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Abstract: The spectral problem for the g-Knizhnik-Zamolodchikov equations for

Uq(sl2)(§ < q < 1) at arbitrary non-negative level k is considered. The case of
two-point functions in the fundamental representation is studied in detail. The scat-
tering states are given explicitly in terms of continuous g-Jacobi polynomials, and
the S-matrix is derived from their asymptotic behavior. The level zero S-matrix is
closely connected with the kink-antikink 5-matrix for the spin-^ XXZ antiferromag-
net. An interpretation of the latter in terms of scattering on (quantum) symmetric
spaces is discussed. In the limit of infinite level we observe connections with har-
monic analysis on p-adic groups with the prime p given by p = q~2.

1. Introduction

There is accumulating evidence for the idea [1] that excitation scattering in inte-
grable models is "geometric," i.e., that the corresponding wave functions are spheri-
cal functions of certain quantum symmetric spaces. With this idea in mind, we have
recently derived [2] the physical S-matrix for the scattering of kinks and antikinks
for the (spin-1) XXX and XXZ anti-ferromagnets, starting from the level zero

g-Knizhnik-Zamolodchikov (q-KZ) equations for Uq(slι) in the fundamental repre-
sentation (the Heisenberg XXX case corresponds to q = 1). These q-KZ equations
[3] are {/-deformations of the ordinary first order differential KZ equations [4],
which, in turn, are similar to the familiar Dirac and Bargmann-Wigner [5] equa-
tions. That the q-KZ equations apply in the kink-antikink problem has to do with
the fact that kinks and antikinks are known to be spin ^ excitations [6,7]. Here
we make this connection more precise and extend this work to non-negative val-
ues of the level k. This brings the continuous g-Jacobi polynomials into play and
physics-wise concerns SLq(h -f- 2)-magnetics (or the corresponding generalizations
of Baxter's eight vertex model). The first-order matrix q-KZ operator is cast here
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in the role of the radial part of a Dirac operator, whose "square" yields the radial
part of the Laplace operator on the quantum symmetric space. A new ingredient
here is the spin-orbit interaction that allows one to describe the scattering in triplet
and singlet states in terms of zonal and tesseral spherical harmonics respectively.
This picture leads also to useful insights concerning the p-adics-quantum-group
connection [8,9,10,11].

As in [2], we deal here with the spectral problem for the g-KZ operator and
not the monodromy problem considered by others [3]. The difference between these
two problems will be discussed: in a certain sense they are each other's duals.

The paper is organized as follows. We start in Sect. 2 with the classical (q = 1)
case where the q-KZ equations are the usual differential KZ equations [4] written
with trignometrίc rather than rational classical r-matrix. In other words, one uses
a Borel type polarization instead of a parabolic polarization. The KZ equation in
trigonometric form contains the highest weight of the vacuum representation which,
when continued to the whole complex plane, may be viewed as a spectral parameter
λ. The spectral problem yields a non-trivial /l-dependent S-matrix which in case
of level zero is closely connected with the kink-antikink ^-matrix in the spin ^
isotropic (XXX) Heisenberg model, λ being the relative rapidity of the excitations.
The precise form of this connection is discussed below in some detail.

In Sect. 3 we solve the spectral problem for the g-deformed KZ equations at
arbitrary non-negative level k. The scattering states are explicitly found in terms
of continuous g-Jacobi polynomials. Section 4 deals with the special case k — 0.
The obtained 5-matrix is shown to be very closely related to the kink-antikink
S-matrix in the spin—^ XXZ antiferromagnet. The corresponding scattering states
may be interpreted as spinorial harmonics on the SLq(2) quantum group. Another
interesting special case is the limit of infinite level (k —» oo) considered in Sect. 5.
If q2 = p~} and p is a prime number this case turns out to be closely connected
with harmonic analysis on the p-adic group PGL(2,Qp). We discuss some aspects
of this connection and suggests an "arboreal" interpretation of spinorial harmonics
on the ;?-adic group in terms of Bruhat-Tits trees. Section 6 contains a general
discussion and conclusions. In Appendix A some technical details related to Sect. 3
and explained. Appendix B contains a brief review of the continuous g-Jacobi poly-
nomials.

2. The Classical (q = 1) KZ Equation, its Spectral Problem and S-Matrix

We start from the classical (q = 1) KZ-equation for sl^ in the fundamental repre-
sentation for level k. The case k — 0 was treated in our earlier paper [2]; here we
right away address the case of generic k. With normal ordering relative to a Borel
polarization, consider the matrix element

Ψ(xi)=(Ωί\Φ(x2)Φ(xl)\Ω) (2.1)

of the product of two vertex operators Φ between suitable vacuum states. This
matrix element depends on only one variable, which in an additive parametrization
can be chosen as

x = ^1 ~χιϊ (2.2)
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The matrix element Ψ(xt) is then a C2 0 C2 valued function Ψ(x) of the variable x.

This Ψ(x) obeys the KZ equation, which, for sl^ at level k and in the fundamental
representation, takes the form

(k + ̂ -~ = (rι2(x) + πι(#)m*) , (2.3)

where πiCO is the familiar trigonometric solution of the classical Yang-Baxter
equation

Γ l 1

|_ 2 2

E=

- E (g) F 4- F <g> £ :

Γ

-i
with 1 the (real) parameter of our spectral problem. In the combination k + 2 on
the left-hand side of Eq. (2.3), the term 2 is the dual Coxeter number g = 2 of s/2.
The choice of the term proportional to the 4 x 4 unit matrix in the expression of
r\2(x) (the last term in the square bracket in the first equation (4)) is irrelevant
as far as the Yang-Baxter equation is concerned, but considerably simplifies the
argument. With respect to a basis va 0 Vb, a,b = ± of C2 0 C2, we can expand

Ψ(x) = a(x)υ+ 0 v+ + f(x)υ+ (g) V- + 0(*)ι>_ ^ ̂ + + b(x)v- 0 ι;_ (2.5a)

In components the KZ equation (2.3) then becomes

4-<*(x) = iλa(x\ 4~bW = -iλb(x), (2.5b)
dx ax

cothjc - τ—^σι cothz ) ψ(x) = ί ( λσ3 + ——σ2 ] ̂ ), (2.5c)

//w
(2.5d)

where σ/ are Pauli matrices. The nonzero weight components a(x) and b(x) decouple
and are trivial (Eqs. (2.5b)). Henceforth we ignore them. The interesting equation
(2.5c) involves the zero weight sector. This equation is similar to a Dirac equation
with our spectral parameter λ playing the role of mass in a "75 -type" mass term. It
is convenient to introduce the triplet and singlet combinations

F+(x) - f ( x ) + g(x), F-(x) = f ( x ) - g(x) , (2.6)

which obey the first order differential equations

~

(2.7b)
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Here prime stands for derivative with respect to x. Equations (2.7) lead to the
decoupled system of second order differential equations

+ Γ^coth*T-) F+W = ~ (λ2 + π 1-jvl F+W » (2'8a)

k + 2 dx) \ (k + 2)2J

d 2

-(*>• (2.8b)

Equation (2.5c) is equivalent to Eqs. (2.8) supplemented by the constraint Eq. (2.7b).
Equation (2.8a) is a special case of a general theorem on the connection between

solutions to the KZ equations and zonal spherical functions proved by Matsuo [12].
Both Eqs. (2.8) can also be extracted from Cherednik's papers [13], as has been
pointed out to us by A. Veselov. It is convenient to introduce the new variable z,
the new functions G±, and the new parameters nj defined by

z = cosh c, G±(z) = F±(x) ,

/ = ϊk> π = -/ + ίλ,

in terms of which Eqs. (2.8) become

T + ̂ 441 G~^ = («»+2/)+ π) πG~w' <2 9b>:2 z 2-! JzJ V z 2 -i; z 2-!

The constraint is

= (jλ — /)(z2 — l) - 1/2G~(z). (2.9c)

Equation (2.9a) is the familiar differential equation obeyed by the Gegenbauer func-
tions Q'(z) for v = /. We normalize them by the condition C^(l) = 1. The following
useful representation in terms of the hypergeometric function holds:

Equation (2.9b) can be reduced to the same form by a simple transformation so
that the solution regular at x = 0 (z = 1 ) has the form

G+(z)=AC'_,+ti(z), (2.10a)

~

where yί is an arbitrary constant. So we see that the condition of regularity at x = 0
makes the space of solutions to the matrix Eq. (2.5c) one-dimensional. Note that this
boundary condition is exactly the same as that for spherical functions on symmetric
spaces. In particular for k = 0, so that / = ^, the Gegenbauer functions reduce to
Legendre functions in agreement with [2] and G~(z) in this particular case turns
into an associated Legendre function.
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In this paper we consider the "radial" scattering problem for the system (2.5c)
on the half-line of positive c with the boundary condition discussed above. From
the known aysmptotics of Gegenbauer functions [14], we get

= Ac(λ)el)jc~lx + Ac(-λ)e-
i}jc-lx , (2.1 la)

λ)e-"JC-lx , (2.1 Ib)
/ — iλ

where the ofunction is

Ty (2.12)

The solution (2.11) of the system (2.5c) involves a superposition of incoming
and outgoing waves, and corresponds therefore to a scattering state. One can rewrite
it in terms of the initial components f ( x ) , g ( x ) :

/(*)Uoo - Ac(λ)e^-lx + ̂ Lc(-λ)e-^~h , (2.13a)
/ — IA

0(*)Uoo = --c(-^e~l)jί~h > (2 13b)

The scattering matrix should transform incoming "particles" (waves) to outgo-
ing ones. In the case at hand it is more convenient to define the inverse S~l of
the iS-matrix as an operator that transforms outgoing waves to incoming ones. So,

if the outgoing wave at infinity has the form [l^e

l/χ~lχ (as in (2.13)) then the

( /£-l\ \
/ o - i x 1 1 ) e~

l}jc~/x, where
(ϊ> m )

(β~λ}\\ and (5~1)2i are, by defnintion, matrix elements of the inverse S-matrix.
We obtain from (2.13):

WΓΓS (2J4a)

1TO <Z14b)

These scattering amplitudes satisfy the unitarity condition

|2 = 1 . (2.14c)

So instead of a full 2 x 2 S-matrix we have obtained the two scattering ampli-
tudes (2.14). Processes with other types of polarization cannot be realized in our
system because, as was already noted, the space of physical solutions to (2.5c) (or
to (2.9)) is one-dimensional.

However, the obtained amplitudes look like matrix elements of a full-fledged
S-matrix. Furthermore, one can formally reconstruct this *S-matrix (let us call it the
extended scattering matrix S(ext^) from the known data using unitarity. Under the

natural assumption S\^ = S^ (isotropy property) it then follows that

o(exMό(**0 ό^Ooίexf)
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hence

This S-matrix is diagonal in the triplet/singlet ((+)/(-)) basis and the corresponding
eigenvalues are

+α). (2.16)

By construction we have

Of special importance is the case k — 0, which we treated in [2]. Here we
shall indicate the S-matrix elements and ofunction for this k — 0 case by using the
superscript (0). The eigenvalues are

^(O)/ 0 \ / I 2/yί

with

ΊΛ (2 18)

In this case it is possible to give a physical interpretation to the full S-matrix
S^ext\λ) which so far was a formal object. Consider the Laplace-Beltrami operator
on the real hyperbolic plane H:

1 d2

sinh x vφ

Its eigenίunctions Φm(x,φ) with appropriate boundary conditions (fmiteness at
the origin) are the spherical functions.

ΔΦm(x,φ) = -(λ2 + ̂ \ Φm(x9φ), (2.20)

where m is the angular momentum:

-ί—Φm(x,φ) = mΦm(x,φ) . (2.21)
dφ

Zonal spherical functions (S-waves in physical language) correspond to m = 0,
tesseral ones to integer wΦO. It is readily seen that the second order equations
(2.8) (for k — 0), derived from the KZ equation, are precisely the radial parts of
Eq. (2.19) with m = 0 for

Φ0(*,φ) = F+(jt), (2.22a)

and m = 1 for
Φl(x9φ) = ̂ F-(x). (2.22b)

Thus F~(x) is the radial part of the P-wave.
Note that in this two-dimensional setting any superposition of the form

AΦo(x,φ) + BΦ\(x,φ) is an eigenfunction of Δ. This allows one to define in
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this scalar problem a 2 x 2 scattering matrix for incoming and outgoing waves at
infinity x -» +oc. Using the above formulas for the asymptotics one finds that this
S-matrix is diagonal in the basis of S- and P-waves with eigenvalues (2.17). Being
transformed to the (/, 0)-basis according to (2.6), it acquires the form

1 2iλ\
(2.23)

liλ 1 /

which coincides with S(ext)(λ) at k = 0.
The physical meaning of this formal prescription can be understood in terms of

a spin-orbit type interaction for a fictitious particle moving on the two-dimesional
hyperboloid. Remember that the S-wave motion of a particle on the hyperboloid
(hyperbolic plane) H is equivalent to a relative motion of two scalar particles on
the line interacting via sinh~2-potential. Similarly, the relative motion of two spin-
1/2 particles on the line can be described in terms of a fictitious particle moving on
H in a superposition of S- and P-waves and carrying an additional quantum number.
In the scalar case, to extract the dynamics of relative motion, one has to restrict
the whole space of states to the subspace with zero total momentum, thus passing
to the center mass frame. A spin analog of this is the restriction to states with zero
total z-projection of the spin (i.e. what we called zero weight sector with basic
vectors v+ Θ V- and u_ 0 t;+). The spin counterpart of the relative momentum is
then precisely the just mentioned additional quantum number, which turns out to be
the total spin of the system s: s — 0 (the singlet state vsing = v+ ® V- — v- <S> v+) or
s — 1 (the triplet state with zero z-projection of its spin vtripι = v+ 0 V- -f V- 0 v+).
So, in the sense of this analogy it may be appropriate to refer to the quantum number
s as "relative spin." If the total angular momentum (spin plus orbital momentum)
on H is conserved, the general form of the fictitious particle wave function is any
linear superposition of the form

ψ(x,φ) = Av5ingΦo(x9φ) + BvtnpιΦ}(x,φ) . (2.24)

(It is implied that the axis of the hyperboloid lies in the x μ-plane so that the orbital
momentum has zero z-projection.) This argument justifies the prescription above
and makes it clear why the S-matrix (2.23) is diagonal in the single/triplet basis.
So, we see that the KZ equation (2.5c) is a special reduction of this more general
problem.

The physical interpretation of the extended KZ scattering matrix described above

looks quite natural due to the following observation. As shown in [2], S+\λ) and

—S^\λ) (2.17) (the minus sign to be discussed below) are the eigenvlaues of the
Heisenberg XXX model scattering matrix for elementary excitations. These were
classified in [6,7] where their scattering was studied by means of the algebraic
Bethe ansatz technique. It was shown that the elementary excitations in the XXX
(and XXZ) model have spin 1/2 and can be created only in pairs. In the physics
literature they are called kinks (if the z-component of spin is +1/2) and antikinks (if
the z-component of spin is —1/2). One can see that the iS-matrix (2.23) differs from
the kink-antikink scattering matrix of the XXX-model (i.e. the scattering matrix
in the subspace with zero z-component of spin) only by the constant factor σ\.
Note that the multiplication by the Pauli matrix σ\ changes the sign of one of the
eigenvalues.



24 P.G.O. Freund, A.V. Zabrodin

This remarkable coincidence of ^-matrices for systems of very different nature
undoubtedly holds for profound reasons. We show in Sect. 4 that it can be extended
to the ^-deformed case.

We wish to draw attention here to two points.
First, as far as 5/2 representations are concerned, Ψ(x}, valued in the tensor

product of two two-dimensional representations, decomposes into one singlet and
three triplet components. Yet, as we saw, the two non-vanishing weight triplet
components decouple, leaving a two-dimensional "spin-^ "-like system obeying the
Dirac-like equation (2.5). A further study of this metamorphosis would be of inter-
est.

Second, the steps leading from the coupled first-order system (2.5) to the de-
coupled second order system (2.8), completely parallel those which lead from the
coupled first order Dirac equations to the eigenfunctions of the decoupled second
order Laplace operator. It will be worth keeping this in mind, when we repeat these
steps at the quantum level.

3. ^-Deformed Case

Let us start by recalling some facts about q-KZ equations for 2-point functions in

the Uq(sΪ2}-casQ (0 < q < 1). We use the notations of [15], in a slightly modified
form. Consider a correlation function of two ^-vertex operators

ϊF(z1,z2)=(ί2/ |Φ(z2)Φ(z1)|Ω} e V®V , (3.1)

where V = C2 is a linear space on which now 2-dimensional representations of

act. We fix a basis {t;+,ι;_} in V . With a proper definition of g- vertex
operators, Ψ(z\,Z2) depends only on z\/Z2 (we have now switched from the additive
parametrization of Sect. 2, to a multiplicative parametrization), so we consider the
function

Ψ(z)=(&\Φ(z-l)Φ(z)\Ω). (3.2)

For level k vertex operators, Ψ(z) satisfies the first order q-KZ difference equation:

, (33)

where the /^-matrix R(z} is defined by explicit action in V 0 V as follows:

R(z)v± ® v± = v± ® v± , (3.4a)

4(1 -z2) (l-42>2

R(z)v+ <g> v- = -̂  - i-rv+ ® v- + ̂  — W^- ® ^+ •>λ L

R(z)v_ 0 v+ = --L-V+ 0 v_ + Y ~- (8) υ+ . (3.4b)
1 — g2z2 1 - qzz2

Let us introduce a special notation RQ(Z) for the zero-weight part (3.4b) of this
^-matrix:

1
- - ,

, (3 4c)



The Spectral Problem for the g-Knizhnik-Zamolodchikov Equation 25

The operator q~~^ acts on the basis vectors by multiplication:

q-φv±=q*2iλυ±9 (3.5)

where λ is a spectral parameter. In the #-KZ equations considered in [15,3] λ takes
a particular value depending on the choice of vacuum states Ω, Ω1 in (3.2). When
we are interested in the spectral problem for the difference operator in (3.3) (rather
than monodromy properties of the solutions) λ plays the role of spectral parame-
ter (this becomes evident from Eq. (3.10) below). We have introduced ί in (3.5)
(just like in Eq. (2.5c) in the classical case) so that the continuous spectrum will
correspond to real values of λ.

Finally, p ( z ) in (3.3) is the scalar multiplier defined in [15]:

, χ -1/2 (^2;ff4)2oo nM=

where the standard notation [18]

V); (*;?)oo = lim(z;?)Λ (3.7)
j=Q n-+°°

is used. It is shown in [3] that this multiplier comes from restriction of the universal

/^-matrix for Uq(sl2) to the tensor product of two 2-dimensional representations.
Though crucial in the monodromy problem, ρ(z) is irrelevant for our purposes
here, because one can gauge it away without altering the spectral properties.

Due to the specific form (3.4) of the /^-matrix, the υ+ 0 v+ and υ- Θ V- com-
ponents of Ψ(z) decouple, and each of them obeys a scalar first order difference
equation as in the classical case (2.5b). Again, the non-trivial equations come from
the zero-weight sector of the /? -matrix (3.4). After reduction to the zero-weight
subspace of V 0 V we obtain for the two components of

ψ(z) = f(z)v+ Θ t?_ + 0(z)ι>_ ® ι>+ , (3.8)

the following system of difference equations

There is a more suggestive form of (3.9) which resembles the classical spectral
problem (2.7). Using the notation ^o(^) (3.4c) for the zero-weight part of the R-
matrix and introducing the diagonal 2 x 2 matrix Λ — diag {q2l/\q~2l/ }, one can
rewrite (3.9) in the form

T-lRQ(z)ιl/(z) = ΛιKz), (3.10)

where T is the shift operator: Tψ(z) = ψ(qk+2z). This equation does look like a
finite-difference analog of (2.7).

Guided by the classical limit we interpret (3.10) as the radial part of a discrete
"Dirac-like" equation for a particle on a curved quantum space. Let us rewrite



26 P.G.O. Freund, A.V. Zabrodin

(3.9) in terms of discrete "radial coordinate" n which we assume to be a non-
negative integer. To do this, it is convenient to redefine the parameters as

P = qM, (3-11)

w = 2/λ, (3.13)

so that q — pl From now on we consider the case k -+- 2 ^ 0. Setting z = pn+l and
calling f(pn+l) = /„, g(pn+l} = 0Λ, we obtain the following system of recurrence
relations:

/•
x < VM-4-/L/ x — I I A x -1 - * v -1 ' \ I J

(3.14)
The natural boundary condition is finiteness of fn and gn at n = 0.

A comment on the choice of the integer values of n (n — 0, 1,2,...) in (3.14)
is in order. This choice means a specific truncation of the initial system (3.9)
(defined on the whole complex plane) to a discrete recurrence relation on the one-
dimensional half-infinite lattice. Of course, different truncations of this kind may not
be equivalent. We note, however, that our choice is a distinguished one and looks
quite natural because it ensures the closed similarity to the continuous Eq. (2.5c)
in the following sense. The space of regular solutions to (2.5c) is one-dimensional
and the same is true for the discrete Eq. (3.14) provided /o and go are finite.
Indeed, the matrix RQ(pn+l) on the r.h.s. of (3.14) becomes degenerate at n = 0

and projects any two-dimensional vector ( °̂ j into the 1 -dimensional subspace

spanned by the vector ( 2/M+/ ) - If me initial point is moved away from n = 0,

the matrix RQ is non-dengenerate in any point of the lattice, hence the space of
solutions is 2-dimensional. The analysis of this general case is beyond the scope of
this paper.

By a straightforward but somewhat lengthy calculation it can be shown that the
linear combinations

Fn

±=fn±p-iugn (3.15)

obey second-order recurrence relations of the form

ι-p2n+4'± , v i - P2-2

 F± (i-P2)(i-/>2V+2/-V
I _ p2n+2l n+\ Ί~ P γ _ 2«+2/-2 n-\ + / j _ 2«+2/V| _ p2n+2l-2\ n

+ p\p!U + p-^ , (3.16a)

and the system (3.14) is equivalent to the decoupled pair of Eqs. (3.16a) with the
constraint

1 _ n2«+4/ / Π n 2 / V1 -μ n2«+2

O 1 P 77+ / Ί, Au , -iu\ , V 1 ~ P A 1 + PΊ, Au , -iu
= +P _ p2n+2l

<)F-. (3.16b)
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Notice that (3.16a) is a set of two equations, one for F+ and one for F~.
The equivalence of Eqs. (3.16) and (3.14) then means that, given a solution of
Eq. (3.16a) for 7^+, one can find a corresponding F~ from the linear relation
(3.16b). This F~ then satisfies the other Eq. (3.16a) and fn,gn calculated according
to (3.15) satisfy Eq. (3.14). Equations (3.15) and (3.16) are the quantum counter-
parts of the "classical" equations (2.6) and (2.8). In Appendix A we show how
one can come to (3.16) from (3.14) without knowing the combinations (3.15) a
priori.

A usual form of the boundary condition for second-order recurrence relations is
fixing values of the unknown function at two initial points (say, n — 0 and n — 1).
Note, however, that in (3.16) the values of F^ and FQ~ are irrelevant (provided
they are finite) because the coefficient in front of F^_λ becomes zero for n — 1. We
see once again that in the case at hand the regularity at n = 0 already determines
the solution up to an arbitrary constant.

With these boundary conditions, Eqs. (3.16) are the recurrence relations for
certain g-Jacobi polynomials. (See, for example, [18] and Appendix B.) This
observation allows us to solve (3.16). Specifically,

\(piu + /Γ"); p) , (3.17a)

rt— n-\-\ r.n+21p - - ι/2)

where /?„ \x\ p) are the continuous q-Jacobi polynomials. For their definition and
brief review of their properties, see Appendix B. The initial value F* is a free
parameter.

For real values of u in the Brillouin zone - ^— < u g j-̂ - the wave func-
tions (3.17) describe scattering states for the q-KZ operator (l.h.s. of Eq. (3.10),
i.e. they are solutions to (3.10) and their asymptotics at infinity is a superposition
of incoming and outgoing waves. To see this, it is necessary to find the asymp-
totics of F^9 or in other words, of the continuous g-Jacobi polynomials at large n.
Fortunately, this is known [18], so that we have

Fa

+\a^00=APf"-l(pfauc+(-u) + p-""'c+(u)), (3.18a)

F«- Uoo =A~ pnl-!(pιn»c-(-u) + f>-" "c-(»)) , (3.18b)

where A is a non-essential constant,

1 iv+l Γ Γ L1 ± pm+l Γp2(ιu -I-

and the ^-gamma function is defined as [18]
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For details see (B9)-(B11) in Appendix B. The expression (3.18) does indeed look
like a superposition of incoming and outgoing waves.

Now we are in a position to derive the /S'-matrix. Let us rewrite the asymptotics
(3.18) in terms of the original components fn and gn, fn = (l/2)(Frt

+ — F~\ gn —
(\/2}piu(F+ -F-) (as follows from Eq. (3.15)):

A nnl~l

^P I v " f >r „ ( , . \~/m/ , _ / M Λ ί..\^-inu\ (3 21a)

Ap"'-1 pl(pil1 - p-111) ιm

gn\n->oo = —^ϊ ' —j -2iu+2l cp(~u)P •> (3.21b)

where

cp(u) = p" m . (3.22)
7^2 O M + / )

The 5-matrix can be readily determined from (3.21). The picture is qualitatively the
same as in Sect. 2. Again, it is more convenient to define the inverse S~λ of the
iS-matrix first. The operator S~} transforms outgoing particles (waves) to incoming

ones. So, if the outgoing wave at infinity has the form (^)p~mu+nl, (as in (3.21))

.inu+nlthen the corresponding incoming wave is generally of the form : ς t _ 1

1 1 pι

\ w )2\ J

where (S"1)!! and (S~l)2\ are, by definition, matrix elements of the inverse S-
matrix. We obtain from (3.21):

p"
(3 23b)

These scattering amplitudes satisfy the unitarity condition of the same form as
(2.14c). Using unitarity and isotropy one can formally reconstruct from these data

the full (extended) scattering matrix S z :

(3-24)

Again, as in Sect. 2, we call it extended because this ^-matrix can be physically
realized in this system only for one particular type of polarization of waves at
infinity. We have
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Recalling the definition of the ^-matrix (3.4) and its zero-weight part R$(z)
(3.4c), we see that (3.24) can be represented in the form

, (3.25)

where Λ = diag{pιu, p~'"} as before (see (3.10) and (3.13)) and

(3.26)

is the scalar unitarizing factor. Note that \RQ(piu)9Λ~lσι] = [S(^z(u\Λ~lσ\] = 0.
So the local (bare) "S-matrix" RQ(Z} in (3.10) (connecting two neighboring sites)
partially reproduces itself in the global scattering, getting "dressed" by the scalar
infinite product factor U(z).

So we have solved the scattering problem for the difference operator in the l.h.s.
of the #-KZ Eq. (3.10). A crucial part of the argument is the transition from the
first-order matrix difference equation to the pair of second-order recurrence relations
(3.16) that can be actually solved in terms of the continuous g-Jacobi polynomials.
This procedure is completely parallel to that in the "classical" (q ~ » 1 ) limit though
much more involved technically.

It is interesting to note that in the ^-deformed case, the choice (3.15) of linear
combinations leading to a reasonable pair of decoupled second-order equations is
not unique. Here by a reasonable equation we mean one which can be actually
solved, with the asymptotics of the solutions being known explicitly. The other
possibility is to take (see (A26))

ff = fn ± p~2ιu±lgn (3.27)

instead of (3.15) (the classical limit is the same). In this case, Eq. (3.14) is equiv-
alent to the following second order recurrence relations:

2n+4l-2 ι

(3.28b)

with the constraint

(Pl + />-'VWι = (Piu + P'iu)Fn + (P2l'ιu - pmWή (3.28c)

(for details see Appendix A). Now finiteness of /0 and go leads to the vanishing of

F} . The same condition F} = 0 is forced by (3.28b). One can see that the solutions
of (3.28a) and (3.28b) can also be expressed thought continuous g-Jacobi
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polynomials (of a different type):

' 2 ι ^ 2 i u + /,-'»); p), (3.29a)

Fn = F2 •£ : £ R('ir''+l/*}(l/2(rfu + p-lu)ip), (3.29b)
p-1 - p

where
n ' Π - ^ V n I"-""'+20^+ (3_.

From the known asymptotics of the r.h.s. of (3.29) (see Appendix B) one obtains
the same S-matrix elements (3.23).

The polynomials Rn (x; p) in (3.29) are known also as Rogers-Askey-Ismail
polynomials [16,17,18] or Macdonald polynomials for root system A\ [8]. The
appearance of Macdonald polynomials in the context of g-KZ equations was already
discussed by Cherednik [13,19].

4. The Spectral Problem at Level Zero

In this section we discuss the general result of Sect. 3 in the special case of level
zero (k = 0 in (3.9)). This deserves particular attention because, as we shall see,
the spectral problem (3.14) for this simplest case yields the physical S-matrix for
the XXZ spin— 1/2 anti-ferromagnet suggesting at the same time a nice geometrical
interpretation in terms of scattering on the quantum group SLq(2,R).

For k = 0, p — q2, 1 = 1/2, u = λ (see (3.11)~(3.13)) it is more convenient to
use the original notation q and λ. Specializing (3.15) and (3.17) to this case we
obtain

F+ =

(4 lb)

with the asymptotics

Λ _
F-\ = Λan~{

n ln^°° q 2
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where
7?± _ f -4- a-21*,] (Λ^Γn — Jn ΠI */ yn \^.J )

and A is a constant. Had we included the factor p(z) (3.6) in the ^-matrix, its effect
would have been to force F^ to vanish at negative n because the zeros of p(z) lie
just at the points q2n+l

9n < 0.
The ^-matrix (3.25) is

where
0 <r2"'\
,.. (4.5)

<72" 0 )

commutes with Ro(q2tλ). Note that F* (4.3) are just the eigenvectors of Ro(q2"').

The eigenvalues of S^χZ(λ) for fc = 0 are given by

(4'6)

This S-matrix actually coincides (up to the trivial matrix factor Λ~lσ\) with the
kink-antikink scattering matrix 5^_α(A) for the spin— 1/2 XXZ model in the anti-
ferromagnetic regime (with anisotropy parameter - log q)\

^-*zWI*=o = Λ-lσ}Sk-a(λ) . (4.7)

For the definition of S*_fl(/) see, for example, Eq. (6.18) in [15]. The eigenvalues
of Sk-a(λ) (corresponding to scattering with a given parity) are ±S±(λ). The role
of the extra matrix factor A~]σ\ is to change the sign of S_. In the classical limit,
this factor reduces to the constant matrix σ\ and produces the minus sign noted
there.

Unfortunately, at present we are unable to suggest a physical interpretaion of
the S-matrix (4.4) similar to the one given for (2.23) in Sect. 2. The difficulty
stems from the lack of a clear geometrical meaning of (non-commutative) angular
coordinates on the quantum group. Here is a very preliminary discussion of this
point.

The g-Jacobi polynomials R^'^ are known to provide (for some values of α,β)
the full set of spherical harmonics on the quantum group SLq(2) [20]. Recalling that
in this case a. = \m — n\, β = m-{- n\, where m(n) is the number of the left (right)
SO( 2) -harmonics, we see that the values of α,j8 in (4.1) correspond to spinorial
harmonics (1/2,1/2) and (1/2, -1/2). This is in line with the Dirac-Bargmann-
Wigner analogy.

Thus, Eq. (4.7) suggests an interpretation of the scattering of physical excitations
in the XXZ model in terms of purely geometrical scattering of a spinning particle
on the quantum group. To be more precise, we need to consider the scattering on
the dual object to the compact real form of SLq(2). Indeed, our coordinate variable
n is just the spectral index of the g-Jacobi polynomials. In the case of the S-wave
scattering (involving only zonal spherical harmonics) this dual object can be in
some sense identified with a non-compact real form of SLq(2). Analytically, this
shows up in the nice self-duality symmetry of Macdonald polynomials (which play
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the role of zonal spherical functions on SLq(2)) with respect to the exchange of the
argument and spectral index [11,12]. However, for spinorial harmonics this duality
comes into play in a less straightforward way which is not completely clear to us
at the moment. To illustrate this, let us consider the classical ( # — » ! ) limit of the
g-Jacobi polynomials.

If we take the limit q —» 1 for fixed φ = 21 log q (so that q2lλ —> eιφ) the q-

Jacobi polynomials Rn \^(q2lA 4- q~2u)'9q
2) go to the classical Jacobί polynomials

Pn (cos φ) up to normalization. They yield the restriction of spherical harmon-
ics on the compact real form of SL(2) to the maximal torus parametrized by the
coordinate φ. The scattering in the index n after taking this limit gives a trivial
S-matrix having nothing to do with the Sk-a(λ) at q = 1 (2.23). This means that the
limits n —> oo and q —>• 1 are not interchangeable. To achieve agreement with the
S-matrix (2.12) we need another classical limit! This is q —» 1 and n —> oo for fixed
x ~ ft log q (now x is a continuous variable) and fixed λ. Then, by considering the
asymptotics at large x we recover the correct XXX 5-matrix (2.23). In this case the
g-Jacobi polynomials go to Legendre (or Gegenbauer) functions P_α_ι/2+ί ;.(cosh x)
and not to Jacobi functions (as one would except). This can be easily seen from
(B6) and was already pointed out by Koornwinder [22].

~ ~Ί~
Finally, in the case k = 0 the spectral problem for Fn (3.28a) gives yet another

eigenvalue of full XXZ iS-matrix corresponding to kink-kink (or antikink-antikink)
scattering. This is just the result obtained in our earlier papers. [11,12] by consid-
ering the scalar spectral problem on a quantum hyperbolic plane. This eigenvalue
turns out to be equal to U(q2lλ) (3.26).

5. The Limit of Infinite Level

The limit of infinite level k — >• oo is obscure in the original version of the q-KZ eqs.
(3.9) because qk+2 = p goes to zero. However, the form (3.14) is more appropriate
for taking this limit since p does not appear in the shift operator explicitly and
pi = y/(*+2) = q is fiχed

Taking the limit k — > oo in (3.14) we get

0 f> \0 i, \g. ~

The boundary condition is g\/f\ = q4iλ+l and follows from the finiteness of /o and
go (it is implied that pn — » δn$ as p — > 0). The corresponding scattering matrix can
be determined as above. Note that the scalar dressing factor (3.26) in this limit
becomes an elementary function. Equation (5.1) can be viewed also as a large n
limit of the general equation (3.14).

The second matrix on the r.h.s. of (5.1) is just the zero-weight piece of the
inverse of the familiar constant R-matήx for Uq(sl2) in the fundamental representa-
tion. The appearance of Uq(sl2) in this context looks quite natural since the limit of
infinite level usually means "forgetting the affinization" of affine (quantum) algebras
and thus leads to finite-dimensional Lie algebras.

On the other hand, we will presently show that for the particular values of
q2 = P~1

9 where P is a prime number, Eq. (5.1) has an nice interpretation in terms
of harmonic analysis of the P-adic group SL(2, QP). [In view of the extensive
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Fig. 1. Bruhat-Tits tree (P = 2) with central vertex C

use above of the symbol p as defined in Eq. (3.11), we are straying here from
number theoretic custom and denote a prime by P]. To see this, let us derive
from (5.1) the second-order recurrence relations for F^ = fn±q~2lλgn and for

F,f - fn±q-4tλ±}gn. From (3.16) and (3.28) we obtain:

with the constraint

2(FB+ , - P λ

and

- P';- l /2 )(Fn

+ -F-),

^ + δnΛF^F+

2); n^

n ^ 2, F! -0,

with the constraint

= (Plλ + P-/A)FΛ +

(5.2a)

(5.2b)

(5.3a)

(5.3b)

(5.3c)

where t = 1/2(P/A + P~iλ).
Consider Eq. (5.3a) first. One easily recognizes it as the recurrence relation for

the Mautner-Cartier polynomials [23] which are zonal spherical functions on the
P-adic symmetric space HP =• PGL(2,QP)/PGL(2,Z/>) of the group PGL(2,QP} =
GL(2,QP)/Qp, where PGL(2, Zp) is the maximal compact subgroup. The <5-symbol
term in (5.3a) provides the proper boundary condition. The space HP is known as
a Bruhat-Tits tree [24] and it can be represented as the homogeneous tree with
each vertex being joined to P + 1 "neighboring" vertices by edges (Fig. 1). The
PGL(2,Qp)-invariant Laplacian acting on scalar-valued functions of the vertices
can be naturally defined as a sum of the values at all nearest neighbors of a given
vertex minus the value of the function at this vertex times the number of the nearest
neighbors (P + 1 in this case). This definition naturally generalizes the mean value
theorem for harmonic functions. One can arbitrarily choose a "central" vertex of the
tree and consider zonal spherical functions defined by the two conditions: 1) they
are eigenfunctions of the Laplacian; 2) they are "spherically symmetric," i.e., take
one and the same value at all points at the same distance from the center. Calling
φn the value of the function of the vertices on distance n + 1 from the center, one
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can easily write down the eigenvalue equation (Fig. 1):

Pψn+i+Ψn-i = (E + P+l)φn, n^2, (5.4a)

(P+ l)</>2 = (E + P+\)φλ , (5.4b)

where £" is the eigenvalue and n stands not for the distance of the vertex from
the center, but for this distance plus one. Introducing the new spectral variable
x= \/2(Piλ+P~lλ) by

E + P+ 1 = 2xPl/2 , (5.5)

we see that (5.3a) and (5.4) coincide.
The Mautner-Cartier polynomials are P-adic analogs of the Legendre (or

Gegenbauer) functions. The polynomials F^(x) in (5.2) should thus provide a P-
adic analog of the Jacobi-functions with particular values of α and β. Acually, (5.3a)
and (5.2) differ only by the boundary condition at the origin.

We now suggest an "arboreal" interpretation of Eq. (5.2) for F^ similar to

that for F+ described above. Suppose we now consider functions χn of the edge
rather than of the vertex. We can again consider a spherically symmetric function:
its values depend only on the distance n of the edge to the center C (Fig. 1). The
definition of the Laplacian remains the same as before with the change from vertices
to edges, the nearest neighbors of an edge being all the edges having a common
end with it (there are 2P of them). Now the eigenvalue equation looks like

PXn+\ + Xn-\+(P -^χn = (E

(5.6)

Recalling (5.5) this can be rewritten as

PXn+\ +*Λ-ι = 2xPl/2χn, n^2,

Pχ2 + χ ι = 2xPl/2χ{ , (5.7)

which is exactly Eq. (5.2a) for F+.
Keeping in mind the analogy with the Dirac equation, we can say that the

^-matrix for Ug(sl2) in (5.1) provides a "square root" of the Laplace operator on

the P-adic tree (q2 = P~l). This is one more face of the P-adics-quantum group
connection [8,9, 10, 11]. This opens a way to introduce spinorial harmonics on P-
adic groups that would be very interesting for a number of reasons.

6. Discussion

In considering the spectral problem for the q-KZ equation, we were motivated by
the scalar spectral problem for the Laplace operator on a curved (quantum) space.
The latter was known to yield the scattering phase for the kink-kink scattering in
the spin— 1/2 XXZ antiferromagnet [10,11,12]. Since the physical excitations in
this model are spin -1/2 kinks it is natural to expect that their scattering matrix
would come from the spectral problem for a matrix first-order operator on the same
quantum space whose "square" gives the Laplace operator in the spirit of Dirac 's
trick. The difference operator appearing in q-KZ equations is a natural candidate for
this. We have shown that this is indeed the case and the physical ^-matrix of the
XXZ-model can be derived this way (for the q-KZ equation at zero level).
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However, this correspondence is perfect only for the 2-dimensional zero-weight

(zero z-projection of spin) subspace of the linear space C2 0 C2 on which the solu-
tions of the q-KZ equation take values. In terms of the XXZ-model, this corresponds
to kink-antikink scattering. As for the kink-kink or antikink-antikink channels, they
seem to have nothing to do with the (H—h) and (—) components of the q-KZ
solutions, since the latter have trivial scattering. The conceptual understanding of
this situation is obscure.

Anyway, we succeeded in describing at least the kink-antikink scattering in the
spin—1/2 XXZ antiferromagnet in terms of particular continuous g-Jacobi polynomi-
als which yield the spinorial harmonics on the quantum group SLq(2). This picture
is in good agreement with the conjecture made in our earlier paper [1] that the
scattering processes in integrable systems are of a purely geometric nature.

The above connection with the XXZ model comes already at the level k equal to

zero. In Sect. 3 we solved the scattering problem for the Uq(sl2)-q-KZ equation in
the fundamental representation for arbitrary level. Does this have any interpretation
in terms of excitation scattering in integrable models? Based on the results for the
corresponding scalar spectral problem [11] we can conjecture that this case is related
to generalized SLq(k -f- 2)-magnetics, or equivalently, to the Z#+2 Baxter statistical
model on the square lattice.

A generalization to q-KZ equations for multipoint functions would also be of
interest. It should correspond to the multiparticle scattering in integrable models
which is known to factorize.

Matsuo [25] has found a Jackson-integral representation of the Jordan-
Pochhammer type for solutions of the q-KZ equation. Combining this with our
results, one could obtain a new Jackson integral representation for the g-Jacobi
polynomials.

Finally, let us remark on the relationship between the monodromy (or connec-
tion) problem on the one hand and the scattering problem on the other hand. Our
results suggest that they are in some sense dual to each other. The usual setting
of the monodromy (connection) problems for q-KZ equations is quite the oppo-
site to what we have done: the spectral parameter λ is fixed once and for all, and
one compares the solutions regular at z = 0 with those regular at z = oo (in the
variable n this corresponds to n — -oo and n = oo). Then the physical S-matrices
appear as the ratios of two special solutions and they are now functions of z, not λ.
This indicates a remarkable duality between the coordinate variable and the spectral
parameter.
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Appendix A

In this appendix we show how one can find the specific linear combinations of
fn9gn satisfying the equation for g-Jacobi polynomials.
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Let us write the q-KZ equation (3.14) in the form

' fn+l \ _ ( an bn\ ( fn

/ 7 , l \ s* rl \ \ rt \ ~ V '
Vn+\

It is clear that fn and gn satisfy decoupled second-order recurrence relations, but
generally these are not very helpful. Our task is to extract an equation which can
be solved! In he limit q = I the situation is quite similar though much simpler:
f(x) and g(x) themselves obey two decoupled second order differential equations
of rather complicated form but, fortunately, the "right" linear combinations / ± g
leading to the familiar hypergeometric equations are more or less obvious from the
very beginning.

The idea is to apply to (Al) a similarity transformation in such a way that the
resulting second order equations would be as simple as possible. So let us take
a non-degenerate constant matrix U = {«//};/,./ =1,2 and apply it to (Al). We
get

(f+;Mt t: )(£) ' (A2)

where

. (A4)

The matrix equation (A2) is equivalent to the pair of decoupled second order equa-

tions for/π and gn:

bn-\fn+\ + ̂ n^n-\fn-\ = (^A-l + dn-λbn)fn , (A5a)

cn-ιδn+l -f cnAn_{gn_{ = (dncn-ι H- an-ιcn)gn (A5b)

together with the constraint

9n=b~\fn+, -«V«), (A5c)

where

2 - . (A6)

The matrix elements in (A4) have the following general form:

_ _ op -αi/^1 r _ βo~βιp2n



The Spectral Problem for the g-Knizhnik-Zamolodchikov Equation 37

where the full ^-dependence is indicated explicitly. Calling y = pιu for brevity, we
have from (A4):

α0 = (άQtU)~l[y~l pluuu22 + y~l(l- p2l)u2]u22 - ypluuu2\] ,

αi =(άetU)~l[y~lp3lunu22 + y(\ - p21 ) p21 uλ\u\2 - yp3lu\2u2\] ,

ft) - (det UΓλ[y-λpluuu22 + y~l(l - p2l)u2

22 - ypluuu22] ,

β} = (det UΓl[y~lp3luuu22 + XI - P2l)p2lu2

2 - yP

3lul2u22] ,

70 - (det t/)~1[-}>~ V"nW2i - y~\\ ~ P2l)u2

2l + j

7! - (det UΓl[-y-}p3luuU2i ~ XI - //)/^π +

^o = (detU)~}[-y~lplu\2U2i - y~\l - P21)u2\u22 -f- yp'u\\u22] ,

δ, - (det ί/ΓΉy- V3 /^i2^2i - XI - P2!)p2lunuι2 + yp3lunu22] . (A8)

Equations (A5) are now written as:

(i - P

2"+4/)(β0 - βίP

2'"2)fn+ί + P2'(\ - P2"-2)(βo - β,P2")f^

= ((«o - «,/")(& - β^pln-2) + (δ0 - δlP

2"-2)(β0 - βlP

2n)}fn (A9a)

and

= ((δ0 - δlP

2")(γ0 - yip2"'2) + (αo - αι/"-2)(7o - Ti/"))^ . (A9b)

We are going to compare (A9) with the recurrence relation (B8) for g-Jacobi
polynomials (see Appendix B below). For general values of (α,/?) they look quite
different. However, for the particular values: I) β = α + 1; II) β = α - 1; III) β = α,
considerable simplifications occur in (B8). For example, in the case I) we have

= -(1 - p2)(l - p2x+])p2n+2*+]Rn(X)

x(l-p2n+2"+l)Rn(x), (A10)

whose l.h.s. is identical to that of (A9a) provided

α = 7 - 1 / 2 , ( A l l )

, (A12)

c ) . (A13)
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What about the right-hand sides? A straightforward calculation shows that they are
identical provided

(A14)

(A15)

(A16)

One can see that all these conditions are mutually consistent. They determine the
matrix elements of U. Solving (All)-(Alό) using (A8), we obtain the following
simple relations:

2x = y + y~} = pιu + p'ίu , (A17)

— - -y~l = -p~m . (A18)
U22

The other matrix elements of U are not fixed yet because so far we have used only
one equation from the pair (A9).

It turns out that the equation for qn (A9b) can be obtained from (B8) in a similar
way. Namely, let us rewrite (B8) in the case II (βr = α' - 1; the primes indicate
that the values of α and β may be different from the case above) as equations for
the polynomials Rn(x) normalized as follows:

Rn(x) = p-"(\ - p2n+2*'-2)R(*jf-l\xιp) . (A19)

We arrive at

]2(l - p2n+2*-l)(l - p2n+2«-3)Rn(x) (A20)

The expressions on the l.h.s. of (A9b) and (A20) coincide, provided

α' = / + l / 2 , (A21)

7i = 70P2/ , (A22)

§n=Rn(x) (A23)

Note that the values of α/,<5/ are already fixed by (A14)-(A16). Substituting them
into the r.h.s. of (A9b) and taking into account (A21)-(A23) one obtains exactly
the r.h.s. of (A20). Equation (A22) gives an extra relation for the matrix elements
of U:

^ = y = plu . (A24)
MH

Now, recalling (A3), we find from (A18) and (A24) the desired linear combinations:

F± = /„ ± p-'"gn . (A25)
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The matrix equation for them is

2n+4l

39

_ pl(plu _

n2n+2l

(A26)

Now to the case III (β = α). The recurrence relation for ^f'α) has the form
(B12) that is even simpler than (A 10) or (A20). One can try to find another sim-
ilarity transformation to fit the q-KZ equations (Al) to a pair of equations like
(B12) with different values of α. Remarkably, it turns out to be possible, with the
new linear combinations being

— r
— Jn P^g,,

The calculations are quite similar to those above. For

n/7+l ^ ' " -r- "

(A27)

one obtains the equation

. (A28)

Equations (A26) and (A28) are (different) discrete counterparts of Eqs. (2.7).

Appendix B

Here we collect some necessary formulas related to g-Jacobi polynomials and their
asymptotic properties. As in the main text, we denote the base parameter as p rather
than q to distinguish it from the deformation parameter of the quantum group.

It is convenient to introduce #-Jacobi polynomials as a particular case of a very
general family of Askey-Wilson polynomials explicitly given by

pn [-(z + z ]); a,b,c,d\p

= (ab\ p\(ac\ p\(ad\ p\a
p l\ abcdpn \ az9 az

ab, ac, ad

where

4Φ3

λ,μ,v

(Bl)

(B2)

is the basic hypergeometric function. The pn are polynomials in (z -f z ] )/2 of
degree n. An important property, not obvious from the definition, is that they are.
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actually symmetric with respect to permutations of the parameters a,b,c,d. We
suppose that all these parameters have moduli less than 1; in this case the Askey-
Wilson polynomials are known to be orthogonal for z on the unit circle with a
continuous measure. We need the asymptotics of the Askey-Wilson polynomials
for large n. The formula is relatively simple though the derivation is extremely
cumbersome [18,26]:

pn(-(z + z '); a,b,c,d\p \ n -> oo

znB(z~l) + z~nB(z) + exponentially small terms , (B3)

where
(αz; /?)oo(Z?z; p^^(cz\ p^^dz; p)^

Another commonly used normalization of pn's is obtained by disregarding z-
independent factors in front of 4^3 in (Bl). Though this normalization is also
convenient, the symmetry in a,b,c9d is lost in this case. We define continuous
g-Jacobi polynomials (they are called "continuous" [28] because of their ortho-
gonality with respect to a continuous measure, as opposed to the so-called "little"
or "big" g-Jacobi polynomials which are different ^-analogs of Jacobi polynomials,
orthogonal with respect to discrete measures), using this asymmetric normalization
and choosing a,b,c,d as follows:

α = jp«+ I/2 j £ = _/+ι/25 c = y/2, rf = V/2 (B5)

The parameters α and β are supposed to be real and greater than -1/2. In terms
of the basic hypergometric series, we have from (Bl):

IP>P • (B6)

Our normalization (B6) is different from Rahman's [27] commonly used normal-
ization. For the reader's convenience we give the explicit formula connecting our

g- Jacobi polynomials R^^ with PJf'^ defined by Rahman:

These polynomials satisfy a three-term recurrence relation which can be written in
the form:

- p2n)(\ - p2n+2ll)(l - p2n+x+li+2)R(

n^\x; p)

(! + p2*) - p\\

- p

2"+^+\\ - p

2"+"+li+2)R^li\x p) . (B8)
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Their asymptotics at large n is given by (see (B3)):

R(:'β) (\(z + z~')ί p]n^oo NsίβP

n(y+{/2\znCaβ(z-l)+z-"Calβ(Z)), (B9)

where

ϊoo (Bii)

In the special case /? = α the polynomials (B6) become Macdonald polynomials
[8] for the root system A\. In the theory of g-hypergeometric functions they are
known as Rogers-Askey-Ismail polynomials [17,18]. The recurrence relation (B8)
then simplifies to

ι _ Γ12/?+4α+2 ι _ n2«
1 P p(α,a)/ΛA i ^2α+l L P p(^^i^\

The famous Macdonald parameters qM^M are then

<1M = P2, (B13)

tM = /α+1 . (B14)

In our normalization we have

/ i \
= 1 . (B15)

Note that unlike in the case of usual boundary conditions for three term recurrence
relations (R-\ = 0, RQ = l\ we dot not have to fix R-\, because the coefficient in
front of it in (B12) is zero. The same is true for the general g-Jacobi polynomials
(B6).
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