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Abstract: We prove the Atiyah-Singer index theorem where the algebra of pseudo-
differential operators is replaced by an arbitrary deformation quantization of the
algebra of functions on a symplectic manifold.

Introduction

This paper is the first in a series aimed at providing an algebraic insight to various
Atiyah-Singer type index theorems.

In recent years much research was devoted to finding explicit local proofs of
Atiyah-Singer and Riemann-Roch theorems. In the works of Bismut, Gillet, Soule,
Getzler, Witten and Fedosov, the index of an operator (usually Dirac operator) was
expressed as the trace of a certain infinite dimensional operator; the asymptotic ex-
pansion of this trace provided a local formula. OΈrian, Toledo and Tong [TT, BTT]
developed an explicit method of computing a certain cohomology class in the Cech
complex. The integral of that class over a complex manifold is known to be the
Euler characteristic of the analytic sheaf; thus the computation yields the ex-
plicit proof of the Riemann-Roch theorem. Arbarello, de Concini, Kac and Procesi
[ACKP] suggested a method of proving the Riemann-Roch-Grothendieck theorem
(inspired by string theory). One of the crucial steps of that method was the passage
to a certain infinite dimensional manifold. The De Rham complex of that mani-
fold is closely related to Gelfand-Fuks cohomology of the Lie algebra of vector
fields; the computation was finally reduced to an explicit computation in Lie algebra
cohomology. This method was further developed by Feigin and Tsygan [FT].

One of the useful tools in proving the index theorems is cyclic cohomology.
This cohomology was independently introduced by Connes and Tsygan. In Connes'
approach, it was intimately related to the index theory. The idea, going back partly
to Helton and Howe [HH], is, roughly speaking, that the cyclic cocyles, being
higher analogues of the traces, provide a natural algebraic framework for trace
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computations. This facilitates the explicit computation of the index as the trace of
a certain operator.

Such a computation of the index of the Dirac operator is due ot Connes.
Another proof of the Atiyah-Singer theorem, for the case when the manifold is
a linear space, was given by Elliot, Natsume and Nest. This proof was more
directly in line with the work of Helton and Howe. We will outline this
proof later.

In this paper, we will state and prove a purely algebraic theorem which is parallel
to the index theorem. It works in a much more general framework. Instead of the
ring of pseudodifferential operators on a manifold we will consider any deformation
of the algebra of functions on a sympletic manifold, (cf. [BFFLS]; it is well known
that the ring of pseudodifferential operators can be viewed as a deformed algebra
of functions on the cotangent bundle).

A similar theorem was proved by B. Fedosov (by completely different methods);
cf. [F].

Note that the approach of this paper, though quite different, is closely related to
the recent paper by Connes, Flato and Sternheimer [CFS].

The Atiyah-Singer theorem does not follow directly from the algebraic state-
ment. But it can be proved along the same algebraic lines. We will do that in a
separate paper. Here we will concentrate on the algebraic case.

First, to give an example (and also to explain why our algebraic theorem is
indeed the algebraic form of the index theorem), let us recall the proof of the index
theorem for IR" due to Elliot, Natsume and Nest. Let D be an elliptic differential
operator on C°°(RW); assume that D = 1 outside some compact. Let e^ be the
orthogonal projection onto the graph of D in Z,2(IR'7) θ Z,2(1RA?). This is a pseudo-
differential operator in the trivial bundle (C2 over IRΛ One can construct an explicit

homotopy e(t\ 0 ^ t ^ 1, such that e(\) = eD and e(0) = K \-Q)> where P

(resp. Q) is the orthogonal projection onto the kernel (resp. cokernel) of D. One
has, obviously,

index D = Tr (e(0 - (^ ^ J J . (0.1)

The operator CD — ( { j ?) *s not trace class. This suggests that, in order to compute

the trace in (0.1) in terms of ep, one should replace the trace with a suitable higher
trace, or a cyclic cocycle. Let UQ, a\, #2, . . . be integral operators with compactly
supported kernels. Put

Θ(aQ9...,a2n) = -T Σ sgn(σ) Ύr(aQ[yσ\, a\] - - [yσ(2n), a2n]) , (0.2)
nl^Σ2π

where (y\,...,y2n) = (3*,, *ι,. . .,d r, l 5 χn).
One checks that

(1) Θ is a cyclic cocyle cohomologous to the cocyle Tr(αo «2/?) From this
one deduces that

(2) 0(e(0),...,e(0)) = 6>(<?(l ),..., e(l)) (0.3)
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Note that the above formula of Connes is true for any cyclic cocyle Θ on an
algebra A and for any two homotopic idempotents e(0), e(l) in A. The problem is
that Θ is not defined on an algebra containing β(l). So one has to check that:

i) the right-hand side of (0.3) makes sense;
ii) Connes' explicit calculation proving (0.3) makes sense for the explicit

homotopy e(t).

Now let us compute Θ(eD, ,eo\ Let h be a non-zero parameter. Let D =
D(x, 3Y); D(h) = D(x, hdx). Then index D = index D(h) for any h\ therefore, be-
cause of the well known formula for the trace,

index D = — lim ΣsgΆ(σ)ΊreD(h)[yσ\,eD(h)] - yσ(2n^eD(h}]n\ h^o σ

= — lim ̂ Tr / σ(eD){yσ\,σ(eD)} {yσ(2n),σ(eD)}dξ\ dxn .
n. n —»0 σ ^2/ί

But σ(eo)(x, c) = eσ(D^x^ - the orthogonal projection onto the graph of the 2 x 2

matrix σ(D)(x, ξ). Clearly the last limit is equal to ^f^2n^σ(D)deσ(D) - -deσ(D).
Now, let X be a compact C°° manifold. Let D be an elliptic differential operator

on X. Let eo be the projection onto the graph of D in L2(X) ΘZ^C-Ό There exists
a homotopy between βo and e(Q) as above. To compute the index of D one has to
construct the analogue of the fundamental cocyle Θ. Then, rescaling the cotangent
bundle by the transformation ξ ι—> ^c, one passes to a one-parameter family of
projectors eD(h). Using the explicit formula for 6>, one has to show that

index/) = lim indexD(h) = f ch eσ(D) td(Tχ 0 C) ,
Λ-*O τ*x

where σ(D) is the symbol of D, σ(D) is the projection onto its graph and td is the
Todd class.

In this paper we will prove the parallel algebraic theorem. Let (M, ω) be any
symplectic manifold (instead fo T*X). Let us define, following [BFFLS],

f*9 = fg + hφ\(f, 9} + h2φ2(f, g}λ— ,

a formal deformation of the ring C°°(M). We assume that lim^oi/ * (] — 9 * /) =
{/, g}, that φ/(/, g ) are differential expressions in /, g and that !*/ = / * ! = / .
Consider the algebras A*(M) = (C°°(M)[[n]],*) and Ag(M) - (^(MX^]],*).
If ̂  is an algebra over a ring & then #~ — B + Λ: is the algebra 5 with adjoined unit.

One can construct the canonical trace Tr : Aj(M) —» (Cfft"" 1 , fe]] such that for
/ G Cf°°(M),

Tr(/) - ̂  f -ί// ωn + ftτ,(/) + ^2τ2(/) +
n \n\M

and Tr(/ * g - cj * /) — 0, where τ/(/) are local expressions in /. Also, consider
an idempotent e in the matrix algebra MW(AQ(M)~).

Let e(oo) be the constant value of e at infinity of M; βo = β | h = 0; βo(cχo) =
e(oo) ft = 0.

In our idealized approach, Atl(M) stands for all pseudodifferential operators;
AQ(M) stands for pseudodifferential operators of negative order; Tr stands for the
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operator trace; e stands for the projection CD onto the graph of an elliptic differential

operator D; e$ stands for eσ(£>); βo and βo(oo) stand for ( | j

Let ch(βQ) = 5^Ai^tr e§(de§)n G Ωev(M). Aslo, let td(ω) be the Todd class of
the reduction of the bundle of symplectic frames on M from Sp(2n) to ί/(«); let
c,(ω) be the Chern classes of that reduction.

For any deformation one can define a characteristic class θ G //2(M, C[[fe]]).
(We do this in Sect. 5). One has θ = ω + MI -\ h A'θ/ H , θ, e //2(M, <C).

Theorem 1.1.1.

Tr(e - e(oo)) = J(c/z(β0) - tr β0(oo)) td(ω) e~
C}(ω^2e°/fi .

M

For the special deformations this was proved by B. Fedosov [F].
The purpose of this paper is to prove this theorem using the method outlined

above. In fact the paper is mainly devoted to constructing the analogue of the
fundamental cyclic cocycle Θ.

First, in Sect. 2, we construct a Poincare duality map in cyclic homology. Let
AQ be an algebra over commutative ring k, g a Lie subalgebra of Der(^o). Let
τ : AQ/^AQ —» k be a trace. We construct a map

where C* is the standard Lie algebra complex and CC*er is the periodic cyclic
cochain complex.

Now, let A be an algebra over a ring k and v4o an ideal in A\ let τ : AQ/[A, AQ] —»
& be a trace. Passing to the matrix algebras and using the well known connection
between Lie algebra and cyclic homologies, we construct the map

χτ:~CC*-\(A)—> CC~G*(AQ) , (0-5)

where CC* is the reduced cyclic complex. Note that, to some extent, all known
characteristic classes with values in periodic cyclic cohomology account for partic-
ular cases of the maps (0.4) and (0.5) (Sect. 2.4). We prove the crucial property
of the map (0.5): there exists a map CC*_2(&) —» CC~Q*(AQ), making the diagram

CC-r ( / l o )

(0.6)

commute up to homotopy. Here d is the boundary operator.
Apply the construction above to A = A^(M), AQ = AQ(M), τ = Tr. The dia-

gram (0.6) is in fact a diagram of complexes of sheaves. We show in Sect. 3 that
this diagram can be extended to the diagram

(0.7)

where C* is the Cech complex.
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Let J^*(M, A [ft ]) be the hyperhomology of the double complex C*(M, CC*_ i
( A f l ) ) [ h ~ ] ] . We show that ffiιn-\ is canonically isomoφhic to k = (Cfft^^ft]]. Let
Ω be the generator of J^2/?-ι

In the case when M = IR2'7, Ω is represented by the cochain ^-ζ\ /\x\ Λ Λ

ζn /\xn (of course there is no need to involve Cech complexes). The fundamental
cocycle Ω is equal to χτι(Ω). The fact that Ω and Tr(#o... a^n) are cohomologous
follows from the commutativity of (0.6).

Now, note that the (2n - 2)th hyperhomology group of C*(M, CC*(&)) is iso-
moφhic to Hev(M,k\ In Sect. 4 we show that Theorem 1.1.1 follows from the
equality

dΩ — ε(td(ct}) e~Cχ^ω'^ + / ? ) ~ 9 (0.8)

where ε Hn(M) = (-1)A'. Put 6) = χT l(ίd(ω)U Ω).
Then

Tr(β — e(oo)) = (Θ,ch(e)) ,

where c/?(e) is the Chern character in periodic cyclic homology. An explicit calcu-
lation shows that for any periodic cyclic α of Aj7(M),

lim((9,o( e ~ 0 / f l ) = Jα td(ω) e~Γι(ω)/2 .

On the other hand, there is a rigidity property: if α is a periodic cyclic cycle of
AQ(Λ/) 0ί;£r C (that is, if one considers C, not C[[ft]], as the ring of scalars), then

Tr(α e ~ 0 / f l ) does not depend on ft. The theorem follows.
It remains to prove (0.8). The proof occupies Sects. 5,6. We reduce the prob-

lem to the local computation. Let A/* be the standard deformation of the ring of

power series < E [ [ x \ , . . . , x n , ξ \ 9 . . . , ξ n ] ] . Let g be the Lie algebra A^/C[[ft]] with the
bracket [/, g] = |(/ * g - g * /). Let I) be the subalgebra {^aljx!ξ/ \ at/ G C}. Let

Jf*(g,ί); A f 7[ft~']) be the hyperhomology of the double complex C*(g,i); CC*(A*)).
Then rJ#2n-\ is one-dimensional; let Ω be the generator. There is the boundary map

d : C*(g,ί);CC*(A f7)) -» C*(&fyCC*-\(k)). This provides the canonical element
dΩ of //^(g, ly,k) and

cΩ = ε(td(c\,...,cn) - e-
c\!2+0<l1}y\ . (0.9)

Here ε | Hu = (-1)A; c/ are the algebraic Chern classes in //2/(g,ί); (C); (9 is the

2-cocycle coming from the central extension 0 —* C[[ft]] —^ Af? —» g —^ 0.
To reduce (0.8) to (0.9) (and to define the element 0 of//2(M,(Γ[[ft]])), we re-

place M by a certain infinite dimensional manifold of "non-linear frames" (compare
with [ACKP,FT].

Finally, the local formula (0.9) is proved by a computation. This completes the
proof of Theorem 1.1.1. In Sect. 1 we prove a conjecture of B. Feigin (from which
the Riemann-Roch theorem can be easily deduced). Let M be an ^-dimensional
complex manifold; let £% be the sheaf of holomoφhic differential operators on M.

Let C*(M,CC*(^M)) be the Cech hypercomplex; let HC*(^M) be its hyperho-

mology. It was shown by Brylinski [B] that HCo(^M) -^//2/7(M, C).

On the other hand, the trivial cocycle 1 G C°(M, CCo) provides an element of
HC0(^/v/) and therefore an element [1] of//2/7(M,C). We prove that [1] = td(M)2n.
This is an easy consequence of (0.8) (with A^(Γ*M) replaced by @M)
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There is also a holomorphic version of Theorem 1.1.1. We will discuss it in
another paper.

To construct the maps (0.4)-(0.7) and to prove (0.9), we use the operations on
the cyclic complex. Let us discuss them in some more detail.

First, let X be a C°° manifold. Let g be the algebra of vector fields on X.
For D G g, the operations LD\ Ωχ —» Ωχ and /£>: Ωχ —> Ωχ~l are defined, sub-
ject to standard relations (like [io,d] = LD). Let ε be an odd formal parameter,
ε2 = 0; g[ε] = g ® C[ε]. Let δ = d/dε: g[ε] -» g[ε], δφ + Eε) = £. Then the set
of standard relations for L/>, /# is equivalent to the following:

the differential graded Lie algebra (g[ε],<5) acts on the complex Ωχ via D +
Eε^ LD + iE.

This algebra can be extended. Let A — C°°(X); put //(ω) = / ω, Lf(co) =
df /\ω for / eA. Let 4 be the g-module A concentrated in the odd degree; let
QxAbε the semi-direct product. Then

the differential ^-graded algebra (g><4)[^] acts on the ^-graded complex Ωx

via D -f Eε H^ Lβ -f- /£•; Z),£ £ 0 xA.
Now, let ^ be an arbitrary algebra; g = Der(^). For D £ g, a £ A one

can define the operations LD, ia: CCl&(A)-^ CCfτ(A) and /D, L f l: CCΓ(^) -̂
CC^Ί^). Also define the 22-graded differential Lie algebra ((gx4)[ε],<5 + < 5 ι ) ,
where (5ι(Z) -f α) = αc/(0) and c>ι is (C[ε]-linear.

It is not true that this algebra acts on CC*Ql(A); for example, [/£>>*£•]ΦO. How-
ever, it is true that:

the differential ^-graded algebra ((QxA)[ε]',δ + 0\) acts on the ^-graded
complex CC*Qΐ(A) up to homotopy.

We explain what this means and provide all the details in Appendix 1. The fact
above is crucial for our approach. We do not need it in full strength for the proof
of Theorem 1.1.1; it is needed, however, for the future applications of our method.

Let us outline some of these applications. First, there should be generalizations of
Theorem 1.1.1 for families and for manifolds with boundary. Second, there probably
is an analogue of 1.1.1 for any deformation of C°°(M) for which the symplectic
leaves form a foliation. This analogue should generalize the recent "higher index
theorem" for the longitudinal Dirac operator on a certain class of foliations of
codimension 1 (Moryoshi and Natsume).

There is also a possible application to algebraic geometry. Let M be a compact
Kahler manifold. Assume that //2(M, 2) = TL. Let ω be the symplectic form asso-
ciated to the Kahler structure. Let L be an invertible sheaf such that c\(L] — ω.
Let -cι(TM)/2 = m ω.

Let Ah(M) be the deformation with θ = ω (such a deformation always exists;
cf. [F]). Then, applying Theorem 1.1.1 and the Riemann-Roch theorem, one gets

where PM(L,k) is the Hubert polynomial of L. This seems to identify PM(L,k) with
the integral of some measure of a nature completely different from the usual form
given by the Riemann-Roch theorem. It would be very interesting, for example, to
find the canonical deformation when M is the moduli variety of rank n bundles on
a curve (in connection to Verlinde formulas, [V]).

Let us mention another application. Let K be a compact Lie group. The quan-
tized ring &[K]q of algebraic functions on K ([S, FRT] defines the well known
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Poisson structure on K [STS]. According to Soibelman, for q < 1 there is the nat-
ural way to assign a representation PQ of CfA^ to any sympletic leaf Ω C K. One
can identify C[AΓ] with C[A^ as linear spaces; assume that / G M^((L[K]q) and
that f\dΩ G GLN. Then

indexpβ(/) = "

where I = \ dim Ώ. These matters will be discussed in a joint work of Soibelman
and the second author.

Section 1. The Algebraic Index Theorem

Let M be a C°° manifold with a symplectic structure ω. Let { , } be the Pois-
son bracket on C°°(M) associated to ω. Let ft be a formal parameter, and let
C°°(M)[[ft]] be the vector space of formal power series in ft with coefficients in

A deformation of C°°(M) compatible to ω is by definition ([Ger, BFFLS]) a
] -bilinear, (ft Radically continuous associative multiplication * on C°°(M)[[ft]]

such that for f,g G C°°(M),

where φ/ (/,£/) £ C°°(M) and φ \ ( f , g ) - φ \ ( g , f ) = {/,#}• We assume that

i) q>j(f,g) are bidiflferential operators on C°°(M);
11) 1 * / = / * ! = / for any / G C°°(M).

Given a deformation, we denote by Af\M) the algebra C°°(M) with the product
*. Also, by Ag(M) we will denote the algebra (Cf)(M)[[ft]], *), where CC°°(M) is

the space of compactly supported functions. Also, let Aj(M) be the algebra Ag(M)
with the unit adjoined.

By a trace on A^(M) we mean a (C[[ft]]-linear, (ft)-adically continuous func-

tional Tr : AQ(M) -̂  C[ft~ ],ft]] (the right-hand side stands for Laurent series) suchQ
that for f,g in

Tr(/*0)=

One can easily show that the traces form a one-dimensional vector space over
l , h ] ] (we prove a stronger statement in Appendix 2). One can obtain the

canonical generator of this space as follows. First (cf. [BFFLS] and [G]) M admits
a cover by open sets U such that Afl(U) is isomorphic to the standard Weyl
deformation (we recall the definition in (5.1.1)) A^(50), where £0 C IR/? is the

open unit ball with the standard symplectic form CUQ. Let gu : AtΊ(U) ^ A^(B$) be

this isomorphism. For a function / with support inside U put

This does not depend on an isomorphism gu because Tr is invariant under auto-
morphisms of A*l(Bo). For any element / of Ag(M) put Tr(/) = J^^Trp^/ * /,
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where {pu} is the partition of unity subordinate to the cover. It is easy to see that
for / G C£?°(M),

Tr(/) = ft-" ~ Jf ωn

\n\ M

where τ,(/) are linear local expressions in /. Clearly, Tr extends to the matrix
algebra MN(A*(M)) : Tr(/) - E,ΊXΛ)

Let <? be an idempotent in M/v(A0(M)). Then <? = <?o + ^i + * , where e, G

MN(C?°(M)). Obviously, eQ is an idempotent in MN(C?°(M)). Here C°°(M) is
the algebra Q°°(M) with adjoined unit. Let β(oo) = X^o^'e/ίoo), where e,(oo) is
the constant value of e, outside some big enough compact in M. Then e(oo) is an
idempotent in A/^(C[[fe]]) and eo(oo) is an idempotent in

Let

ch(eQ)= ΣAtrto (deQ)2n)

be the Chern character form of the idempotent e$. This is an even-dimensional form
on M. In fact ch(eo) is the Chern character form of the connection CQ d e$ in
the vector bundle eo (CN . The form ch(e^) — tr(βo(oc)) is compactly supported.

The symplectic form ω enables one to define the bundle ^"(M) — > M of
symplectic frames. Since Sp(2n) has the unitary group U(n) as its maximal compact
subgroup, one can reduce J*(M) to the U(n)-pήncipal bundle. Let c,(ω) be the
Chern classes of this bundle. Let td(ω) be the corresponding Todd class. This is
an even-dimensional cohomology class of M with coefficients in (C.

In Subsect. 5.2, we define a characteristic class θ E H2(M, C[[ft]]) of the
deformation *.

Theorem 1.1.1. Under the notation and assumptions above, let e be an idempotent

in MN(A%(M)). Then

Tr(e - e(oo)) = J(ch(e0) - ch(e0(oo)) td(ω) e~
C](ω)/2 em .

M

Section 2. Characteristic Map Associated to a Trace

2.7. Cyclic (Co)homology and Lie Algebra (Co)homology in the Differential
Graded Case. Suppose A = @1>QA1 is a differential graded algebra over a commu-

tative ring k D Q with the differential δ : A, —•> Λ ( / _ ι ; (52 — 0; <5(α6) = δ(«) (έ>) +
( —l) ' α 'α <5(&). Here and below, given a homogeneous element a of A, we denote
by \a\ the degree of a.

Let Cmι(A) = (A ®A®m)ι for m, / ^ 0. Define the cyclic permutation /I by

O / Λ> K^ \ / 1 \ ( | f l / l l l + l )J]m A (k, l + l ) Λ> Λ> /^

A(flQ Qs) * Qy β/w )
 := (— 1 J ;^/=U V | " y^rm Qs1 βg ^ ' ' ' ̂  am—\

The Hochschild boundary operator b is given by

(2.1.2)
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where

Set, on Λ 0 A®n\ N =\+λ + λ2 + -- + λm\

BOL = (\- λ ) ( l

Lemma 2.1.1. B2 = (B + 6)2 = 62 = 0.

/V00/ Direct computation. Cf. [LQ, Bu]. D

Put

Cm(A)= U CW(Λ)
p+q=m

We let the differential 6 act on C*(yί) by

m

6(aQ 0 Θ αw) = ^(-1 ) / / A«0 0 (8) ^(«A) 0 Θ αm , (2.1.3)
λ=0

where

μk = Σ(k + 1 ) .
/=!

Lemma 2.2.2. (B ± b + δ)2 = (b + δ)2 = 0.

Proof Direct computation. D

It is well known that the differential b preserves the image of 1 — /.

Definition 2.1.3. a) CCm(A) = C/n(^)/im(l - /) .
b) The cyclic homo logy of A is the homo logy of the complex (CC*(A\b + <5).

It is denoted by HCm(A\ m ^ 0.
c) Put A = A/k\ for p G Z, put

/ = /?(mod2)

CC%t(A)= Π CC%(A).

The homology of the complex (CC^\A}\b -f B -f δ) is called the periodic cyclic
homology of A.

(It is easy to see that the differentials b,B and δ still make sense if one replaces

d) Put

CCm(A)= 0 (A® P+ } / im(l-/) ,

HC*(A) = H*(CC*(A); b + δ ) .

HC*(A) is called reduced cyclic homology.
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Definition 2.1.4. Put

CCm(A) = CCm(A}' =

CC£r(A)= 0 e (A® A*1)1;
p+q=mj=m(mod 2)

the cyclic cohomology, resp. periodic cyclic cohomology, of A is the cohomology
of the complex CC*(A\ resp. CC*cτ(A), with the differential dual to b + <5, resp.
b + BΛ-δ.

Remark 2.1.5. In the two definitions above, we concentrated upon the versions of
the cyclic theory which would be of main use in the sequel. The cyclic homology
admits another definition, in the spirit of 2.1.3 c).

Put
~CR) /

C%(A)= φ A®A*'
/Ξ/?(mod2); j^p

cc

m

v(A)= Θ σ&A).
p -\-q-m

Then homology of the complex (Cly(A}\ b + B + 0) is isomorphic to HC^(A) (recall
that we assume Q C k).

Also, we can replace A® A by A®(j+{"> in all the definitions above. The
-— — per

(co)homology stays unchanged. We will denote corresponding complexes by CC* ,

CCper or Cly.
There are obvious morphisms of complexes (shift to the left in case of coho-

mology, to the right in case of homology)

S : CCΓ(Λ) - CC^L2(A); CCp*e, ^ CCp*+2

C*y — > CCJ_2- ^
e sna^ denote the corresponding operators on (co)homology also

by S. Clearly in case of periodic cyclic (co)homology S is an isomorphism.

Remark 2.1.5.1. At one point we will use yet another equivalent definition of cyclic
homology. Let b1 \ A®m+l -> A®m be same as in formula (2.1.2) but without the
last summand. Then b(\ - /) = (1 - λ)b' and b'N = Nb (this is why the image of
1 — / is invariant under b). Therefore the complex NC*(A)',b') is isomorphic to
CC*(A\

Definition 2.1.6. Let A be an algebra over k', let A be the algebra A with ad-

joined unit. Then CC*(A) = ker(CC*(2) -» CC*(λ)),CC*er(Λ) - ker(CCΓ(2) ->

CCΓ(k)} etc.

Remark 2.1.7. In this paper, k will be either (C or <C[[ft]] or C[ft~ ',/!]]. The alge-
bra A will be mainly AΛ(M) or Ag(M). Then in definitions above CC*(A\C*(A}
will involve completed tensor products (both in C°° and (ft)-adic topology);
also, CC*(y4), C*(^4y, etc. will mean topological duals. Sometimes we will write

CC* (A\ etc. to emphasize that the tensor products are taken
over k.

Now, let g be a differential graded Lie algebra with the differential δ of
degree —1.
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Define

Λ(g) = Γ(g)/(A 0D2 - (

We define the grading on Λ(g):

+ 1 ) .
/ = !

Define a t/(g)-module map δUe on C/(g Θ Λ(g)),

(^Lιe(^ΘDι Λ ΛA,;)

= Σ(-l)σ"X®D\ Λ ••• Λ A-i Λ[A,£>/]Λ ••• ΛD, Λ • • • Λ Dn

/ < /

+ Σ(~ ! )σ/;ro/ Λ A Λ Λ A Λ Λ Dm ,
/=!

where
<τι, = i + μr| + Σ (IAI +

/ < A- < /

Extend 0 to the endomoφhism of £/(g) Θ Λ(g) of degree — 1:

δ(X (g) Z), Λ - - Λ A,,) =c>(̂ ) 0 Di Λ - - Λ Dm + f^(-
/=!

x X 0 A Λ - Λ <5φ7 ) Λ Λ Dm .

One has δUe <5 + (5 ^Llc = (c)Lie)2 = δ2 = 0. We denote the complex (C/(g) (g) Λ(g),
c)Llc + ^)by ^(g).

Let I) be a reductive subalgebra of go C g which is annihilated by 0. We assume
that ί) acts semisimply on g. Define the right action of I) on Λ*(g):

(X 0 A Λ Λ Dm)h = Xh (g) Di Λ - Λ Dm + Σ^T 0 DI Λ Λ [D,,h] Λ Λ D .
7=1

It is easy to see that the differentials δLιe and δ together with the right action
of ί) are well defined on (£/($) 0 Λ(g)/ί)))[). (If α is any Lie algebra and V is any
α -module, we write Fα = V/Va (or F/α F)). Put

The algebra ί/(g) is naturally graded; we write |̂ Γ 0 α — \X\ + |α| for x G ί/(g),
α G Λ(g/ί)).

Let M* be a differential graded right g-module with differential 6M of degree — 1
δM(m - D) = 6M(m) - D + (-l)l ;"lm δ(D). Put
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For m G M, α E /?*(g,I)) put

ί/(w (g) α) = <5Mm ® α + (-l)Hm 0 (<3Lιe + <$)α .

We obtain a complex C*(g, I);M) with differential of degree -1. The homology of
this complex is relative Lie algebra homology. It is denoted by //*(g, l);M*).

Let TV* be a differential graded left g-module with differential δ^ of degree +1.
Put

For α from /?*(g, ί)) put

Put

This is a complex with differential of degree +1. Its cohomology is denoted by

#*(g,f);tf*).
If ί) = 0, we will write C*(g,M*),//*(g,M*), C*(g,N*), etc. for C*(g,ί);M*),

etc. If M* = k, the ground ring concentrated in dimension zero with trivial action,
we will write C*(g,ϊ)) for C^g^ M*), etc.

Proposition 2.1.8. The following maps are well defined morphisms of complexes:

do®--® am ̂  EQ\(CIQ) Λ E\2(a\ ) Λ Λ EmQ(am) .

The proof follows from direct computation; cf. [Bu, LQ, T].

Remark 2.1.9. Let k[ε] be a two-dimensional Grassmann algebra: c,\ = 1, ε2 = 0.
Put g[ε] = g(8)A ^[e]. By the Poincare-Birkhoff-Witt theorem ί/ίgM^C/ίg) 0
Λ(g) as a ^-module; let 4^ be the derivation of degree —1 sending ε to 1 and D to
0, D G g. Also, the differential 0 extends to g[ε] (put ^(ε) = 0). Under the isomor-
phism above, these two differentials become — oLιe and 0. Also, /?*(g, f))— >£/(g[ε])

_
For an associative algebra A, put A{ε} = A *k k[ε]. Then CC*-\(A)^A{t\}/

(A + [^{ε},yτ({ε}]). Under this isomorphism, 4^ and 0 become b and 6 from for-
mulas (2.1.2, 2.1.3).

2.2. The Characteristic Map. Suppose that A is a unital associative algebra (TL-
graded or Z2 -graded) over a commutative unital ring k of characteristic zero. Let
AQ be a homogeneous ideal of A.

Remark 2.2.1. Our main examples will be A = A^(M), AQ = A^(M) (or may be
matrices over these rings). The ideal AQ is NOT the zero degree part of A.

Let g be a Lie subalgebra of Dsr(A) which includes ad (A) and preserves AQ.
Suppose, moreover, that τ is a g-invariant trace on AQ.
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Let A be another copy of A but with shifted grading: At = A,-\. Consider the
differential graded Lie algebra g x A,

Π x a = 9 +4; [4,4] = 0

[D,a\ = [D,a] for D <Ξ g, 0 G A

<$(£>) = 0, D G g; <5(α) - (-l)Hα</(» .

For an element X of §xA define the operator

by

l f lo £>(flι ) 0 fl2 ® ' ' 0

Lemma 2.2.1. For any X in g xA,

[b,iχ] + ii>x = 0 .

Proof. Direct computation.

Definition 2.2.2. Let χτ be the map

given by

χτ(Xl Λ

where α G CCΓ'(^o) and sgn(σ) is the sign of the permutation σ of graded ele-
ments X ] , . . . ,Xm determined by

sgn i " ~ i = t — i ϊ v κ * ' > ' ' 'A l^ ' + 1 ^

Proposition 2.2.3.

*τ 3 L ι e =£χ τ ;

χτ δ = bχτ .

Proof. Direct computation.

Corollary 2.2.4. The following is a commutative diagram of morphisms of
complexes:

C.(gχ4) " /Γ
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2.3. Poincare Duality. Suppose now that A is a unital algebra over k, AQ is an ideal
in A and τ is an ad (^4)-in variant trace on AQ. Replacing A, AQ by M^(A), M^(AQ)
and τ by ^τ(an\ we can apply the construction of χτ to g = g//γ(/4) and get the
commutative triangle of morphisms of complexes

Clearly, Ql^(k) acts on all three complexes, and all the maps are g/yv(/0-equivariant.
Therefore we get a similar diagram of complexes of coinvariants. Note that
g//v(/0 xMκ(A} = QΪN(A[η]) with the differential d/Sη, where

k[η] = k { η } / ( η 2 ) ; d e g » f = l ; A[η]=A®k[η].

Making N big enough and applying Proposition 2.1.8 we obtain a map

(defined when * < TV); now notice two simple facts following immediately from
definitions.

i) by restriction from M^ (AQ) to subalgebra {a δ,j} ^ AQ one gets a map

ii) under this restriction, the elements of A appear only through the correspond-
ing inner derivations ad (a). Hence the composition CC*-\(A[η]) — > CC~e*(Ao),

which we still denote by /τ, descends to the reduced cyclic complexes CC*-\(A[η]).

Therefore we end up with the following commutative diagram of morphisms of
complexes:

C C * - ι ( A [ η ] )

Definition 2.3.1. The induced map χτ : ~HC*^}(A) -» //C*er(^o) is called the Poin-
care duality map associated to a trace τ.

Recall that there is the long exact sequence

> HCn(k) -* HCn(A) -^ ΉCn(A) Λ HCn-λ(k) -+ - - - .

Theorem 2.3.2. The Poincare duality map χτ factorizes through the boundary
map d:

7/C*-ιM)

where

Proof. Note that χτ factorizes through the characteristic map for the differential
graded algebra A [ η ] . But (A[η],δ) is a contractible comples:

δ

0 — >Aη^A — > 0,
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and therefore the cyclic homology of A[η] is trivial, as can be seen from the spec-
tral sequence associated to the double complex (CC*(A[η];b,δ). In particular, the
boundary map

is an isomorphism. This proves that there exists χτ making the above diagram
commute. It remains to calculate χτ.

Lemma 2.3.3. i) the chain η®n defines a reduced cyclic homology class in
HC2n-ι(A[η]), _

11) Xτ(η®n) = (ϊ±ϊγS-"τ in HC2n^(A[η}} ,

"0 5 0 " = ^2'7~2 in

Note that the theorem follows from the above lemma immediately.

Proof of 2.3.3. i) is obvious (both b and d vanish at η®n)\
ii) follows from Definition 2.2.2 of χτ and Proposition 2.1.8; note that for α in

°f mCcycle (0 1 . . .n — 1 ) and equals zero otherwise. (Here Eι — j- = £M+ι for i < n — 1

and £,7-1,0 for i — n — 1.)
Let us prove (iii). Recall the definition of the cyclic complex C*y (Remark

2.1.5). Note that in CcJ(A[η]),

b(η®
m
 ) - 0; δ(η®

m
 ) - 1 0 η®

m
~

 ]
 B(η®

m
 ) = m ( 1 0 η®

m
 )

for any m. Therefore the homology class of η®n G CC2n-ι(A[η]) is represented in

C*y by a cycle whose component in A [ η ] ® A [ η ] is equal to (—I)""1

 (n\γ l

Note that C^m(k) = k\ one checks easily that the homology class of 1 G C^m(k) is

represented by (-1)"' ^ 1^2'"+1) G CC2m(^). From this we conclude that

(n-\)\

whence the statement of the lemma. D

Let us recall that (reduced) cyclic homology carries the cup product

U : ΉCa(A) 0 ΉCb(B) -+ ΉCa+M(A (g) B) .

At the level of the complex (NC*(A\b' + δ) (Remark 2.1.5.1) it is given by the
standard shuffle of tensors.

Proposition 2.3.4. There exists the product

• : HCa(k) 0 HCb(k) -> HCa+b+2(k)
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such that:
^ t .(Π+o = (Jn)[l^(2n+\) for any n ^ o;

ii) for α G #cl(Λ), 0 G #C*(5)

δ(α (Jβ} = dx dβ .

Remark 2.3.5. Formula (2.3.4) i) is equivalent to S([*n) = -l^-D for any n > 0.

Proof of 2.3.4. The composition

CCa(A[η])®CCb(B[η]) -> C

defines a product for which ηUn = (n — l)\η®n. Now, as we have seen above,
the boundary map d induces the isomorphisms HCa(A[η]) — » HCa-\(k\ etc., and
- U ( / 7 + l ) _ (2w)[ ι (g;(2/ι+l) Π

' — /?! . i — i

Remark 2.3.6. It is easy to write the explicit formula for the Poincare duality map
χτ. Let jci 0 ®xp G ~CC P-\(A\ a0 0 0 ap G CC^o). Let / = (1 2 . . . p) be
the cyclic permutation. Then

(χτ(x\ Θ Θ *„),*<) ̂  * ' 0 βp) =(-l)M/?"1)/2 Σ sgn(/')

2.4. Examples. Let A—A§+A\ be a Z^ -graded algebra. Let F G A\ such that
F2 — 1. Let τs : A — > A: be an even supertrace on /I; i.e., τs(ab) = ( — l ) \ a \ \ b \ τ s ( b a ) .
Note that F^2'7 is a cycle of CC2 w_i(^). It is easy to see that dF®2" = 2n - 10 / 7.
One has

, a,] [F, a2,,])

for c i Q , . . . 9 a 2 n G AQ. Thus we obtain Connes' formula for the Chern character of a
Fredholm module. Theorem 2.3.2 implies that the cocycle in the formula above is
cohomologous to S~"τs.

Now, let us keep the same assumptions as above except F2 = 1. There are two
odd elements in the algbera QxA, where g = Der(/4); one is ad(F), the other is
F!.

Therefore there is the subspace Λ*(& F2, + k ad(F)) in C*($xA); this sub-
space consists of all symmetric polynomial functions of ad(F) and F2.

Let V be an odd element of a different graded Lie algebra α . Formally, we can
consider any symmetric function in V as an element in C*(α ).

Lemma 2.4.1. If

in α , then ev is a cycle in C*(α ).

Lemma 2.4.2. Put V = ad(F) - F2,; then

in g x A.
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The proof follows from direct computations. Expand ev as a power series in
ad(F) and F2, and apply the definition of χτs to this infinite sum of chains of
C*($xA). It is easy to see that for 0o, . . . ,#„ £ A,

χτs (exp(ad(F) - F^))(θQ9 . . . , an ) = / τs(aQe-^ [F, a{\e~^ F"
A11

x[F,a2]...[F,an]e-t"F2)xdtl •••&„;

here Δn = {(f0,...Λ)IΣ'ι = l t, ^ 0}.
We thus recover the formula of Jaffe, Lesniewski and Osterwalder [JLO]. Of

course, if the argument α0? •••,#/? are even, then the components of the periodic
cyclic cocycle above are zero whenever n is odd.

Section 3. Globalization and the Fundamental Class

3.1. The Cech-cyclic Complexes and the Characteristic Maps. Let, as in
Sect. 1, (M, ω) be a symplectic C°° manifold and let Af\M) be a formal
deformation of C°°(M) such that φ\(f,g)-φ\(g,f) = {f,g} is the Poisson
bracket associated to the symplectic structure ω. Since, by hypothesis, φ,(/, g)
are bidifferential, one has in fact a well-defined sheaf of algebras Atl(U)
over C[[̂ ]], where U is any open subset of M. Choose an open cover
{U,} of M such that UlQ Π Π Ulp is either empty or symplectomorphic

to a bounded open contractible subset of 1R2" for any io,...Jp. From now

on, (C*(M, ), d) will always mean the Cech complex associated to the cover
{U,}. Put

Γ — Π Γ^n — 11 ^-p,m •>
m — p=n

the differential in this complex is b + ( — l)md

(A*)) ^- C1(M,CCι(AΛ))

C°(M,CC0(AΛ)) ^- C0(

We will denote the homology of the complex ^* by J^n or .^n(M,Ah). Let k =

<C[[Λ]]. _

Clearly, the boundary map d : CC*(Atr) — » CC*-\(k) extends to a well-defined

morphism in the derived category of sheaves, therefore C*(M, CC*(AΛ)) -̂

C*(M, CC*_ι(A:)) is well defined in the derived category of complexes.
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Proposition 3.1.1. There exist the morphisms of complexes χτ,χτ such that:

i) the diagram below commutes in the derived category:

:C*-ι(AΛ)) -£+ CCp- r*(Aj(A/))

Ί

ii) //ze composition of χτ, rayλ χτ vwY/z ί/z£ morphism CC*(An(M)) — > C*(M,

CC*(AΛ)) ra/λ CC*(£) -> C*(M,CC*(£)), « e^wα/ to χτ, ras/λ χ
defined in Theorem 2.3.2.

Proof. First of all, it is easy to construct the commutative diagram

(since χτ, 2τ are given by explicit local formulas )1_Now, note that the sheaf U ι— »
CCίer(Ag) admits partition of unity (unlike U H-> CC*(AΛ(ί/)). For example, take
{p^} to be the partition of unity subordinated to {(//} and let Ipu be the operators

defined in Appendix 1. Thus, there is the quasi-isomorphism

C*(M,CC;er(Ag)) -> CCp*er(A^(M))

composing it with χτ, we get the morphism χτ : C*(M,CC*_ι(A^?)) — >• CC~*(Ao
(M)) given by the explicit formula

{*UO...UP } - Σ X*(Mpu0 [B + b, lp ]...[B + b, Ip ]•) .
1 1 1 1

In the same fashion we get the morphism 2τ ' C*(M, CC*_2(A:)) -̂  CC^*(
given by

{ct/o...^} 1 '" » Σ ^O.^/^-'T)/,^ [ft + B, I ] x . . . x [5 + b, /„ ]) . D
z/Ov ,Wp

Corollary 3.1.2. There exists a commutative triangle

for any m.

Remark 3.1.3. Clearly, the cup product defines the //*(M, £)-module structures on
all three ^-modules above (since CC*el(AΛ) and C*(M, CC*er) are quasi-isomorphic),
and all the morphisms above are in fact morphisms of H*(M, k) modules.
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The same construction may be carried out if one replaces Ah(U) by Afl(U)[h~]]
= Ah(U) ®<r[[Λ]] Cpi"1,^]] and puts k = <C\h~\K\]. We denote the bicomplex by

C^MCC^A^ft-1])) or ^(M,An[H-]]) and its homology by Jf *(M, A*^"1]).
The next two subsections are devoted to the proof that 3#>2n-\(M,Afl(U)[h,~1])

is canonically one-dimensional. In 3.2 we show this when M = IR2'2; in 3.3 we
prove this for arbitrary M.

3.2. Local Computation of^2n~\-

Theorem 3.2.1. SC/(AΛ(lR2 / I)[ft-1])~ A: / / / = 1,3,. . . , 2/7- l ΉC^A^IR2'7)^-1])
= 0 otherwise.

Proof. It is well known [BFFLS] that any formal deformation of IR2" corresponding
to the standard symplectic structure is isomorphic to the standard deformation

where α = ( α ι , . . . , α w ) , α, ^ 0. Consider the (ft)-adic filtration of the Hochschild
complex C*(AΛ). The corresponding spectral sequence converges because the fil-
tration is complete. One has E] = ////*(C°°(IR2'7)) = ί2*(R2'7); the differential in
Zs 1 acts from Ώ* to Ω*""1; if one identifies Ω1 with Ώ2/7~7 via the form ω, then
the differential becomes the de Rham differential d (cf. [Bl]). Therefore, the
spectral sequence collapses at E2 and HH2n(AtΊ) = k; ////,( A Λ ) = 0, /Φ2/1. Now,
from the Hochschild to cyclic spectral sequence [LQ] we get that HCj(Af*) = k
if i = 2n + 2p, p ^ 0; HC,(A*) = 0 otherwise. It is clear that the chain 1 0 (ζi

Λ Λ ξn Λ Jti Λ Λ jcw) in AΛ (g) (An)®2n is the generator of ////2/7. An easy com-
putation in (# -f /?)-complex C*y shows that this chain is homologous to a non-zero

multiple of 1 E Aft 0 (A^)^°. Thus, the morphisms HC2n+2i(k} -* HC2n+2i(An) are
isomorphisms. Now, the theorem follows from the exact sequence

---- > HCm(k) -> HCm(An) -+ HCm(Δ*) -+ HCm-}(k) -* - - -

(cf. [LQ]). D

Remark 3.2.2. Clearly, the chain j.(ξ\ <&x\) or the homologous chain ^(ζ\ ®x\ —

x\ 0 C ι ) ) represents the generator Ω\ of //Cι(A^(R ] )), and dΩ\ = 1. Now, put
Ωn = Ω^'1; then Ωn is represented by the chain ^ ^(ξ\ Λ c;7 Λ Λ c /\xn) and
3ί2w = l*/ ? because of Proposition 2.3.4.

3.3. Computation of Jf 2/7-1 ^^^ ^^ Fundamental Class. Consider the spectral
sequence associated to the double complex ^-/;,m from 3.1. The first differential is
b\ thanks to Theorem 3.2.1, one has

E-p,m =HP(M,k\ m = 1,3,. . . , 2/7- 1

E2_p m — 0 otherwise .

In particular, E2_p 2 / 7_, = k and E2_p m = 0, m > 2n — 1. Therefore there is the edge
homomorphism

Hl\M,k) -* ;tf2n-\-p(M, AΛ[Λ- !]) (3.3)
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its restriction to H° is an isomorphism. Let Ω be the image of 1. This is the
generator of J^w-iC^^t^"1])- We normalized it requiring that its restriction to
any coordinate open subset be represented by ^pKζi Λ*ι Λ Λ ξn /\xn).

Note that the edge homomorphism (3.3.1) is given by

Hp 3c^c - ΩeJF2n-\-p ,

c Ω means the cup product; we use the symbol to distinguish from the cup
product in cyclic homology.

Section 4. Algebraic Index Theorem for Formal Deformations

4.1. Boundary Operator at the Fundamental Class. Recalls that we had defined
the generator Ω of J^2n-\(M,Ah[h~]]) (cf. 3.3) and the boundary operator

d : JVm-ι(M, Ah) -> 0 H2p~m(M,K) - l*p

P^Ί

(cf. 3.1). The following theorem will be proved in Sects. 5,6.

Theorem 4.1.1. i) the fundamental class Ω may be represented by a cochain in

Σl>Q^(n+l}Cl(M,~CC2n-\+ι)\ modulo h Σh~(n+l)Cl(M9CC2n+l^)9 this cochain
may be chosen in

ii) One has

where, by definition,

td(ω))~λ = Σ(-0*7i> τk ^ H2k(M) .

4.2. Proof of the Main Theorem. First of all note the following fact which follows
from Theorem 4.1.1.

Corollary 4.2.1. Σk^os~kXπ(Ω ' ΓA') = S~n+lTr, where e0/*e-c*(ω)/2td(ω) =

Proof. One has

• Tk χτr(3Ω)

~k τ[ - /:Tl (Στk - \ l+n

— k ηπf ηr ,̂  / l / + Λ \

' [k ' ^A'/Tr i 1 )

/, . I „ 7 I

• Tk TiS Tr = S Tr . U
A , /

Note that we have used Theorem 2.3.2 at the end.

kj



Algebraic Index Theorem 243

Let μ : CCΓΓ(Ag(M)) -> Ω*(M ) be the linear map such that

where tf|ϋ) = l imf ? _>o f l / This is a morphism of complexes.

Theorem 4.2.2. Let a be a periodic cyclic cycle of Ag'(M). Then

i) {/^(Ω), #} Aίxs no singularity at h = 0,

ii) Tr(α e~°^ ) has no singularity at fι = 0,

lim Tr(α £?-"/Λ) = fε(μ(a)) fc/

? ε///A(M ) = (-!)*.

ii i) Lei ύf / β a rκ/e o/CCΓ ϊ (Γ(AΛ(M)) (c/ Remark 3.1.3). Then

= Tr [ a
en

and thus
Λ

oh

Proof. One has

where * means a collection of similar terms which involve instead of (ζ\ Λ Λ xn)
some expressions of tensor degree higher than 2n. But, because of the explicit
formula for χτ, (Remark 2.3.6), any tensor factor will contribute a commuta-
tor which is divisible by H. In particular we see, using Theorem 4.1.1. e), that
(χ T l (Ω),α) is regular at h — 0 because the expression under χτι contributes at least
a f i 2 n factor. We also see that lim^_^0(7τι(β)5fl) depends only on a (mod h). Let
( y \ , -,y2n) — ( £ ι > * i j •> ζn>Xn) The explicit formula for χ-p, yields that

Λ Λ ξn /\xn 9a
2n

since {c / ? } = d/dxj and {Λ:,, } = —d/dξ,.
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Now, we claim that the contribution of the summand * (formula (4.2.1)) to
,a) is zero. Indeed, because of Theorem 4.1.1 i), if supp a C UQ Π

Π Up, this contribution is equal to

Xσraι} - {Xσ(2n+m^a2n+m}dξdx = 0σr

^ ^' σ^^2n+m

(where X, are some functions on UQ Π Π Up).
This proves part i) of Theorem 4.2.2.

Lemma 4.2.3. The morphism μ : //Cfr(A^(M)) -» H*(M) commutes with the ac-
tion offf*(M9<C).

Proof. Let c = (cUo...up) £ C;'(M,C). Let a = a0 <g> 0 βm. Then

μ(c a) = μ ( Σ^0..V/V [B + bjp ] [B + ft,/p ]fl ) .
\ ~ϋo -Lι -^/^ /

We have

Ip(ciQ (g) fli 0 •) = «oP 0 fli 0 + 1 0

the second summand is irrelevant because the value of μ at it is an exact form.
Also,

[B + bjp] = Lp + Iad(p) ΞΞ Lp(mod h) .

Thus

μ(c a) = μ (ΣcUQ υrΣ(±avPvQ ® ' ' ' 0 pυσι ® " ' Pυσp ® " '

D

We obtain from 4.2.1 and 4.2.3 that

Ίτ(ae-QI1ί) = (^(Ω\a ε(td(ω) - e~c^12))

and

lim Tr(αe-β/Λ) = f κμ(a) fc/(ω )*?-<'' (w)/2 .
Λ— >o

This proves (4.2.2 ii). Part iii) follows from Corollary 6.5.2. D

To prove Theorem 1.1.1, consider the Chern character in cyclic homology

[C, K]). For an idempotent e in M^(A0(M)), put

λ ^ O / t l

Clearly, μ(ch(e)) = ε(ch(eo)) up to an exact form.
Theorem 1.1.1 follows from Theorem 4.2.2 if we apply it to a = (ch(e)—

ch(e(oc))) θm, m ^ 0.
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Section 5. Gelfand-Fuks Cohomology

5.1. The Space of "Nonlinear Frames." In this subsection, we will replace the
space ,^(M) of symplectic frames by the infinite dimensional manifold of "nonlinear
frames." For this, we need some information about local structure of deformations.

Recall that, if U is a contractible subset of IR2'7 and ω = ^dξ, Λ dx,, then any
deformation of C°°(U) corresponding to ω is isomorphic to the standard Weyl
deformation:

ft c
(5.1.1)

From now on we will denote this standard deformation by A*(U). Let x be a point

of U. By A*(U)X we will denote the algebra of co-jets of elements of Afl(U) at
x. We view this as a topological algebra; the topology is given by powers of the
ideal I generated by fi,x\,...,xn, C i , . . ., c;7.

Proposition 5.1.1. Let g be a continuous <L[[h]]- linear automorphism of the algebra

AΛ(R2 π)o. Then there exists an element φ = φ0 + f ί φ ] ^ ---- in A*(IR2'7)0 such
that:

i) φo E {*!,...,*„, cι, . . . ,ς, 7 } 2 ;

ii) g ( f ) = evφ / - e~τ*

for any / E AΛ(R2 / 7)0.

Proof. The element φ can be easily constructed step by step; (cf. [BFFLS and G]).
Note that the condition i) means that the Hamiltonian vector field corresponding to
0o preserves the point zero.

Now, consider a symplectic manifold (M, ω) together with a deformation AΛ(M).
Denote by Ah(M)m the topological algebra of oo-jets of elements of AΛ(M) at the

point m G M. Clearly, any such algebra is isomorphic to AΛ(R2 / 7)o
Put

M = {(m,φ}\m E M; φ : AΛ(M)W ^ AΛ(R2 π)0} ,

where φ is a continuous isomorphism of (C[ [ft]] -algebras and φ mod ft is real (i.e.,
commutes with complex conjugation).

Consider the group GO = Aut AΛ(R2 / 7)o of continuous C[ [ft]] -linear automor-
phisms, real mod ft. Let K be the subgroup consisting of the transformations Ad(eΦ),

Φ E AΛ(R2 π)0. The correspondence Ad(eφ) <-> Φ mod <C[[ft]] 1 is clearly bijec-
tive. We endow K with the corresponding topology. It is easy to see that K is
normal in GO.

Now, the quotient group GQ/K is isomorphic to the group HQ of formal sym-
plectomorphisms of IR2'7. Note that Sp(2n} C HQ and HQ/Sp(2n), as a set, is in
one-to-one correspondence with (jci,...,^,,, Cι , . . . ,^ 7 } 3 . Therefore there is the ob-
vious topology on HQ and whence on GO- It is easy to see that GO becomes a
Lie group with model space IR00. As a manifold, GO is a projective limit of finite
dimensional manifolds.

The symplecting group Sp(2n) is a subgroup of GO. It acts by linear symplectic
coordinate changes.
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Let go be the Lie algebra of GO;

to = {Φ = Φo + k<t>ι+ e A f t(R2")o|</Ό e (x,, ξ,)2}/€[[H]] 1, φ0 real}

with the bracket [φ,ψ] = ^(φ *ψ — ψ * φ). This Lie algebra contains a sub-
algebra linearly generated by xtXj, x,ξj, ζiζ, which is the Lie algebra *p(2n) of
Sp(2n).

It is clear that the embedding Sp(2n) c GO is a homotopy equivalence. Thus,
one has homotopy equivalences

M/Sp(2n) ^M;

M/U(n) ^ M .

Let (m, φ) G M. Let φ = φo + ^φi + * j the lineralization of φo is a symplec-
tic isomorphism IR2'7 ̂  TmM. This provides us with the map M —> ^(M), where
^(M) is the bundle of symplectic frames. This map is clearly a homotopy equiv-
alence. Thus, we can conclude with the following.

Lemma 5.1.2. The principal bundle M -^ M/Sp(2n) is homotopically equivalent

to the principal bundle J^(M) —? M, where jF(M) is the space of symplectic
frames on M.

5.2. Lie Algebra Cohomology, Cohomology of M/Sp(2n) and Characteristic

Classes. Let g = {φ G A^(lR2'7)o/(C[[ft]] l\φo real} with the bracket [φ,ψ] =
j^(φ * ψ — ψ * φ). Clearly, go is the subalgebra of g.

Lemma 5.2.1. There exists the natural action of g on M which extends the

action of go- It induces the isomorphism g ̂  T^m^M for any point (m,φ)

ofM.

Proof. Consider a point m G M and an open neighborhood Um of m. Consider an
oc-jet of a symplectomorphism gQ : V ̂  Um, where V is an open neighborhood of
0 in IR2" and #o(0) = m. Consider a one parameter family of oc-jets of symplecto-
moφhisms ht : WQ ^ FQ, where WQ is an open neighborhood of 0 in 1R2'7, HQ = id
locally and ht(zt) = 0 for some z/ G WQ. Assume that we have continuous isomor-
phisms

such that φ(f) = f gQ + n..., φ t ( f ) = f ht -f h..., I//Q = id.

The set G of continuous isomoφhisms A/?(IR2'7)o ^ A/7(IR2/7)Z, where z varies,
has obvious smooth structure (in fact G = R2n). Assume that {$} is a smooth fam-
ily. Then jjj \t=o(φt φ) defines a tangent vector to M at the point (m,φ). Clearly,

this vector depends only on j t \ ^ψt It is also clear that the tangent space to G is

equal to g. Thus, we have a homomoφhism α : g —» Vect M. It is easy to see that
α

this homomoφhism is in fact a Lie algebra homomorphism and that g ^> T(m,φ)M;
this is because the map ψ \—» (m,ψ o φ) is in fact a local diffeomorphism between

G and M. D
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Let C*ont(cj) be the complex of continuous cochains of Lie algebra g with co-
efficients in the trivial module (C. We define a homomorphism

μ : Cc*ont(9) ̂  Ω*(M) (5.2.1)

lf Ά £ QΌnt(9) and Xl9...9Xn G T(m^M9 then

. . 9 X n ) = η(χ-lXl9...9χ-}Xn)9 (5.2.2)

where α : 9 — > VectM was defined above. Clearly, μ is a map of complexes. Let
U(n) be the maximal compact subgroup of Sp(2n) C GO, then μ descends to a map

μ : Cc*ont(g,u(«);C) - Ω*(M/U(n)) (5.2.3)

which induces a homomorphism

μ : /Γ(g, u(/?); C) -> /Γ(M, C) (5.2.4)

(because M/U(n) is homotopically equivalent to M).
Now recall the definition of the Chern classes in relative Lie algebra cohomology

([Fu]). Let g be a Lie algebra, ί) a reductive subalgebra such that the adjoint action
of ί) on 9 is reductive. Then there exists an fy-equi variant splitting V : 9 — > ί). Put

R(X9 Y) = V([X9 Y]) - [V(X)9

this is an i)-valued two-cochain of g. For any invariant polynomial P G SA[r/]l) put

It is not hard to show that CP is a cocycle and its relative cohomology class does
not depend on V. If ί) = u(n) then we get, using the polynomials P^ = Tr ΛA X,
the Chern classes ck e H2k(§,\\(n)}.

Lemma 5.2.2. μ(ck) = ck(ω) E //2A(M,(C).

Proof. Indeed, a splitting V : g —> u(«) provides a connection in the principal bun-

dle M -*MjU(n)\ the forms μ(ck ) are the Chern-Weyl forms of this connection.
But this principal bundle is homotopically equivalent to the bundle of symplectic
frames. D

Now, let $o be the 2-cocycle corresponding to the central extension

0 -> R + ΛC[[ft]] -» Afl -> g -̂  0 .

Put 0 = μ(00); θ G //2(M, C[[ft]]).

5.5. Fundamental Class in Lie Algebra Cohomology. Consider the double com-
plexes

and
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with the differentials <3Lιe : C_M — -> C-^-i^, and 6 : C_M — » C-p^-\. Let C/n =

ΓLr-^/nC-M be me complex with differential ft + (-l)qdLιe. We denote its

homology by Jf*(g,w(w); AΛ).
As in 3.1, one defines the boundary map

k = (Cpl"1,^]]). By the same spectral sequence argument as in 3.2, J f,(g,u(«); Afί

P^"1]) — 0 for / ^ 2π and is one-dimensional for / = 2n — 1. Denote by ΩL the
generator of ,#2/7-1 f°r which oΩ^ = I*'7 + .

Section 6. Proof of Theorem 4.1.1

6.1. Reduction to Lie Algebra Cohomology. Our aim is to reduce the computation

of dΩ in Cech cohomology to the computation in Lie algebra cohomology. To do

this, we, as usual, introduce the third complex which involves both Lie and Cech
structures and serves as a link. Put

®(Af,CC*(AΛ)) = C*(M,C*(g,u(/7); C^(M,CC*(A*(R2'?)[ft-'])))•

More precisely, & is the Cech complex of M with coefficients in the sheaf
whose space of sections over U is the Lie algebra cochain complex of g relatively

to 11(77) with coefficients in g-module of C°° maps from U to CC*(AΛ(IR2")o). Note

that g acts on U (this action was defined in Sect. 5), and g acts on A^(JR2'7)0 by

derivations. Therefore g acts on C°°(£7, CC*(A(IR2/7)o)); the space of g-invariant
sections coincides with CC*(AΛ(M)).

This last remark shows that there is a well defined morphism of complexes

This morphism is induced by the following morphism of sheaves: a section of sy
of CCic(AΛ([/)) maps to a section ((m,φ) ι— » (image of jetoc(^ίy)w under φ)) which

is a closed cochain in C°(g, 11(77); C°°(ί/,CC;(A/ί(IR2/7)o)[5~1])). On the other
hand, one has the morphism of complexes μ' : C*(g, u(«); CC*(A^(IR2'7)o[^~1])) — »^

_

The moφhism μ' is induced by the map which sends an element η G CC*(A^,

(IR2/z)o) to the constant function on M with value η.
Similarly, we can construct the complex ^(M, CC*(£)), k — C[^~',^]], and the

morphisms μ7 and p. We get a diagram of complexes

C*(g,u(/ι);CC+_ι(AΛ(R 2 Λ) 0[Λ- 1]))

i
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Note that p on the bottom of the diagram is a quasi-isomorphism. Indeed, C*(g,u(«);

C°°(t/,<C)) is isomorphic to de Rham complex Ω*(UJU(n)). But U/U(n) is con-

tractible; therefore the sheaf of complexes U H-> Ω*(U/U(n)) is quasi-isomorphic
to the constant sheaf ί/ ι— » C.

The same spectral sequence argument as in 3.2 shows that there exists a unique
fundamental class Ωf/ in //2/?-ι( ®) sucn that <3Ω — I*'7 4- and a unique fun-
damental class ΩL in H2 / 7_ι(C*(g, tι(«); CC*_ι )) with the same property. Clearly,

Therefore dΩ = p~{ μ'(cΩι)\ it is easy to see from definitions that p~λ μ' in-
duces the same map on cohomology as μ : //*(g,u(«)) — > H*(M, C) from Sect. 5.
Therefore we have reduced the proof of Theorem 4.1.1 to the following.

Theorem 6.1.1. i) the fundamental class ΩL may be represented by a co chain in

Σ, έ0Λ-(''+n)C' (g, «(« ); CC2Λ+I_ , (A* )); modulo 7>Σ, ̂ ~('+")c'(9> «(«); CC2n+,_ , ),

this chain may be chosen in

ϋ) SΩL = Σ^Ti l'*"

ιr/7έτ<? 7ί e //2A'(cj,ιι(« );

The proof will occupy the next three subsections. Part ii) will be proved in 6.2-6.3;
part i) will be proved in 6.4.

6.2. Computation of dΩ^ Reduction to One- Dimensional Case. First of all,
consider the Lie subalgebra g/(w) in g: the matrix (0/y ) is represented by the
element ^al/x,ξ/. It is clear that <?l(n)ς is conjugate to u(w)<r in g^ by a
matrix from GL(2n, (C). Thus it is enough to prove that, for the fundamental

class ΩL e H^-'Cgc^/^k CC^A^)),

where ΓA (-1)A are H2k components of the class td~l e~*°Q eC] //2 constructed
from the Chern classes c\,...,cn corresponding to g/(«)<r;.

We shall denote the subalgebra g/(«)<r of g^ by ί),;, or simply by ί).

Our first step is to enlarge the Lie algebra g<τ; acting on CC*(A f ί(IR2/7)o). Let cj<r

be the Lie algebra {φ G A f ?(IR2 / 7)|(/) mod ft is real }(r. One has the central extension

0 ->(R + ftC[[ft]])c -̂  9(τ -̂  ίίc ->0. Let ί) = ί) Θ (C 1. Clearly, C*(g<τ,I);M) =

C*(g<r,I);Λ/) for any g<r -module M. Let cj(r[£] be as in Remark 2.1.9. Then g<r[ε]
acts on CC* as follows:

1 "
LD(a0 ® ® απ) = -E(βo ̂  0 [Aί?/] ̂  (8) an)'9

One checks (cf. Appendix 1) that these operators indeed define an action of the
differential graded algebra g<r[ε]
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We will need some information about relative cohomology of g<r[ε]. Let g be
any Lie algebra, ϊ)-a reductive subalgebra of g such that ad I) is semisimple
on g. Consider the differential graded Lie algebra g[ε], as above. For any invariant
polynomial P G Sk [$']*> define the characteristic cocyle CP = P((dL]e + <5)V + V 2 ) in
C2A(g[ε],7i;<C), where V : g[ε] — » I) is an ί)-equivariant splitting (such that V(gε) =
0). Recall the following proposition (cf, for example, [Na]).

Lemma 6.2.1. The map /Sr*[ί)/]l) — » 7/2*(g[ε],ί)), P ι— » c />, w αw isomorphism', also,
//2*+l(g[ε],i)) = o.

For the readers' convenience let us sketch the proof. Since (g[ε],c>) is con-
tractible as a complex, the cohomology of the differential induced by 6 on C*(g[ε],l))
is isomorphic to S*[r/]l). The isomorphism sends Λ p g 0 Λ^gε to zero for p > 0;
for p = 0 it sends an element of Λ^εg')1' = ^(9')l) to its restriction to I). Thus,
the spectral sequence of the double complex (C*,oL ι e,<5) collapses. D

We now have a slight technical difficulty because the action of εg<r does not

preserve the subcomplex CC*(k). It preserves, however, the subcomplex CC* (A Λ )

which is the linear span of tensors CIQ® - - ® \ <& - - - ® an. Note that CC*/CCi =
CC*. Thus one can define a boundary map

c :

Lemma 6.2.2. Γ/iere ex 'ίίί « quasi-isomorphism

C*(g« [e],ί);CC,(A:)) ̂  C ( g Γ [ ε ] , ; C C ( l ) ( A ) ) (6.2.1)

which extends the obvious embedding

) . (6.2.2)

Proo/ Consider the spectral sequence of the double complex (3Llc + δ\b). One has

E2_M =///?(g(Γ,ζ;(C)0(ΓCQ/(^) for both complexes in (6.2.1), resp. ///;(g<r,ί); (C)

(8)(pCQ(A:) for both complexes in (6.2.2). Moreover, since //odd(g<r[);],ί)) = 0, the
spectral sequences for (6.2.1) degenerate at E2. This implies the statement. D

By the same argument as above, one can extend the fundamental class ΩL to

the class in H2/?-ι(g<r,ϊ); CC*(A*)[h~]]). To prove 6.1.1. ii), it suffices to show
that

ΣTk - \*n+k , (6.2.3)

where α was constructed in Lemma 6.1.3.
Now one can see the advantage of passing to g<r[ε] from g^. Indeed, by virtue

of Lemma 6.1.2 and by uniqueness of the fundamental class, it suffices to prove

(6.2.3) if ΩL is the fundamental class in H2rt-ι(ί)[ε],ί); CC*(Ah)[h-{]) and the

right-hand side is in H*(f)[ε],ί); CC*(k)).
Now we can make further reduction. Let b/7 C ί),7 be the subalgebra of diagonal

matrices. Let bπ = bπ Θ (C 1. By Lemma 6.2.2, the restriction homomorphism

C*(f)[ε], ζ; CC*_ι(/c)) -» C*( b [ε], b CC*_i(A)) is a monomorphism (any invariant
polynomial on I) is determined by its restriction to b ).
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Our next step is to reduce the problem to the case n = 1. Note that the
products ^ and on cyclic complexes (cf. Subsect. 2.3) extend to hypercoho-
mology (one can combine them with the standard multiplication of the Lie al-
gebra cochains); d(a — b) = da db. Denote g/(l)(r by b j ; then b = bΛ = bj θ / 7.

In fact the algebra b,θπ[ε] acts on ~CC^(Atl) (via the homomorphism b^"[ε] ->

bw[ε]; (Jζ + / / 1 ) -̂» (*!,..., */7,]ζ A, 1)). Denote by ΩL(\) the fundamental class

in H 2 Λ-ι(bι[e], bι;(A Λ )(IR 1 )opi~ 1 ]) . Then, by the multiplicativity formula above
and by uniqueness of the fundamental class, one has ΩL = Ω/,(l)~w; if we know
that

dΩL(\)= l ' ΣTi ' 1*A , (

then

and Lemma 6.2.3. ii) follows from (6.1.5) because of multiplicativity of our coho-
mology class.

6.3. Proof for n = 1. First, compute ΰΩi restricted to the subalgebra C (xξ — ^) =

b j . In fact our computation will be carried out over the following subring D\

of A^IR1^. Let dx = \ξ\ then put D\ = <C[x,dx]. Let us examine the complex

C*(bι[ε], b j CC^φi)) in more detail.
First of all, by definition, the first Chern class c\ is represented by the follow-

ing cochain: c\(εxdx) — 1. Thus c"(εxdx,...,εxdx) = n\. Therefore, for a chain η of

Thus, the complex C*(bι[ε], bι;CC*(/)ι)) is of the following form:

<- c\CC\ <- c}CC2 <- cιCC3 •••

T L U T L

CC0 -̂ CCi ^ CC2 - . .

where CC; = CC^A) and L = L^λ.

Lemma 6.3.1. The fundamental class Ω(\) is represented by the following chain:

n ft

Proof. One checks that

(b + cιL)Ω(l)= ]Γ c\ 1 0(aγ^)z)Θ / 7 , (6.3.2)
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where Ω(l) is the right-hand side of (6.3.1). But the right-hand side of (6.3.2) is

in the subcomplex CC (D\ ).

Now, a simple calculation shows that, in the double complex above,

n\(n + 1)!

•/;+!.

thus,
rn

dΩ( Π = V lφ w + 1

comparing this with

To complete the computation of dΩι(\\ consider the algebra b t . We view the

element %~l(cΩι(\)} as a power series on b i with values in CC*(&). (Note that α
is defined in Lemma 6.1.3.) Our statement will follow from

Lemma 6.3.2. For any λ £ C and X G b i ,

Proof. Consider the following isomorphisms in derived category:

One can define the composition β"1 z α explicitly:

k times

Now, to define ^"^'(^^(l)), one has to define it on the algebra bj and extend it

trivially to b j . The lemma follows easily. D

6.4. Proof of Theorem 6.1.1 ί). Let us construct the fundamental class ΩL explicitly.

Let Cln = C*(g(r,ί); EndCC,(A^(IR2A7))), where g(r-module structure on EndCC*
is given by multiplication by LO from the left. The differential in C* is given by

B + b + cLlQ. Let Cl2) = C*(g(r,ί);CC*(AΛ(lR2 / /))), where g^-module structure on

CC* is trivial. The differential in Ci2) is denoted by B + b + dLιe. Multiplication of
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Lie algebra cochains and action of End CC* on CC* induce the multiplication

c < ' > ® c < 2 ) — c< 2 >.

Consider the cochain

α = α0 -f αi +

of C* α,κCΛΓι, . . . ,^m) = L^ _ VΛ- ...LX m^^χm.

Let ί2[0) be the fundamental class in C*(f)[ε]5ί);CC*(AΛ)). Let Λ(Jζ 7) be the
curvature form. Let εR be the two-cochain X f\ Y ι—» e/?(A", 7). Consider the Λ*(εί))-

valued cochain Put

This is a cochain of C* .

Proposition 6.4.1. The cochain α β represents the fundamental class ΩL.

Proof. Clearly, the lowest component of α β is equal to 2n \ r j Π ( ζ \ A*] Λ Λ
ζn /\xn). It remains to show that α β is a cocycle. Let Ly and LR be cochains of

) = Z/v^) and LR(XJ) = LR(X,Y}' It is easy to check that

(we use the Bianchi identity d^R = [ V , R ] ) .
Therefore α β is a cocycle and represents the class ΩL. Finally, it is easy

to check (compare to 6.3.1) that ΩL may be represented by a cochain from

Corollary 6.4.2. 77ze fundamental class ΩL (resp. Ω) may be represented by a

cochain in C*(π,u(«); Ccf }(A f 7(lR2 / ?))), re

6.5. One-Dimensional Families. Let IR+ = {/ G IR λ > 0}. Let Afα(M x IR+) be
the deformation of C°°(M x IR+) given by

If U is a coordinate neighborhood in M such that Atl(U) is isomorphic to the Weyl
deformation then A fv(£7 x JR+)-^ A/'(^/)(8)C00(R+). The isomorphism is given by

f ( x , ζ ) i—> f(x,λξ). Let M x IR+ be the space of pairs (x,φ), where x is a point

of M x IR+ and φ is an oc-jet of an isomoφhism AΛ '/ (ί/Λ:)-^A^(R2)[[/]]. The

group GQ of automoφhisms of AΛ(IR2)[[/]] acts on M x IR+; it contains a subgroup

0(1) x U(n) (the generator of 0(1) sends / to - /), and M^ΓlR+/0(l) x U(n)
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is homotopically equivalent to M x IR+. Let gfj be the Lie algebra of GQ. As in

5.2.1, one can extend the action of gjj to the Lie algebra gΛ:

where W\ = { f ( λ ) j - \ f ( λ ) e C[[/]]} and the bracket on the factor on the right is
equal to i(f * g — g * /). One can construct the morphisms

μ : C*(g^, 0(1) x u(«)(r;C) -+ C*(M,C); (6.5.1)

μ' : C*(<4, (9(1) x U(H)<Γ ; EndCCΓr(Aft(IR2'I))[[/]][β?Λ])

-̂  C*(A/,EndCCr(A*'Λ(M) Θc~(Kf ) «*(»+))) , (6.5.2)

where End in the right-hand side of (6.5.2) stands for the sheaf of complexes with
the differential [B + b, ].

Let V0 : A* (R2π )[[;,]] — > C[|/]] be evaluation at c = c = 0.

Lemma 6.5.1. TTze following two cochains of the left-hand side of (6.5.2) are
cohomologous:

,r) = 0 ί/ ^ or 7 w in

in A*(IR

Proof Let ^0 G C°(^,...); η0 =I±dλ,

One checks that
(<9Lιe£ + fc)(^o + f?ι ) = ω0 - ω2 . D

Consider the C°°(IR+)- valued trace on A^(M x 1R+):

If t/ is a coordinate neighborhood in M and we identify AfVl(£7 x IR+) with
Afl(^/)0C°°(IR+) then Tr becomes the old trace tensored by /ί/c°°(R f) We de-
duce from Lemma 6.4.1 the following.

Corollary 6.5.2. For a G HCΓ(JKf^(M x R+)),

— Ύ r ( a e~ — ) = 0 .

Proof. Indeed, Tr μ'(ω0 - ω2) = £Trα - Tr (α ΐ (^)) = 0. D
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Section 7. An Application

In this section we shall prove a conjecture of B. Feigin.
Let M be a complex analytic manifold, £^^/-the sheaf of holomorphic differ-

ential operators on M. Consider the double complex C*(M, CC*(^/)). This is a

complex of modules over C*(M, (C). Brylinski proved that

In particular, H0 ~ //2/7(M,C), where /z = dim^M.

On the other hand, one has the obvious cycle 1 G C°(M, CC0(^A/)) A
question arises how to identify the image [1] of this cycle under the isomorphism
above.

Theorem 7.1.1. [l] = (td(TM))2n.

Proof. We shall use an analogue of Theorem 4.1.1. Consider the double complex

C*(M, CC*(SΛ/)). There is the canonical (2/7 - 1 )-dimensional fundamental class Ω
in cohomology of this double complex. Consider the boundary map

c : C*(M,CC*(&M)) -» C*(M,C(

Theorem 7.1.2. oQ = Σtd^ 1"?+A, where td~] £ H2k(M,<£} and td~\TM) =

Σ(-\γtdfrl.

Proof The proof of Theorem 4.1.1. works word for word. One has to replace Afl

by &M and the Lie algebra g from Sects. 5,6 by the Lie algebra Wn of formal
vector fields. Π

Note that the Bott periodicity homomorphism S acts on C*(M, CC*(&M)) and
commutes with the action of C*(M,(C). It maps l*(A + ! ) to - 1*A . Put χn~k =
(- l ) / ? ~ A ~Ί ( / 7 + A ) for any k. From Theorem 7.1.2 we get that

y " _μ V ( — i V f r / " 1 r/?~A — 0-* i Z^ v A ί W A ^ — w

Indeed, the cycle representing the left-hand side is equal to the differential of the
fundamental class. The operator S acts as multiplication by x. Clearly, under the
identification above, [1] =χ2n~]. Denote ak = (-lγtd^{; recall that, by definition,
J>A = l / t d ( T M ) . We conclude that [I] = b x}\ where

x2n-] = bx"-} + ( mod *" + a,xn~} + + an).

Let 1 + b\ + b2 H be the element of Heι'(M,<C) inverse to 1 + a\ + a2 H (i.e.,
1 + feH = td(TM)). Note that

(x/? + αι^ / / ~ l + hαπXJc ' 7 " 1 +^ιX / ? ~ 1 + h 6/7-1)

is a polynomial of the form ^c2""1 — bnx"~] + , therefore b = bn. D
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Appendix 1. Operations on the Cyclic Complex

Let A be an associative unitary algebra over an associative commutative unitary ring

k. Let A = A/k 1;
define the operations

LD : Cm(A) -+ Cm(A} io : Cm(A)

SD : Cm(A)

k. Let A = A/k 1; Cm(A) = A ® A®m . For any ^-linear map D : A -» A, D(l) = 0,

LD(aQ (8) . - . (8) am) = (-l) / ? '- l D« 0 0 0 D(0/) 0 0 am ,
/=o

where ^ = Σ;=o(l f lyl ~ 0;

ώ(αo 0 (8> am) = (- 1 ) ( k / o l + 1 )|D| + l * o l f l 0 D(aλ ) 0 a2 (8) 0 ί/Λ

x(l Θα, 0 ..

For any a G ^4, define the operations

m+\ i

/ = ! / = !

x (1 0α, 0 . . . 0αw & α 0 ® •• 0 f l ( / - i ) ( S ) f l ( X ) ••• 0 α / - ι ) .

Let g — Der(/4) be the graded Lie algebra of derivations of A. Let A be the
usual g-module A with the grading shifted by 1 : for a £ A, we write a £ 4 and
β = |α + 1. Let QxA be the semi-direct product;

[D + a,E + b] = [D,E]+D(b) + (-\}\a

Define the derivation δ : ax A —» qx^;

Let (7(cjx4) be the universal enveloping algebra of $xA. The grading of
A and the derivation δ induce the structure of a differential graded algebra on
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U(c\xA). We need the following map

U(QxA) -> Homk(A,A)+A (A l )

for D, G g and a £ A, the image of D\ . . . Dp is Z>ι o o Z)/; : A ̂  A and the image
Z)ι . . . £>/;α is DI o o Dp(a) G 4.

For 7 G £/(g x4)> we shall denote by Y the image of Y under the map (Al).
Put

SY = i$y; ίγ = ί-y\ LY = Ly .

Finally, put IY = ίγ + (-\)\Y\SY.
Let A : £/(gx,4) — » U($xA)®2 be the standard comultiplication. We denote

AY = £7ι 0 72 = Γ 0 1

Let b be the Hochschild differential and B be the cyclic differential from Sect. 2.

Theorem Al. Let D, E £ $xA. Then

[B + b, LD] = LδD-9 (A3)

• / y + + ^ y , (A4)

, D[...Dk = LDl - LDk.

The proof follows from the direct computations.
Let us say a few words about the meaning of this theorem. If [ID, IE] were equal

to zero, then there would be no need in the operators I γ , where 7 is in ί/(g x^)
but not in g xA. Let ε be an odd formal parameter, ε2 = 0; let ($xA)[ε] = (g x
A) 0A k[έ\; put (d/dε)(D + εE) = -E\ then ((g xA)[ε] 9 δ + δ/δε) is a differential
graded Lie algebra. If [//), /^] were equal to zero, this would mean together with
(A2), (A3) that the differential ^-graded algebra ((g xA)[ε]', δ + d/cε) acts on the
Z2-graded complex (CCfr (A); b + B).

In reality [/£>, /^JΦO. We claim that, because of (A4), (gx4)M acts on
CCΓ'(^) up to homotopy. What we will in fact show is that another differential
graded algebra, which is homotopicallyat equivalent to ί/(g xA), acts on CC£el (A).

Let (α,(5) be a differential graded Lie algebra. Define BQ(a ) to be the free
algebra with the generators 7y, 7 G ί/(α )+ (the augmentation ideal); we assume
that Iγ is linear in 7 and that \Iγ\ = \Y\ + 1. Let d be the derivation of BQ(CL ) such
that

dIY = -IδY - Σ(-0 | r ι l/rΓ /r+ . (A5)

The algebra ί/(α ) acts on BQ(CL ) in the obvious way. Let U(a )x5o(α ) be the
semidirect product. The differentials d on BQ and δ on ί/(α ) combine to provide
the obvious differential d on C/(α ) x#o(α ). We modify this differential a little bit;
put

d'Y = δY, Y G ί/(α ); d/IY=dIY + Y. (A6)

We denote the differential graded algebra (ί/(α ) xBG(a ); J7) by B(a ).
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Theorem A2. The differential TL^-graded algebra B($xA) acts on the ^-graded
complex CCΓ(A).

Proof. This is obvious from (A2)-(A5).

Theorem A3. The embedding k 1 c—» B(a ) is a quasi-isomorphism for any α .

Proof. The algebra (Bo(a ) , d ) is a partial case of the well known construction; this
is the cobar construction of the chain complex of the Abelian algebra α ε C α [ε].
It is well known that there is a quasi-isomorphism BQ(a ) —» ^(α ε) — Λ*(α ).
The theorem follows easily. D

We can conclude that the algebra #o(α ) is a free α -module resolution of the
trivial α -module k. Let R*(a ) be the standard resolution. Then there is the chain
map /^(α ) —> B(a ).

Combining this with the action of B(Q xA_) on CC*eι(A) we obtain the crucial
functorial chain map

R*($xA) ® CCfl(A) Λ CCf'OO. (A7)

This map is (g x 4)-equivariant (QxA acts only on the tensor factor R*($xA)
of the left-hand side; it acts on the right-hand side by the operators LD).

For example, let τ : A/$A —>• k be a trace. Then τ extends to a (g x /4)-invariant
functional on CC*eι(A). Consider the composition

C*(g xA) (8) CCfr(/ί) = k

we obtain the map

from Subsect. 2.3.
Let us make a few concluding remarks. Let (C*, (5) be a differential graded

coalgebra. Let Cobar (C*) be the tensor algebra of C* with shifted grading; we
denote the free generators by Jc, c G C*, and \JC\ = c\ -\- 1. Let d be the derivation
of Cobar (C*) such that

where Ac = ]P c j 0 Q is the comultiplication in C*. Then d2 = 0 and Cobar (C*, J)
is a differential graded algebra (cf. [Q]). Let α be a differential graded Lie alge-
bra, C*(α ) the standard chain complex of α (Sect. 2); C5k

f(α ) = 0/>0 Λ' α then
C+(α ) is a coalgebra. The homomorphism of differential graded algebras

φ : Cobar C+(α ) -» ί/(α ) ,

φ(JD) = D, Z ) G α ; φ(Jc) = Q, c G A > ! a ,

is a homotopy equivalence of complexes.
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Theorem A4. There exists an action of the differential graded algebra
Cobar C£($xA) on the ^-graded complex CC*cl(A) such that:

i) for D G /\l(QxA), the generator Jo acts via the operator Lol
ii) for εD G /\l(ε($xA))9 the generator Jί:D acts via the operator ID.

Sketch of the proof. First, note that (for any α ), as a coalgebra and as an α -
module, ί/(α ) ~ 5(α ). Let us modify the definition of the algebra #(α ) above.
The only difference is in the differential; if d is the differential in (7(α ) xBo(a ),
then put

Y G 5 1 > 1 α .

The algebra (£/(α )x$o(α W) is denoted by #ι(α ). One checks easily that
#o(α ) and ^ι(α ) are in fact isomorphic and that B\(a ) is a homomorphic image
of Cobar C + ( α ) . D

Saying that C+(α ) acts on a complex C* is the same as saying that there is
a twisting cochain of α with coefficients in End C*. A twisting cochain is an odd
cochain p G C*(α End C*) such that

The operators /,£>, //), 5/), where D G Der(g) were introduced by Rinehart [R];
he proved that [B + bJD] = LD.

From our point of view, the map given by (A7) is crucial for understanding
differential geometric nature of periodic cyclic homology. If the periodic complex is
the non-commutative analogue of the de Rham complex then (A7) is the analogue
for the classical formula

Finally we would like to mention that our approach to operations is close to Get-
zler's, cf. [Ge]; the algebra cj xA can be extended to the algebra of all Hochschild
cochains ([Ge, DT]). This extension plays an important role in Getzler's construc-
tion of Gauss-Manin connection in periodic cyclic homology, in Nistor's study of
the bi variant Chern character, [N], and in [CFS].

Appendix 2. Cyclic Homology of Deformations

Let A^(M) be as in Sect. 1.

Theorem A2.1.

//// f(AS(M)) ̂  H(

2"-l(M) 0 CPΓ1, ft]]



260 R. Nest, B. Tsygan

Proof. Essentially, this statement is contained in [Bl]. Let C*(AQ(M)[^~I]) be
the standard Hochschild complex. Consider (ft)-adic filtration on this complex.
Then £0 = Ωl

c(M)\ the differential d\ : E^ -» £/°+1>/_1 is described by Brylinski

in [Bl]. If we identify Ωl

c with Ω2n~l using ωn, then d\ becomes de Rham dif-
ferential d. Thus E\ = H2n~l(M). We need to show that the spectral sequence

degenerates at E] . If not, then for some / dim^-i^ /////(A^/i"1]) < b2

c

n~l(M\
where

b2

c

n~'(M) = dim H2n~l(M) .

From this, using Hochschild to cyclic spectral sequence [C], we will conclude
that

It remains to show that this is impossible.
Let AQ be any algebra over C. Let

a * b = Σhl(Pi(a9 b)\ φo(a, b) = ab

be any formal deformation of AQ. Let A^ = ^o[[^]] with multiplication *; also, let
^o[[frj] be the algebra of power series with standard multiplication.

Theorem A2.2. (Goodwillie-Getzler, [Ge]). The complexes CCΓ(Λ0[[ft]]) and
CCΓ'G^o) are canonίcally isomorphίc.

Proof. The proof rests on the same algebraic idea that we were using through-
out this paper. A Hochschild ^-cochain of an algebra A is a linear map A®k — >
A. The space of all such cochains is denoted by Ck(A,A). Let mζ.C2(A,A)\
m(α, b) = αb. One can construct (cf. [Ger]) a ^-graded Lie algebra structure
on ®Ck(A, A\ where, for D G CA, \D\ = k - \\ if D, E e C{ , then [D, E] =
D o E - E o D. One has [m, m] = 0; put δD = [m, D]. Then δ2 = 0; δ is the
Hochschild cohomological differential, <5 : CA — > CA + 1 . If g = Der(^), then the
algebra $xA (Appendix 1) is the subalgebra of C*(A,A);
Kεr(ό : C1 -^ C2).

Having D £ Ck(A, A), one can construct the operations

such that

Lm = b ,

where b is the Hochschild homological differential. Then the formulas above show
that
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Thus,

where
dx r-'- /~TΓ~ " Λ — 1dm/clh
an

This shows that X is an isomorphism between CC%er (A0[[h]]) and

Corollary A2.3. dim//CΓ(ΛΛ°) - £,

Corollary A2.4. ΓAe Λ/?flce of <C[[H]]- linear continuous functional? Tr :
Tr(/ * 0) = Tr(# * /) is one-dimensional.
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