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Abstract: We introduce the notion of (nondegenerate) strongly-modular fusion alge-
bras. Here strongly-modular means that the fusion algebra is induced via Verlinde's
formula by a representation of the modular group Γ = SL(2, Έ) whose kernel con-
tains a congruence subgroup. Furthermore, nondegenerate means that the conformal
dimensions of possibly underlying rational conformal field theories do not differ by
integers. Our main result is the classification of all strongly-modular fusion alge-
bras of dimension two, three and four and the classification of all nondegenerate
strongly-modular fusion algebras of dimension less than 24. We use the classifica-
tion of the irreducible representations of the finite groups SL(2, TLpA), where p is a
prime and λ a positive integer. Finally, we give polynomial realizations and fusion
graphs for all simple nondegenerate strongly-modular fusion algebras of dimension
less than 24.
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1. Introduction

In the last ten years there have been several attempts for the classification of rational
conformal field theories (RCFTs). However, a complete classification seems to be an
impossible task since, for example, all unimodular even lattices lead to RCFTs and
there is no hope to classify all such lattices of rank greater than 24. Nevertheless,
it might be possible to classify all RCFTs with "small" effective central charge c.
The effective central charge is given by the difference of the central charge and 24
times the smallest conformal dimension of the rational model under consideration. In
particular, for c rg 1 a classification of RCFTs can be obtained by using a theorem
of Serre-Stark describing all modular forms of weight 1/2 on congruence subgroups
if one assumes that the corresponding conformal characters are modular functions
on a congruence subgroup.

For c > 1 only partial results have been obtained so far. One of the possibil-
ities is to look at RCFTs where the corresponding fusion algebra has a "small"
dimension. In the special case of a trivial fusion algebra the RCFT has only one
superselection sector and a classification of the corresponding modular invariant par-
tition functions for unitary theories with c ^ 24 has been obtained [1]. As a next
step in the classification one can try to classify the nontrivial fusion algebras of
low dimension first and then investigate corresponding RCFTs. Indeed, the modular
fusion algebras of dimension less than or equal to three satisfying the so-called
Fuchs conditions have been classified (see e.g. [2,3]). In this paper we develop
several tools, following the ideas of ref. [4], which enable us to classify all strongly-
modular fusion algebras of dimension less than or equal to four (for a definition of
strongly-modular fusion algebras, see Sect. 2). Our approach is based on the known
classification of the irreducible representations of the groups SL(2, Z ;t) [5].

Another possibility is to investigate theories where the corresponding fusion
algebra has a certain structure but may have arbitrary or "big" dimension. Here, a
classification of all selfconjugate fusion algebras which are isomorphic to a poly-
nomial ring in one variable where the distinguished basis has a certain form and
where the structure constants are less than or equal to one has been obtained (see
e.g. [3]1). Furthermore, a classification of all fusion algebras which are isomor-
phic to a polynomial ring in one variable and where the quantum dimension of
the elementary field is smaller or equal to 2 is known (this classification contains
the fusion algebras occurring in the classification of ref. [3]; for a review, see e.g.
[6]). With the tools developed in this paper we obtain another partial classification,
namely of those strongly-modular fusion algebras of dimension less than 24 where
the corresponding representation p of the modular group is such that p(T) has

1 More precisely, in [3] all selfconjugate modular fusion algebras with Njj 5Ξ 1, which are iso-

morphic to Q[x]/{P(x)} and ΦQ = l,Φ\ = x,Φj = Pj(x) (/ = 2,...,«— 1) for some polynomials

P and pj and where the degree of P is n and the degree of the pj is j have been classified (the

assumption on the degree of pj was used implicitly in loc. cit.).
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nondegenerate eigenvalues. The nondegeneracy of the eigenvalues of p(T) means
that the difference of any two conformal dimensions of a possibly underlying RCFT
is not an integer. The restriction on the dimension is of purely technical nature so
that it should be possible to obtain a complete classification of all nondegenerate
strongly-modular fusion algebras with the methods described in this paper by using
systematically Galois theory.

This paper is organized as follows: In Sect. 2 we recall some basic properties
of rational conformal field theories and give definitions of the relevant types of
fusion algebras. Section 3 contains some general theorems about representations
of the modular group which factor through a congruence subgroup. In the next
section we give a short review about the classification of the irreducible represen-
tations of SL(2, TLpA) which will be the main tool in the proof of the theorems in
Sect. 5. The main results of this paper are contained in Sect. 5. Here we classify all
strongly-modular fusion algebras of dimension less than or equal to four and the
nondegenerate strongly-modular fusion algebras of dimension less than 24. Finally,
we summarize our results and point out some open questions in the conclusion.
Two appendices contain the explicit form of the irreducible level pλ representations
of dimension less than or equal to four as well as the fusion matrices and graphs of
the simple nondegenerate strongly-modular fusion algebras of dimension less than
24.

2. Rational Conformal Field Theories and Fusion Algebras

2.1. Basic Definitions. Consider a chiral rational conformal field theory (or rational
model) R consisting of a symmetry algebra ΊV and its finitely many inequivalent
irreducible modules Jf / (i — 0,..., n — 1), i.e. R is a rational vertex operator algebra
(RVOA) satisfying Zhu's finiteness condition (for RVOA, see e.g. [7,8] and for
the connection of RVOA to 1^-algebras and rational models see [9]). Here JfΌ
denotes the vacuum representation. For modules Jf of if there is the notion of
conjugate (or adjoint or dual) modules $". In particular, it is conjectured that one
has (J f ; y = J f. Since R is rational the conjugation defines a permutation π of
order two of the irreducible modules Jf = J^π(/).

The structure constants TVfy of the "fusion algebra" associated to R are given by
the dimension of the corresponding space of intertwiners of the modules Jf / ® Jfy
and J^k (for a definition of intertwiners of modules of vertex operator algebras,
see e.g. [8]). One of the important properties of the Nfj which is well known
in the physical literature is the fact that the numbers Nfj can be viewed as the
structure constants of an associative commutative algebra, the fusion algebra. In the
terminology of vertex operator algebras a corresponding statement is proven under
certain assumptions in a recent series of papers [10]. In the abstract definition
of fusion algebras the properties of all known examples associated to RCFTs are
collected.

Definition. A Fusion Algebra ^ is a finite dimensional algebra over (Q with a dis-
tinguished basis Φo = l , . . . ,Φ n _i (n = dim(J^)) satisfying the following axioms:

(1) 3F is associative and commutative.
(2) The structure constants Nfj (ij\k = 0,...,« — 1) with respect to the distin-

guished basis Φi are nonnegative integers.
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(3) There exists a permutation π E Sn of order two such that for the structure
constants in (2) one has

Remarks. An isomorphism φ of two fusion algebras J^, £F' is an isomorphism of
unital algebras which maps the distinguished basis to the distinguished basis, i.e.
there exists a permutation σ G Sn such that φ(Φi) = Φ'σ^ (/ = 0,...,« — 1).

The tensor product of two fusion algebras #" and $F' is again a fusion
algebra, its distinguished basis is given by Φiχ <g) Φ 2 (i\ — 0, ...,dim(F) - l,i2 =

The permutation π of order two is called charge conjugation. Fusion algebras
with trivial charge conjugation are called selfconjugate.

Note that it is an open question whether two nonisomorphic fusion algebras can
be isomorphic as unital algebras.

It is known in many cases that fusion algebras arising from RCFTs have additional
properties. One of these additional properties is their relation to conformal charac-
ters. The conformal characters χ, of the modules J f z of iΓ are formal power series
in q defined by

χ, (τ) = t r J r J ( ^ 0 " * ) ,

where Lo is the 0th Fourier mode of the chiral energy-momentum tensor and c is the
central charge or the rank of the RVOA. One can show for rational vertex operator
algebras satisfying Zhu's finiteness condition [11] that the characters become holo-
morphic functions in the upper complex half plane by setting q = e2πιτ. Furthermore,
for these RVOAs the space spanned by the finitely many conformal characters is
invariant under the action of the modular group Γ = SL(2,Z). Indeed, it is conjec-
tured that Zhu's finiteness condition is not necessary at all. It was conjectured in
1988 by E. Verlinde [12] that for any rational model there exists a representation
p : Γ -• GLO, C) of Γ such that

Xi(Aτ) = teMXτ) = § p(A)jyiχj(τ) A e Γ
m=0

Nk _"^p(S\mp(S)j,mp(S-ι)m,k

m = 0 PW)O,m

We will refer to this formula as "Verlinde's formula" in the following. The above
conjecture motivates the definition of modular fusion algebras.

Definition. A Modular Fusion Algebra (^,p) is a fusion algebra #" together
with a unitary representation p : SL(2, TL) —> GL(n, C) satisfying the following
additional axioms:

(1) p(S) is a symmetric and p{T) is a diagonal matrix.

(2) N?j = p(S2)iφ

fτ\ \τk - ^ n ~ l P(S\mP(S)j,mP(S-l)mjk
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where Nt

kj (i,j,k = 0, . . . ,«— 1) are the structure constants of ^ with respect to
the distinguished basis.

Remarks. Note that property (3) already implies that 3F is associative and commu-
tative.

Two modular fusion algebras ( ^ . p ) and ( J ^ p ' ) are called isomorphic if: 1) 3F
and SF1 are isomorphic as fusion algebras, 2) p and p' are equivalent, 3) p(T\j —
p'(T)σ(i)iσ(j), where σ e Sn is the permutation defined by the isomorphism of the
fusion algebras.

The tensor product of two modular fusion algebras ( ^ , p ) , (#"',p') is defined
by (#" ® J ^ p ® pf) and is again a modular fusion algebra.

A (modular) fusion algebra is called composite if it is isomorphic to a ten-
sor products of two nontrivial (modular) fusion algebras. Here a (modular) fusion
algebra is called trivial if it is one dimensional. A noncomposite (modular) fusion
algebra is also called simple.

Note that for a modular fusion algebra with trivial charge conjugation (p(S2) =11)
the matrix p(S) is real.

For modular fusion algebras associated to rational models the eigenvalues of
p(T) are given by the conformal dimensions hi (z = 0,...,n— 1) of the irreducible
modules Jfi (hi is the smallest Lo eigenvalue in the module Jf/) and the central
charge c of the theory:

p(T) = diag(e 2 π / ( /*°- c / 2 4 ),.. ., ^ ( ^ - i -c/2 4 ) )

Quite often nonisomorphic modular fusion algebras are isomorphic as fusion
algebras.

In the later sections we will investigate which representations of Γ are related
to modular fusion algebras.

Definition. A representation p : SL(2, Έ) —> GL(n, C) of the modular group is
called conformally admissible or simply admissible if there exists a fusion algebra
£F such that (#", p) is a modular fusion algebra.

It is known that modular fusion algebras associated to rational models have
many additional properties. In particular, the central charge and the conformal di-
mensions are rational [13,14]. Furthermore, compatibility conditions between the
central charge c, the conformal dimensions A7 and the fusion coefficients Njj (the
so-called Fuchs conditions) are satisfied (see e.g. [2] or [3]2):

Σ((h, + hj + hk + h,)N« Nι

Km - hJNZjΉlm + N™kNj.m + N™,

1 / "- ! \ / n~ι \
( YNm ]Sfl 1 1 1 - YNm-Nl e N

^ \ m =0 / \ m=0 /

However, in this paper we will not make any use of these properties.

2 Note that the formula connecting the central charge with the conformal dimension in [3] contains
a misprint.
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Instead we will extensively rely on the observation that in all known examples
of RCFTs the conformal characters are modular functions on some congruence
subgroup of Γ. Therefore, the corresponding representation p factors through a
representation of ΓN. Here we have used ΓN for the principal congruence subgroup
of Γ of level N

ΓN = {A

Definition. A modular fusion algebra ( J ^ p ) is called strongly-modular if the ker-
nel of the representation p contains a congruence subgroup of Γ.

In this case p defines a representation of S L ( 2 , Z N ) and is called a level N
representation of Γ (here and in the following we use ΈN for TL/NTL). A level N
representation p will be called even or odd if p(S2) = t or p(S2) = —I, respectively.
Furthermore, one can show that for strongly-modular fusion algebras associated to
rational models the representation p is defined over the field K of Nth roots of
unity, i.e. p : Γ —> GL(n,K) if the corresponding conformal characters are modular
functions on some congruence subgroup [9]. Indeed, we expect that this is true for
all RCFTs which motivates the following definition and conjecture.

Definition. A level N representation p : SL(2,Z) -* GL(n,C) is called K-rational if
it is defined over the field K of the Nth roots of unity, i.e. p : SL(2,Z) —> GL(n,K).

Conjecture. All modular fusion algebras associated to rational models are strongly-
modular fusion algebras and the corresponding representations of the modular group
are ^-rational.

2.2. Some simple properties of modular fusion algebras. In this section we prove
some simple lemmas about modular fusion algebras which will be needed in the
proofs of the main theorems in Sect. 5.

Lemma 1. Let (#",p) be a modular fusion algebra. Assume that p(T) has nonde-
generate eigenvalues. Then p is irreducible.

Proof. Assume that p is reducible and ρ(T) has nondegenerate eigenvalues. Then
p(S) has block diagonal form and therefore ρ(S\m = 0 for some m. This is a
contradiction to property (3) in the definition of modular fusion algebras.

Definition. A modular fusion algebra («^~,p) is called degenerate or nondegenerate
if p(T) has degenerate or nondegenerate eigenvalues, respectively.

Lemma 2. Let p,p' : Γ —> GL(w, (C) be equivalent, irreducible, unitary representa-
tions of the modular group. Assume that p{T) — ρ'(T) is a diagonal matrix with
nondegenerate eigenvalues. Then there exists a unitary diagonal matrix D such
that p=D~ιpfD.

Proof Since p and p' are equivalent there exists a matrix D' such that p =
D'~xp'D1. Since p(T) = p'{T) is a diagonal matrix with nondegenerate eigen-
values D' is diagonal. Finally, the irreducibility of p implies by Schur's lemma
that Df+Dι — αl for some positive real number α so that D = -j^D' satisfies the
desired properties.
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Lemma 3. Let (#",/?) and (#"'',//) be two nondegenerate modular fusion algebras.
Assume that p is equivalent to pf and p(T) — p'(T). Then 3F and SF1 are isomor-
phic as fusion algebras.

Proof The lemma follows directly from the definition of (modular) fusion algebras
and Lemma 2.

Lemma 4. Let (J^, p) be a modular fusion algebra. Then p is not isomorphic to
a direct sum of one dimensional representations.

Proof If p is the direct sum of one dimensional representations p(S) is also a
diagonal matrix. This implies that one cannot apply Verlinde's formula giving a
contradiction since we have assumed that ( J ^ p ) is a modular fusion algebra.

Since there are exactly 12 one dimensional representations of Γ one has the
following trivial lemma.

Lemma 5.

(1) Let p be a one dimensional representation of Γ. Then p is equivalent to one
of the following representations:

p(S) = e 2 π / τ , p(T) = e2πifi, n = 0,..., 11.

(2) Let (^,p) be a one dimensional modular fusion algebra. Then (^,p) is
strongly-modular, ^ is trivial and p is given by

Lemma 6. Let (J%p) be a strongly-modular fusion algebra associated to a rational
model. Then p is K-rational.

Proof. For a rational vertex operator algebra satisfying Zhu's finiteness condition
the characters are holomorphic functions on the upper complex half plane. Since
we have assumed that (^,p) is strongly-modular p is a level N representation for
some N. This implies that the characters are modular functions on Γ^. Moreover,
their Fourier coefficients are positive integer so that one can apply the theorem on
^-rationality of ref. [9] implying that p is A^-rational.

Although Lemma 6 will not be used in the following it provides us with a good
motivation for looking at ^-rationality of level N representations.

3. Some Theorems on Level N Representations of Γ

In this section we will consider level N representations of SL(2,2£). Firstly, we
review that all irreducible representations of SL(2, TL^) can be obtained by those of
SL(2,Z^), where p is a prime and λ is a positive integer. Secondly, we discuss

the construction of level pλ representations using Weil representations (in this part
we follow ref. [5]).
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Lemma 7. Let p be a finite dimensional representation of SL(2,ZN), where N is
a positive integer. Then the representation p is completely reducible. Furthermore,
each irreducible component ω of p has a unique product decomposition

λ • λ

where N — Y[J=ιPjJ is the prime factor decomposition of N and the π(pjJ) are

irreducible representations of SL(2, ΊL >Ί).

Proof Since SL(2,7Lχ) is a finite group p is completely reducible. The second
statement, namely that the irreducible representations of SL(2,ZJV) can be written as

a tensor product of irreducible representations of SL(2,Z ;7 ), where N = ITLi/77'
Pj J J

is the prime factor decomposition of N, can be seen as follows. For a proof of the
second statement note that

SL(2, ΊLN) = SL(2, Z ^ x x SL(2, % λn),
P\ Pn

where N — YΓj=ιp/ (see e.g. [15]). Obviously, the tensor product of irreducible

representations π(pjj) of SL(2,Z >Ί) is an irreducible representation of SL(2,2£ΛΓ).

Using now Burnside's lemma we obtain the second statement.
In order to deal with the representations of the groups SL(2,2^) we describe

their structure by the following theorem.

Theorem 1 [5, Satz 1, p. 466]. The group SL(2,Zy.) is generated by the elements

S={\ 0 ) ' T = { θ 1

and the relations

Tpλ = l9 S2=H(-l),

H(a)H(af) = H(aa'\ H(a)T = T*Ή(a% SH(a) - H(a~ι)S,

where H(a) := τ-aST~a~lS^T^S'1 and a,d e Z*pλ.

Remark. As elements of SL(2,Έ ι) the H(a) (a G Z*A) are given by

We will now describe the construction of representations of SL(2, ΈpA) by means

of Weil representations.

Definition. Let M be a finite TL χ module. A quadratic form Q of M is a map

Q.M -> p-λΈ/Έ such that

(1) Q(-x) = Q(x) for all xeM.
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(2) B(x, y) := Q(x + y) - Q(x) - Q(y) defines a TL pλ-bilinear map from M x M

to p~λZ/Z.

Definition. A finite TLpχ module M together with a quadratic form Q is called a

quadratic module of TL ι.

Definition. Let (M,Q) be a quadratic module. Define a right action <?/SL(2,TL χ)

on the space of C valued functions on M by

(f\H(a))(x) = αβ(α)αβ(-l)/(x) Vα G TL* ,

where \M\ denotes the order of M,

and f is any C valued function on M.

If this right action of SL(2,Z ) defines a representation of SL(2, Έ Λ it is
called the Weil representation associated to the quadratic module (M, Q) and denoted
by W(M9Q).

Note that the above right action always defines a projective representation of Γ.
A necessary and sufficient condition for it to define a proper representation is given
by the following theorem.

Theorem 2 [5, Satz 2, p. 467]. The above right action of SL(2,Z/?/ι) defines a

representation <?/SL(2, ΊLpλ) if and only if

OCQ(a)ocQ{a1) = αρ(1)ocQ(aa f) a,a' e Z*>.

4. The Classification of the Irreducible Level pλ Representations

Although the classification of the irreducible representations of the finite groups
SL(2, Έpλ) is contained in [5] we will give a short review here. Our main motivation
for this is the fact that we will strongly rely on this classification in the proofs of
the main theorems in Sect. 5. Furthermore, ref. [5] is not written in English but in
German.

In the first subsection we describe how one can obtain irreducible level pλ

representations as the subrepresentations of Weil representations. The second and
third subsection are used to give complete lists of the corresponding representations
for the cases of p φ 2 and p — 2, respectively.
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In addition to the review we investigate in some cases whether the irreducible
representations are AΓ-rational or not.

4.1. Weil Representations associated to Binary Quadratic Forms. Most of the irre-
ducible representations of SL(2, Έ χ) can be obtained as subrepresentations of Weil
representations W(M,Q) associated to a module M of rank one or two. The fol-
lowing two theorems describe the Weil representations needed in the later sections.

Theorem 3 [5, Lemma 1, Satz 3, p. 474]. Let p + 2 be a prime. Then the following
quadratic modules of TLpλ define Weil representations'.

pλ, Q{x)=p~W (Ul) (Rλ(r))9

(λ ^ 1) (Dλ),

( ^ 1) (Nλ),

(λ ^ 2) (ΛJ(r,t)) ,

(1)

(2)

(3)

(4)

M =

M =

M =

M =

Q(χ)=p

Q(χ)=p

Q(χ)=p

x\Xi

-\x] -
—λ ( 2

- ux\

-PC

)
'tx\)

where r,t run through {l,u} with (-) = - 1 ((-ί-) denotes the Legendre symbol),
where σ — l,...yλ— 1 and where the last column contains the name of the corre-
sponding Weil representation.

Theorem 4 [5, Satz 4, p. 474]. Let p — 2. Then the following quadratic modules
of TL2χ define Weil representations:

(2) M = Έ2λ θ Z2i, Q(x) = 2-\x\ + xχx2 + x\) (λ ^ 1) (Nλ),

(3) M=Z2A-iθZ2Λ-β-i, Q{x)=2-lr{x]+2°tx2

2) (λ ^ 2) (i?5(r,0),

where σ = 0,..., λ — 2, where (r, ί) rz/τ? through a system of representatives of the
classes of pairs defined by (r\,t\) = (r2,t2)
if tx ΞΞ ί2modmin(8,2^" ί J) and

' r2 = rχ mod4 or r2 = rxtχ mod4 /or σ = 0
: Ξ 7*i mod 8 or r 2 = r\ -j- 2τ*i ίj mod 8 for σ = 1

τ*2 Ξ ri mod 4 /or σ = 2
i = ri mod 8 /or σ ^ 3

where the last column contains the name of the corresponding Weil represen-
tation.

All irreducible representations of SL(2,Z ; 3 A) can be obtained as subrepresen-
tations of Weil representations W(M, Q). One possibility to extract subrepresenta-
tions of such representations is to use characters of the automorphism group of the
quadratic form Q:

Theorem 5 (see e.g. [5]). Let W(M,Q) be a Weil representation described by
Theorem 3 or 4, % an abelίan subgroup of Aut(M, Q) and χ a character of °U.
Then the subspace

V(χ) := {/ : M -> €\f(εx) = χ(ε) /(*), x € M, ε € %}
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of <£M is invariant under SL(2,Z A). The corresponding subrepresentation is

denoted by W(M,Q,χ).

Remarks.
(a) The space V(χ) is spanned by V(χ) = {fx(χ))xeM, where

(b) The automorphism group of the quadratic forms in Theorem 4 contain a
conjugation κ\ κ(x\, X2) = (xi, *i) in case (1) and κ(x\, xi) = (xi, —X2) in the cases
(2) and (3). In these cases the space

V(χ)±:={f£V(χ)\f(κx) = ±f(x), x e M}

is invariant under SL(2,Z2;.). The corresponding subrepresentation is denoted by

W(M,Q,χ)±.
From now on we will denote the trivial character χ= 1 by χ\. Indeed, almost all

irreducible representations of SL(2,Z/?;) can be obtained as subrepresentations of
the Weil representations described by Theorems 3 and 4 using "primitive" characters:

Definition3. Let W(M, Q) be a Weil representation described by Theorem 3 or 4
and let % — Aut(M, Q). A character χ of % is called primitive iff there exists an
element ε e % with χ(ε)φ 1 such that each element of pM is a fixed point of ε.
The set of primitive characters of % will be denoted by ψ .3

With this definition we have:

Theorem 6 [5,Hauptsatz 1, p. 492]. Let W(M,Q) and W(M',Qf) be Weil repre-
sentation described by Theorem 3 or 4 and χ, χf primitive characters. Then one
has

(1) W(M, Q, χ) is an irreducible level pλ representation.
(2) W(M, Q,χ) and W(M',Qf,χr) are isomorphίc if and only if the quadratic mod-

ules (M,Q) and (M\Qf) are isomorphic and χ — χforχ = χf.

The second main theorem of ref. [5] describes the classification of the irreducible
representations of SL(2,TLpι^).

Theorem 7 [5,Hauptsatz 2, p. 493]. The Weil representations described by Theo-
rems 3 and 4 contain all irreducible representations of the groups SL(2,Z/?/) (in
general they are of the form W(M,Q,χ) for a primitive character χ) apart from
18 exceptional representations for p — 2. These exceptional representations can
be obtained as tensor products of two representations contained in some W(M,Q)
(described by Theorem 3 or 4).

3 In the case of M = Z2,_i 0 Έι(λ ^ 5) the definition of primitive characters is slightly different

[5, p. 491]: Here % ̂  (-l)(α) with α = ( 1 + 4 ; t λ / ~ Ψ . , \ = 5 and χ is primitive if
I 1 — 2Λ + V—2λ~2t λ > 5
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Complete lists of irreducible representations of SL(2,ΊL x) will be given in
Sects. 4.2 and 4.3.

4.2. The Irreducible Representations of SL(2,Έ χ) for /?φ2. In the classification

of the irreducible representations of SL(2, Έ χ) for />φ2 one has to distinguish the

cases λ = 1 and λ > 1. Therefore, we treat them separately.

Following [5] we denote the trivial representation by C\.

Theorem 8 [5]. A complete set of irreducible representations of SL(2, Έp) for a
prime p with p + 2 is given by the representations collected in Table 1. In Table 1
the χ run through the set of characters of % and χ_i is the unique nontrivίal
character of % taking values in ± 1 . Furthermore, we denote by # {here and in
the following) the number of inequivalent representations.

We will denote the 3 one dimensional level 3 representations C\, i?i(l,χ_i) and
R\(2,χ-\) by B\, B2 and #3, respectively.

The explicit form of these representations is well known (see e.g. [4]) and one
can address the question which of these representations are K-rational (see also [9]).
Note that, in view of the results in Sect. 2.2, this question is natural in the context
of admissible representations.

Lemma 8. Let p φ 2 be a prime.

(1) For p = 1 (mod 3) there is exactly one and for p φ 1 (mod 3) there is no
K-rational representation of type D\(χ).

(2) For p = 2 (mod 3) there is exactly one and for /?φ2 (mod 3) there is no
K-rational representation of type N\(χ)(χ G ̂ 3 ).

(3) The representations of type R\(r,χ±\) and N\(χ\) are K-rational.

Proof. Using a character table for the above representations (see e.g. [16]) one easily
finds that the characters of representations of type D\(χ) or N\(χ) take values in
the field of pth roots of unity only if p = 1 (mod 3) or p = 2 (mod 3) and if
χ is a character of order 3. Therefore, there is at most one ^-rational representa-
tion of type D\(χ) or N\(χ) for the corresponding values of p. Using the explicit
form of these representations (see e.g. [4]) one finds that these two representations
are indeed AΓ-rational. For the other two types of representations the iΓ-rationality
follows directly from the fact that χ±\ takes values in ± 1 .

Table 1. Irreducible representations of SL(2,Z/J) for />φ2

type of rep.

Dι(χ)

Nι(χ)
R\{r,X\)

R\(r,χ-ι)
NiiXi)

X&

χe
( p )

(ΐ)

= ±1
= ±1

dimension

/ > + !
p-\

\(P+ Ό
i ( p - l )

P

#

\(P

HP
2

2

1

- 3 )

- i )



Classification of Modular Fusion Algebras 635

Theorem 9 [5]. A complete set of irreducible representations of SL(2,T£pι) for
pή=2 prime and λ > 1 is given by the representations in Table!, where χ_i is
the unique nontrivίal character with values in ±\ and Rχ{r,χ±\)\ is the unique
level pλ subrepresentatίon of Rχ{r,χ±\)\ which has dimension \{p2 — \)ρλ~2.

Table2. Irreducible representations of Sh(2,Zp/.) for />Φ2 and λ > 1

type of rep. dimension #

Dλ(χ) χ e φ (p+\)pλ~l \{P-\)2PA~2

Nλ(χ) χeφ (P-I)pλ~l \{p2-\)p}-2

9 χ±ι)ι

Lemma 9. Let pή=2 be a prime and λ > 1 and integer.

(1) The representations of type R°(r,t,χ) are K-rational for />φ2 and λ > 1.

(2) The representations of type Rλ(r,χ±\)ι are K-rational for pΦ2 and
λ > 1. Furthermore, the image of T under these representations has non-
degenerate eigenvalues only if p — 3 and λ = 2.

Proof. Since the automorphism group of the quadratic form of R°(r, t, χ) is given
by [5, p. 495] % = Z2 x Z χ-o we obtain (1). In the second case one obviously
has °ll = %2 so that the AΓ-rationality follows directly. The statement concerning the
eigenvalues of the image of T for the representations of type Rχ(r,χ±\)\ is proved
in Satz 4 of [5].

4.3. The Irreducible Representations of SL(2,Z2;). The classification of the ir-
reducible representations of SL(2,2£2i) is complicated since there are a lot of
exceptional representations for λ < 6 [5]. Since these representations have small
dimensions and we will be interested in such representations in Sect. 5 we de-
scribe them in the rest of this subsection. The Tables 3-8 list complete sets of
irreducible representations of the groups SL(2,Z2/) for the corresponding values
of λ.

For λ = 1 there are only two irreducible representations (see Table 3). The rep-
resentation C2 is given by C2(S) = C2(Γ) = - 1 and both level 2 representations
are ^-rational.

Table 3. Irreducible representations of SL(2,Z2)

type of rep. dim #

c2=M(x) z ^ φ 1 1
Nι(χi) 2 1
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For λ — 2 there are seven irreducible representations (see Table 4). The represen-
tation C3 is given by C3(S) = C^T) = -i, C4 by C4(S) = C4(T) = i and $}(1, 3)i
is denned by #5j(l, 3) = i^( l , 3)i Θ C\. All level 4 representations are ^-rational.

For λ — 3 there are 20 irreducible representations (see Table 5). Here χ is one
of the two characters of % of order 4 and the representation i?3(l,3,χi)i is defined

For λ — 4 there are 46 irreducible representations (see Table 6). Here the repre-
sentation Rl(r,39χ\)\ is given by the equality Rl(r,3,χ\) = R\(r93,χ\)\

Table 4. Irreducible representations of SL(2, Έ22)

type of rep.

D2(X)+

•^2(1,3)1
C2 <8>/?S(l,3)i
N2(χ)

C3=S°p,hχ)
C4=4(l,l,χ)

Table 5. Irreducible

type of rep.

D3(χ)±

i^(l,3,χi)i
C3 (8>Λ§(l,3,χOi
N3(χ)
Ni(χ)±

Λ?(r,f,*)
iς(l,ί,χ)-t

Table 6. Irreducible

type of rep.

N4(χ)

R°Λr,t,χ)
R\(r,t,χ)±
R)!(l,t,χ)±
R\(r,t,χ)
C2 0i?4(r53j)
Rl(r93,χι)\
JV3(χ)+®ΛS(l,7

zφi
χ φ 1

χ φ 1
χ φ i

representations of SL(2,:

y G Φ
7 G Ϊ5
r = l ,

χ φ i ;

representations of SL(2,

χ G φ

χ ^ φ ^
χ φ l ; Γ,i
χ φ l ; r =

χ ^ 1

x2 Φ 1
χ2 = 1

3; / = 1,5
t = 3,Ί

TL2A)

: φ l ; r = l , 3 ; ί =
^2 Ξ 1; r = 1,3; t
= 3,7

f<Ξ{l,3}
= 1,3

/(- ! ) '= 1

dim

3
3
3
3
2
1
1

dim

6
6
6
4
2
3
3

= 1,5
= 1,5

dim

24
8
6
3
6
6
6
6

12

#

1
1
1
1
1
1
1

#

4
1
1
2
4
4
4

#

2
6
4

16
8
4
2
2
2
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Table 7. Irreducible representations of SL(2, Έ25)

type of rep.

A>(x)
Ns(χ)
Rψ,t,χ)

4(nVχ)±
R\(r,t,χ)±
Rl(r, l,χ)\
C3®R2

s(r,l,χ)ι

χ e φ
χ e φ
j f G i ( ! ; r = l , 3 ; ί = l , 5
χ G Ŝ ί = 3,7
χe^ rj e {l,5}or
r = 1,3 and ί = 3,7
χ G φ r = 1,3; t = 1,3,5,7
χ g ^ γ — 153
χ 2 $ ; r = l , 3

dim

48
16
12
24
12

6
12
12

#

4
12
16
4

16

32
4
4

Table 8. Irreducible representations of SL(2, Z2λ) for λ > 5

type of rep.4 dim

3 2
; - '

Rσ

λ(r,t,x)

R-Γ2(r,t,χ)

t

(

{
σ
r
r

= 3,7
r = l , 3 ;
r,t€{l
r= 1,3
r=l,3;

- 1 , 3 , 5 ,

t= 1,
,5} or
and ί
/ = 1,

A - 3 ;
7; ί =

7' / =

5

=
3,

3
5

r,t

1,
1,

3
3

,7
,7
G

for

for
for

{1,3,

σ = 0

σ = 1
σ = 2

5,7}

2k"
3

^ .

3
3

3

2X-2

2λ~3

2 Λ-4

2λ~4

2;.-4

3 2 ; - 3

2;.-3

5 2 ;-~ 2

4 y^ L~

16
16

For A = 5 there are 92 irreducible representations (see Table 7). Here for fixed
r = 1,3 the 2 irreducible representations of type R2

5{ ,\,χ)\ {χ ^ ^ ) are given by
the 2 two dimensional irreducible level 5 subrepresentations of R\(r, 1).

For λ > 5 there are the following irreducible representations (see Table 8). Here

χ are always primitive characters and Rj~3(r,t,χ±\)\ is the unique irreducible level

2λ subrepresentation of R^~3(r,t,χ±\) which has dimension 3 2 ;~ 4. 4

5. Results on the Classification of Strongly-Modular Fusion Algebras

5.7. Classification of the strongly-modular fusion algebras of dimension less than
or equal to four. In this section we consider all two, three and four dimensional
level N representations of Γ and investigate whether they are admissible.

4 For λ = 6 one has to use representation of type R^(r,t,χ\)ι and C2 <S>R^(r,t,χ\)\ (r = 1,3)

instead of those of type R/

λ~
3(r,t,χ±ι)\. The representations R%(r,t,χ\)ι are the unique level 6

subrepresentations of R\(r,t,χ\)\ with dimension 12.
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Table 9. Two dimensional strongly-modular fusion algebras

9 p(S) £-Aog(p(T)) modZ

φ'φ'=φ" * ' = ! " ύ ι*.(i,i)
, / -sinff) -sin(^)

ΦιΦι=Φ0 + Φι -^ . V,5/ . v ^ , , -,-

U > } ) ^ V sin(f)

Main Theorem 1. Let ( J ^ p ) be a two dimensional strongly-modular fusion alge-
bra. Then (^,p) is isomorphic to the tensor product of a one dimensional modular
fusion algebra with one of the modular fusion algebra in Table 9.

Proof Let (^,ρ) be a two dimensional strongly-modular fusion algebra. Lemma 4
implies that p is irreducible. Therefore, we have to consider all irreducible two
dimensional representations of Γ which factor through a congruence subgroup. By
Lemma 7 we know that these representations can be obtained by taking the tensor
products of all irreducible two dimensional level pλ representations with all one
dimensional representations of Γ.

There are exactly 11 inequivalent irreducible two dimensional level pλ repre-
sentations. Their explicit form is given in Appendix A. We are interested in the
classification of the two dimensional strongly-modular fusion algebras up to ten-
sor products with one dimensional fusion algebras. Therefore, we can restrict our
investigation to one of the two dimensional representations of level 2,23,3 and the
two representations of level 5 (see Appendix A). For the remaining 5 two dimen-
sional representations the eigenvalues of the image of T are nondegenerate. Hence,
Lemma 2 implies that the corresponding matrix representations are unique up to
conjugation with unitary diagonal matrices and permutation of the basis elements.
One can easily apply Verlinde's formula and check whether the resulting coefficients
Nfj have integer absolute values for the two possible choices of the basis element
Φo corresponding to the vacuum (conjugation with a unitary diagonal matrix does
not change the absolute value of N^J). In particular for the level 2 representation
N\(χ\) and the level 3 representation N\(χ) we obtain for both possible choices of
the distinguished basis elements Φo and Φ\,

), p = 2

for M(χ), P = 3.

Since \N^{ | is not an integer we can exclude these two representations. For the level

23
23 and 5 representations one obtains integer values for the Nfj. Moreover, in all
three cases both possible choices of the distinguished basis elements Φo and Φ\ lead
to isomorphic fusion algebras. We conclude that the representation of the modular
group given by a two dimensional strongly-modular fusion algebra is isomorphic
to the tensor product of a one dimensional representation and Ni>(χ)+(pλ — 23)
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or R\(r,χ-\)(r = 1,2; pλ = 5). Using that ρ(S2) should be a matrix consisting of
nonnegative integers one can determine the one dimensional representation of Γ
up to an even one dimensional representation. Therefore, ( ^ , p ) is determined up
to tensor products with one dimensional modular fusion algebras. The resulting
representations and fusion algebras are collected in Table 9. D

Remark. The two fusion algebras in Table 9 are called %2 and "(2,5)" fusion
algebras, respectively. The first name is evident since this fusion algebra is iso-
morphic to the group algebra of Έ2 with the distinguished basis given by the group
elements. We will call the fusion algebra given by the group algebra of ZN in
the following 7Lχ fusion algebra. The second name results from the fact that the

(n-a)2

Virasoro vertex operator algebra is rational for c = c(p,q) = 1 — 6KP q) (p,q > 1,
(p,q) = 1)[17, 18] (these models are called Virasoro minimal models) and the cor-
responding fusion algebra are denoted by "(/?,#)" fusion algebra. In particular the
"(2.5)" fusion algebra is isomorphic to the fusion algebra in the second row of
Table 9.

Main Theorem 2. Let ( ^ , p ) be a three dimensional strongly-modular fusion
algebra. Then («^,p) is isomorphic to the tensor product of a one dimensional
modular fusion algebra with one of the modular fusion algebras in Table 10.

Proof Let ( J ^ p ) be a three dimensional strongly-modular fusion algebra. By
Lemma 7, p is either irreducible or isomorphic to a sum of a two dimensional
and a one dimensional irreducible representation. We will now consider these two
cases separately.

Firstly, assume that p is irreducible. By Lemma 7, p is isomorphic to the tensor
product of a one dimensional representation and one of the three dimensional
irreducible level pλ representations. There are exactly 33 inequivalent irreducible 3
dimensional level pλ representations. Their explicit form is given in Appendix A.
We are interested in the classification up to tensor products with one dimen-
sional modular fusion algebras. Therefore, we can restrict our investigation to a
set of irreducible representations which are not related via tensor products with
one dimensional representations. This means that we have to consider one repre-
sentation of level 3 and 22, two representations of level 5 and 7 and, finally, four
representations of level 24 (see Appendix A).

For these representations the eigenvalues of the image of T are nondegenerate
so that we can proceed now as in the proof of the Main Theorem 1.

Using Verlinde's formula for the representation N\(l,χ\)(p = 3) we obtain
| ^ j | = I for all possible choices of the distinguished basis. In the same way
one finds for R\(r9χ\)(r = 1,2;/? = 5) that

= ^ for p(T) = dia g(l,e 2 π i5,e 2 π ' t)

or p{T) = diag(l,e2 π iτ,e2 π 'J)

\Λ I = ^
= J~ for p(T) =

N\Λ I = ^ for p(T) = diag( e

2 π /ϊ, l , e 2 ί I ί t )
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Table 10. Three dimensional strongly-modular fusion algebras

& P(S) i

φ\ φ\ = φ2

Φ2

ί Si S\ S3

\ S3 S 2 Si

ί -S3 Si S2

\ S2 S3 Si

(S\ S2 S3 \

\S3 Si -S2J

("(2,7)") sj = sin(f)

φi φi = ΦQ

\χ/2 -Λ/2 0
Φo ' Φi — ΦQ ~t~ Φ\
("(3,4)")

Here the different cases correspond to the different possible choices of the distin-
guished basis. We conclude that p cannot be isomorphic to a tensor product of a one
dimensional representation and N\{\,χ\){p — 3) or R\(r,χ\)(r = 1,2;p — 5). An
analogous calculation shows that for the representations of type i?i(r,χ_i) one has
ITV^I e N for all 3 possible choices of the distinguished basis. For the remaining

representations one also has |7Vf7 £ N for the two possible choices of the dis-
tinguished basis (here the matrix p(S) contains a zero so that there are only two
possible choices of the distinguished basis).

Hence, p is isomorphic to a tensor product of a one dimensional representation
with one of these 7 representations. Using that for a modular fusion algebra p{S2\j
equals Nfj one can determine the possible one dimensional representations. The
corresponding strongly-modular fusion algebras are contained in Table 10 in the
second and third row.

Secondly, assume that p decomposes into a direct sum of two irreducible represen-
tations p = p\ Θ p2 with dim(py) = j . Then p2 is isomorphic to the tensor product
of a one dimensional representation with one of the two dimensional irreducible
level pλ representations contained in Table Al.

Using Lemma 1 we conclude that p(T) has degenerate eigenvalues so that pi{T)
must have an eigenvalue of the form e2πι~fi. Hence, pi cannot be isomorphic to the
tensor product of a one dimensional representation and one of the two dimensional
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irreducible level 5 and 23 representations in Table Al. Using once more that p(T)
has degenerate eigenvalues we obtain that p is isomorphic to the tensor product
of a one dimensional representation with either N\(χ\)Φ C} (j = 1,2; p = 2) or
N\(χ) Θ Bj (j = 2,3; p = 3). In order to find out whether these four representations
are admissible we have to look for distinguished bases.

Let us first consider the case ρ = C® (N\(χ) <& Bj)(j = 2,3; p = 3) where C
is a one dimensional representation. Here ρ(S2) has two different eigenvalues since
N\(χ) is odd and the representations Bj are even. Since the vacuum is selfconjugate,
i.e. p(S2)oo = 1 the representation C has to be odd. Without loss of generality we
choose C — C4 for j — 2 and C = C3 for j — 3. Furthermore, the fact that p(S2)
has two different eigenvalues implies that we must have

p(S2)= 10 0 1
1 0
0 0
0 1 0,

Using these two conditions it follows that in a basis in which p(S2) has this form
and ρ(T) is diagonal we must have

and

= ί άmg(e2πiτi,e2πίT2,e2πiT2) or
\

up to conjugation with a unitary diagonal matrix (the two possibilities for p(T)
correspond to the two possible choices of the distinguished basis).

Applying now Verlinde's formula leads to a modular fusion algebra iff ε = 1
for both choices of the distinguished basis. The corresponding fusion algebra, p(S)
and p(T) are listed in the first row of Table 10.

Finally, consider the case p = C® (M(Zi) θ Cj)(j = 1, 2). Since N\(χ\)(p =
2) and Cj (J: = 1, 2) are even p has to be even, too. Therefore, C is even and
w.l.o.g. we choose C — C\ for j — \ and C — C2 for j = 2. Since p is even one
must have p(S2) = 11 and, therefore, p(S) is real (cf. the second remark in Sect. 2).
Plugging this in we find (up to permutation of the basis elements) that

1 / 1 -y/3a \fΐb \
p(S)=-[-y/3a 2-3a2 3ab , p(T) = (-l)J diag(l, -1,-1),

Z V

where a, b G 1R and β2 + b2 — 1. Using Verlinde's formula we obtain as conditions
for p to be admissible

" 2 ) G N f o r ^ ( Γ ) = ( - O ^ a g C l , - 1 , - 1 )

The first case implies that a2 = | or ^ 2 = | and the second one a2 = | , respec-
tively. Inserting these values of a in the explicit form of p(S) above we indeed
obtain modular fusion algebras if we choose the signs of a and b correctly. The
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resulting modular fusion algebras are contained in the third row of Table 10. As
fusion algebras they are of type "(3,4)", also called Ising fusion algebra.

This completes the proof of the Main Theorem 2. D

Main Theorem 3. Let (J^, p) be a four dimensional strongly-modular fusion alge-
bra. Then (#", p) is either isomorphic to the tensor product of 2 two dimensional
strong modular fusion algebras or isomorphic to the tensor product of a one di-
mensional modular fusion algebra with one of the modular fusion algebras in
Table 11.

Proof Let (J^, p) be a strongly-modular fusion algebra. Then, by Lemma 4, we
have the following possibilities for p:

(1) p is irreducible,

(2) p 9* px Θ pi with dim(pi) = 3, dim(p2) = 1,

Table 11. Four dimensional simple strongly-modular fusion algebras

3F p(S) ±\og(p(T))modZ

Φ] = Φ2, ΦX Φ2 = Φ 3 ,

Φ\ = Φo, Φ\ • Φ3 = Φo,

(Z4)

Φ\ = Φ o , Φ ι - Φ 2 =
φ2 = φQ ? φι.φ3 =

φ2 = φ 0 ? φ2. φ3 =

g ( | |
\ d i a g ( | , I , 2 , i )

ίdiag(f , | , I , | )

Γdiag(O,O,O, \)

\diag(i, 0,0,0)

—.94 —5 53 — $

Φχ Φθ + Φ3
φj φ2 = φj -f φ 3

j . φ 3 = φ 2 -f- φ 3

= Φ o -f Φ2 + Φ3

φ2 • φ3 = φχ 4- φ2 + φ 3 2 I —̂

("(2,9)")

•31
S4

-S4

si

-S4

Si

S3

S2

0
-S3

s
3

0

S3

S3

0
-S3

—S3

Si

Sl

'S2
3

-si

-S2

-S3

J- 11 J- 31
3 6 ' 36 ' 12' 36
29 1 7 H 5

3g, 36, i 2 ? 35

31 1 1 19N

36' 36 ' 12' 36>
J_ 29 11 17 Ϊ

36' 36 ' 12' 36>

31

A il
36' 12'
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(3) p = pi θ p2 with dim(pi) = dim(p2) = 2,
(4) p = pi θ ρ2 θ p3 with dim(pi) = 2, dim(p2) = dim(p3) = 1,
where pι(i = 1, 2, 3) are irreducible representations.

(1) p is irreducible. Assume that p is irreducible. Then p is either isomorphic to
the tensor product of 2 two dimensional representations of coprime levels or it is
isomorphic to the tensor product of a one dimensional representation with a four
dimensional irreducible level pλ representation. In the first case we obviously have
that p is only admissible iff both two dimensional representations are admissible
(look at Table A1). In this case the corresponding modular fusion algebra is a
tensor product of two fusion algebras contained in Table 9. Let us now consider the
other case, namely that p = C(g)pi, where C is a one dimensional representation
and p\ is a four dimensional irreducible level pλ representation. In this case p\
is given by one of the 9 representations in Table A3. Note that for all of these
representations the eigenvalues of the image of T are nondegenerate so that we can
use the argumentation used in the proof of Main Theorem 1.

For the representation N\(χ) (χ3 φ l ; p = 5) we find by Verlinde's formula

1 ^ 1 = V% for p(T) = άmg(e2πί-5,e2πiτ,e2πίτ,e2πiτ) ( i = 1, . . . ,4),

where again the different possibilities for p(T) correspond to the different possible
distinguished basis. This shows that p\ cannot be isomorphic to this representation.

Since the representation N\(χ) (χ3 = 1; p = 5) is isomorphic to the tensor prod-
uct of the two different level 5 representations in Table Al it is clear that this
representation is admissible. Since the image of T under this representation has
nondegenerate eigenvalues the corresponding modular fusion algebras are isomor-
phic to the tensor product of 2 two dimensional modular fusion algebras (as fusion
algebras they are of type "(2,5)").

Consider now the representations R\(r, χ\) (r = 1, 2; p = 7). Here Verlinde's
formula implies that

M M = 4 = for p(Γ) = diag(eM,i , . , . ) ( Λ = l , . . . , 6 )
V2

and

? 4= for

As above this removes these representations from the list of candidates leading to
modular fusion algebras.

For the representation N^(χ) (χ3 φ 1; p = 23) one has

MM = \J\ for p(Γ) = d i a g ( β 2 π ^ , e 2 π ^ , v ) (n = 1,...,4)

so that this representation is also excluded.
Consider now the representations R\(r, 1, χ) (r = 1, 2; χ3 φ 1; p = 32). Here one

has

M1 il = -7= f o r ^ Γ ) = dmg(e2πiΠr,e2πih', ) (n = 1, 2, 3).
v3
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The basis element in the representation space corresponding to the p(T) eigenvalue
of order three cannot correspond to Φ$ since in the corresponding row of p{S)
contains a zero.

Finally, the only remaining four dimensional irreducible level pλ representa-
tions that might lead to modular fusion algebras are those of type R\(r, I, χ) (r =
1, 2; χ3 = 1; pλ[ = 32). Indeed, these representations lead to modular fusion algebras.
To be more precise one has to consider the tensor product of an odd one dimensional
representation with them because the R\(r, 1, χ) (χ3 = 1) are odd themselves. The
corresponding fusion algebras are of type "(2,9)" and the explicit form is given
in Table 11. The different modular fusion algebras result from the two different
representations and the fact that the distinguished basis can be chosen in different
ways.

p = pλ φ p2 with dim(p\) — 3, dim(p2) = 1. Assume that p is isomorphic to the
direct sum of a one dimensional and an irreducible three dimensional representation.
Then one has p = C 0 (p\ φD), where C and D are one dimensional representa-
tions and pi is one of the three dimensional irreducible level pλ representations
in Table A2. By Lemma 1 we know that p(T) has degenerate eigenvalues. There-
fore, P ι is o f t y p e Nx(Xl) (p = 3 ) , Rx(r9 χι)(r=l,2;p = 5 ) , D2(χ)+(pλ = 2 2 )

° λ 3

Consider first the representation N\(χ\) (p = 3). In this case we can have
D — Bj(j = 1, 2, 3). Since Bj and N\(χ\) are even we can choose without loss
of generality C — C\. Using Verlinde's formula we find that

\N}t x I = \ for p(T) = άmgie2^, e2πiΨ, M, M)

giving a contradiction for these choices of the distinguished basis. For p(T) =

diag(e2 π /3,e2 π /3,e2 π / Z3",e2 π /V) the line of reasoning is a little bit more involved.
Here N®j = p(S2\j — δitJ implies that p(S) is given by

Aab 2a 2a
3 - 4b2 -2b -2b

-2b - 1 2
-2b 2 - 1 .

up to conjugation with an orthogonal diagonal matrix, with a, b G IR and a2 +
b1 — 1. With the explicit form of p(S) we find as conditions for p to be admissible

However, the only solutions that satisfy these two conditions are those a which
equal ^ for an integer m and satisfy m3 = 0 mod 3m2 - 1. It follows that m =
0 mod 3m2 — 1 which gives a contradiction. Therefore, the representations N\(χ\) Θ
Bj(p = 3) do not lead to modular fusion algebras.

Next we consider the representations R\(r, χ\) (r = 1, 2; p — 5). In this case
the one dimensional representation D has to be the trivial one. Since these two
representations are even we can choose without loss of generality C = C\, too.
Using that iV? - = δij we find that the matrix which describes the basis in the two
dimensional eigenspace corresponding to the eigenvalue 1 of p(T) is orthogonal.
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Furthermore, by looking at suitable N^j we find that there are only two possibilities
for this matrix. In the corresponding basis we indeed find modular fusion algebra
given by the tensor product of two modular fusion algebras of type "(2,5)". That p
is admissible can also be interfered from the equality R\(r, χ\) 0 C = R\(r, χ_j) <g)
Λ i ( r , χ - i ) ( r = l , 2 ; / > = 5).

Finally, we have to consider D2(χ)+(pλ = 22) and R%1, 3, χ)± (pλL = 23).
The corresponding possibilities for p are C3 <g> D2(χ)+ Θ Cj(j = 1, 3, 4), C4 0Λ3
(1, 3, χ)+ Θ C3 or C3 Θ R%\, 3, χ)_ Θ C4. For the case p ^ C3 Θ D2(χ)+ θ Q we
obtain a modular fusion algebra given by the tensor product of two Έ2 fusion
algebras. This can also be seen by looking at the identity

C3 ® D2(χ)+ 0 d ^ D2(χ)+ 0 D2(χ)+ .

For C4 ® Λ3O, 3, χ)+ θ C3 or C3 <8>Λ§(1, 3, χ)_ θ C4 we obtain Z 4 type fusion
algebras (see Table 11). The other two representations (C3 (g)D2(χ)+θ C7 (7 =
3, 4)) are not admissible as one can easily check by applying Verlinde's formula.

p ^ P J 0 p 2 wzϊA dim(pι) = dim(p2) — 2. Assume that p decomposes into a direct
sum of 2 two dimensional irreducible representations. In this case we have p =
C ® (pi θ D 0 p2), where C and D are one dimensional representations and p\, ρ2

are some level pλ representations contained in Table Al. Since p is reducible we
know that p(T) has degenerate eigenvalues. This together with the parity of the
representations in Table Al implies that p equals (up to a tensor product with an
even one dimensional representation) one of the following representations:

C3®(Nι(χ)(BBi®Nι(χ)) (1 = 1,2),

χ_i)) (r = 1, 2),

In all cases we have that p(S) is conjugate to a matrix of block diagonal form.
More precisely, this matrix consists of two identical two by two matrices. A simple
calculation shows now that conjugation of p(S) with a matrix which leaves p(T)
diagonal leads to a matrix which has at least one zero element in every row. This
is a contradiction since we have assumed that p is admissible and one can apply
Verlinde's formula.

p =. px 0 p2 0 p 3 with dim(p\) — 2, dim(p2) = dim{p3) = 1. Assume that p decom-
poses into a direct sum of an irreducible two dimensional and 2 one dimensional
representations. Then, again by Lemma 1, p(T) has degenerate eigenvalues and a
simple parity argument shows that the only possibilities for p are (up to a tensor
product with an even one dimensional representation):

# i U α ) θ C i Θ C i or

where N\(χ\) is the level 2 representation in Table Al. We have to consider these
two cases separately.

Firstly, let p be conjugate to N\(χ\)®C\ Θ Q . Then the requirements that
p(S) has to be symmetric and real and that p(T) has to be diagonal imply that
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(up to permutation of the basis elements and conjugation with an orthogonal diag-
onal matrix):

/ -1 Vϊa V3b V3c
1 λ/3tf 3a2-2 3ab 3ac

2\V3b 3ab 3b2-2 3bc
\V3c 3ac 3bc 3c2 -2,

where α, b, c G 1R with a2 + b2 + c2 = 1 and p(Γ) = diag(-l, 1, 1, 1).
Fixing the distinguished basis such that ΦQ corresponds to the eigenvector of

p(T) with eigenvalue —1 we obtain

, {2-3a2){\-3a2) 2 (2 - 3b2\\ - 3b2) 3 (2 - 3c2)(l - 3c2)

2

λ = V3(3a2 - l)b, Λft = V3(3a2 - \)c ,

- l ) α , iV2

3

2 = Λ/3(3Z> 2 - \)c .

This implies that a2 = b2 = c2 = | . The resulting structure constants indeed define
a fusion algebra, namely the tensor product of two fusion algebras of type Έ2. As
a modular fusion algebra this fusion algebra is simple, i.e. it is not a tensor product
of two nontrivial modular fusion algebras. The resulting modular fusion algebra is
contained in Table 11.

For the other choice of the distinguished basis where Φo corresponds to an
eigenvector p(T) with eigenvalue 1 we find

, (3α2-l)Z> Λ r 2 (3a2-\)c

a(3a2-2Y

I-3b2

V3a(3a2 - 2)' V3a(3a2 - 2) '

where the basis was chosen such that p(T) = diag(l, 1, 1,-1). Let now n :=
C/V33 )2 4- (N2

3 )
2 and m := (Λ^) 2. It is now easy to verify that n and m satisfy

the equation

m3 + (1 - 5n)m2 + (4n2 + ln)m + 4n2 - 3n3 = 0 .

By Lemma 10 in Sect. 5.2 below the only nonnegative integer solution of this
equation is given by n = m — 0. Therefore, we find as the only possible solution
a2 = b2 = c2 = | . The resulting structure constants define a fusion algebra isomor-
phic to the tensor product of two Z2 fusion algebras. However, analogous to the
case of the other distinguished basis discussed above this modular fusion algebra is
simple and contained in Table 11.

Secondly, assume that p is conjugate to M(Zi) θ C\ θ C2. Requiring that p(S)
is a symmetric real matrix and that p(T) is diagonal implies (up to a permutation
of the basis elements and conjugation with an orthogonal diagonal matrix)

( 3Z?2-1 -3ab -y/3ac

-3ab 3a2 - 1 -y/3bc V3bd
-V3ac -V3bc 3c2-2 -3cd
V3ad V3bd -3cd 3d2~2>
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where α, b9 c, d e IR and a2 + b2 = 1, c2 + d2 = 1 and ρ(T) = diag(l, 1,-1, -1) .
Using Verlinde's formula we obtain for the choice of the distinguished basis in
which ΦQ corresponds to the eigenvector of p(T) with eigenvalue 1,

, γ i v 2 _ (3a-D2(6a-5)2

 2 2 3 2 </2

1 ; α 2 ) ( 3 α 2 ) 2 ' l π ; 3 α 2 ( 3 « 2 2 ) ' l l l J α2 - 2) '

For the other choice of the distinguished basis (Φo corresponding to eigenvalue —1)
one finds the same expressions with a and c exchanged.

Let n := (Λ^) 2 + (Λ^) 2 and let m := (Λf/})2. It is easy to verify that the fol-
lowing equation for n and m holds true:

(1 - 3n)m3 + (12 - 37« + 3ln2)m2 + (48 - 152w 2 3

+ 64 - 208« + 249n2 - 130«3 + 25«4 = 0 .

By Lemma 11 in Sect. 5.2 below the only nonnegative integer solution of this
equation is given by m = 0, n — 1. This is a contradiction to the explicit form of
n and m in terms of a above. Hence the representation Ni(χi)Θ C\ Θ C2 is not
admissible.

This proves the Main Theorem 3. D

5.2. Proof of two Lemmas on Diophantic Equations.

Lemma 10. Let n be a nonnegative integer, m a square of an integer and n, m
solutions of

m3 + (1 - 5n)m2 + (4Λ + In2)m + An2 - 3n3 = 0 .

Then n = m — 0.

Proof. The equation can be written in the form

(3n - m)(m - nf = (m + 2n)2 .

If n = m then m = n — 0 . Otherwise, set ί = ^ ^ implying

(t + 2)t2 (t-l)t2

2t-5 ' It-

If m and n are integral then also t has to be integral (any prime factor of the
denominator of t would divide the denominator of m and n). Then N — 2t — 5
divides (t - \)t2 = | ( N + 5)2(N + 3) so that N divides 3 52. None of the resulting
12 possibilities leads to a nonnegative integer solution of «, m where mή^n and m
is a square. D

Lemma 11. Let n be a nonnegative integer, m a square of an integer and n, m,
solutions of

(1 - 3n)m3 + (12 - 37n + 3\n2)m2 + (48 - I52n + 155w2 - 53n3)m

+ 64 - 208>2 + 249«2 - 130«3 + 25«4 = 0 .

= 0, n = 1.
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Proof. Set k = m — n + 4, then the equation is equivalent to

£3 + 2k2n - 3k3n + \25n2 - 92kn2 + 22itV - 11«3 = 0 .

If k = 0, then n — 0 and m = - 4 is not a square. Otherwise, the equation is equiv-
alent to

(-3/ + 22t2)k2 + (1 + 2t - 92ί2 - I l ί 3 )£ + 125ί2 = 0,

where f = f. This equation has discriminant (1 + 18/ + t2)(\ - It + \\t2)2 and this

must be a square. Setting

p,q and # > 0) we get

must be a square. Setting | := (1 - t - (1 + 18* + ί2)1 / 2)/(100 G Q (with coprime

Hence, using the quadratic equation in k we finally have

n —p\2q-p)\p + qy p\2q - p) '

The parametrization of n implies that p = ± 1 and, furthermore, that q3 = 0 mod
(2q — p). Therefore, we have p3 = 0 mod (2q — p) so that 2q — p — ± 1 . From
the resulting four possibilities only p = q — 1 satisfies the desired properties and
leads to m = 0,« = 1. D

Remark. Note that the proof of Lemma 10 and Lemma 11 relies essentially on the
fact that the curves defined by the two above equations are rational. I would like
to thank D. Zagier for discussion on the two lemmas [19].

5.3. Classification of the Nondegenerate Strongly-Modular Fusion Algebras with
Dimension less than 24. In this section we classify all strongly modular fusion al-
gebras (#", p) of dimension less than 24 for which p(T) has nondegenerate eigen-
values. The main tool used in the proof is the classification of the irreducible
representations of the groups SL(2, TLpχ) described in Sect. 4.

Main Theorem 4. Let (J% p) be a simple nondegenerate strongly-modular fusion
algebra. Furthermore, assume that the dimension of !F is less than 24. Then p
is isomorphic to the tensor product of an even one dimensional representation
of Γ with one of the representations in Table 12. Moreover, 3F is isomorphic to
0[x]/{P(x)) with distinguished basis Pj(x) (j = 0,...,n— 1). Here P and pj are
the unique polynomials satisfying

P(x) = άet(jrχ - x),

rt-1

Po(χ) = 1, p\(χ) = x, Pj(χ) = Σ(ΛΊ)j,kPk(χ),

where the {Jf\)j,k '= N*j are the fusion matrices given in Appendix B.
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Remark. For all fusion algebras in Table 12 apart from Bg there indeed exist RCFTs
where the associated fusion algebras are isomorphic to the ones in Table 12: The
fusion algebra in the first row occurs in the so-called 7L2 model, the ones in row
2,3 and 4 in the corresponding Virasoro minimal models (see also the remark at
the end of Main Theorem 1) and, finally, the ones in row 6,7,8 and 9 occur as
fusion algebras of certain rational models, so-called minimal models of Casimir Ψ*-
algebras, namely for 1TB2 and c = -ψ9 1TG2 and c = -ψ,1TG2 and c = -ψ-
and ΊVEη and c = — ^ p [4]. The fusion algebras of type B9 seems to be related
to 1^B2 and c ~ -24. However, in this case the model is not rational.

Proof. Let ( # \ p ) be a simple nondegenerate strongly-modular fusion algebra of
dimension less than 24. Lemma I implies that p is irreducible. Furthermore, since
( # \ p ) is strongly-modular we have to consider all irreducible representations of
SL(2,ΈN) of dimension less than 24. Since (^,p) is simple and nondegenerate,
simple Lemma 7 shows that we can restrict our investigation to irreducible repre-
sentations of SL(2,Z A). Once again, since (<^,p) is nondegenerate we can follow
the line of reasoning in the proof of Main Theorem I.

Therefore, we can directly apply Verlinde's formula to any such matrix repre-
sentation β and look whether the resulting coefficients Njj have integer absolute
values for the different choices of the basis element corresponding to ΦQ. If the
resulting numbers Nfj do not have integer absolute values we can conclude that
there exists no nondegenerate strong-modular fusion algebra (J^,p), where p is
conjugate to the tensor product of a one dimensional representation of Γ and p.

Table 12. Simple nondegenerate strong-modular fusion of dimension less than 24 (q is a prime
satisfying q < 47)

fusion dim p

Z 2 2 C

"c(3,4)" 3 CΛ®D2{χ)+, (pλ=22)

Ising C4 <g> R*l(r, 3, χ)±, (r = 1, 2; // = 2 4)

"(2,<7)" j ( ^ — 1 ) C 4

2 ®/?i(r, χ_i) , ( ( - ) = ± 1 ; ^ = q)

"(2,9)" 4 C 4 ® ^ i ( r , l ,χ), ( r = 1,2;χ3 = l ; ^ = 32)

B 9 6 iV2(χ), ( X 3 Ξ 1 ; / = 3 2 )

Bπ 10 JV,to, ( χ 3 Ξ l ; y = l l )

G 9 12 Q0%l ) j ; ) > ( r=l ) 2;χ 3 = l ; / = 33)

G17 16 N\(χ), (χ 3 Ξ \; pλ = 17)

E23 22 M ω , ( χ 3 Ξ l ; y = 23)
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We have investigated this for all irreducible representations of SL(2, Έpλ) of di-

mension less than 24 by constructing them explicitly5.
The proof of the theorem will consist of three separate cases: We consider

representations of S L ^ , ^ ) and SL(2,ZyJ and S L ( 2 , Z 2 A ) separately.
Firstly, let p be isomorphic to a tensor product of a one dimensional representation
and an irreducible representation β of SL(2,Έp) (pΦ2). Note that this case was
already discussed in [4].

For the representations of type D\(χ) the matrix p(T) has degenerate eigenvalues
so that we can leave out this type of representation.

For the representations of type N\(χ) we find modular fusion algebras only for
p = 5,11,17 and 23 and χ3 = I. For p = 5 the modular fusion algebra is not simple
but equals the tensor product of two modular fusion algebras where the correspond-
ing fusion algebras are of type "(2,5)" (cf. also the proof of Main Theorem 3). The
modular fusion algebras corresponding to p — 11,17,23 are contained in the last
three rows of Table 12. As was already mentioned in [4] these four representations
are probably the only admissible ones of type N\(χ). However, we do not have a
proof of this statement but numerical checks show that there is no other admissible
representation of this type for p < 167 [4].

The representations of type R{(r,χι) and N\(χ\) do not lead to modular fusion
algebras [4].

For all β of type R\(r, χ_i) we obtain modular fusion algebras. Here p =
p±l

(C4) 2 <g> jRi(r, χ_i) is admissible for all odd primes p. The corresponding mod-
ular fusion algebras are of type "(2, /?)". They are contained in the third row of
Table 12.
Secondly, let p be isomorphic to a tensor product of a one dimensional representa-
tion and a irreducible representation β of SL(2,7ίpλ) (pή=2, λ > 1).

For the representations of type Dχ(χ) the matrix p(T) has degenerate eigenvalues
excluding these representations from our investigation.

The only representations of type Nχ(χ) which have dimension less than 24 are
those corresponding to (/? = 3;/l = 2,3) and (p = 5;λ — 2). A calculation shows
that exactly one of these representations leads to a modular fusion algebra. This
is the representation with (p — 3;λ = 2) and χ3 = 1. The corresponding strongly-
modular fusion algebra is contained in Table 12.

Only those representations of type R°(r,t,χ) and Rχ(r,χ±ι)\ with (p = 3;λ =
2,3) or (p = 5;λ = 2) have dimension less than 24. The representations R\(r, l,χ)
(pλ — 32;χ3 = 1) lead to nondegenerate modular fusion algebras (cf. the proof of
Main Theorem 3). From the other representations only those with pλ = 33; r =
1,2; χ3 = 1 lead to nondegenerate modular fusion algebras.
Thirdly, consider the irreducible representations of SL(2,Z2^). All irreducible rep-
resentations of dimension less than or equal to 4 have been considered in Main
Theorem 1 to 3. The corresponding admissible representations with nondegenerate
eigenvalues of p(T) are contained in Table 12.

For λ = 1,2 all irreducible representations have dimension less than or equal
to 3.

For 1 = 3 we have to consider the representations of type R^{\,?>,χ\)\ and
D?>{χ)±. The former representation does not lead to a modular fusion algebra but the
representations Dτ>(χ)± lead to modular fusion algebras of type Z2® "(3,4)". The

Here we have used the computer algebra system PARI-GP [21].
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corresponding modular fusion algebras are composite and therefore not contained
in Table 12.

For λ = 4 only the irreducible representations of type R®(r, t, χ)±, R\(r, 3,χi)i
and Rl(r,t,χ) lead to modular fusion algebras. The first one leads to a fusion
algebra of type "(3,4)" (see Main Theorem 2). The other two representations lead to
composite modular fusion algebras. These fusion algebras are of type Έ2Θ "(3,4)"
and are not contained in Table 12.

For λ = 5,6 there are no irreducible representation of dimension less than
24 leading to modular fusion algebras (some of them correspond to "fermionic
fusion algebras" of N = 1-Super-Virasoro minimal models which we do not dis-
cuss here). D

6. Conclusions

In this paper we have classified all strongly-modular fusion algebras of dimension
less than or equal to four and all nondegenerate strongly-modular fusion algebras of
dimension less than 24. In order to obtain our results we have used the classification
of the irreducible representations of the groups SL(2,Z / ? A). Not all modular fusion
algebras in our classification show up in known RCFTs. However, all corresponding
fusion algebras are realized in known RCFTs apart from the fusion algebra of type
Bg. This fusion algebra can formally be related to the Casimir i^-algebra WB2 at
c = —24 and seems to be an analogue of the fusion algebra formally associated to
the Virasoro algebra with central charge c = c(3,9).

The fact that we do not know examples of RCFTs for all of the modular fusion
algebras in our classification can be understood as follows. The classification of the
strongly-modular fusion algebras implies restrictions on the central charge and the
conformal dimensions of possibly underlying RCFTs. In Table 13 we have collected
the possible values of c and the hi for the simple strongly-modular fusion algebras
of dimension less than or equal to four. Note, however, that these restrictions are
not as strong as the ones in [20] for the two dimensional case or in [3] for the two
and three dimensional case. A natural way to obtain stronger restrictions than the
ones presented in Table 13 is to look whether there exist vector valued modular
functions transforming under the corresponding representation of the modular group
which have the correct pole order at ioo. This can be done using the methods
developed in [9] and indeed leads to much stronger restrictions on c and the hi as we
will discuss elsewhere. Of course, we expect that for any RCFT the corresponding
characters are modular functions so that these stronger restrictions have to be valid
explaining that our classification contains modular fusion algebras for which we do
not know of any realization in RCFTs.

From our considerations it is clear that a complete classification of all sim-
ple non-degenerate strongly-modular fusion algebras is a purely number theoretical
problem which can probably be solved.

Unfortunately, the methods used in this paper seem to be not sufficient for
obtaining a complete classification of strongly-modular fusion algebras. For those
strongly-modular fusion algebras which are not nondegenerate the corresponding
representations of the modular group are in general reducible and therefore there
is a lot freedom for possible choices of the distinguished basis in the representation
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Table 13. Central charges and conformal dimensions of
simple strongly-modular fusion algebras

!F c(mod4)

Έ2 1
3

2£3 2

Z 4 1
3

TL1^TL1 0

"(2,5)" f
ϋ
2
5
18

"(2,7)" ψ
\2

4

24

8

k
"(2,9)" f

2

Λi (modZ)

S:l
0,i , i or 0, | , §

0 1 1 1 n r 0 5 1 5
U> 8 ' 2 ' 8 U Γ U ' 8 ' 2 ' 8
0 3 1 3 n r 0 7 1 7
U ' 8 ' 2 ' 8 ϋ Γ U ' 8 ' 2» 8

0,0,0,1 or 0 , I , I , I

>
 p

 p
 p

 
p

0, 5, § , ^
0 i 2 «
w ' 3 ' 3 ' 9

W. Eholzer

n= 1,4,7

" Π 4 V 3« f] 1 3n

space. In the main theorems we have shown how one can deal with this freedom
in the case of two, three and four dimensional fusion algebras. However, we do not
know a general method to overcome this problem for arbitrary dimensions so that
new methods have to be developed.

Finally, we would like to stress that the main assumption for obtaining our clas-
sifications, namely that fusion algebras are induced by representations of SL(2,Zw),
is valid for all known examples of rational conformal field theories. Nevertheless,
the question whether all fusion algebras associated to RCFTs are strongly-modular
is not yet answered.

7. Appendix A: The Irreducible Level pλ Representations of Dimension
Less Than or Equal to Four

Using the results in Sect. 4 one obtains as a complete list of two dimensional
irreducible level pλ representations

pλ = 2\ Nx{χx),
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pλ = 5\ Λ,(l,χ_,), Rι(2,χ-ι),

where i = 1,2,3; j = 1,...,4.

The explicit form of the representations which are not related by tensor products
with Bi or Cj is given in Table Al.

Similarly, one obtains as a complete list of three dimensional irreducible level
pλ representations

; = 24, ΛS(1, l , χ ) + ® Cj, R°4(l, l ,χ)_ ® C,,

where 7 = 1,..., 4 .

The explicit form of the representations which are not related by tensor products
with Cj is given in Table A2.

Table Al. Two dimensional irreducible level pλ representations

level type of rep. p(S) ± \og(p(T))

2 3 ^3(Z)+ ^( l ! Y) diagd.f)
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Similarly, one obtains as a complete list of four dimensional irreducible level
pλ representations

pλ = 7\ Rι(l,χι),

pλ = 2\ N3(χ), C4®N3(χ),

pλ = 32, Bt®R\(\, l ,χ),5, ® i?i(2, l , χ ) ,

where / = 1,2,3 and for pλ = 32 the character χ is a primitive character of order
3 or 6 (so there are 12 four dimensional irreducible level 32 representations).

Table A2. Three dimensional irreducible level p λ representations

level type of rep. p(S) ± log(p(Γ))

/-I 2 2\

i) Π 2 -1 2 dίag(i,f,O)
V 2 2 - 1 /

/i ^ ^ \
i) ^5 M ξ -*! *2 diag(0,i,f)

V
(

-i -ί ^ ) diag(0,f,i)

Sj. = cos(f)

S2 -S3 si diag(i,i,ί)

J3 Si S2 /

/ 0 V^ V^\
22 O2(Z)+ i V2 -1 1 diag(i,i,0)

\V2 1 -l/

/ 0 V2 V2\
23 ΛS(l,3,z)+ H Λ/2 1 - 1 diag(i,|,i)

VV2 -1 1 /
ΛS(l,3,χ)_ (-1) • ( - - " - - )

/ 0 V2 V2\
2 4 Λj(l,l,Z)+ i V5 1 - 1

VV2 - 1 1 /

ΛS(1,1,Z)- - - - - -

/ 0 V2 V2\
ΛJ(3,1,Z)+ i Λ/2 -1 1 diag(i,i,u)

VV2 1 - l /

ΛS(3,l,z)- - - - - -
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Table A3. Four dimensional irreducible level pλ representations

level type of rep. p(S) ± log(p(Γ))

t2 a ΐ -

32

-1 6 ξι

Ri(2,χι) (-l) (--"--)

= 2 ^ 2 - A t , ί2 = 2 ^ 4

= sin(f), η± =s2 ±s4

i -f2 ίi - ί

: cos(f) , ξ{ =r{ - r 4 - I,

= 3r2 4- 2r4, <̂3 = 2r2 + 3r4

~~7i ~X ~X ~X

l | f f ξl I diag(O,i,|,f)

i 3 - diag(|

The explicit form of the representations which are not related by tensor products
with Ci or Bi is given in Table A3.

8. Appendix B: Fusion Matrices and Graphs of the Nondegenerate
Strongly-Modular Fusion Algebras of Dimension Less than 24

The fusion matrices Jί\ which defines the distinguished basis of the simple
non-degenerate strongly-modular fusion algebras of dimension less than 24 are
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given by:

0 1
1 0

W. Eholzer

/ O O P
"(3,4)": Jίλ = I 0 0 1

VI 1 0,

"(2,*)":

'0 1

1 '••
l —

0 1

1 1/

B 9 :

/0 1 0 \

1 0 1 1

0 1 0 0 1

1 0 1 1 0

1 1 1 1

\ 0 1 1 /

Jί
λ
 =

/O 1 0 0 \
1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0 1

0 1 1 0 1 0 1
0 0 1 0 0 0 1

1 0 0 0 1 0 0
1 0 1 1 1 0

1 0 1 1 1
\ 0 0 1 1 /

G
9
 :

/O 1 0 0 0
1 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 0 0 1 0 0
0 0 1 0 1 1 1 1 0

0 1 1 1 1 0 1 1 0
0 0 1 0 1 1 0 1 1

0 1 1 1 1 1 0 1 1
0 1 0 1 0 0 0 1

0 1 0 0 1 1 0
1 1 0 1 1 1

1 1 0 1 1 /
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/ 0 1 0 0 0 0 0 0 0

Jί\ =

\

\

1 1 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0
0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0

0 1 0 0 1 1 0 0 1 0 0 0 1 1 0
0 1 1 0 0 1 0 0 1 1 0 0 0 1

0 1 0 0 0 0 0 1 1 1 0 0 1
0 0 0 0 1 0 0 1 1 0 1 1

1 0 1 0 1 0 0 0 1 1 1
1 0 1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 1 1 /

and finally for E23 the matrix Jί\ is given by

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0

0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0

0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
0

0
1
0
0
1
0
0
0
0
1
0
0
0
1
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
0
0
0
0
1
0

0
0
1
1
0
1
1
1
0
0
0
0
0
0
0
1
0
0
1
1
0
0

0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0

0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
1
1
0
0
1
0

0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
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1
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1
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1
1
1
1

1/\

The fusion graphs corresponding to the fusion matrices Jί\ can be found on
the next page.

"(3,4)"

"(2,qΓ

• *I = vacuum ("0"), # = first field (Ί") , = all other fields fj",j=2,...,n-l)
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σσC

σooΌ

J17

I = vacuum CO"), # = first field (Ί"), = all other fields ("j",j=2,...,n-l)

We have omitted the fusion graph of the fusion algebra of type E23 since it is

not possible to draw it without intersections in a plane.
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