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Abstract: We study the asymptotics for the density of states of the magnetic
Schrodinger operator with a random potential. By using the methods of effective
Hamiltonian, complex dilation and complex translation, we obtain in the large mag-
netic field limit, the asymptotic expansion for the density of states measure consid-
ered as a distribution.

1. Introduction

We study the density of states of the magnetic Schrodinger operator with a random
potential defined on L2(R2)

PB,V = (Ac + By)2 + rfy + Vω(χ, y),

where Dx = (l/i)dX9 Dy = ( \ / i ) d y and B > 0 is a constant. Let v be a CQ° function,
the potential V is defined as

v(x)= Σ «/»(*-0= Σ OTO OC) , ( i . i )
/ez2 /ez2

where x ~ (x,y\ α = {α/}/€22 form a random field, i.e. a family of random variables
indexed by 7L2 on a probability space (Ω,P). We denote by {/} the expectation

value of the random variable /. One can always suppose that Ω = Rz . In this
case,

My') = </)> (1.2)
and the translation operators, 7/(/ G Z2) in Ω are defined by

) = ω(y -/) . (1.3)
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Hence for random potentials of the form (1.1), we have, by using (1.2) and (1.3),

VT^(x)=V"(x-i). (1.4)
We take

dP= Π 0 ( α ι W α / >
<6Z2

where g is a CJ° function. We say that the α, are independent identically distributed
(i.i.d.) random variables. The action of Tj is ergodic on (Ώ,P) : if A C Ω satisfies

VjeZ2,Tj-lA =A,

then P(A) = 0 or 1. The operator PBy is an ergodic operator.
When V — 0, the Hamiltonian PB$ has eigenvalues /,„ = (2n + 1 )$, n G N with

infinite multiplicity. These are the so-called Landau levels.
We define the "magnetic translations" τ^(j = (71,72) G Z2) by

[τ?κ](x, y ) = e-'BJ* x~ *'"' >«(* -jι,y-j2).
In particular

[^(7i,o)w](^^) = w(x-y ! , > > ) >

[τ(o,72 )«](*,>>) = e-/572X^ -72) .

Let 7 Λ A: be the determinant of (/, &) in the canonical basis. We have the rela-
tions

T£ _ ^ιB(jM) B
τk - e2 τj+k

When FΦO, we have
B _ pTιω

LI — Γ K V •>

where we used (1.4). Hence by standard arguments concerning ergodic operators
[CFKS, Pa], the spectrum of Pgv9 σ(P(

B\,) is almost surely constant with respect to
ω, i.e.

°(PB,V) = σ(pB,v) a.s. ,

where σ(Pβ,v) is a non-random set. Without loss of generality we may assume range
v C [-1,1]. If moreover we take supp g C ( — /?,/?) with p < B, then σ(P^) is
contained in the union (Jn[λn — p,λn + p]. We will show later that the density of
states measure pω is also almost surely non-random:

ρω = p a.s. ,

where p is a non-random measure.
The density of states of the magnetic Schrδdinger operator with a random

potential was first studied by the physicist Wegner [We] (see also [BGI, KP]). This
is a physically measurable quantity. In the strong field limit B ^> I, Wegner de-
veloped a heuristic argument. According to his argument, if one is only interested
in the density of states for low energies, one only needs to take into account the
lowest Landau level, and one can neglect the contributions of other Landau levels.
This way Wegner was able to compute exactly the first term of the density of states
for a Gaussian white noise potential.
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In this paper, we justify the Wegner approximation in some weak sense, and
obtain an asymptotic expansion for p considered as a distribution. We show
that, there exist C°° functions p , ( t ) , such that for all NO G N, c > 0, if / G
C0°°(((-£, -c) U (c,B)) + (2n + l ) B ) satisfies & f = O(BN°>) for B > 1, then for
every m G N:

ff(E)dpB(E) = B f f ( t + (2n + 1

f (2/7

"), (1.5)

where / = E — (2n + \)B is the renormalized energy and dpβ(E) is the "non-
random" density of states measure that we mentioned earlier. In particular, if v
has support contained in the unit square centered at the origin, we have

(«)/ Λ _ _L ίί\ ϊi
2π \γ) \y

where /ro ( y ) =^_^_ ;

(note that p$ (t) is independent of n) and

(„)„, 2 « + l

P| (0=^Γ^l()>)

where F \ ( y ) = — f

If we further assume that v ^ 0 and that the supports of v, intersect so that

Σ>, ^ ^ > 0 (1.6)
/GZ 2

for some postive constant s, then we show that the expansion (1.5) holds for all
/ G C$°((-B,B) + (2/7 + 1)5) satisfying \d 'f - 0(5^).

We use the Grushin method to study this problem as Helffer and Sjόstrand [HS]
did in the case where V is periodic. We take h = B~λ ^C 1 to be our semi-classical
parameter. For all z' in [λn — a,λn + α], the study of Pβv — z' can be reduced to

the study of an effective one-dimensional operator denoted by E-+/h\ z' G σ ( P g Γ )
if and only if 0 G σ(E^+/h). The symbol of E_+ has an asymptotic expansion in
h, the principal symbol being h(V(x, ξ) — z), where z = z' — λn.

The effective Hamiltonian is the starting point of our analysis. The additional
parameters α/ and the associated probability density g(α/) enable us to use scaling
arguments (see Sect. IV). To order O(/z°°), Ec^_+(x,ξ) only depends on the poten-

tial and its derivatives at (jt,ς). For \lmz'\ ^ U~L (ε > 0), (E(^+)~l admits a
parametrix, i.e. an asymptotic expansion in powers of h, the first term being

1

h(Vω -z) '
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In order to study the density of states, we need to have control over the non-elliptic
regions where \XjVj-z <C 1. By the ergodic theorem, the density of states pω exists
almost surely and is equal to the averaged density of states p (see Sect. III). Once
we take the average, we have

(0'ι,/2) £ ^2) Therefore we only need to have bounds on (EIl

+(x, ξ)) for (x, ξ) e IE
with E the unit square centered at the origin.

Due to the "local" nature of the operator E-+(x, ς); the influence of the non-
elliptic regions on E~+(x,ζ) decreases as j increases. To exhibit this, we complex

dilate in α7: α; — » α/e'^, where θj = \/\j\.
This is our scaling argument in dimension 2. (The precise form of the scal-

ing relation depends crucially on the dimension.) We can in this way control
the non-elliptic regions up to the scale L = O(h~N) for all N G N. Hence for
all z such that RezφO, the asymptotic expansion for (E~+) is valid for |Imz|

not too small (|Imz -1 = O(h~N)). For all fixed NQ G N, we study the inte-
gral //(OΦ(0 for all / sucn tπat \dJf\=O(h~N°J) and with support away
from {(In + \)B,n G N}. We show that the p, are C°° functions away
from 0.

If we make the further assumption (1.6), then we complex translate in α7 :
α/ i— >• α; -+- /(5y, where <57 = l/[/|, to control the non-elliptic regions. We show
that (1.5) holds for all / such that \djf\=O(h~N^) and that the p, are
C°° functions.

By a standard procedure, (1.5) can be extended to include Holder continu-
ous functions (B independent) / e Cα, 0 < α < 1 with an error which is of order
O(A°°).

This result should be compared with the periodic case:

V(x) = Σ v(x - i) ,
ι£Z2

i.e. α, = 1 for all i € Z2. There one needs much stronger conditions on /, namely
\dj f\ = O(A~y/(2+ί;))(ε > 0). Moreover, in the periodic case, pl has singularities.
Of course this is due to the fact that our estimates on the parametrix for E~i\ is

valid only for |Imz ^ hϊ~κ.
The nature of the spectrum of P^v is presently not known. The operator P^v is

conjectured to have pure point spectrum with localized eigenfunctions (commonly
known as localization) for certain ranges of energies. This conjecture has been
used in building theories of the quantum Hall effect [Bel]. It is our eventual aim to
prove this conjecture and this paper constitutes a first step toward research in that
direction.

II. The Reduction and the Associated Grushin Problem

Classes of Symbols. We say that a symbol Q(x,ζ,h) is in the class S°(IR2) if it
verifies

3/*o, Vα G M2, 3Cα, V(x,ξ) G IR2, VA G]0, hQ],\D?Dΐ2Q(x,ξ9h)\ ^ Cy.
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One can associate with it a pseudo-differential operator (p.d.o.) (this process is
called the λ-quantization of Weyl)

(Q* \x,hDχ,h)u)(x) = (2πAΓ'jV' / A ) '- j r ί β -,ξ,h u(x')dx

Similarly, one can define the classes of operator valued symbols:

where the Bk

y(k G 2£) are defined by:

B~k is the dual of B\,, and Jίf(E,F) designates the space of bounded operators
from E to F . Unless specified otherwise, we will in general denote the symbol
and its corresponding operator by the same letter. We will use #(#/,) to denote the
composition of 1 -quantized (/z-quantized) Weyl symbols.

In this paper, we will also frequently encounter Q, symbols in S°(IR^j;/?). We
associate with Q the following p.d.o. (the Weyl (h, l)-quantization):

(Qw(X,hDx,y9Dy,h)u)(x,y)

u(x, y')dx' dy' dξdη .

We identify Q with operator valued symbols in S°(R2 ,; ^(L2(IRv),L2(IRy))). We
use % to denote the composition of such operator valued symbols when the (jc, c)
variables are held fixed and the composition is only in the (y,η) variables.

We now consider the operator P^v in the introduction. By a standard argument,
there exists a unitary operator U such that P^v is unitarily equivalent to

P%v = UP%tyU~l = B(D], + /) + Vw(x + B-l/2y,B~lDx - Bl/2Dy) .

(See Proposition 1.10 of [HS]). Renormalizing, we get (for simplicity, we now
generally drop the superscript ω)

H$ = D2

y + y2 - (In + 1) + B~λ Vw (x + B-]/2y,B~]Dx - B~]/2Dy) ,

where n is the Landau level that we are interested in, B~l = h is our semi-classical
parameter as mentioned earlier. (Note that the symbol of Vw is V(x -h h l / 2 y ,
ξ-hl/2η).)

Let z be a complex parameter such that hz is in the open disc #(0, 1 ) centered

at 0 with radius 1. Define R(^} to be the operator from Z2(RY) to L 2(IR 2

V) such
that
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where hn is the /?th eigenfunction of the harmonic oscillator, defined by

hn(y) = βn(dy ~ y}ne~y n

with the constant βn > 0 chosen such that \\hn\\ = 1. The operator R(^ from

L 2 (R 2

V ) to Z,2(IRY) is defined by

u ̂  (R("}u)(x) = f h n ( y ) u ( x , y ) d y .

Note that R("} is the adjoint of R("\ R("} is in S°(R2

c=; JS?(C,£*)) and R("} in

We study the following associated Grushin operator:

,- =(hz-H$ R(>-\
^ KJC'° V <"> o j '

where
//^ - D2 + y2 - (2« + 1) + hVw(x + hl/2y, ξ - A 1 / 2 D V )

is in 5°(IR2

(=; ^(B\+l,B\;)). The operator ^ is in the class 5°(IR2

cϊ; ^(Bk

}

+l x

(C,$A

V x C)) for all non-negative integers k.

L The Case V = 0. We have

) _|_ 1 \ , 7^ ΓΛ2 2 /?(Λ)

For l/zz < 1, ^Q(Z) is invertible [HS], and its inverse, denoted by <^Q (z) can be
written as

We decompose L2(R2

J;) as follows:

It is well known [HS] that E^(z) is a p.d.o. whose Weyl symbol eo(x,y,ξ,η;z)
satisfies

eQ(x,y,ξ9η',z) = e0(y,η',z).

eo is holomorphic in z in B(0, h~l) and is in class S°. In the decomposition φ/^/,
we have:

(^^(z))^, .̂) - (1 - δn,,)δ,,k/(2(l -n)-z)

(where one has identified E\ with L2(IRr)). One also has

2. 77^ Cα^e K φ 0. By standard perturbation theory, it can be shown [HS] that there

exists an h0 such that for all h G]0,/20], 2P(£^ is invertible with the inverse S)W
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whose (operator valued) symbol

-(x9ξ'9z)

where
, c) G S°(IR^; ̂ (Bk

v x (C,^+1 x (C)) ,

E_+(x,ξ}/h G S R

_+ is called the effective hamiltonian and one has

This is the operator that we shall be studying for the rest of the paper.

I f h z £ σ(/4"κ)> then

Moreover, it can be shown [HS] that there exists $0 = h^] such that for all B

with \B\ ̂  BQ, £_+ is a symbol analytic in z and α/(z G Z2) for z G B(0,/z"1) and
α, G B(0,α), and is real for z real. £_ f has an asymptotic expansion in h:

The principal symbol is

The next term is

Q\(x,ξ',z) = ̂ -ί-1 Tr Hess F(JC,C),

where Hess denotes the hessian.

III. The Density of States Measure

Let / G Co(IR); it can be shown [HS] by using the various Sobolev spaces naturally
associated to PB,v that the distribution kernel KJ}

B of f(PβV) E C°°(]R2 x IR2).
Since

we have

Let Kc£B(x,y) be the kernel of f(P^v)\ we have
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for all j £ Z2. By the ergodic theorem, we have

,lιm m n 2 Σ / Ks(x^dx = f f KlB(x,x)dxP(dω) a.s.
Z^oc(ZL+i) i i^ jξE γem

= (fKf,B(x,x)dx\ , (3.1)

where Z, € N, | denotes the sup-norm, IE is the unit square centered at the origin
and ( } is, like before, the expectation with respect to ω. Define

ί>/(^» = \im^ -^ττ(χ'Rf(P$,r)χf

R), (3.2)

where χ'R is a CQ° function on IR2 with support in the square of center 0 and length
2R and equal to 1 in the square of center 0 and length 2(R — 1 ) with derivatives
bounded independently of R.

We now show that almost surely Ύrf(Pβy) exists and is finite. Since for any
Rζ(L- 1/2,1+ 1/2) (L > 1)

we only need to show that the limit in the R.H.S. of (3.2) exists along half integers
(R =L+ 1/2). Let

D= / Kω(x,x)dx - / χ'R(x)Kω(x,x)χ'R(x) dx .

Note that the difference in the integrands has support only for L - 1/2 ^ |;c| ^
L+ 1/2. We conclude that \D\ ̂  CL. Therefore the limit in the R.H.S. of (3.2)
exists almost surely and we have

E
lf(K/.B(x,x))dx a.s.
E

We can associate to fr a positive measure pβy It is the density of states measure.
We have

for all / G C,
If / G C0°(R), we can use the usual functional calculus [HS] (see also [S]) to

obtain for A self-adjoint

2π

where / G C^°(C) is an almost analytic extension of /, i.e. / = / on R and

djf vanishes on R to infinite order. In order for f ( A ) to be a pseudo-differential
operator, we shall choose / in a restricted class of /z-dependent functions in C °̂
that will be made more precise later.
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Using the same unitary transformation U as the one we used for Pgy9 we obtain

Writing χR = Uχ'RU~l

9 the symbol of χR is χR(x,y,ξ,η) = χ'R(x + hl/2y,ξ - hl/2η).
We have

χ%(x + h]/2y, ξ - h]/2Dy) G 5°(R

with A: ^ 0. For all z such that |Imz φO, we have

((2n+\)B + z-PBtvTl = h(hz-HB,yΓl = h[E(z) -

Since E(z) is holomorphic in z, we have

as before. Therefore

We now show that χRE+E~l

+E_χR is trace class for |Imz| φO. Hence we will have

,Il

+E-χR)dz/\dz . (3.3)

Lemma 1. The operator E-χR is Hilbert-Schmidt from L2(JBLx,L
2(Ry)) to I2(RY,

C) = L2(Rr). Moreover \\E-χR\\Hs ^ Ch~^2R, where C is a constant independent
of R,h and ω.

To prove the above lemma, we need the following well known fact:

Proposition 1. The operator Pw(x,hDx) from L 2(R γ;Jfι) to L2(Ήtχ J^2} > where
2?\ and <ffι are arbitrary Hίlbert spaces, is Hilbert-Schmidt if and only if

< o o .

Moreover, when PH/(x,hDλ) is Hilbert-Schmidt, we have

Proof of Lemma 1. We consider E^$ΊR(X, c) as the composition:

C^B-k'^-B~k^L2 k'>k>0.

Let /!_A. be the symbol for [1 + y2 + D2]~k . It verifies

for some C,,/j and where \\(y, η)\\ = (y2 + η2)]/2 Let
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Using the composition formula for two Weyl 1 -quantization symbols a,b:

we have

Kx,ξ(y,η) = -λ ffetyw-^

- χR(x + hl/2(y - y2\ ξ - hl/2(η - η2))dyl dy2dηldη2 .

Since χR has support in a square of length 2R, we have

\(y-y2,η-η2)\ ^ ^[\(x,ξ)\-R] (3.4)

for some C > 0. Let |(jt,ς)| ^ R + 1. Define:

γ = (y\,η\,y2,η2)

YI = components of Y

Q(Y) = y\η2 - η\y2

L'(Y,DY) = (yγ + (\- yγ)\\VQ(Y)\\2Γ\yγ + (1 - 7κ)Vβ(r)D y) , (3.5)

where yγ is a C0°° function: yγ = 1 for ||7|| ^ I - β,γγ = Q for ||7|| ̂  1,
(0 < β < 1 ) then

LtelQ(Y] = elQ(Y}

By a straightforward computation, we have

where

lΓ~ (3.6)

Integration by parts N + 5 times, with N Ξ; k, we have

where

r£-M(* *l> Y) = LN+5[Λ^k(y -yι,η-ηι )χR(x + h]/2(y - y2), ξ - hl/2(η - η 2 ) ) ] .

From (3.5) and the bounds on Λ _ / t , %R and their derivatives, we have

^ + f ΐ + Λ2 + '?2)~<Λ'+5)/2(i + IK^ - yi-'ί - <?ι)IIΓ 2 A '
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where F is such that
F(u) = 1 if u ^ 0 ,

F(u) = 0 otherwise .

Case 1.

\(x,ξ)\-R
\(y,η)\ ^ 2 C f j ] / 2

From (3.4) we have:

Therefore
i -^(Y c\, x i ^ ^Λy

for all (x,ξ).

Case 2.

K \ I \ ^ ' ^ / / O ^ Λ
7^)1 ^ 2C/?1/2 , (3.7)

then

|rr^>?;ΌI^ [i + ̂ ppt1-

Using (3.7), we have

U,C), . w M ^ ^

for all (x,ξ).
Hence, taking N = k, we have

\K,.ξ(y,η)\ £ -^JΓ(^\y,η Y)dY ^ Q.[l + (\(x, ξ)\

for all (x,ξ). Similarly, we have

\δ*ydlKx,t(y,η)\ ^ Ck,Λjl[l+(\(x,ξ)\-R)+r*

for all α,/? and all (jc, ί). Therefore

2 ( R l. ) ) (λ £ 0)

(3.8)

Since the embedding of ,5"' in B" for OT > « + 1 is Hubert-Schmidt, we have
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for all k' > k+ 1 and all ( c, ς), where χR is XR viewed as an operator valued
symbol. Similarly, we have

for all k' > k + 1. Since XR is chosen such that the bounds on XR and its derivatives
are independent of R, the composition of the symbols:

uniformly in R. Hence

\\E-*χR(x,ξ)\\HS(L2tf) £ C,[l +(|(*, ς)l - Λ)+Γ* (3.9)

for all k > 0. By Proposition 1, we have

\\E-XR\\HS ^ Ch~>/2R.

Proposition 2. The operator XR£+E~I

+E^XR is trace class on L2(IRγ,L2(IRv)) for
| Imz|Φθ.

Proof.

-\E^R\\τ, ^ \\χRE+\\HS\\EIl

+\\\\E_χR\\HS Z (C2h~] / \lrnz \)R2 ,

where we have used the fact that χκE+ is the adjoint of £_#/?, and is therefore
Hubert-Schmidt.

Using the property of cyclic invariance of the trace, we have

Ίτ(χRE+EIl

+E_χR) =

i +Tr^2+Tr^ 3 , (3.10)

where χR (x, ξ) = XR(X, ζ) and we have written

[£-5//?]o — E-lR — XR E-

By the classical equality:

(1) 2 1

"7/? "^ ~ 2πh

we obviously have:

Lemma 2. χ^ w Hilbert-Schmidt, and

\\^R}\\HS ^

Corollary, ^i = (χR )2E~E+E~]

+ is trace-class for | Imz |Φθ:

Furthermore, ΎrA\ ^ Ch~] l lmzl" 1^ 2, with C independent of R, h and ω.
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Lemma 3. A^ and AT, are trace-class and

^ Ch~] lmz~1 R3/2 ΎrA3 ^ C/Γ1 Imz

where C is independent of R, h and ω.

Proof. We already know that

We now show that, in fact

\\[E-,χR]0\\Hs ^ Ch~[

Let χ€
R = 1 - χR. Replacing χR by ?R in (3.8), we have

\E-*fit(x, OIU4.0 ^ Ck[\+(R - \(x,ξ)\)+Γ'ί for all k > 0 . (3.11)

Let χR = 1 — χR . Viewing χR %E_(x, c) as the composition of operators

cCc^S-*'^2 j f c ' > o ,

and using the fact that the embedding of L2 in B~k is Hubert-Schmidt for k' > 1,
we have

^-|(^c)|)+]-' (3.12)

for all k > 0, where we used the composition formula for two symbols. Hence from
(3.11) and (3.12),

Since

[E
and

\\[E,,χRUx,ζ)\\HS g Ck(l+(\(x,c)\-R)+Tl k>0,

we have

|| [E_,χR]0(x, ξ)\\HS(L2^ ^ Q[l + ||(^ς)| -Λ|Γ* A: > 0.

Therefore

This yields the results for Tr^2 and

We now put Ύrf(P(£y) in a convenient form, which we will use later to compute
the asymptotic s.

Proposition 3.

4π2ih

where IE is a unit square.

:f([CzE-+$hE_\J\(x, ς,z)}(dz Λ dz)dxdξ a.s. ,
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Since £_+ is holomorphic in z, it is now enough to control E_+ when
|Imz| -> 0.

Proof of Proposition 3. Combining (3.2), (3.3), (3.10), the corollary to Lemma 2
and Lemma 3, we have

x (dz Λ dz)dxdξ a.s. ,

where we used the identity (see [HS])

A Xy >](*, ς,z)>

Let T = dzE-±$hEl, &~ = %%hT%h%R For convenience, we view ZΓ as ,̂ 7,
where / is the identity operator from £2(IR) to L2(IR), with symbol the function
1. Using the composition formula for four Weyl h-quantization symbols, we have
(writing X = ( x , ξ ) )

where Y = (F,, 72, F3, F4), Y{ = (yl9η,),dY = Π, dyidη, and

Q*(Y) = σ ( Y i , Y 2 ) + σ(Y2, 73) + σ(73, F4) + σ(7,, 74) 4- σ(74, 72) 4 σ(73, 7, )

σ is the canonical symplectic form:

σ(Y»Yj) = yjη, - ytη, .

We first treat the case \X\ > R + 1. Noting that Q*(Y)/h = β4(//~1 / 27), we see
that

where V is as defined in (3.5) with obvious modifications. By straightforward com-
putation, we have that

where
A O
0 -A

/yι\

7 =
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and similarly for Y'', and

0 -1 1 -1
^ , 1 0 - 1 1
Λ~ ' -1 1 0 -1 I '

1 - 1 1 0

A is clearly invertible, hence \\Y\\2/C ^ \\Y'\\2 ^ C\\Y\\2 for some constant C > 0.
Therefore

8

with &o,£/(z 'ΦO) satisfy the same estimate as αo>0/0'Φθ) in (3.6). Using the esti-
mates on Z?o,£/(/ ΦO), we obtain that

LN = Σ bN

β(h-l/2Y)(hl/2Dγγ (3.13)
|j8|gtf

with
d*bN

β(Y)\ ^ C(\\Y\\ + i

We therefore have, for all TV £ N,

Since \X\ > R+ 1, we have \Y}\ > (\X\ - R)/C, \Y3\ > (\X\-R)/C. Since

|Imz '

with C independent of ω, we have by Deals' Lemma [Bea] as stated in [S],

d T \ ^ C^max ,

where Cy^ is independent of ω. Hence using (3.13), (3.14) and taking JV > 8, we
have

CN

(We do not keep track of powers of /z, since it is not important here.) For \X\ <
R — 1, we write

1

x l(X - Y4)]dY .
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The last three terms in the sum are bounded by

_
N - * 7 + N(R-\X\)N-*\Imz\

with CM independent of ω, by using the same method as before. The first term is
precisely

For R - 1 < \X\ < R + \,F(X} is bounded for |Imz| ΦO. Hence upon taking the
limit R — » oc and taking into account the periodicity of (dzE-+$hE~l

+(x, ς)}, we
obtain the proposition.

IV. Study of the Operator /(Pg v}

Let Sk

ό denote the class of symbols a such that

For |Imz ^ /z()(0 < δ < 1/2), Λ£Ί} is a p.d.o. whose symbol admits the asymp-
totic expansion:

where

V-z^^

N

for all N G N .

Qj are functions of the Q,(i ^ 7) and their derivatives; in particular, Qλ = —Q\.

(Recall that £_+ = Σ^o^δ" + O(Λ°°).) Since <9Z£_+ is also in class S° and
has the asymptotic expansion:

czE°\ =h(\+ hS? + h2S? 4- •)

with Si G S° for all ω, 5z£
τ^+tt/2(£'^+)~1 admits the following asymptotic expansion:

Γ< f?^ ίt /^('^ -I- ^ I -I- I _J_ . . .
^Z^^ 1-11/?-1-^ 1- -rr,., I " \ T7-, . , ' / T 7 ̂  N O I I

for |Imz ^ // f )(0 < δ < 1/2).
Using the random character of the parameters α/, we have:

Proposition 4. For all N G N, C > 0 ί/zere cxwί^1 /z0, 5-wcA thai for all h G]0,/z0],
«// z satisfying \z < h~l with |Rez| ̂  1/C W |Imz| ̂  hN/C,(dzE-+#hEll

+) is
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in class S°, i.e. d*dβ

y((dzE-+%hE-\.)(x,ξ,z))\ ^ CN^β. Moreover, (dzE-+$hEIl

+)
is a classical symbol in So, i.e. there exist A/ E SO, such that

where A, E S°.

We shall prove the above proposition by scaling: we gradually take into account
the potentials at larger and larger length scales. Since (dzE-+$hE~+) is 2Z2 transla-
tionally invariant, we only need to prove Proposition 4 for (x,ξ) E E, where E is
the unit square centered at (0,0).

Without loss of generality, we may assume v is a C °̂ function with support
contained in the square centered at (0,0) and of length b, with b E N. Let Λn be an
increasing sequence of squares centered at (0,0) of length ln = 2nb + 2. Let Λ'^Λ"
be two corresponding sequences of squares centered at (0,0) of lengths l'n — ln — b
and /;; = ln + b respectively. Clearly for all (jt,ς) E E, dist((jc,ς), SΛf

n) ^ (l'n -
l)/2, where dΛ'n is the boundary of Λ'n. Let Hn be the reduced operator when

PwOO — Σ/e/i,, α/ί;(* ~~ 00^-+ is me reduced operator when F(3c) = X]/GZ2 u,v(x -
/)). The principal symbol for Hn is clearly h ( V n ( x , ξ ) — z). We write

where Δn = Hn-\ — Hn, ANQ+\ — HNO — E-+ and we used the resolvent equation:

A~l - B~l = B~l(B - A)A~]; NO is yet to be determined. Hence:

+ - - + (dzE.+)H^ΔNΰ+}EIl

+ . (4.1)

To prove the above proposition, we need to complex dilate in α. The Grushin
problem remains well posed and we have the following:

Lemma 4. Let h E]0,/zo] Suppose z is such that z\ < h~}, and % is such that
> 0, then for t such that \t\oo ^ ^o, we have

Vα//,7(α), t)\ ^ sup \Hn(oι + wt)\ ,
\w\=]>

)\ = sup \E |_(α + w£)| .

Proof. We prove the second assertion, the first can be proved in the same way. We
have

Hence

|{Vα^_+(α),OI ^ sup |£_
μ v |=ι

by the Cauchy inequality.



418 W.-M. Wang

For z such that Rezlmz < 0(RezImz > 0), we define V0 = ei0V(V0 = e~l°V)
(θ > 0). Let E-+(θ), Hn(θ) be the corresponding reduced operator.

Corollary. h'{dE^+(θ)/dθ and h~ldHn(θ)/dθ are bounded symbols in S0.

From [HS] we have the following asymptotic expansion for Hn\

Hn(x,ξ9h,z) = Σ Q,χ,ξ,g,z,h)hJ+l -hz,
7^0

with

Q("\X,ξ,g,z) = (-\y$

U

(;'\y,x,Dy, ξ) = V*[x + gy, ξ - gDy]Sh(e0(y,Dy,Z)V?V ,

and eo(y,Dv,z) is the symbol of the operator E§ as in Sect. ILL £_+ corre-
sponds to taking the potential to be V . By symmetry arguments, it is easy to see
that

Q" ( x , ξ , g , z ) = Q" (x,ξ,-g,z) .

So Hn(x,ξ,g9z) has an asymptotic expansion in h(= #2),

Hn(x,ξ,h,z) = ΣQ(?\x,ξ,z,h)H+λ -hz.

It is easy to see that Q j ( x 9 ξ ) only depends on the potential and its derivatives at

( c, O We deduce that:

\d*τd
β

ξΔn(x9ξ)\ ^C(hN (4.2)

for all N, (*, ζ) in Λ!n_\ or IR2\/l" and C^» is independent of ω. (Recall that

Δn — ^Λ-l — HΠ )

Proof of Proposition 4. We use the expansion (4.1). We assume Rezlmz < 0, the
other case can clearly be treated in a parallel manner. We first estimate the term
(dzE-+H~\ΔnH~λ}. We complex dilate: α, —» tt,el0" with θw = l//π for all / G Λ,7.
We see that for « such that !//„ ^ |Imz , complex dilation will not give us a
better estimate on H~l. Hence for a given TV, NQ is chosen to be the largest integer
such that l//yv0 ^ |Imz| ^ A^/C; A^0 is therefore at most of order TV log(l/A).
Let

Γ(0)

where α = {α/}/ G /ι/ 7, d% = ΠιeΛ d^9 ^(α) = Y[ιeΛ ^(α/), i.e. the LHS is the con-
ditional expectation value conditioned upon α, ^ yiΛ. Then
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where | |oo is the L°°-norm with respect to α,, / ^ Λn. Hence it is enough to estimate

\(dzE-^hH~\^hΔn^hH~l}c\. By the Stokes formula, we have

Γ(0)

where a — [c^le
l0}l^An = {a,},eAn, & is an almost analytic extension of ,̂ such that

d$/dά\RΛn = 0 to infinite order and Ω(θn) is the volume enclosed by Γ(0), Γ(θn)
and α,| = p for all i G Λn. (Recall that supply C ( — /?,/?).) We now choose

where g(a,) is an almost analytic extension of 0(α/) such that g(a,) G C^°((C) and
Sg/Sΰf IR = 0 to infinite order.

Let hS0,z = h-]Hn(0) - el°Vn+z, (0 ^ θ ^ θn\ (Note that S0,z G 50.), then

//-1 (φ,Hn(θ)φ) = el°A, + h(φ,S0,zφ) - z ,

where

is real. Since δ^5 and dzS are in 5*°, (φ9So,zφ) is real when 0 = 0, Imz = 0 we
have

lm\(φ,S0,zφ)\ ^ C(0+|Imz |) | |0 | | ,

where C is independent of ω. Hence there exists h sufficiently small, such that for
z with |Rez > c1 ',

where >A^3#,nn(0) denotes the numerical range of Hn(θ) and c is independent of ω.
We therefore have

Similarly,

Using Beals' lemma, we have

ί

where Cy,β is independent of ω. We now show that (dzE-+)$hH~\$j^n%hH~l(x, c)
is small for (x,ξ) G E.
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Let χn be a C °̂ function such that

χ,,(x) = i /;,_< ^ \χ\ ίΞ /;;
= 0 \X\ ^ /;_,- ! or m ^ C + l

with derivatives bounded uniformly in «. We have by the composition formula,

- 72)

x {(1 - In)Δn}(X - Yι)H-l(X - Y4)]dY .

The second term of the R.H.S. is of order O(h°°) by using (4.2). To estimate the
first term, we do integration by parts m + 9 times. We have

Je^Y^[d2E^+(X - Yι)H-^(X - Y2){χnAn}(X - Y3)H-\X - Y4)]dY

= feίQ*(n/hLm+9[dzE_+(X - Yλ)H~\(X - Y2)

x {χnAn}(X - Y3)H-\X - Y4)]dY .

Using (3.13), (3. 14), (4.3) and the fact that \X\ ^ 1/2, we have

<r~

x (^+|Imz|)- 1- | / ji . (4.4)

On Γ(0Π), using the scaling relations: θ = θn = \/ln and |7| ^ 73| ^ ln/c(c > 0),
we have

L H S = cmax(l'(hl)3)2 2m+2"""7

(4 5)

Since /„ ^ C/z"^, we see that for m > 23N - 9, the R.H.S. is small. Using the
estimate in (4.5), we have

$ h A n $ h H - ] ] ( X ) \ £ CMh

on Γ(θn) for all M and « ^ Λ^0.
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Since the function θ ι— » / |g(α;e^)|dα7 is of class C1'1, i.e. the function is dif-
ferentiable and whose derivative is Lipshitz, we have

/ \§(a)\da = /
Γ(0n] ]

(αΛ|rfα/ S 0 + C'βtf* ^ C ,

where we used the fact that θn = !//„. We have finally

7V0

for all z satisfying |z| ^ /T1 with |Rez| > 1/C and |Imz| > hN /C and we used
the fact that NQ <^ const TV log/z.

We are now left with the task of estimating the volume integral JΩ(() γ Expand-

ing the wedge product, we have

\Λn\ frg

I Σ — (<5Z£-
Ω(θn) 7=1 da,

On \Λn\

0 Rl/1,,1 7=1 ' Φ /

x ί/βy Λ ί/0, Λ Λ da\Λn\ ,

where TV is an integer yet to be determined. We write

daj = e'°doij + ie'°oίjdθ ,

From (4.4), we have

for all m positive integers. Hence

n

I Σ -^(

Π dα

where the factor \Λn\ comes from summing over j. Let N > 23 -h m, then

n V-23-m

R.H.S. < CWQ-^ ^-/z7"
— "' W 7/w—4

< r vFS C/v/z

for all TV.
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Since H^Z^z)!! g C/|Imz|, with C independent of ω, we have from Deals'
lemma

with Cχtβ independent of ω. Hence by the same reasoning we obtain

for all N.
Similarly we obtain, after averaging, that the first (dominant) term in the R.H.S.

of (4. 1 ) is bounded:

Hence we have
l / p τr ft, rr~

by summing the series. Clearly by the same argument we have

\(dzE-+9,,EI]

+)\ ^ C

This proves that (dzE-+$hE_\_} is a classical symbol in class S°.
Proposition 4 yields:

Corollary. For all NQ G N, c > 0; there exists ho such that for all h E]0,/z0],
if f is a C^° function, with support contained in (—B9—c)\J(c9B) satisfying
\d>f\ ^ Cjh~Nv, then

is a classical symbol in SQ.

Proof We construct / such that dzf ^ CMh-^M\lmz\M for all M ^ 0. If

|Imz| ^ hN/C, for some Nf ^ 0, then we take M = 0 and apply Proposition 4.

If |Imz| < hN /C, then from Beals' lemma, we have

|a^f(δz£_+*A£i|>| g c^ l .

Hence

r-frl^π^i^ F &,F~{M < C υ *,h~NQM\]rt\ 7vzj u T- (J ϊ \uz-L/ \-J!rfjj^i i y I —ί: ^α,/i,Λ/'^ [iiiiz

By choosing N' = 2Λ/o, we have

Clearly, if 2(α + jβ) ^ M — 14, we have a well defined p.d.o.. Hence with the
condition \&f\ ^ Cjh~N°J, Af is a classical symbol in the class SQ.
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V. Conclusion

We now state our main theorems. (Recall that supp# C ( — p,p) and range v C

[-1,1]-)

Theorem 1. There exist ρ("\t) (n £ N) in C0°°(IR\{0}) with support contained
in ( — p,p) such that for all NQ EN, c > 0, there exists BQ, such that if f £
C0

oc((-£,-6')U(c,£) + (2tt + 1)5) satisfies \djf\ = O(BN°J) with B ^ B0 > 0,
then for every m G N :

( Γ f r f ( P ' B \ y ) ) = j ' f ( E ) d p B ( E )

(2n+l)B)p(J\t)dt

+ B- ' f f ( t + (2n + 1 )B)p(

2"\t)dt + •••

+ β-<"'-1)//(? + (2«+ l)B)p%\t)dt + 0(B-m), (5.1)

where d p g ( E ) is the "non-random" density of states measure. One has for example:

AV

where '//'/ /',v /Λβ intersection of the curve V(x,ς) = t with the unit square centered

at (0,0). Λfote ί/zαί PQ ΛS independent of n.
In particular, if v has its support contained in the unit square, then

where
ds

^
and

(n)
Pl

2 / 7 + 1

Proof Direct consequence of Proposition 4 and its corollary and straightforward
computation by using the asymptotic expansion for E~+ and dzE_+.

Remark. Because of the extra integration over the random variable α, when we com-
pute dpm/dt, we somehow are always computing dg/da. Since g is a C^° function,
so is pm.
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If we further assume that v ^ 0 and that the support of υt intersect so that
Σ,ez2 Vj ^ s > 0, then we have:

Theorem 2. There exist ρ(,n\t) (n e N) in C$°(-p,p) such that for all N0 e N,
c > 0, there exists BQ, such that i f f e C$°((-B,B) + (In + \)B) satisfies \dj f\ =
O(BN°J) with B ^ BQ > 0, then for every m G N the expansion (5.1) holds.

Proof. We only need to prove that the expansion (5.1) holds for / G CQ°(( — c, c) +
(2n +1)5) for some c > 0 to be determined. We use a similar construction to the
one used in the proof of Proposition 4 in Sect. IV. We take Hn to be the reduced
operator corresponding to the potential

Vn(x)= Σ*X*-0 + £ υ(x-i).

Instead of complex dilating in α as in the proof of Proposition 4, we complex
translate in α:

where δΛ = 1//Λ. We assume that Imz < 0 (the other case can be treated in the
same way). Let Hn(δ) be the reduced operator corresponding to α/ replaced by

oίj + iδ(0 < δ rg δn). The principal symbol for h~lHn(δ) is

vfa, ξ)~z= Σ α7^fe 0 + ίδ Σ ^/(^ 0 + Σ »A c) - z .
/G/l/ i /G/l,, 7'GZ2\/l/ ;

Let 0 6 £2(1R); we have

Im (φ,(V'n - z)φ) - δ(φ, Σ i;̂ } + |Imz|(φ, φ)

Since Σ/EZ2 υj = s > 0> we certainly have, for h small enough

(φ, Σ^Φ) >s/2(φ,φ). (5.2)

Let α = max(|α|oc, 3). For φ such that (</>, Σ/E/I,, VJ'Φ^ = S/(&2}(Φ>Φ}> we

s
\\Φ> / J tt/u/Φ/l = ~\Φ >Φ) -

ye/1,, <*

We also have from (5.2)
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Hence

α

Taking c = s/\9, we have |Rez| ^ s / 1 9 . Therefore

δ d δs

Let hSδyZ = h-{Hn(δ) - V%+z. The symbols dδS, dzS belong to S°. Hence for h
sufficiently small, we have

dist(0,Λ^///l((5)) ^ c'h(δ+ |Imz|) ,

where .Ό?//,,^) is the numerical range of Hn(δ). We therefore have

1

The rest of the proof follows exactly that of Theorem 1, with δ replacing Θ.
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