf^S\ψ •> '

Γ//e« rΛβr^ w α constant independent of B such that

Furthermore,
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