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Abstract: We diagonalize the Hubert space of some subclass of the quasifinite
module of the W\+OG algebra. States are classified according to their eigenvalues
for infinitely many commuting charges and the Young diagrams. The parameter
dependence of their norms is explicitly derived. The full character formulae of the
degenerate representations are given as summation of the bilinear combinations of
the Schur polynomials.

1. Introduction

The detailed study of (infinite dimensional) Lie algebras has been sometimes very
essential in theoretical physics. The representation theory of finite dimensional Lie
algebra is indispensable to understand quantum mechanics or gauge theories. If we
extend the dimension by one, the loop algebras such as Virasoro [1] or Kac-Moody
algebras are essential tools to describe two-dimensional statistical systems or string
theories.

Recently, in many places such as two-dimensional quantum gravity [2-5], the
quantum Hall effects [6,7], the membrane [8,9], or the large TV QCD [10,11], the
W\+00 algebra is regarded as the fundamental symmetry of system.

As a member of loop algebras, the W\+OG algebra has a unique character in that
the number of currents is infinite. In a sense, it may be regarded as the symmetry
of three-dimensional system since it is closely connected with the area-preserving
diffeomorphism [12,13]. Due to this fact, the detailed representation theory was not
fully developed until now although some attempts were made [14]. The situation is
also similar in the extensions of the W\+oc algebra [15-20]. One of the confusing
features of the W\+00 algebra is its hybrid nature in dimensions. We remark that it
has also definite "two-dimensional" aspects since we already knew the explicit real-
ization in terms of two-dimensional free fields [13,21]. Furthermore, this symmetry
is found even in instanton physics in four dimensions [22-24].

Last year, Kac and Radul [25] discovered a way to avert from the difficulty and
proved that the Hubert space at each energy level can be finite dimensional if we
choose the weight vector properly. In our previous letter [26], we give the computer
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calculation of the Kac formula of the W\+QG algebra at lower degree. In this article,
we would like to give its analytical formula. Actually, we can go further to give
the explicit form of the diagonal basis of the Hubert space with respect to the
inner product and give their parameter dependence. As corollaries, we give the full
character formulae [27] of any degenerate representations. This will be the basis
for the application of the representation theory of the W\+(X) algebra to physical
systems, such as quantum gravity, the quantum Hall effects, the two-dimensional
QCD which we would like to report in our future issues.

The plan of this paper is as follows. In Sect. 2, we give a brief review of the
result of Kac and Radul, and also a summary of our computer calculation of the
determinant formula. The parameters of the system can be roughly classified into
two groups, the central charges and the spins. Our determinant formula is factorized
into functions which depend only on either of them. In Sect. 3, we give the detailed
account of the relation with the gl(oo) algebra. This is an essential step to understand
the determinant formula. As we see in the following sections, the transformation
from the basis of the W\+00 algebra to the corresponding ones of the gl(oo) algebra
gives the spin dependent part of the determinant formula. On the other hand, the
determinant of the gl(oo) algebra explains the central charges dependence. In Sect. 4,
we first derive the spin dependence from this viewpoint. In Sect. 5, the central charge
dependence is derived. There, the knowledge of the permutation group is essential
to classifying the Hubert space. Indeed, we derive the explicit form of the diagonal
basis with respect to the inner product by using the Young diagrams. In Sect. 6, we
give the character formula for the degenerate representation as a bilinear form of
the Schur polynomials. In Appendix A, we give tables of the determinant formula
which we previously derived by computer analysis. In Appendix B, we explain the
free-fermion method which was essential to calculating the inner product formula.
In the W\+00 algebra, there are an infinite number of''modular parameters" because
the number of Cartan elements is infinite. The fermion which appears here is the
"fermionization" of those modular parameters.

2. Brief Review of the W\+00 Algebra

The ^i+oo algebra is a central extension of the Lie algebra of the (higher order)
differential operators on the circle, which is generated by z}'Dk with r G Z,£ G Z^o

and D = zj-. We write the generator of the W\+00 algebra which correspond to the

differential operator zl'Dk as W(zl'Dk). The commutation relations are,

[W(zrf(D)\W(zsg(D})}

= W(zr+sf(D + s)g(D)) - W(zr+sf(D)g(D + r))

+ CΨ(zrf(D),zsg(D))9 (1)

where f(D) and g(D) are polynomials of D and we introduce the two-cocycle Ψ,

Ψ(zrf(D),zsg(D)} = -Ψ(zsg(D\z'f(D)}

- ) i f r = -s > 0

0 i f r + ί φ O o r r = ί = 0.
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The principal gradation of the W\+00 algebra is

) G CM} . (3)

It is defined in terms of the eigenvalue of the "energy operator" L0 = —W(D). The
highest weight state of the W\+00 module is defined in terms of this gradation,

W(zrDk)\λ] = 0, r ^ l,k ^ 0,
(4)

We introduce,

Λ W = -Στ74t> (5)
*=0 κ

to rewite the (infinite dimensional) weight vector, which will be called the weight
function. The Verma module is spanned by the vectors which are obtained by
applying the generators of negative gradation to the highest weight state,

and we define the energy level of this state by the sum, Σ/=ι r/
A representation of W\+(X) is called quasifinite if and only if there are only finite

number of states at each energy level. The quasifinite module has the following
properties [25]:

1. For each level r, there are infinitely many null generators of the form
W(z^} b, (D)g(D)), where br(D) is a monic, finite degree polynomial of operator D.

2. The polynomial br(D) with r > 1 is related to level- 1 polynomial b(D) =
bι(D) as

• br(D) is divided by 1 .c.m (b(D\ b(D - 1 ), . . . , b(D - r + 1 )).
• b(D)b(D - 1 ) b(D - r + 1 ) is divided by br(D).
If the difference of any two distinct roots is not an integer, br can be uniquely

determined as b, (D) = Π^o^ ~ sl
3. The function A(x) satisfies a differential equation,

b(£)((ex-l)A(x) + C) = 0. (6)

When b(w) = (w - λ\ )K] - (w - λ/}K( , the solutions are

(7)

In this article, we analyze the iπ'educibility of the quasifinite module. We
introduce,

Definition 1. Generalized Verma Module and Kac Determinant. The second prop-
erty of the quasifinite representation means thai there are at most rK indepen-
dent generators at level r(W(r~I'Ds) with s — 0, 1, . . . , rK — 1 ) // the characteristic
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polynomial b(w) has degree K. We call the module freely generated by those gen-
erators as the generalized Verma module. The number of states at each level is
given by the generating function [26],

At level /, we define the determinant of the n/ x n/ matrix which consists of the
inner products5 of the basis of the module as the Kac Determinant.

The purpose of this paper is to calculate this determinant, and with this know-
ledge, to give the character formula. We restrict ourselves to consider the special
cases,

b(w) = Π(w - λ t ) 9 A(x) = ΣC^-^^- . (9)
/=! /=! e' - ί

In other words, we postulate first that there are only simple zeros in b(w) = 0
and the difference of their roots are not integers. In our previous letter [26], we
made the computer calculation of the determinant formulae at lower levels with this
assumption. We summarize our results in Appendix A [26]. The determinant formula
for general cases can be obtained by taking a suitable limit of the parameters. It
may be symbolically written in the following form,

det[r] = HAr(C,)ϊlBr(λ,-λj). (10)
i ι<J

The functions Ar and Br have zero only when /, - λ} or C, is integer. In the
following sections, we derive these functions analytically.

Indeed, our computation gives not only the determinant itself but the eigenvalues
of each eigenstate (although it is restricted to K = 1 case). From this knowledge,
one may directly understand how many states become null for any particular choices
for the parameter, and we can directly derive the character formulae for unitary and
non-unitary cases. It is needless to say the physical importance of the character
formulae for the unitary cases. On the other hand, the non-unitary characters serve
to understand the bosonicghost system which plays essential roles in understanding
the superstring theory, the topological field theory, the supersymmetric matrix model
when combined with the BRST formalism.

3. Relation with the gl(oo) Algebra

Some of the essential features of the W\+00 algebra can be more clearly elucidated
if we use the connection with its simpler cousin, the gl(oo) algebra. As explained
in [25], we may construct a quasifinite representation of the gl(oo) algebra which
is deeply connected with the corresponding one of the W\+oc algebra. We here
would like to explain the full detail of this correspondence since it illuminates the
/ dependence of the determinant formula and also is essential to calculating the C
dependence.

5 Let Jt be a Verma module over W\+OG generated by /} (4). Let J/fi be a Verma module over
W\+oc generated by (Λ| such that (λ\W(z'Dk) = 0 if r < 0, (λ\W(Dk} = Δk(λ . The inner product
,//1 ® Jί -> C is defined by (λ\λ) = 1 and ((u\W)\υ) = (u\(W\υ)) for all (u e Jl\ i') e Jt and

w e r,+00.
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3.1. The gl(oc) Algebra and its Representation. The gl(oo) algebra is generated

by the operators, E μ ( ί j ) (μ — 0, l , . . . , m ) , which act on the infinite dimensional

space spanned by the basis, v[μ) with k £ Z,

EW(iJ)y^ = θ(m-μ- v)δj+k,0v
(μ+v} . (11)

Here θ(i) = 1 for / ^ 0 and θ(i) — 0 for / < 0. The commutation relation is,

J \ f?V^ / / /_ f>\-\rf

[E

= θ(m-μ- v)(δJ+ktoE(μ+v\i,t) - δ,+i,QE(μ+v\kJ)) . (12)

As usual, the highest weight state is defined by using the gradation,

E(μ\iJ)\λ)=Q9 i+j > 0,

E(μ\i,-i)\λ)=άμ}\λ). (13)

For the finite dimensional case, the parametrers q^ are arbitrary. However, as the
W[+C)C algebra, there should be a severe constraint on them once we require the
quasifiniteness.

Define,

We introduce the set,

S(μ} = {£ |/4 V ) ΦO for some v ^ μ} ,

which satisfies the inclusion relation,

. . . DS ( / M ) . (15)

A quasifinite representation is then obtained [25] if and only if S^ is a finite set
for each μ.

Let us count the non-vanishing elements in the Hilber space. At level 1, the

Hubert space consists of the vectors of the form, E μ (k — 1, —k)\λ). To see if they
are null, we compute,

E(v\k,-k + \)E(μ\k - 1,-£)|/) = θ(m-μ- v)h[μ+v}\λ) .

It shows that it becomes non-vanishing only if k £ S^μ\ Similar computation shows

that the more general state E μ (/, —k)\λ) becomes non-vanishing only if there exists
an integer 5- G 5(/ί) such that k ^ s > t. In the figure below, we show the elements
which become non-vanishing for this case.

3.2. Definition of the gl(oo) Algebra. In order to prevent the appearance of infinity
once we try to relate it with W\+oc, we need to modify the generators of gl(oo) as
follows:

E<*\iJ) = E(μ\i,j) ~ c(μ}δl+iβθ(i) . (16)
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EftJ)

Fig. 1. Surviving Generators.

Here the "central charges" are defined by,

c <">= Σ 4'° (17)

The algebra (12) and the highest weight condition (13) are also modified,

(18)

and, E(μ\i, -ί}\λ} = q\μ)\λ) with q(,μ) = q^ - c('()(9(/). We can also easily prove,

We call the modified algebra (18) the gl(oo) algebra. We remark that the quasifinite

representations of gl(oo) and gl(oc) are identical since there appears no infinite sum
in the definition.

3.3. Relation with the W\+00 Algebra. To find a relation between gl(oo) and
W\+OG, we take the Hubert space spanned by \£ as the space of functions on the
circle spanned by z/+k+t with λ £ C, k G Z. Here the formal parameter t is defined
by the nilpotency condition, tm+l = 0. The action of differential operators on this
basis is then given by,

.λ+k+r+tzrf(D)zλ+k+t = f(λ + k + t)z

(19)

By the identification, vji <-» tμz/+k+t, we define the correspondence between the
generators,

mfM(λ + k) α<)

&EZ μ=Q ft'

(20)
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for rφO. Special care is needed to find the relation between the zero modes,

W(exD) = Σ ίX(e^E(μ\k^k)-δμ

/;; γμ pxk p/.\ _ 1 m rμr(μ)p/.x

= £SiH'£""A -4) - ίlo'̂ r - ,5 ̂  c* >
The central charges of the both algebras (C for W\+t^ and c(0) for gl(oc)) are
related by,

C = c(0) . (22)

The other central charges of gl(oc), c^μ\ can be related to the coefficients of xμ in
the polynomial pκ,(x) in (7) as we see in the next subsection.

3.4. Relation between the Representations. In the correspondence (20), λ is a free
parameter. This arbitrariness is removed once we consider the relation between the

(quasifinite) representations of W\+oc and gl(oo).
Let us examine the null state conditions, W(z~Γbr(D))\λ} — 0 in the language

of gl(oo). We first consider the case,

-//-*,)"', (23)

i.e. the differences of all the root of characteristic polynomials are integers. We put
m' = max(μ,). We introduce the set of integers associated with b as,

T(μ) = {k £ Z\b(μ\λ' + k) = 0} .

It is obvious that they are determined uniquely from b(w) and satisfy the inclusion
relation,

which is the same as (15).
Let / in (20) be equal to λ' and m' = m, the null state condition,

0 = W(z-rb, (D))\λ) = Σ Σ ̂  (/^k^E(μ\~r + k, -k)\λ) (24)

implies that only the states of the form,

E(μ\k-l,-k)\λ)

with k G Γ ( / / ) may have non-vanishing norm since the coefficient in (20) vanishes.
This condition is identical with the quasifinite representation of gl(oc) with,

S(μ} = T{μ}. (25)

Another check to see the direct relation between the representations of W\+oc

and gl(oo) is to calculate the function A(x) from the highest weight of gl(oo). We
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observe that the weight q(^ is given by,

4kμ) = Σ h(μ}θ(k -s)-

Combine it with (21) and A(x)\λ) = -W(exD}\λ} we derive,

/.(O)/ px(λ+k) _ ι \ m μM x(λ+k]
(g, υ + Σ Σ (26)

*- *-

This is exactly the solution of the differential equation (6) where Γ ( / / ) of b(w) is
given by S(μ\

In this way, the quasifinite representation of gl(oo) we have seen in Sect. 3.1
can be identified with the representation of W\+00 with the characteristic poly-
nomial (23).

4. λ Dependence

We divide the derivation of the determinant formula (10) into two parts. As we have
reviewed in the previous section, at each level, the dimensions of the generalized
Verma module of W\+00 and gl(oo) algebras are the same. Let us consider the
Hubert space at a specific energy level. We denote { U \ , . . . , U N } as the basis in terms
of W\+00 generators and { V \ , . . . , V N } as the basis in terms of gl(oo) generators. The
relation between the two bases may be written as, HI — Σ -^ijvj^ wim N x ./V matrix
j/. The matrix j/ can be directly derived from the relation (20) and it depends
only on //s. The determinant for the W\+00 basis is rewritten as the determinant for
the gl(oo) generators,

Det((M/ Uj)) = Det(efi/)2Det((ι;/ ϋy» . (27)

In the representation of the gl(oo) algebra, the only parameters which appear
in the theory are C, s. This observation shows that (27) gives a natural decom-
position of the determinant into a part which depends only on Λ,/s(Det(j/)2), and
a part which depends only on C/s(Det((ι;/|ι;y ))). In this section, we derive the first
factor.

The main theorem in this section is

Theorem 1. λ Dependence. The factor Br in (10) is given by,

f (/•) °° (/•) (/ )\ 2

Br(λ)=(λμo nOi + O^ (λ-s)μ* . (28)
V 5=1 /

Here the non-negative integers μs can be derived from the generating function,

K
L-VJ / I /-/' I1 •-> \

(29)
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For the simplest cases, K = 2 with λ\ — /2 = 0, ±1, (29) gives respectively,

2φQ(q) = 2q + \Qq2

2φ}(q) = 2q2 + 8^3

which correctly reproduces the table in Appendix A.
Before we start the detailed proof, it may be useful in the future study to give

the intuitive proof of this theorem.
The factor t — s in (29) can be regarded as the number of additional null genera-

tors at level / when a pair (/I/,//) satisfies the relation λ\ — λj — ±s. These numbers
can be estimated by the following observation. If the weight function Δ(x) satisfies
(6), then the characteristic polynomial at level r is

br(D) = l.c.m. (b(D\ b(D - 1 ), . . . , b(D - r + 1 )) . (30)

It follows from Prop. 2.4 in [25]. By this relation,

t-s = tK- degree (l.c.m(6(w), b(w - 1 ), b(w - 2), . . . , b(ω - t + 1 ))) . (31)

If a state in the Verma module has the form, N( )m W( )n\λ), where 7V( )s are
any null operators, the inner product of this state with any bra state will get a factor
(λj — λj — s)m . In order to collect the power factor m for all states at energy level
/, we attach a factor ζ with q in order to mark the null generators. A state of the
form, N( )m W( )n\λ)9 will get a factor ζm. We take a derivative with respect to ζ
to pick up the multiplicity factor m. Since the bra states should get the same factor,
we multiply the coefficient of qm by two. This argument shows that the determinant
can be divisible by the factor in (28).

4.1. Relation between Generators. The proof of the theorem is straightforward but
a little lengthy. We will divide the argument into small steps.

The independent generators in the W\+00 algebra at level r are W(z~ΓDs) with
s = 0, 1, . . . ,rK — 1. On the other hand, those in the gl(oo) algebra may be taken as
E)s(-r + 7, -7) with s = 1, . . . ,ΛΓ and j = 0, . . . ,r - 1. We denote the gl(oo) gener-
ator associated with parameter λ as E;(i,j). From (20), those generators are related

by rK x rK matrix Ar as, W(z~rDl) = £f=1 Σ Io (A> )/,(*- ιy+jEλs(-r +7, -j) with
the matrix element,

(Λr )/,(,- 1 ),•+/ = (λs +7')7 (32)

The matrix Ar has the form of the Vandermonde matrix. It is hence quite easy to
derive its determinant as,

Lemma 1. Up to the multiplication of constant,

det(Λ)= Π Π (λt-λj+k-ί)

= π α / - Λ )r π [(λ,-λ, +«)'-*. (33)
1 ^κ/^K κ=±\ s=\

4.2. Relation between Hubert Spaces. Let ffl(n\> n^ ^3,...) be the Hubert space
spanned by the product of n\ elements of level 1 generators, n^ elements of level
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2 generators, #3 elements of level 3 generators and so on, which are acting on the
highest weight state. Here, n,$ are the non-negative integers. In order to consider
the determinant at finite level, only a finite number of them can be non-vanishing.
The energy level can be written out of them as,

oo

N =Σtn, . (34)
/=!

The basis of this Hubert space may be written either in terms of the W\+<x>
generators or in terms of the gl(oc) generators. The transformation matrix between
those bases can be constructed out of the matrices A, which is introduced in the
previous subsection. For the Hubert space -^(n\, n2, . . . ) > it is given by,

00

/•=!

where Ar is the transformation matrix between the nf

ih symmetrized product of
the original rK basis. In the case, A"1' becomes a

matrix.

To derive the determinant for the matrix (35), we need to remark on some
identities of the linear algebra, which can be proved easily.

Lemma 2. (1) Let Br be an arbitrary Nr x Nr matrix (r = 1,2, . . . ,Λf ) . The deter-
minant for the direct product matrix is given by,

M / M \ I

<g> -®BM) = Y\(dQtBrY', vr = Y\ns nr . (36)
r=l Wl / /

(2) Let B be an arbitrary N x TV matrix. If we denote #(M) as the represen-
tation of B in terms of Mth symmetric basis, then,

(37)

The determinant formula for the space Jf(«ι, «2, «3, •••) is derived as,

Lemma 3.

det (§)A(

f

n'λ = Π(detΛ/ )*' ( l Λ ] ), (38)
\r=\ / r=\

^ ( n, + sK - l
Π ( ns

v φ /

If we use (33), this formula becomes,

Π f (A, - /^"""Πα/, - λ, + s)(λ, - λ, + s))^™ (39)
/ < / V s=\



Quasifinite Representation of the 1V\+f>0 Algebra 387

with

*s(W)= Σ ( t - ^ ί ^ ^ t r ' 1 } Π (n» + uK~l V (40)
t=s+\ V / »=1 V " /

4.3. Generating Function. Finally, to derive the generating functional (29), we take
the summation over infinite indices ( n \ , «2> ) with parameter q,

φs(q) = y^ #s([w])<7 / ' = l 7 / 7 / . (41)

Combining it with (40), and by using the Taylor expansions,

w 4- w# - 1
n

^TT = ΣΓ + !£~V> («)
n =\

we get the explicit form of the summation,

( Λ - πs(q] = Σ 7] — -Ty^TT Π/=.s+ι u — q )

Π (43)
-t- -L / 1 _./ \ /

V , v = l ( l - <f ) .
/

This completes our derivation of Theorem 1. QED

5. C Dependence

In the following section, we derive the C dependence of the determinant formula for

the case, K = 1, b(w) — w — /, Δ(x) = Ce

e^~\ . The computation is basically carried

out by using the gl(oo) generators. The relation between the nonvanishing generators
contain the dependence on / but it will disappear if we take the determinant. Hence

the determinant formula of gl(oo) is identical with that of W\+OG.
Computation for K — 1 is sufficient for understanding the result in our pre-

vious computation in Appendix A, since they are the direct product of K — 1
representations.

Unfortunately, the determinant formula for more non-trivial cases, where the
characteristic polynomial has roots whose mutual difference is an integer, is still
beyond the scope of the present paper.

5.7. Classification by the Complete Cartan Elements. There are an infinite number
of commuting charges (forming the Cartan subalgebra) in the W\+00 algebra, W(Dk)
with k = 0, 1, 2,.. . . In our previous computation, we used only LQ = —W(D) to
classify states. However, much more detailed analysis should be possible if we
diagonalize the Hubert state with respect to the action of all the Cartan elements.
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In the framework, of the W\+^ algebra, however, the construction of the Weyl
basis is not so straightforward since a simple commutation shows that

[W(Dk\ W(zrf(D))} = W(z' ((D + r)k - D*)/(D)) . (44)

It is obvious that we need to diagonalize the operator Q which acts on the
generator as

If we restrict f(D) to be a polynomial, we cannot find any solution to this equation.
The construction of the diagonal basis becomes possible if we view the W\+^

algebra from the equivalent gl(oo) algebra. In [25], they proved that the quasifinite
representation of those algebras coincide.

In the language of gl(oo), the generators E^\ίJ) are already diagonal with
respect to the action of the Cartan elements6,

[W(Efi),E(iJ)] = ((λ + 0* - (λ-j)k)E(iJ) (45)

The state E(—i\,—jι) E(—in,—j,,)\λ) has the eigenvalue,

Σ [(Ί-' a)*-U+yβ)*] +Δk, (46)
a=\

with respect to the action of W(Dk). To summarize, we may claim (for the K = 1
case),

Proposition 1. Classification of States. Let I = {i\,...jn} (resp. J = {yΊ,. . . ,y / 7 })
be a set of positive (resp. non-negative) integers and σ be a permutation of the
set of integers !,...,«. The eigenvectors with respect to all W(Dk) are given as
the linear combinations of the form,

ia,-jσ(a})\λ)9 (47)
a=\

with cσ G C.

5.2. Explicit Calculation of Inner Product. Due to the above theorem, we un-
derstand that we need to consider only the class of states of the form (47) to
diagonalize the Hubert space. For that purpose, we would like to prove the explicit
form of the inner product between those states,

= (-l)n(-C)L(σ~ σ ) . (48)
b=\

This equation is valid if all the indices i (or j) are given by different integers. The
function L(σ) is the "depth" of the permutation σ. It is known that any element of
the permutation group can be written as the product of cycles. For example.

3 6 4 ί 5 2) =(134)(26K5) (49)

6 Here and in the following discussion, we omit the superscript (0) in £(/,/) since we are only
considering K = 1 cases.
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The function L(σ) is then given by the number of the cycles (including a trivial
one cycle). In the above example, L(σ) = 3.

In order to prove (48), we observe that, due to the nature of the gl(oo) algebra,
the indices which appear in (48) may be replaced by other integers,

f[E(a,a)ίlE(-b,-σ-lσ'(b))
a=\ b=\

In the following, we will write σ~lσf as σ for simplicity. Let us first consider the
case L(σ) = 1. We postulate that the inner product that consists of a cycle of length
m is given by (-l)m(-C) up to m = n - 1 and prove the statement by induction.
This assumption is straightforwardly proved for m — 1 since the only non-vanishing
contribution comes from the central charge of the algebra. The topical element
which consists of one cycle with an n element may be taken as,

(λ\E(n, n)' Έ(l, 1 )£(-!, -2)£(-2, -3) •£(-«, -1)|/) .

We move the element E(l, 1) to the right. A non-vanishing commutation relation
happens only with E(— 1,— 2) and E(—n, — l ) , generating E(l,—2) and — E(— n, 1),
respectively. However, the latter one vanishes after it is operated on the vacuum.
Next, we move the thus obtained element £"(!,— 2) to the right. This time, only
the nontrivial element is the commutation with E(—n, — \). It gives the contribution
—£(—/?, —2). In this way, one arrives at the expression,

However, this is the inner product which consists of one cycle with an n — 1 ele-
ment. By the induction assumption, it is equal to ( — l)w( — C).

If there are several cycles, the argument similar to that above can be used to
reduce the inner product to the product cycles. Therefore, we have,

cycles

5.3. Young Diagram Classification. Since the inner product formula is written in
terms of the permutation group and its representation, we can easily believe that
the diagonal basis is explicitly constructed by organizing them such as to give the
irreducible representation of the permutation group. To accomplish this, we first
prepare some notations.

Let ffn be the permutation group for n objects. Conjugacy classes of yn are
classified according to the type of cycle decomposition (as in Eq. (49)). Denoting
by kj the number of length-y cycles, we represent a conjugacy class as (k) =

I#i2*2 . . . #*«. Note that k\ + 2fe -f- + nkn — n, and the number of elements in
the class (k) is N(k) = n \ / ( l k l k \ !2*2&2! nknkn\). Irreducible representations are
classified by Young diagrams 7, and we denote the character and dimension of the
irreducible representation 7 by χγ and dγ> respectively.

We define the action of σ G ̂ n on the state YΓa=lE(-ia,-ja)\λ) by

σflE(-ίa,-ja)\λ) = UE(-ia9-jσ(a})\λ) . (50)
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(51)

Here Dγ(σ)yβ(x,β = \,2,...,dγ) is the (real-valued) representation matrix of the
element σ. Since σ^ = σ^1, we obtain the following relations (see for example, [31]
for the proof):

βy. '

With this operator we define new vectors as follows:

Y
y-β\Y',*β)=BLUE(-ia9-ja)\λ).

(52)

(53)

(54)

In the following, we will restrict our discussion to the case where no degeneracy
exists in the set of indices, {ja} (and also in {/«}).

We are now in a position to prove the following theorem:

Theorem 2. Young Diagram Classification. The vectors \Y',aβ) form an orthog-
onal basis in the subspace spanned by (47) :

(Y vβ\Y' μv} = δγγiδxμδβva
γ

n9 aγ = ^-U(C- Cb). (55)
n\ heγ

Here to each box b in the Young diagram, we assign a number Q, as,

0
_ ]

-2

-3

1

0
_ j

-2

9

1

0

-1

3

2

1

0
(56)

Proof. By using Eqs. (52) and (53), the left-hand side of Eq. (55) is rewritten as

( Y ; a β \ Y ' ; μ v ) = δγγ,δxμ^ Σ Dγ(σ)βr(λ\ϊlEVa,ia)σUE(-iι,,-jh)\λ) . (57)

Due to Eq.(48), (λ\l\aE(ja,ia}σl\hE(-ib, -jb)\λ) = (-\r(-CY*"\ Since L(σ) is
a class function, we may denote it by L(k) if σ G (k). We thus obtain

n

Dγ(σ)βr. (58)

Here we can show that the matrix Σσ£(k}DY(o} always commutes with the ac-
tions of any elements in ϊfn, and thus, due to Schur's lemma, we conclude that
ΣσG(^)^r(o") is proportional to the unit matrix. The coefficient is easily calculated
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by taking its trace, and we obtain

Σ Dγ(σ)βv = -±-ίχγ(k)δβv. (59)

Substituting this expression into Eq. (58), we obtain

(y αjg ly ' μv) = δγγfδy,lδRV^
:-^-Y](-C)L(k}N(k)/γ(k). (60)

n\ (£)

Since we have the following identity as is proved in Appendix B.3:

'k) = ^rll(C-Cb)9 (61)
m (k} n\ beY

we finally obtain Eq. (55). QED

As a simple corollary of the inner product formula, we may derive the condition
for the unitarity. The positivity of the Hubert space may be rephrased as the posi-
tivity of the factor a^ for any Y and n. From the table (56), we can immediately
prove that this condition is achieved only when C is a positive integer.

6. Character Formulae for the K = 1 Module

In the previous section, we get the explicit form of the norm of the diagonal basis
in terms of the Young diagrams. To understand the structure of the Hubert space,
we need to count the number of states which belong to each diagram and have the
same eigenvalues for all the Cartan elements.

The generating functional for such degeneracy is neatly expressed by introducing
the full character,

χ([g]) = Tr* exp ΣgkW(Dk) . (62)
\A=0 /

For the K — 1 module, if there are no null states aside from those coming from
the characteristic polynomial, the non-vanishing generators are given by E(—r,—s}
with r ^ 1,5 ^ 0. If we combine it with (45), we get the following theorem:

Theorem 3. Full Character for the Generalized Verma Module. The full character
for the generalized Verma module is

τ-^rv^ 3G CO 1

^77' (63)

τ γ ( y ) , (64)
Y

where

ΣSoί/A(/.+*)* , (65)

τγ is the character of irreducible representation Y o/gl(oo), (see Appendix B.I),
and the parameters x and y are the Miwa variables for u and ι\ respectively:

*/ = 7Σ«ί> JV = 7Σ>.ί, / = 1,2,3,. . . . (66)
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Δk is defined in (5) with Δ(x) = C^Γ/ . The proof of (64) is given in
Appendix B.2.

If we expand (63) in (infinitely many) parameters ut and vs as

then N(In,Jn) gives the number of the states of the form (47). If we expand each
factor in the summation of (64), we can get the degeneracy with respect to each
Young diagram 7, and the eigenvalues.

For example, some of the simpler Schur polynomials are expanded as follows:

x2

τ2(x) =y + *2 = Σ uiuj + Σ u] >
^ i<j ί
9

~X,

τπ(Λ:)=-L -*2 = ΣM*My '
L KJ

x3

τ3(*) =-£- + *ι*2 + *3 = Σ M /w/ M * + Σ u2ιuj + Σ w? >
6 / < / < £ / Φ y /

X3

=y - ^3 = 2 Σ "/"/"* + Σ uΐuj •>
^ ι<j<k / Φ /

3

= Σ W /

The result in the previous section shows that the generalized Verma module
foτK=l becomes reducible when C = integer. We call this representation as the
degenerate representation. The full character formula for the irreducible module
can be obtained by combining the previous theorem with (55).

Theorem 4. Full Character of Degenerate Representations. Let Vn (resp. Hn)
be the set of the Young diagrams the number of whose columns (resp. rows} does
not exceed n, then the full characters of C — ±n are given by,

Σ τγ(x)τγ(y) ,

XC=-n = e^^kΛk Y^ τγ^τγ^ ^ ^^

In the character formula for the non-integer C (64), the summation is over every
Young diagram, or in other words, the two-dimensional sum. On the other hand,
in the character formula for the degenerate representation (68), the summation is
restricted to one-dimensional indices. The degeneracy of the Hubert space reduces
the dimensionality of the system from three to two, which naturally explains the
hybrid nature of W\+00 symmetry.

To make our formula (68) into more familar form, we give the explicit form of
the characters which depend only on the parameter q associated with the eigenvalue
of Z0 = —W(D). For this restriction, we replace

ur = <f, vf. = <f . (69)
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Namely, we put g^ = —2niτδ^\ with q = e2πιr. The Miwa variables (66) are then
rewritten as,

/ 1 — qf ΰ \ — qf

After these replacements, a compact form of the Schur polynomial can be given.
We introduce,

Π Π l - - A - ^ + 7 (71)

for non-negative integers w7. When m^ = 0, we put fk(q\m\> ,0) = 1. The Schur
polynomial is then rewritten as,

^n /(/ + !) «

^=1^"w/ ΠA =l

k=\

k = \

:^mv)(Σ^w v + 1 )ΠΛ(^;^ι,...,^),

*!,...,/«*), (72)

where Y = {m\ + + nιn,m2 + + w w , . . . ,mw}, and 7r is the transpose of the
Young diagram Y'.

The full character formulae (68) then give,

k=\

lc=-n(q) = q-n*>-W E ... j q ' ^ j m ' { f k ( q ,m,,...,mk)
2, (73)

with positive integer n.
In our previous letter [26], we gave the character formulae for C = ±1 and

C = n > 0. For C — ±1 cases, our general formula (73) gives,

oo j m 1
— m ΓT L_

A l / I x,A2 '
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χc=-ι(g) = ̂ (/-')/2f>'"fL ^ . o . (74)
m=Q j=\(ί - ψ )

which are exactly same as our previous formulae. For C — n > 0 cases, what we
derived previously were,

2 Π ΠO-^-V. (75)
/ = ! A = l

We have confirmed that it is equivalent to (73) by Taylor expansion up to g30.

7. Discussion

Although we understand the representation of W\+OQ to some extent, there are still
many things to be understood. In particular, the C dependence for K > 1 is still
not well-understood. We hope to report in full detail in a future article. In the
mathematical side, we are currently working on the supersymmetric extension [20],
the structure of the subalgebras [30]. Those works will be related to the topological
field theory and/or the matrix models.

The relation of the W\+oc algebra with extended objects seems also interesting
from the geometrical viewpoint. In this work, we used the basis Dk to parametrize
the generators. However, as Kac and Radul observed, there is another parametriza-
tion of generators which leads to a different representation. One example is to use
the qkD basis. One may regard it as the representation based on torus (instead of
sphere). In general, one may imagine the possibility of the representation theories
based on higher-genus Riemann surfaces. If we want to apply the W\+OG algebra
to membranes, for example, we need to consider the "degenerate" three manifolds
where such a Riemann surface may appear. The hybrid nature of the W\+OG al-
gebra that we have observed in this paper may be important to understand such
phenomena.

After we submitted this paper, the full character for the unitary representation
was given in [32]. One may check [33] that for the special case (K = 1), the
formula obtained there coincides with ours (68) with C = n > 0.

Appendix A: Determinant Formulae at Lower Degrees

In this appendix, we give the explicit form of the functions Ar(C) and Br(λ) defined
in (10). We can parametrize those functions in the form,

A,(C) = Π (C - (Ύ(/\ Br(λ) = Π (λ - ff/}.
/ez /ez

We make tables for the index α(/) and β(S). We note that β(() = β(-t). Hence
we will write them only for / ^ 0.
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K = 1: Br = 1 due to the spectral flow symmetry [26].
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r

1

2

3

4

5

6

7

8

α(-l)

0

0

0

1

3

10

23

54

«(0)

1

3

6

13

24

48

86

161

α(l)

0

1

3

8

17

37

71

138

α(2)

0

0

1

3

8

19

41

85

α(3)

0

0

0

1

3

8

19

43

α(4)

0

0

0

0

1

3

8

19

α(5)

0

0

0

0

0

1

3

8

α(6)

0

0

0

0

0

0

1

3

α(7)

0

0

0

0

0

0

0

1

K = 2

r

1
2

3
4

α(-l)

0
0
0
1

α(0)

1
4

12
34

α ( l )

0
1
4

14

α(2)

0
0
1
4

α(3)

0
0
0
1

0(0)

2

10
34

108

0(1)

0
2

8
30

0(2)

0
0
2

8

0(3)

0
0
0
2

K = 3

r

1
2
3

α(-l)

0
0
0

α(0)

1
5

19

α ( l )

0
1
5

α(2)

0
0
1

α(3)

0
0
0

0(0)

2

12
50

0(1)

0
2

10

0(2)

0
0
2

0(3)

0
0
0

K = 4

r

1
2
3

α(-l)

0
0
0

α(0)

1
6

27

α ( l )

0
1
6

α(2)

0
0
1

α(3)

0
0
0

0(0)

2
14
68

0(1)

0
2

12

0(2)

0
0
2

0(3)

0
0
0

r

1
2

α(-l)

0
0

α(0)

1
7

α ( l )

0
1

α(2)

0
0

α(3)

0
0

0(0)

2

16

0(1)

0
2

0(2)

0
0

0(3)

0
0

Appendix B: Free-Fermion Representation of Characters for the Permutation
and the General Linear Groups

Characters of the permutation group and the general linear group can be expressed in
terms of free fermions [28,29]. In this appendix we summarize the useful formulae.
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B.L Free fermions7 b(z) = Σnez ^z " ^
state ||0)) are defined by
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) = y^'z bnz~n and the vacuum

m, bn} = {b,n, bw} =

(m ^ 0,/ι ^ 1). (1)

The fermion Fock space is a linear span of Y[t b_m / Πy b_ w / | |0)). The (7(1) cur-
'rent /(z) - ΣΛ€ is defined by /(z) =:

b m b w _ w : , where the normal ordering :bwb,7 : means bmb,7 if AW ̂  — 1 and — b w b w if
ra > 0. Their commutation relations are

^7, bw] = bn+/w, [/„, bm] = -b/7+m . (2)

To the Young diagram Y of the following form (m\ > > πih ^ 1,
> ••• > nh ^ 0):

^ - - - - - m ι - - —-.„

we define the corresponding state ||7)} as

(3)

Note that the number of fermion bilinears, h, corresponds to that of hooks in the
Young diagram. Bra states are obtained from ket states by f operation (tv =

b _ Λ ) with the normalization {{0||0}} = 1; for example, {{7|| = ||7))t = {{0|| Πti ̂
b^ί-1)71' and ((Y\\Y'J) =δγγι. Note that {\\Y}}} is an orthonormal basis of the
fermion Fock space with vanishing U ( l ) charge.

Irreducible representations of the permutation group ϊSn and the general linear
group GL(N) are both characterized by the Young diagrams Y. We denote their
characters by χγ(k) and τγ(x)9 respectively. Here (k) = 1^2A'2 nk" stands for
the conjugacy class of ^n\k\ + 2^2 + + nkn = n = the number of boxes in Y.
x = \*>f~\(β = 1,2,3,...) stands for xf = ^tr Qf — } Σ/li εί f°r an element g of
GL(N\ and in this case the number of boxes in Y is a rank of tensor for
GL(N). In Sect. 6, we consider the Lie algebra of GL(N\ gl(A^), for sufficiently
large N.

1 We use this notation to avoid a confusion with the free fermions_used in the free-field real-
izations of J^i+oo Relation to usual free fermions ψ(z) = Σ/ eZ+ι/2 Ά/ Z ~ / '~ 1 ^ 2 »Ά( Z ) = Σ/ eZ+ι/2

~r~112\l/,z is given by \>n = ψn υ2,
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χ γ ( k ) and τγ(x) are expressed as follows:

τ y ( jO=((0 | |exp £>,/, || 7». (5)
V=ι /

We remark that they can also be written as χγ(k) = ((Y\\/\/\ - -/-JO}} and

B.2. For arbitrary parameters ur and vs such that the following (infinite) product
converges, we can show the following identity,

, (6)
s — r s

where the summation runs over all the Young diagrams and x9y are the Miwa
variables for u, v,

7Σ«ί. j v^IxX, v= 1,2,3,...). (7)
L , t s

Proof.

1

Π ΠΓ

Jr7 = exp Σ Σ i o g — = eχP Σ Σ Σ -λw
r s I — Urls ~

eχp

|exp
/=ι

Σ((o|| exp Σ^/// I I n «JΊI
\/=ι

We have used the completeness of {||7})} in the fermion Fock space with vanishing
£7(1) charge. QED

B.3. In Subsect. 5.3 we need the following quantity for f/n,

k) , (8)

where (k) = !AΊ 2A2 nk", k\ + 2k2 H h nkn = n, L(k) = k\ + k2 H h A:π and
N(k) = n\/(\^k\\2k^k2\ -nk»kn\). We remark that aΎ

n is a polynomial of C with
degree n,
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To calculate a%9 we introduce its generating function a} (t) = X^0 aγ

nt
n. By Eq.

(4), aγ(t) becomes

exp e τ / / / l i n ) . (9)
f=\ c

By rewriting Eq. (3) as

n7 d\\}
r^a^av^ ,

h

x ΓT

αr(0 can be expressed as

Π

Here we have used

exp ΣX/// b(z)exp ~ΣX//' = exp Σx/z Kz) >
V/=ι / V f=\ ) \f=\

exp Σ^/// b(z)exp -Σ^/// = exp -^>z' b(z), (10)
V / = l / V / = ! / V /=!

in particular, for U(C) = exp ( CΣ/Ii ^-7—/ft

U(C} b(z)C/(-C) = (1 + te)c b(z) ;

By expanding aγ(ί), we obtain

where the summation runs over r, § 0, 0 ^ 5 , ^ «,, Σi^i r> = Σ/=ι 5' («) 's

defined by ( ) = [x]n/n\ and [z],, = Π"Γ0'(αc - /)• Thus, α,[ is divided by Πf=, (^
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as a polynomial of C. Similarly, starting from

we obtain

h ί rY v^ rr / <-
an = λ^ 11 m

>Ί,s,,= \ \m '

where the summation runs over 1 ^ r, ^ m}, s{ ^ 1, X]7=1 rl — 5^/=1 ^/. There-

fore, 0^ is divided by Π/=ι (^~+\ ) as a polynomial of C. Combining these results,ι M +ι

we can conclude that a% is Π/=ι ( m ) (>Γ+i ) /^ UP to constant

We thus finally obtain

[-C- 1]Λ(-1)Λ / . (11)
n\r=Y ~ '

This result can be converted into a simpler form as given in Subsect. 5.3:

(12)

We can give another_ easy proof of the above result. The relation between the
transformed basis (7(C)b_mί/(— C) with the original ones b_ m can be obtained if
we expand the factor (1 + tz)c in z around 0. For non-integer C, C/(C)b_W 2ί/( — C)
is written by infinite sum with respect to b_m +/ with / = 0, 1,2,3,.... However, if
C G Z, truncation of the summation happens. We move each operator b_ / 7 Z b_ / 7 in
(3) to the left of U(C). When it is acted on the bra vacuum, it vanishes when C =
—n,—n + l , . . . , w — 2 , w — 1. It gives the following assignment of the polynomial
of C to each pair of the fermion operators:

C + H)(C + «- l) ( C - / w + 2 ) ( C - w + 1). (13)

Combining these factors for each hook, we get the assignment in (56).
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