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Abstract: We introduce a Lie bialgebra structure on the central extension of the Lie
algebra of differential operators (with scalar or matrix coefficients) on the line and
on the circle. This defines a Poisson-Lie structure on the dual group of pseudodif-
ferential symbols of an arbitrary real (or complex) order. We show that the usual
(second) Benney, GL/rKdV (or GL/rAdler-Gelfand-Dickey) and KP Poisson struc-
tures are naturally realized as restrictions of this Poisson structure to submanifolds of
this "universal" Poisson-Lie group. Moreover, the reduced (=SL,2) versions of these
manifolds (or PF/7-algebras in physical terminology) can be viewed as certain sub-
spaces of the quotient of this Poisson-Lie group by the dressing action of the group
of functions on the circle (or as a result of a Poisson reduction). Finally we define
an infinite set of commuting functions on the Poisson-Lie group that give the stan-
dard families of Hamiltonians when restricted to the submanifolds mentioned above.
The Poisson structure and Hamiltonians on the whole group interpolate between the
Poisson structures and Hamiltonians of Benney, KP and KdV flows. We also discuss
the geometrical meaning of W^ as a limit of Poisson algebras Wh as ε —» 0.
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0. Introduction

Being a fashionable exercise during the last twenty-odd years, the theory of inte-
grable systems looks now like a patched quilt. Numerous teams carried out profound
investigations of their patches, and if one restricts attention to a particular point of
view, the picture is usually transparent now and looks rather complete. Problems
start to arise whenever we remember that a particular phenomenon in integrable
systems can be described from two (or more) different points of view. Usually both
explanations are satisfactory, but often there is no clear way to relate them one to
another.
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The result is a sophisticated "manifold" where the "transition functions" are no
less important (and much more difficult to establish) than "local charts" themselves.
In this paper we describe a "transition function" from the "quantum groups" chart
(more precise, its quasiclassical limit dealing with Poisson-Lie groups) to the chart
dealing with geometry of differential operators. The pivotal point in this transition is
the equipment of the Kac-Peterson central extension of the Lie algebra of differential
operators with a Lie bialgebra structure.

Consideration of the corresponding Manin triple (or Manin-Drinfeld double) in-
troduces into the cast the Lie algebra of pseudodifferential symbols. The algebras of
differential and pseudodifferential symbols play an important role in the theory of
integrable hierarchies (Korteveg-de-Vries or Kadomtsev-Petviashvili type systems)
[33] and in conformal field theory (with Wn- and ^^-symmetry in physics-speech).
There exist several approaches to these algebras describing their central extensions,
pairs of compatible Poisson brackets (so called Gelfand-Dickey brackets), connec-
tions between KP and «-KdV equations. In this paper we describe these structures
from the unified viewpoint of the Poisson-Lie group of pseudodifferential symbols
and of a certain extension of this group. There are two different ways to introduce
this extension, that correspond to two mutually dual Poisson-Lie "groups."

The first approach starts with the introduction of a new element log D. It turns
out that the (Lie) algebra of integral symbols ^2l<QUjDί (i.e., the Volterra algebra)
extended by the new symbol log D can be integrated to a remarkable Lie group.
This group consists of classical pseudodifferential symbols of an arbitrary real (or
complex) order, and carries a natural Poisson-Lie structure.

The second approach starts with the Lie algebra of differential operators
Σz>oM^ ^ tums out mat me 1-dimensional central extension of this Lie algebra
introduced by Kac and Peterson [15] also carries a natural Poisson-Lie (=Lie bial-
gebra) structure. Although this Lie algebra cannot be integrated to a Lie group,
it is the dual Lie algebra of the Poisson-Lie group of extended integral symbols
mentioned above.

Our main object of study is this Poisson-Lie structure on the Lie group of
classical pseudodifferential operators. We verify that this structure restricted to the
submanifold of differential operators coincides with the second Gelfand-Dickey
Poisson structure, and it coincides with the quadratic KP structure upon restric-
tion to a KP-phase space. Moreover, when extended on the whole group, KP and
KdV Hamiltonians correspond to the center

Adr

Cent fpunc (Group) j

of the Poisson algebra of invariant functions on this group.
This puts the schemes for KP and KdV hierarchies into the framework of the

Poisson-Lie geometry on the group of pseudodifferential symbols. The analogous
properties are valid for a submanifold of operators of order 0, the corresponding
Poisson structure is the second Benney structure. As by-products of our construction
we obtain the Poisson properties of the Miura mapping (or the Kupershmidt-Wilson
theorem [22]), and of multiplication of arbitrary differential operators. We also
generalize the Radul theorem [30] on the Poisson action of the Lie algebra of all
differential operators on the set of fixed order differential operators (with the leading
coefficient 1) equipped with the second Gelfand-Dickey Poisson structure. Due to
all this we can conceive the Poisson structure on the above group as a structure
that interpolates between (second) Benney, KP and GL/7-Gelfand-Dickey structures.



478 B. Khesin, I. Zakharevich

Note also that this scheme automatically introduces into the picture Lax equa-
tions. Indeed, we can describe the center space above as the intersection of the
space of invariant functions with its centralizer in the space of all functions on
the group. By its definition this centralizer is the space of Hamiltonians such that
the corresponding Hamiltonian flow is tangent to orbits of adjoint action, i.e., the
Hamiltonian flow corresponds to a Lax equation of the form

9 = adx(g)g .

Here X is some element of Lie algebra that depends on the point g in the group.
In the case of linear group we get a standard form of the Lax equation

Thus it is possible to describe the set of Hamiltonians as invariant functions on the
group such that their flows are Laxian.

0.1. Structure of the Paper. The paper is organized as follows. In Sect. 1 we
recall the basic notions of the theory of Poisson-Lie groups and of Lie bialgebras,
as well as the relation of one to the other. In Sect. 2 we define the Lie algebra
of pseudodifferential symbols and discuss how to add to it a new symbol log D.
Here we also discuss an extension of the Kac-Peterson cocycle to the Lie algebra
of pseudodifferential operators. In Sect. 3 we integrate the Lie algebra consisting
of integral symbols together with the symbol log D to a Lie group. In Sect. 4
we introduce a Lie bialgebra structure on the preceding Lie algebra. To do this
we construct the Manin triple of the would-be Lie bialgebra. In fact we fuse two
approaches described above and add simultaneously the symbol log D and the
cocycle to pseudodifferential operators. As the results of Sect. 1 show, this defines
a Poisson-Lie structure on the group from Sect. 3. This brings to an end the first
logical part of the paper, the part devoted to definition of this Poisson-Lie structure.

Beginning from Sect. 5 we study the resulting Poisson structure. In fact this sec-
tion is just a warm-up: the Poisson-Lie structure on the Volterra group of classical
symbols of order 0 turns out to be known among specialists as the so-called second
Benney structure. In Sect. 6 we generalize this description to the ambient group of
pseudodifferential symbols of arbitrary order. The Poisson bracket written in global
coordinates is the generalized Gelfand-Dickey-KP structure. In Sect. 7 we use this
to give one-line proofs' of some facts about the (second) «-KdV- and KP-structures
that usually demand intricate calculations. Among them there are the Jacobi iden-
tity for the bracket and the facts that composition of differential operators, and, in
particular, the Miura transform are Poisson mappings.

In Sect. 8 we investigate the relation of the extended (= GL) KP structure and
the usual (= SL) KP structure. We show that in the Poisson-Lie language it is a
Poisson reduction with respect to the (dressing=adjoint) action of Lie subalgebra of
functions on the circle. (After taking the Kac-Peterson central extension of differen-
tial operators this subalgebra ceases to be commutative and becomes a Heisenberg
algebra).

In Sect. 9 we provide a Poisson-Lie framework for the Hamiltonians of various
integrable systems contained inside our Poisson-Lie group. In particular, we inter-
polate the KP and n-KάV hierarchies into a unified hierarchy on the group. One of
the byproducts is a purely algebraic description of these (KP type) Hamiltonians
that is valid for any Poisson-Lie group. In Sect. 1 1 we discuss the quantization of
this notion.
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In the same Sect. 9 we present an expression of the Poisson bracket on a
Poisson-Lie group in exponential coordinates that is of independent interest. Note
that this expression makes it possible to reduce the usual two-step process of con-
struction of the Poisson-Lie structure to a new one-step process: instead of con-
structing a Manin triple based on the corresponding r-matrix, and describing the
Poisson-Lie group as a Poisson submanifold in this triple, we can directly construct
the Poisson structure in a neighborhood of the unity using Formula (9.1).

In Sect. 10 we introduce two more Poisson-Lie groups. Both these groups are 1
dimension bigger than our main object of study. The Manin triples of these groups
coincide, and this triple is in some sense a universal extension of the Volterra group.
This corresponds to the fact that the Lie algebra of pseudodifferential operators
allows two nonhomotopic cocycles. At last, in Sect. 11 we sketch what are impacts
of results obtained here on a would-be quantization of the KP structure. First of all,
we describe analogues of KP Hamiltonians for any Hopf algebras, in particular, for
such a quantization. Secondly, we describe a relation between W^ -algebra and this
quantization. We show that W^ -algebra is a "linearization" of this quantization up
to a change of the order of two limits. Here "linearization" is a vague resemblance
of the relation between a Lie group and a Lie algebra (up to a fact that Hopf
algebras are intrinsically nonlocal).

Another approach leading to an explicit construction of Hopf algebra structure
on quantized differential operators is described in [40].

0.2. Motivations and Different Viewpoints. In a sense we describe in this paper a
fusion of two ways to generalize the KdV equation, considered as an Euler-Arnold
equation on the dual space to the Virasoro algebra [2, 13, 28]. This dual space
carries a linear Poisson structure, what is "the same" as a Lie algebra structure
on the dual space. Two principal ways to generalize the KdV equation come from
generalizations of structures on these two mutually dual vector spaces. We can
diagram these ways as

Vir*, KdV equation
Poisson Generalization Algebraic Generalization

/ \
GL-Gelfand-Dickey

structures, Algebra gDO,
Wn -algebras, W^ -algebras

ft-KdV equations

\ /
Poisson - Lie group

of fractional order ΨΌO,
KP-KdV hierarchies.

The first approach (earmarked by physicists as "classical ^-algebras") comes
from consideration of quadratic Poisson structures instead of linear ones. It leads
to the (quadratic) Gelfand-Dickey Poisson structure on coefficients of differential
operators of order n. The second approach (earmarked as "W^-algebras") leads
to consideration of the bigger Lie algebra, namely the Lie algebra of differential
operators of arbitrary orders (instead of vector fields).

Here we show that the long-time recognized correspondence between the
quadratic brackets and Poisson-Lie groups allows one to fuse these two approaches
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together. The only missing step was the Lie bialgebra structure on the central ex-
tension of the Lie algebra of differential operators and integration of the dual Lie
algebra to a Lie group.

There is another point of view on the results obtained here. In this paper we
start with definitions of some extensions of Poisson-Lie groups and show that the
second Gelfand-Dickey Poisson structure arises on submanifolds of those groups.
We conclude that the dressing action determines the (Radul) action of the Lie
algebra of differential operators on a Poisson manifold consisting of differential
operators (of fixed order). On the other hand, we could begin with the Radul action
as the base object. This action can be considered as an action of a Poisson-Lie
algebra (= Lie bialgebra) on an abstract Poisson manifold.

Let us consider the corresponding momentum mapping. The usual construction
of the momentum mapping can be carried out in the case when the action of a
Lie algebra preserves a Poisson structure. In this case we can construct (locally) a
central extension of the Lie algebra and a mapping from the manifold to the dual
space to this central extension. However, a Poisson-Lie action preserves the Poisson
structure only if the Poisson structure on the Lie algebra vanishes.

It is interesting to try to generalize the construction of the momentum map-
ping to the general case of an arbitrary Poisson-Lie action. Though there seems to
be no such generalization, in some particular cases one can construct a Poisson-
Lie central extension and a mapping from an open subset of the manifold to
the dual group to this central extension (the "prequantized" momentum
mapping).

Thus the results obtained here can be interpreted as constructions of this central
extension, of the corresponding dual group, and of the inclusion of the manifold
in question into this dual group in the case of Radul action. In the paper [39]
one of the authors shows that the second Gelfand-Dickey Poisson structure is a
structure on an open subset of some Poisson-Lie Grassmannian, and the Radul
action is the restriction to the Lie subalgebra of differential operators of the
natural action of gl on the Grassmannian. Therefore we can view the results of
this paper as a description of the "prequantized" momentum mapping for the
Grassmannian.

It should be mentioned that an alternative way to obtain the Gelfand-Dickey
brackets is the Drinfeld-Sokolov Hamiltonian reduction [7]. The actual Drinfeld-
Sokolov construction gives the Poisson structure on differential operators of an
integral order as a reduction of an appropriate aίfine Lie algebra. However, the
approach to the Gelfand-Dickey brackets via Poisson-Lie groups produces the Pois-
son structure not only on differential operators, but on all pseudodifferential sym-
bols of complex order. It turns out that the Drinfeld-Sokolov construction admits
a deformation (this conjecture of B. Feigin and C. Roger is proved in [17]). All
algebras glw can be unified into a family of matrices of "complex size" (alge-
bras gϊ;, see [9]). Hamiltonian reduction of affinization of the latter algebra pro-
duces the entire Poisson-Lie group of pseudodifferential symbols of complex order
simultaneously.

Certain main results of the present paper have been reported in [18]. We re-
fer to [8] for a nice survey and treatment of the Poisson-Lie aspects of pseudo-
differential operators; some questions related to the family of integrable KdV-type
hierarchies were considered in the paper [11], see [42, 43] for profound connec-
tions of the logarithmic extension of pseudodifferential operators with theory of
determinants.
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1. Lie Bialgebras and Poisson-Lie Groups

7.7. Basic definitions. In this section, following [27] and [35], we recall for the
reader some necessary facts about Lie bialgebras and Poisson-Lie structures.

Definition 1.1. A Poisson manifold is a manifold with a Poisson bracket on the set
of functions on this manifold, i.e., with a skew symmetric operation on functions
that satisfies the Leibniz

and the Jacobi identities.

Definition 1.2. A Poisson-Lie group (G, η) is a Lie group equipped with a Poisson
structure η such that the multiplication G x G — > G and the inversion mapping

are Poisson maps, where G x G carries the product Poisson structure, and G~ is
the group G equipped with the opposite Poisson structure.

This property can be formulated in terms of the corresponding Lie algebra ©.
Consider a pair of functions on G vanishing at e. The above property of the in-
version mapping / shows that the Poisson bracket of this pair also vanishes at e.
Moreover, the linear part of this bracket at e is determined uniquely by the linear
parts of the original functions. This defines a Lie algebra operation on ©*. A simple
check shows that it satisfies the restriction from the following

Definition 1.3. A pair (©,©*) of a Lie algebra © and its dual space ©* forms
a Lie bialgebra if ©* is equipped with a Lie algebra structure such that the map
© — » © Λ © dual to the Lie bracket map © * Λ © * — > © * on ©* is a \-cocycle
on © relative to the adjoint representation of © on © Λ ©.

Theorem 1.4 (see [27]). For any connected and simply connected group G with a
Lie algebra © there is a one-to-one correspondence between Lie bialgebra struc-
tures on (©,©*) and Poisson-Lie structures η on G. This correspondence sends
a Poisson-Lie group (G,η) into the Lie bialgebra (©,©*) tangent to (G,η).

Remark 1.5. We discuss the details of this construction in Sect. 5.

Equivalently, one can describe the structure on a Lie algebra of a Poisson-
Lie group using a Manin triple (©,©+,©_) (for which ©+ = ©,©_ = ©* and
© = ©Θ©*):

Definition 1.6. A Manin triple consists of a triple of Lie algebras (©,©+,©_)
and a nondegenerate invariant symmetric inner product {, } on © such that

(1) © = ©+ Θ ©_ as a vector space;
(2) both ©+ and ©_ are Lie subalgebras of ©
(3) both ©+ and ©_ are isotropic with respect to the inner product {,}.

Theorem 1.7 (see [35]). Consider a Manin triple (©,©+,©_). Then ©+ is nat-
urally dual to ©_, and the pair (©_,©!_ = @+) is a Lie bialgebra. Moreover,
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for any Lie bialgebra ((5, (5*) one can find a unique Lie algebra structure on
© = © Θ ©* such that the triple ((5, (5, (5*) is a Manίn triple with respect to the

natural pairing on ©:

and the corresponding Lie bialgebra structure on (©,©*) is the given one.

Remark 1.8. The Lie bracket on © = ©+ 0 ©_ (here ©+ = © , © _ = © * ) is given
by [xι + «ι,*2 + «2]^ = [xi,*2]© - ad*2 *ι + ad^ *2 + [αι,α2](s* + ad^α2 - ad*2αι,
where x l5*2 £ © 5 α 1 ? α 2 E ©* (see [27]).

7.2. Poίsson-Lie Subgroups and Poίsson-Lie Actions. The usual notions of a Lie
subalgebra and of a Lie subgroup are almost useless in most contexts of the Poisson-
Lie group theory. A good substitute is the notions of a Poisson-Lie subalgebra and
of a Poisson-Lie subgroup.

Definition 1.9. A submanifold TV of a Poisson manifold M is a Poisson submanifold
if the restriction to N of the Poisson bracket of two functions on M is determined
uniquely by the restrictions of these two functions to N .

It is clear that a Poisson submanifold carries a natural Poisson bracket.

Definition 1.10. We call a subgroup H of a Poisson-Lie group G a Poisson-Lie
subgroup if H is a Poisson submanifold of G.

Definition 1.11. We call a Lie subalgebra ί) of a Lie bialgebra © a Poisson-Lie
subalgebra // its orthogonal complement ϊ)-1 C ©* is an ideal with respect to the
Lie algebra structure in ©*.

Lemma 1.12 ([35]). A connected subgroup H of a Poisson-Lie group G is a
Poisson-Lie subgroup iff its Lie algebra I) is a Poisson-Lie subalgebra of ©.

Remark 1.13. We provide here some details since this lemma is a key element in
many computations in this paper, and this proof carries a lot of similarities with
Lemma 9.18 below. On the other hand, if the reader is not satisfied with the sketch
below, we can note that this lemma is a simple corollary of Proposition 5.5, and
the proof of that proposition does not depend on this lemma.

Proof. Call a point h E H a good point if the value at A of a Poisson bracket of
two functions on G is determined by their restrictions to H. It is easy to see that
such points form a subgroup of H. Moreover, the condition on ϊ) implies that the
bracket of a function vanishing on H with every function has a zero of the second
order at the unity e G H. Thus points infinitely close to e are good, and we can
use the fact that they generate the whole group G.

To utilize this argument we represent any point h G H as a product h =
h\h2 . . . htf with dist (/*/, e) — O (^). Now the compatibility of the Poisson bracket

with the group structure on G implies that {f,g}\h = O (^) if f\H = 0. D

Remark 1.14. To make this discussion less vague we should have introduced a
bivector field η corresponding to the Poisson bracket, as we do in Sect. 9.4. This
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would show that points on exp ϊ) are good, and exp ί) generates a dense subgroup
in//.

Definition 1.15. We say that a Poisson-Lie group G acts on a Poisson manifold
M in a Poisson-Lie way if the natural mapping

GxM -+M

preserves the Poisson brackets (on the left-hand side we consider the usual direct
product Poisson bracket).

Remark 1.16. The definition does not imply that this action preserves the Poisson
structure on M'. Moreover, if for some point m G M the action of Lie (G) on m,
i.e., the mapping Lie (G) —» TmM, has no kernel, then such an action preserves the
Poisson structure on M only //the Poisson structure on G is trivial. We can express
the relation between the action and the Poisson structure on G by a vague phrase:
action ofgζG changes the Poisson structure on M by the amount corresponding
to the value of the Poisson structure on G at g. It is a good exercise to provide
an exact statement of this sense.

Remark 1.17. These definitions imply that a connected Lie subgroup is a Poisson-
Lie subgroup iff its Lie algebra is a Poisson-Lie subalgebra. Moreover, they are
compatible with the notion of Poisson-Lie action: the restriction of such an action
to a Poisson-Lie subgroup is again a Poisson-Lie action. Finally, it should be
mentioned that in the latter case the quotient M/H by the action of this subgroup
carries a natural Poisson structure. Indeed, the Poisson bracket of two //-invariant
functions is again //-invariant.1

In this paper we are going to apply this technique to the infinite-dimensional
Lie algebra of pseudodifferential symbols (cf. [35]) and to its central extension.

2. The Lie Algebra of Pseudodifferential Symbols and log (dldx)

We describe here an explicit construction of the central extension for the Lie algebra
of pseudodifferential symbols on the circle ([21]). To define the corresponding 2-
cocycle it turns out to be useful to introduce a concept of the logarithm of the
derivative symbol.

2.7. Algebra of Symbols

Definition 2.1. An associative ring g of pseudodifferential symbols is the ring of
formal series A (x, D) — Σ-oo α/ (*) ̂  with respect to D, where a} (x) are (real
or complex, scalar or matrix) functions on the line or on the circle, and the
variable D denotes d/dx. For a given symbol A we call the largest number N
noίndent such that α w Φ O the order or the degree deg A of A. The multiplication
law in g is given by the multiplication of symbols:

Λfv £\ Λ Ώfv £\ V^ λ(n)f

Actually, for this we use only the fact that ̂  is a subalgebra of (5* (see Proposition 8.6).
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(here A("} = j^A(x, ξ\B(

λ

n} = £*B(x, ξ\ and ξ := D, see Remark 2.2). // coincides
with the usual composition law on the subalgebra gDO C g of differential opera-
tors (i.e. on polynomials with respect to D = ξ). This product determines the Lie
algebra structure on g:

("[A,B]=AoB-BoA = £ - (A"x9 ξ

(2.2)

Remark 2.2. Formula (2.1) expresses the noncommutative multiplication of sym-
bols A(x, D) in terms of the commutative (in the scalar case) multiplication of
functions A(x, ξ\ where we identify a symbol Σ-oo^'W^ w*m ^e function
Σ-oc tti 00 ζl We use two different letters D and ξ for the same variable here to
avoid a confusion of commutative multiplication appearing in the right-hand side
of (2.1) with the noncommutative one in the left-hand side. Due to this convention
we can freely drop the symbol o anytime below: any multiplication of symbols in
notations with D is the o-product.

The commutative multiplication here is what physicists call the ordered product
: AB :.

Remark 2.3. Here and below we can change the real coefficients to complex coef-
ficients without any change in discussion.

There is an operator res : g — > C°°(Sl) on the ring g:

res(Σ> < (x) D1) = a-ι(x) .

The main property of res is / res [A,B] = 0 for arbitrary A,B G g, see [12, 23]
(here and below we integrate over the circle Sl or over the line IR1 in the case of
rapidly decreasing coefficients). This justifies the

Definition 2.4. Let Tr A = / res A. Define the pairing ( , ) on the algebra g as

The main property of res implies that the pairing is symmetric.

Definition 2.5. Define two Lie subalgebras goo and gint of the Lie algebra g as

g -1} .
/=o

The following proposition is a direct consequence of definitions:

Proposition 2.6. (see [34]). The Lie algebras (g, gDO,9int)/0rra a Mάnin triple. In
other words, the above pairing is nondegenerate, and the Lie subalgebras goo and
9int are complementary iso tropic sub spaces.

Remark 2. 7. We discuss the details of the Poisson geometry associated with this
Manin triple in Sect. 5. Here we consider instead a remarkable central extension
of g.
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2.2. Logarithm of the Derivative Operator. Consider the formal expression log D.
Certainly, for any pseudodifferential symbol A £ g the formal product A o log D
(according to (2.1) and the convention that the symbol of log D is log ξ) does not
belong to g.

Remark 2.8. This is a big source of confusion, since one almost automatically

associates the symbol log ξ with a series like J^ ^— ̂  — (ξ - l)k. However, the
boundaries of summation in Definition 2.1 of an element of g clearly indicate that
we should consider this expansion as an expansion near ξ — oo. It is clear that
log ξ has no power expansion at this point.2

The crucial point is that the formal commutator3

[log D,A] = log D o A - A o log D

is an element of 9 (here the multiplication is defined by the same Formula (2.1)).
Thus log D acts on g by commutation [log D, *] and defines an outer derivation of
g. In coordinate form, if A = Σ"=_oc«/ (x)D\ then (due to a direct substitution
into (2.2))

[log D,A] = Σ (-^P-A(f]D-k . (2.3)
A ^l

Note that even for a differential operator A G goo the result [log D,A] is, generally
speaking, a pseudodifferential symbol.

Theorem 2.9 ([21]). The following 2-cocycle

]oB) = Ίri Σ(-^^A(

x

k]D-k oB\ , (2.4)

gives a nontrivial central extension g of the Lie algebra g. (Here A and B are
arbitrary pseudodifferential symbols on Sl .) The restriction of this cocycle to goo
gives a nontrivial central extension of goo-

Remark 2.10. The restriction of this cocycle to the subalgebra of vector fields
(regarded as differential operators of the first order) is the Gelfand-Fuchs cocycle
of the Virasoro algebra. Indeed,

c (/(*) A g (x) D) = Tr([log D9f(x) D] o g (x) D)

= Ύr((f'D° - f"D-l/2 + f'"D-2/3 -...)

This observation implies the nontriviality of the cocycle on g and gDo, since even
the restriction to a subalgebra is nontrivial.

2 However, it is an adjoint element to eigenvector f(x,ζ) = 1 of the action of dilatations in ς
(if we consider the Laurent series as a decomposition into the eigenvectors with respect to this
action). Thus we can consider log D as a "symbol of order close to 0."

3 I.e., the result of substitution of log D into a formula (2.2) for commutator of pseudodifferential
symbols.
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Proof of the Theorem. Skew symmetry of c (A,B) is a consequence of the identities:

[log D,AoB] = [log D,A]oB + Ao [log D9 B] and Tr [log A A] = 0

for any A,B G g. These identities themselves follow immediately from (2.1)-(2.3).
The same identities together with the Jacobi identity on g allow one to verify the
cocycle property:

(A,[B,C]) =Tr ([logAΛ] o [B9C\ -f [log AC] o [A,B]

+ [logA£]°[C,Λ]) = 0 . D

Remark 2.11. Assume for a moment that log D were an element of the algebra g.
Then we could define not only the commutator [log A^] but also a product log D o
A, and rewrite the cocycle c (A9B) = Tr ([log D,A] oB) as c (A,B) = Tr (logD o
[A,B]). The last form means that the cocycle of c (A9B) is a 2-coboundary (and
hence a trivial cocycle) because it is a linear function of the commutator c (A9B) =
(log A [A,B]). Recalling that log D £ g, we get a heuristic proof of the non-triviality
of the cocycle.

The last expression of the cocycle c (A9B) — (logD,[A,B]) shows that log D
is in some sense an element of the dual space g*. We will effectively exploit this
observation further (see Sect. 4).

Remark 2.12. The value of c (f(x) Dm,g(x) Dn) on homogeneous generators of g
vanishes for n -f m -f 1 < 0 and, generally speaking, does not vanish for m -f n +
1 ^ 0. The restriction of this cocycle to the Lie algebra of differential operators
goo (i.e., to n9m ^ 0) coincides with the Kac-Peterson cocycle [15]:

c(f(x)D"' m

(in this form it was written in [30]).

Remark 2.13. It should be mentioned that the subalgebra goo> unlike g itself,
can be embedded into gl^, and the cocycle on goo is the pullback of the only
nontrivial cocycle on gl^ [4]. However, the ambient algebra g does not admit such
an embedding.

Remark 2.14. It is exactly the Lie algebra of differential operators extended by the
"logarithmic" cocycle what appeared during the last few years in physical papers
under the name W\+ΌG, see [29, 3].

Remark 2.15. Notice also that the Lie algebra gDo of differential operators on the
circle has exactly one central extension [9, 26], while the Lie algebra of pseudodif-
ferential symbols has two independent central extensions [37, 38, 10]. The formula
for the second cocycle can be written in a form similar to (2.4):

A\oB) . (2.5)

Here x is a natural coordinate on the universal covering of S1

9 considered as a
multivalued function on Sl . Here, as well as in the case of (2.4), x is not an element
of g, but [x9L] is. Not only this cocycle generates a trivial class of cohomology
of goo? but the restriction of it to goo vanishes: if A,B G goo? then [x, A] o B is a
differential operator, therefore it has zero residue.



Poisson-Lie Group of Pseudodifferential Symbols 487

Remark 2.16. Note that we can write an analogue of this cocycle c° on the algebra
of pseudodifferential symbols with coefficients in Laurent polynomials. However,
for this purpose we should change x in Formula (2.5) to log x. Indeed, the latter
case is essentially the case of functions on a small circle around .x = 0, and the
multivalued function on this circle that changes the value by 1 whenever we make
a complete rotation is const - log x.

Remark 2.17. In [41] it is proved that the Lie algebra of pseudodifferential operators
on C" = {( jc i , . . . ,x n )} with formal Laurent coefficients has 2«-dimensional central
extension generated by derivations log xl and log^/ck,). In [31] the logarithmic
cocycle has been generalized to the case of pseudodifferential symbols on compact
manifolds. Detailed survey on various extensions of infinite-dimensional Lie algebras
and groups see in [32].

3. The Group of Pseudodifferential Symbols

We describe in this section the underlying Lie group and the corresponding Lie
algebra of the main Poisson-Lie group we will work with: the Lie group of pseu-
dodifferential symbols of real (or complex) order. The elements of this group are
usually called "symbols of classical pseudodifferential operators."

3.1. Classical Symbols

Definition 3.1. A classical pseudodifferential symbol (ΨDS) is an expression of

the form L = fe?=-oo M* W ̂ ) ° D*> where l G R' D = dldx> and uk 00 are

functions on IR or Sl. The multiplication of the symbols is uniquely defined by
the commutation relation

where (]) = t(t ^"'̂  /+1). Call the (real} number t the degree or the order of the
symbol L.

Remark 3.2. We could as well define the product of two symbols by the same For-
mula (2.1) as above. Moreover, if we consider symbols with complex coefficients,
we can allow complex values for the parameter / too. Below we will not explicitly
specify whether we work with real or complex coefficients and degrees, since for
the questions we discuss here there is no difference between these two cases.

Define on the set of ΨDS the topology as the usual C°°-topology in the direction
of the variable on Sl (or R) and the topology of the project!ve limit along the
variable k. For an individual k we consider the usual C°°(Sl) (or C°°(IR)) topology
on the coefficient MA (JC). Then the basic neighborhoods of a point Z^0) are the sets of

Us such that t - t0\ < ε, \u(k\x) - uf0](x)\ < φ(x\ k = O , . . . , / for fixed ε,/ and

a fixed positive function φ(x).
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Notice that two different symbols (distinguished by integer parts of t) may
correspond to the same object. However, in the following definition the notion of
the degree is well defined.

Definition 3.3. The group G mi consists of the ΨDS's with the leading coefficient
ι/o (x) = 1.

It is simple to check that this is a group indeed. Our purpose now is to apply the
Poisson-Lie formalism to the infinite-dimensional group Gmt. We pretend that any
result valid for the finite-dimensional Poisson-Lie group has a corresponding coun-
terpart for the group in question.

We begin with determining the Lie algebra corresponding to the Lie group Gιnt.

For the subgroup Gmt of symbols of degree 0 (i.e., for L = 1 -f ΣyΓ=-oc Uk W ^)
this is a straightforward task: the Lie algebra gmt consists of all symbols P =

Σ^l-^ak (x) Dk of degree -1 (with an arbitrary leading coefficient α_ι).
We call a symbol from gmt a symbol of an integral operator, or an integral

symbol.

3.2. Exponential Map for Integral Symbols. Let us consider the structure of the
exponential map in this case. Since later we consider the more complicated case of
the extended group Gint, let us investigate the group Gmt for a while.

Proposition 3.4. The exponential mapping gmt —> Gint is well-defined and surjective
for both the periodical case and the case of coefficients on the line.

Proof. Fix a pseudodifferential symbol P of degree —1. The would-be exponent L(S)
of s P should satisfy the equation

^-L(s)} o (L(s))~l = P , (3.1)

or

Rewriting this in terms of coefficients of the symbol

-1
LW = ! + Σ »k(s) (x) Dk ,

k= — oo

we get a "triangular system" of the form

^uk(S](x) = Φk(u-\(S),...,uk+\(S)}(x\ k ^ -1 , (3.2)

where Φ^ is a differential polynomial in u-\,...,uk+\ (recall that it is a polynomial
in w _ ι , . . . , M f c + ι and their derivatives:

(33)
M

here M denotes a multiindex).
Equation (3.2) can be solved in quadratures (for initial condition uk\s=Q = 0

term by term for all k < 0, for instance), since the right-hand side of (3.2) does
not depend on uk. The solution is periodic in x (respectively, rapidly decreasing)
if the initial condition and P were those. Hence the exponential map is correctly
defined. G
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Remark 3.5. This argument can be made explicit by considering the exponential
series exp (s P) = Σm>0 ̂ Î ^ This series converges because deg Pm = — /w,
therefore to compute a certain coefficient of exp (s P) we have to calculate only a
finite number of summands. Now, in order to show that the expo-
nential map is surjective we need to consider the series for the logarithm:

log(l -f P) = Σm>\ (~m Pm ^at converges by the same reason.

3.3. ^-s\s=oDs = log/λ Now we go back to the group Gjnt of pseudodifferential
symbols of an arbitrary real order. It contains the group Gint considered above as a
subgroup of codimension one.

Proposition 3.6. The Lie algebra cjint for the Lie group Gint is an extension of the
Lie algebra of integral symbols gmt by the formal symbol log D. That means that

(1) gint = gmt θ {/logD} as a linear space;
(2) the commutator of two integral symbols is standard, see (2.2);
(3) [log A log/)] = 0; and
(4) the commutation relation for log D and P = u} (x) D1 £ gmt is given by

Formula (2.3) :

Remark 3.7. In fact we defined just the extension (logD) x gmt of the Lie algebra
9ΐnt by the outer derivative log D. The definition of commutator in this algebra is
just a restatement of Formulae (2.1)-(2.2).

Proof. The group Gjnt is a normal subgroup of Gint (and thus the corresponding Lie
algebra Qint is a subalgebra in cj / Λ /). Let us consider the complementary 1 -parameter

subgroup {Ds} (the group Gmt is a semidirect product {Ds} x Gjnt of these two
subgroups). Computing the commutation relations of the tangent elements to the
subgroups Ds and Gmt we get the following:

Dκ - exp (δP) D~ε exp (-δP) « D\\ + δP) D~\\ - δP)

w 1 +δ(DκPD~κ-P]

= 1 + δ [D\ P] D~κ « 1 -f δ [D^UjD*] D~ε

here P = Uj (x) Dj, (j) = g(g 1

1^'.(£.//+1)> and « denotes an equality modulo terms

/ \ c _ ι \'+l
Since ^ ε=o Π) = ^—/— we come to

C fc ' " \ / / /

Dε - exp ((5P) - D~ε exp (-δP) « 1 + δεf^(~l^+l u(/}iy-1

ι=\
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Thus the formal symbol log D is a tangent vector to the subgroup Ds', and the Lie
algebra of Gint can be naturally identified with the algebra gint. D

Remark 3.8. Heuristically, the tangent vector to Ds can be obtained by differentia-
tion of this 1-parameter subgroup with respect to s at s = 0:

d_
, s-

ds
= logD - DS\S=Q = logD .

3.4. Exponential Map. Now we can describe the structure of the exponential
map exp : Qint —> G ιnt. We already know it for elements P e glnt (with vanishing
coefficient at log D), so for complete consideration it is sufficient to compute
exp (s (log/) + P)) = L(S).

The description by exponential series does not work now (since it does not work
for exp (t log D) — D1), so to define "exp" we again have to consider the equation

^(lw)-1=log/> + / > . (3.4)

Proposition 3.9. The exponential map exp: gint —» Gmt given by the solution of
(3.4)

5 (log D + P)^L(S}

is well defined on the entire Lie algebra gint and is a surjectίve mapping onto Gint.

Proof. Let L(s} = (1+ P(S))DS = (1 + Σ/L-oo uj(^)Dj) D'- First of a11 we show that

Equation (3.4) is equivalent to the following one:

^Pω = [logD,P(ί)] +P o (1 +P(ί)) .

Indeed, replacing the differentiation of i(i) by a finite difference we get

1 + ε^ (LmΓ1 + O (ε2} = (L<* + ε^) (LM)~[ + O (ε2)

= (Df (1

-ε [logD,P(s)](l+P(,))-l+0 (ε2)

Thus (3.4) is equivalent to the equation
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or

^Pω = [log D,P(S)] +Po(l+ P(s}) . (3.5)

The last equation has the same form (3.2) as (3.1), and therefore it can be solved
in quadratures. Hence the exponential map is defined correctly on gint.

Let us prove surjectivity of the exponential map. To invert "exg" we need to
determine the element "log" ((1 +P)oDt\ where (1 + P)o£>' e Gint (here P =

Σ~ _oo Ujiy G Qint)- Surjectivity of the exponential map $int — * Gjnt for the non-

extended subalgebra of integral symbols (Proposition 3.4) allows us to find P e gjnt
such that 1 + P = exp (P) and thus

(1 + P)Z)' -exp Poexp (tlogD) .

Now using the Campbell-Hausdorff formula

A o exp B = exp (A + B + Qj± + ±([A, [A,B]] + [B, [B9A]]) + ...") ,

"log" ((1 +P) oD') - "log" (exp P o exp (f logD))

exp

we get

Notice that the terms in the final expression have decreasing order (going to
—ex)) due to increasing number of commutators. Hence any coefficient at ΓV for
"log" (P oD{) is defined by a finite number of the terms and thus the inverse of
the exponential map is well defined. D

Remark 3.10. Propositions 3.4 and 3.9 show that the (extended) Lie group Gint

and the (extended) Lie algebra gint of pseudodifferential operators are very "suit-
able" objects to deal with. The group Gint is an infinite-dimensional analogue of a
unipotent group. Analogously to the finite-dimensional case where the exponential
map is one-to-one and the exponential series consists of a finite number of terms, in
our situation every coefficient in L — exp (logZ> + P) is defined by a finite number
of terms of the integral symbol P. It is not very surprising, since the algebra in
question is quasinilpotent.

We would like to emphasize that the Lie algebra of differential operators does not
have even a shadow of these properties: no hope for existence of the corresponding
group, and therefore for any kind of exponential map. Even for the subalgebra Vect
= {u\(x)D} of vector fields its image under the exponential map in the group
Diff (Sl ) of all diffeomorphisms of the circle generates a nowhere dense normal
subgroup of Diff (Sl ).

Remark 3.11. The crucial observation for the applications of this group to «-KdV
hierarchies lies in the fact that this group contains a semigroup of differential oper-
ators.

Remark 3.12. Proposition 3.6 shows how to extend the Lie algebra gmt by an
element log D. However, it is easy to see that the commutator with log D is
a derivation of g as well, therefore the same formulae allow one to define the
extension gιog of the Lie algebra g by an element log D. The remarkable property
of this extension is its duality to the central extension by the cocycle c discussed
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in Sect. 2. This duality is with respect to the natural pairing ( , ) on 9. In the
following section we will see that it is possible to strengthen this (vague) duality
to a definition of a much more interesting object.

Remark 3.13. The good properties of the exponential mapping make it possible to
define the mapping log : Gint —> ojint. Obviously, the latter notion of log L,L e Gmt
is compatible with the (symbolic) notation log D for the additional element in gint.

4. The Extended Algebra of Pseudodifferential Symbols as a Lie Bialgebra

4.1. Double extension. Here we do the last step in definitions of the Poisson-Lie
structure on the Lie group from Sect. 3: we define an ambient Lie algebra for a
Manin triple for gint. Recall that in Sect. 2 we have shown that the nonextended
algebra gint can be included into the Manin triple (g, 9Dθ>9int) Here g is the Lie
algebra of pseudodifferential symbols equipped with a nondegenerate ad-invariant
bilinear form (A,B) = Tr AB, and the Lie algebra gDo of differential operators is
dual to 9int with respect to this pairing.

As a vector space the ambient Lie algebra of the would-be Manin triple for
gint is isomorphic to gint Θ g*nt. Since gint is "one dimension bigger" than gint, this
ambient Lie algebra should be two dimensions bigger than the ambient Lie algebra
of the Manin triple (g,goo,9mt) for gint. We know already two different Lie algebras
that are both one dimension bigger than g. The first is the central extension g by
the cocycle c from Sect. 2. The second is the extension gιog by log D from Sect. 3.
We have already noted that these two extensions are dual to each other. This means
that if one could carry out the additions of both these elements to g the resulting
object would have a good chance to be self-dual (as the ambient Lie algebra of a
Manin triple should be).

Lemma 4.1 (cf.[14]). Let (δ be a Lie algebra with an ad-invariant bilinear pairing
(,) over a field IK. Let d be a derivation of © that is skew-symmetric with respect
to (,). Let IKC be the dual space 1KJ. Then the vector space

©de = © Θ Kd 0 KC

carries a natural structure of a Lie algebra with ad-invariant bilinear form (, )de

Here the only non-zero commutators in ©de are

tM2]de = [Xl,X2\ + (d(Xl),X2) C,

[d,X] =d(X)

the inner product remains the same on ©, the subspace © is orthogonal to ΊK^d Θ
KC, and (d,d)& = (C,C)de = 0, (</,C)de = 1.

We call 05 de a double extension of the Lie algebra ©.
Let g be the Lie algebra of pseudodifferential symbols.

Definition 4.2. Let g to be the (( double extension" 6>/g, i.e. the algebra g extended
by the 2 -cocycle (2.4) and by the symbol log D :

Here α7 are periodic or rapidly decreasing functions, λ and y are numbers.
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Two defined above extensions of the Lie algebra g: the extension gιog and the
central extension g given by (2.4), are obviously subalgebras of this algebra.

Remark 4.3. Recall that in the theory of affine Lie algebras there is an absolutely
analogous construction, in which one centrally extends the algebra of matrix func-
tions on iS1 and adds some element t to the resulting Lie algebra. 4 Such a double
extension (as well as the initial algebra of matrix functions) carries a natural non-
degenerate pairing.

Remark 4.4. To avoid confusion we recall two notions of extensions used above.
A (right) extension of a Lie algebra © by a Lie algebra I) is a Lie algebra © with
an exact sequence

0_> © _ > © _ » I)-»o

and a Lie algebra morphism of splitting ί) ̂  © of the projection © —» f). We can

write an element of © as a sum of two elements: one from © and the other from
the image of the splitting. In this case there is a mapping ί) —> Out (©) into the

Lie algebra of outer derivations, and this mapping determines © = © x I) up to
isomorphism.

On the other hand, a central extension of © by an abelian Lie algebra 91 is a

Lie algebra © with an exact sequence

0-+9I-> © -^© ->0

such that 9ί C Cent ©. Such an extension is determined by a mapping H2(®)) —> 91.

We write an element of © as (X,y), where X is from © (strictly speaking, from

an image of some splitting © —•» ©), and y is the element of 91 (in the case of
dim 91 = 1,91 = (C),y is the coefficient at C).

Now the duality mentioned above is the fact that two exact sequences

0 -> g -> giog -> (log/)) -> 0

and

0 ̂  (C) - g - g -* 0

are dual to each other with respect to the natural pairing on g (we mean that one
can extend the pairing on g to a pairing between gιog and g that makes these two
sequences dual).

Here we have collected these two diagrams together and, using self-duality of
g, have constructed a self-dual extension g of g that is simultaneously a central
extension of the right extension gιog and a right extension of the central extension
g. This is a reason to call such an object a double extension.

4.2. Manin Triple. The algebra g as a linear space is a direct sum of two natural
subalgebras: g+ = goo consisting of differential operators ^.>0«7Z)7, and g_ = gjnt

consisting of integral symbols Σ7=-ooajD}-

4 The inner product on the currents algebra associates this element t with the operator ^.

However, the inner product in our situation will associate it with log -j^.
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The crucial observation is that the algebra 9 also has two remarkable sub-
algebras:
(1)9+= too which is the central extension of the algebra of differential op-

erators: \Σj>ΰajDJ , y ) , where y is dual to the 2-cocycle

and
(2) §_, which is the algebra gmt consisting of integral symbols together with

log £ : Σ/J^i^ + ΛlogZλ

Proposition 4.5. (9, g+, 9_) is a Manin triple (or, equivalently, gint = 9_ is a
Lie bialgebra).

Proof. As Lemma 4.1 shows, the algbera 9 (as well as 9) has an ad-invariant
nondegenerate inner product ("Killing form"):

((A + /log A?) , (B + μlogA<5)) = Tr (A oB) + (λδ + μγ)

for A,B € 9. On the other hand, as a linear space 9 = 9+ Θ 9_, and both subalge-
bras are isotropic with respect to this Killing form. D

Remark 4.6. In order to verify directly that the commutator [x\ -f αι,^2 + ^2]© of
Remark 1.8 coincides with the ordinary commutation of pseudodifferential symbols,
notice that the terms adj. c/ are the projections of commutators of ΨDS's to the
differential operators, while ad* αy are the projections to the integral symbols.

Corollary 4.7. The Lie group Gmt corresponding to the Lie bialgebra gιnt = g_
has a natural Lie-Poisson structure.

This would follow immediately from Proposition 4.5 and Theorem 1.4 [27] if
we could define a Lie group corresponding to the whole Lie algebra 9. Fortunately,
the formulae for the Poisson-Lie group structure use only the group structure of G_
and the Lie-algebraic structure of g+ (see [27]). So we can apply general techniques
of the papers [27] and [35] to obtain various advanced consequences of Proposition
4.5 for the Gelfand-Dickey structures on pseudodifferential symbols. We do this in
Sect. 6.

Remark 4.8. Note that the summand 9+ (as well as 9+) does not have the corre-
sponding Lie group. (It is possible to show that its adjoint and coadjoint orbits are
"fairly bad": they are not smooth or even separable while the existence of a Lie
group would imply these properties [19]).

Remark 4.9. While the summand 9DO of the decomposition 9 = 9DO θ gint is in-
variant with respect to commutation with Vect (-S1), the summand gint is not.5

Therefore, if we consider Sl as an abstract 1 -dimensional oriented manifold,

(1) The Lie algebra 9DO is canonically defined;
(2) The Lie bialgebra structure on it is not invariant with respect to the group

of diffeomorphisms of Sl;

5 In the case g — goo θ 9int both the summands were invariant relative to the action of
DiffCS1).
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(3) The Lie algebra glnt and the Lie group Gint are defined only after a choice
of coordinate system or locally affine structure on S1;

(4) After a choice of a coordinate on the circle the Lie bialgebra structure and
the Poisson-Lie structures on these spaces are canonically defined.

Finishing this section notice that the Lie subalgebra £^(1) of differential operators
of order g 1 is a Poisson-Lie subalgebra of goo- The same is true for the central

extensions ^(1) c gDO Therefore the latter subalgebra acts in a Poisson-Lie way

both on the Poisson-Lie algebra gDO and on the Poisson-Lie group Gmt by adjoint
and dressing action (see Sect. 7.3). However, this action is different from the action
of Vect (Sl). The action does not preserve the Poisson structures, since the Poisson-
Lie structure on 3)^ is non-trivial; and the (dressing) action on Gjnt is not the

adjoint action. Moreover, the subalgebra Vect (Sl) c ^(1) is not a Poisson-Lie
subalgebra.

5. The Poisson-Lie Group Structure on Pseudodifferential Symbols

In this section we show how the general Poisson-Lie group techniques (see [6, 35],
and [27]) can be applied to the group of pseudodifferential symbols. In particular,
as a corollary of these constructions we obtain the Gelfand-Dickey structures on
the symbols and investigate their Poisson properties.

5.1. From Manίn Triple to a Poisson-Lie Structure. First of all, following [27]
and [35] we recall the construction of the Poisson structure on the Lie group cor-
responding to a Lie bialgebra.

Let (©,©_,©+) be a Manin triple and ( , ) be an invariant inner product
on ©. Define a bivector r G © Λ © by the formula

( r , α + Λ f l _ } = -(r,<ϊ_ Λ f l + ) = (a+9a-) . (5.1)

Here a± G ©±; by a we denote the element of ©* dual to a G © : (α, ) =
(α, • ) > ( • > ) being the natural pairing between dual spaces. If we identify the
space © 0 © with Horn (©,©) using the inner product of ©, then r corresponds
to the skewsymmetric operator r such that r|©_ = —1, r|®+ = 1.

Let G,G+, and G_ be the Lie groups corresponding to the Lie algebras ©,©+,
and ©_, let also &tg and 5£ g be the operations of right and left multiplication by
g £ G. Denote the corresponding mappings of the tangent spaces and their squares
by

^*,^V : Γ*® -» Γ0®> Λ2gtg*,Λ2&g* : Λ2TeG -» Λ2TgG .

Consider r as an element of A2(TeG) — /t2©.

Proposition 5.1 ([6, 27, 35]). The bivector field η on G given by

defines a Poisson-Lie structure on G.

Corollary 5.2. The subgroup G_ is a Poisson submanifold.

Proof. This is an immediate corollary of Lemma 1.12. D
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Remark 5.3. In the case of a Poisson structure associated with an r-matrix (5.1)
this corollary can be verified directly. (We will do it to avoid a dead loop in the
proof of Lemma 1.12.)

Indeed, let g G G_,α,β G 7^*G, such that α G (TgG^ C T*G. Denote α =

^*α, β = &*β, α,/? G (ΓeG-)-1- C (5*. Now by definition

(η\g9* Λ J8) - (r(α),j8) - (r (Ad*α) , Ad*j8) .

Here we consider r G © Θ © as a mapping © * — > © . However, since α G ®^τ C

©*, and Ad^ preserves ©_, Ad*α C ©^ . Since the natural pairing on © is Ad-
invariant, we can identify α and Ad*α, with elements of ©_. Hence both r(α) =

— α and r (Ad*α) = — Ad*α. Therefore ( η \ g , o ι / \ β ) = 0, since the operator Ad^ is

orthogonal with respect to the pairing (, ). Thus the Poisson bracket {φι,φ2} of
any two functions is well-defined by the restriction φ\ $_ and ψ2 G_

Remark 5.4. In Sect. 1 we defined the Lie bialgebra structures on both subalgebras
©±. This determines the Poisson-Lie group structure for both corresponding groups
G± . Here we have defined a Poisson-Lie structure on the ambient group G and now
consider those Poisson-Lie structures on G± as structures of Poisson-Lie subgroups
of G.

Let α and β be cotangent vectors to G_ at a point g G G- (α,/J G Γg*G_).
Extend them arbitrarily to cotangent vectors (at g) to the large group G D GL (we
denote these extensions by α' and β').

Proposition 5.5 (see [27,35]). The Poisson structure on G_ is defined by the fol-
lowing formula:

. (5.2)

Here ^*,JSf* : Γ G -> Γe*G - ©*,()+ is the projection of ©* on © = ©_
along ©!_, and (, ) is the pairing on ©* corresponding to the invariant pairing (, )
on ©.

Proof. It immediately follows from definition

and the isotropy property of ©+ and ©_. D

Important Remark. It is easy to see that in order to define this Poisson structure
on G_ we do not need the entire group G, but only the tangent bundle of G along
G_. To construct this bundle the existence of a group G+ is not necessary, it is
sufficient to know only the Lie algebra ©+ with the action of the group G_ on
© = ©+ Θ ©_. Indeed, if α° is any lifting of <#*α G Γe*G_ = ©1 = ©*/©; to
©*, then the structure (5.2) can be rewritten as

d* α°)+,Ad* j8°) . (5.3)

Remark 5.6. One of the most interesting cases of Formula (5.2) deals with the
group G of invertible elements in an associative algebra $1 and with a subgroup
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G- being an open subset of an affine subspace in 21. The Poisson structure given
by Formula (5.2) is quadratic in this case.

5.2. Benney structure. Here we discuss applications of the above formulae to the
algebra of pseudodifferential symbols; in the next section we apply the formulas to
its central extension.

Let 9 be the Lie algebra of pseudodifferential symbols of integer order with
the usual decomposition on differential (+) and integral (-) parts. Recall that the
Lie group G_ — G mi for the integral part g_ = gint c 9 consists of symbols L =

1 -f Σ^l-oouk(χ)Dk- Since gmt is a Lie bialgebra (see Sect. 1), Formula (5.2)
determines a Poisson structure on Gjnt. On the other hand, there is a remarkable
structure on this set discovered in the theory of integrable systems.

Definition 5.7 (see [23, 24, 25]). The (second) Benney Poisson structure on Gmt is
the structure defined by the following Hamiltonian mapping ηf : Γ£Gmt — > TLGιni.
First, we represent the tangent vector from TιGmi as OL G Qmt '

Secondly, we can represent a linear functional α G T£Gmi by a differential operator
Ay. defined by (α,άL) = Tr(A% o δL). Now we can define η'(u) at L as

(LoA0ί)+oL-Lo(A0ίoL)+ = -(Z,oΛα)_ oL + L o (Ax ol)_ .

Remark 5.8. The second part of the formula shows that this element is indeed an
integral symbol, the first one shows that it is compatible with the fact that one can
change Ay_ to Ax + B% (where B^ is an arbitrary integral symbol) without changing
the resulting η'(tt). (That means that A% is in fact not a differential operator, but
rather an element of the quotient of pseudodifferential symbols by integral ones.)

Remark 5.9. We have not proved that this Hamiltonian mapping satisfies the Jacobi
identity, however, the following theorem implies that.

Theorem 5.10. The Poisson structure ηGmt given by Formula (5.2) coincides in the
case of the algebra of integral (— Volt err a) symbols with the Benney structure.

Proof. First we note that the group

Gmt — {L = 1 -f P I P is an integral symbol}

is an affine subspace in g. To write down Formula (5.2) in this particular case
let α be a cotangent vector to G_ at L G G_. Representing a tangent vector as
L + δL, δL G Qint, we can consider α as a linear functional δL ι— > (α,άL) on the
space of integral symbols. Identify it with some differential symbol A using the
pairing (α,&L) - (A,δL) = Tr (A o δL).

Now let the functional ^α correspond in the same way to another differential

operator A. Let B correspond to β. A direct computation shows that:

(A, δL) = (όtfa δL) - (α, @L*(δL)) = {α, δL o L) = (A, δLoL) = (Lo A, δL) .
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Hence A and LoA have the same differential parts (i.e., (A) — (LoA)+). Since

the same is true for left translations, we can rewrite

= ((L°A)+,LoB}) - ((AoL)+,BoL)

= ((LoA)+oL-Lo(AoL)+ ,#) .

Thus the Hamiltonian mapping T£ G — > TiG corresponding to the Poisson structure
ηG_ sends A ^> (LoA)+oL — Lo(Ao L)+. D

6. Poisson-Lie Geometry of the Extended Lie Group of Pseudodiίferential
Symbols

6.1. Gelfand-Dickey Structure. Now we extend the construction of the previous
section to the algebra of pseudodifferential symbols enlarged by addition of the
logarithm of the derivative. We start with definitions of the Gelfand-Dickey (also
called Adler-Gelfand-Dίckey or generalized w-KdV) structures.

In this section we finally drop the o symbol for the product of pseudodifferential
symbols, since it renders the formulae unreadable. As we promised, from now
on we denote this product as AB, except in the cases when this can result in
misunderstanding.

Definition 6.1. The (second generalized) Gelfand-Dickey Poisson structure on

is defined as follows:

(1) The value of the Poisson bracket of two functions at a given point is
determined by the restriction of these functions to the subset t - const.

(2) The subset t - const is an affine space, so we can identify its tangent

space with the set of symbols of the form δL — (ΣlL δuiD1 \Dl . We

can also identify the cotangent space with the set of symbols of the form
A = D~*A, where A is a differential operator (i.e. A — D~t(Σ"=QajD])),

using the pairing

= (A,δL)=Ύr(δLoA] .

(3) Now it is sufficient to define the bracket on linear functionals F^ and

where V^(L) is the value at a point L of the following Hamiltonian
mapping Fj ι-» V^ (from cotangent space D~' o gDO to the tangent one

9 m t o D ' ) :
Vί(L)=(LA) L-L(AL) . (6.1)
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Remark 6.2. Usually this definition is given only in the case when t is a fixed
positive integer and the symbol L is a differential operator ([1, 12]). Other well
known cases are t — 0, when we get the Benney structure ([24, 23, 25]), and t = 1,
when we get the KP structure (cf. [5]). Therefore this definition interpolates between
the definitions of KP, Gelfand-Dickey and Benney structures.

6.2. The Key Observation. It is the following fact that challenged us to write this
paper:

Theorem 6.3. The Poίsson structure η^. given by Formula (5.2) coincides in the

case of the extended Lie group Gint of classical pseudodijferential symbols with
the second Gelfand-Dickey structure.

Proof. Let L G Gint, L — (1 -f P) Dl ', where P is an integral symbol. Let α be a
cotangent vector at the point L. We are going to use two different representations
of this covector. First, we can write a tangent vector to Gjnt as (δP, δt\ so we can
find a number τ and a differential operator A such that

(<*9(δP,δt)) = (A,δP) + τ δt for any δt, δP .

Do the same for β and B.
On the other hand, we can proceed in the same way as in Theorem 5.10. In the

latter case g_ = gint, g = g. Consider the right translation ^α of α G T£Gιni into
e G Gint Let ^α G T*G[ni = g*nt correspond in the same way to a pair (A,τ). To

express τ and A in terms of τ and A we begin with the formula

(R*Lu,(δP,δt)) = (<x,RL(δP,δt)) .

The left-hand side can be written as

(A,δP)+τ δt .

The right-hand side is

+ δP) Dδt(\ + P)Dl -(l+P) D1} w

(α, ((1 + P) DtJrδt -(\+P)Dt}+δP(\+ P) Dt + [Dδt

9(l + P)] D')

,P]) + τ δt .

Here « denotes equality modulo terms of order o(δP,δt). Hence

A = ((l+P) A}+, τ = τ + (A, [log D,P]) .

The similar formulae can be obtained for the left translation:

^eft = (D-'A (1 -f P)Dt)+ , τleft = τ-(A9 [log D,P]) .

Due to identity g*nt = gDO one can view the covector (A, τ) as consisting of a

differential operator A and the central element with the coefficient τ.
Now we can apply Formula (5.3), denoting the pairing in g by (, }:
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(D-'B(l + P) D', τ - (5, [log AP])

(The terms containing the central element (0,1) G gint do not matter in this for-
mula since no term at any side of the inner product contains log D with non-zero
coefficient.)

At this point what we have proved is compatible with the first condition of
Definition 6.1:

Claim 6.4. The function t = deg L of the degree of the ΨDS is the Casίmίr func-
tion, i.e.,

for any function φ on Gint.

Indeed, the differential of the function deg L corresponds to the covector (A,τ) =
(0, 1 ), and this covector goes to 0 under the Hamiltonian mapping of the Poisson
structure η by the above formula.

Hence we can restrict our attention to the level set of this function deg L = t =
const. Note that again this level set has a natural structure of an aίfine space:
L = (1 + P) D'. This allows us to identify a cotangent vector to this subset at L
with the symbol A = D~tA, i.e.,

(α,<5L) - (A,δP) = (D-'A,δP D') = (A,δL) .

We extended here our pairing between integral symbols and differential operators
to the pairing between symbols of the form PDt (with an integral symbol P) and
symbols of the form D~1A (with a differential operator A). Now

= (((1

Hence the Hamiltonian mapping can be written as

A ̂  (LA)+L - L(AL)+ .

It is clear that

(LA}_L-L(AL}_ = -((LA}JΓL-L(AL}^ , (6.4)

since LAL - LAL = 0. D



Poisson-Lie Group of Pseudodifferential Symbols 501

7. Applications to the KdV and KP Hierarchies

7.1. From KP to KdV: A Restriction to a Poίsson Submanifold. What we de-
scribed by now is the Poisson-Lie structure on the group of pseudodifferential sym-
bols with the leading coefficient 1. However, anyone who has seen the formula for
the Gelfand-Dickey Poisson structure on the set of differential operators with lead-
ing coefficient 1 can easily recognize Definition 6.1 - the formulae are identical,
only the underlying manifolds differ. The reason for this is the following

Proposition 7.1. The Poisson structure from Definition 6.1 can be restricted to the
subset 2ik of differential operators of order k with the leading coefficient 1. This
structure is quadratic in L G 2^ for k ^ 2, linear nonhomogeneous in L £ 3)\ for
k = \ in the matrix case, and with constant coefficients in L £ 2\ for k — \ in
the scalar case.

Proof. The restriction operation is well-defined if the submanifold is a union of
symplectic leaves. So we need only to show that the image of the Hamiltonian
mapping at any point of the submanifold consists of tangent vectors to the subman-
ifold. This is clear from (6.1): if I is a differential operator, then the right-hand
side is also a differential operator.

Suppose k — 1. Then it is possible to extend a given covector on &\ to Gjnt such
that the corresponding A is of deg A — 0 (recall that in notations of the previous
section we identify a covector with a symbol A — D~fA, A being a differential
operator, and here t — k — 1). Hence deg LA — deg AL = 0 if L £ ζ%\. Moreover,
(LA) = (AL) + — (DA)+, thus we can write the result of the Hamiltonian mapping

as (DA) ,L . This shows that the bracket is linear nonhomogeneous. On the other

hand, the variable part of L is of degree 0, thus in the scalar case

Vj(L)=[(DA)+,L\ = [(DA)+,D\ = -A' .

Here ' denotes ^ (recall that A is a function). We see that in the affine coordinate
system the Hamiltonian mapping is indeed translation invariant, since the right-hand
side does not depend on L.

It is easy to see that there are no such cancellations for k > 1, thus the resulting
structure is quadratic. D

The possibility to restrict the Poisson structure to these submanifolds allows us
to restrict various Hamiltonian systems from Gint to Q)^. As we show it in Sect. 9,
the standard Hamiltonian systems of &-KdV can all be obtained from a remarkable
Hamiltonian system on Gint of KP-type.

7.2. Poisson Properties of the Operator Multiplication and Miura Transform. We
are going to take dividends and deduce some properties of the Poisson bracket on
the KdV manifold 2>k that usually demand some ad hoc computation ([12, 36]).

Corollary 7.2. The bracket on ̂  defined by the Hamiltonian mapping (6.1)

{ f , g } \ L = (η\L,df\LΛdg\L)

satisfies the Jacobi identity.
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Proof. As we have seen, the corresponding bracket on Gint satisfies the Jacobi
identity (since it coincides with the Poisson-Lie bracket), therefore the restriction
to differential operators also satisfies this identity. D

Corollary 7.3. The multiplication mapping

is a mapping of Poίsson manifolds ,̂ ®/, and @k+ι equipped with the second
Gelfand-Dίckey Poίsson structures.

Proof. The multiplication mapping Gint x Gint — > Gint is a mapping of Poisson man-
ifolds by definition of the Poisson-Lie structure. Taking the restriction to Poisson
submanifolds ̂  x Q)\ C Gmt x Gint and ̂ +/ C G mi proves the corollary. D

Corollary 7.4 (Kupershmidt- Wilson theorem [22]). Consider the Miura mapping
(i.e., a mapping of multiplication of k first order differential operators with scalar
coefficients)

&\ -+ ®k .
This is a fibration with a finite-dimensional fiber, and this mapping rectifies the
second Gelfand-Dίckey Poisson structure, i.e., the constant Poίsson bracket on
the ajfine space 2\ induced by the (constant) second Gelfand-Dίckey bracket on
<3)\ goes to the (quadratic) Poisson bracket on Q)^.

Proof. Consider the ^-dimensional space of (all) solutions Ker L of

for a differential operator L e ̂ . A factorization L = L\L2 determines a subspace
Ker L2 C Ker L. It is easy to see that the operator L is uniquely determined by
Ker L, therefore one can reconstruct the factorization of L by the subspace Ker L2.
Hence one can reconstruct a factorization

L = LιL2...Lk, Li <G ®ι ,

by the flag

Ker Lk C Ker Lk-\L\ C ... C Ker L\L2 . . .Lk = Ker L .

This proves the fibration part of the corollary, because the corresponding flag
space is finite-dimensional. To prove the second part we note that the second
Gelfand-Dickey Poisson structure on Q)\ — {D + u(x)} is constant in the standard
coordinate system, while the multiplication mapping preserves the Poisson struc-
tures. D

Remark 7.5. Note that for α ^ Z we do not have such a nice Poisson submanifold
®α. Moreover, it is not clear whether one can straighten "some part" of the Poisson
submanifold {deg L — α} by a mapping with a finite-dimensional fiber.

7.3. The Dressing Action. Let us consider now the corresponding version of the
dressing action. Such an action is defined for any Poisson-Lie group.

Consider a left-invariant 1-form ω on a Poisson-Lie group G with the tangent
Lie bialgebra (©,©*). Let a vector field V be the image of the 1-form under the
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Hamiltonian mapping. That means that if df\x — ωx, then

for any g, where V - g is the Lie derivative of g along V (this condition deter-
mines V uniquely). Taking into account that a left-invariant 1-form corresponds to
a cotangent vector at e € G, we get a mapping from ©* into Vect G. The funda-
mental fact [35] is that this mapping is a morphism of Lie algebras, so it defines a
(local) action of the dual group G* (i.e., of a (local) Lie group with Lie algebra
©*) on G.

Moreover, the relation of © and ©* in the notion of a Lie bialgebra is absolutely
symmetric, as the theorem on Manin triples shows. Therefore on the dual group
there is a natural structure of a Poisson-Lie group, and the action of G* on G is a
Poisson-Lie action:

Theorem 7.6 ([35,27]). Consider a Manin triple (©,©_,©+) and the correspond-
ing (local) Poisson-Lie groups G, G_ and G+. A vector X e ©+ can be consid-
ered as a covector X G ©1. Consider the corresponding left-invariant covector
field &(X) 6 Γ(Γ*G_) and the image of this field V(X) under the Hamiltonian
mapping on G_. The mapping ©+ — > Vect G_ is a representation o/©+, and the
corresponding (local) action of G+ on G_ zs a Poisson-Lie action.

Definition 7.7. This action is called the (left) dressing action. In the same way we
can define the right dressing action and the corresponding notions for an action
of a Lie bialgebra.

We cannot literally apply the method discussed above to the Poisson-Lie group
Gmt: there is no Lie group with the Lie algebra goo of differential operators (or
with its central extension gDO). However, we can do it if we stop when we have
constructed the action of the Lie algebra goo only. That means that in our case we
get a Poisson-Lie action of the central extension gDO of the Lie algebra gDo of
differential operators on the Poisson manifold Gint. It is easy to see that the center
acts trivially, therefore we get an action of goo- Thus

Corollary 7.8. There is a Poisson-Lie action of the Lie bialgebra of differential
operators on the group of pseudodifferential symbols Gjnt.

On the other hand, A. Radul defined in [30] an action of this Lie algebra on the
Poisson submanifold @>k of differential operators. Without any surprise, the latter
action is a restriction of the former from Gjnt to ̂ , as shown in the following:

Corollary 7.9. The dressing action of the Lie bialgebra of differential operators can
be restricted to the subset ^ C Gmt- IfLζ Q)k, and A is a differential operator,
then the corresponding to -A tangent vector to Q)k at L can be described as

) + L = (LAL~λ}_L ,

i.e., it is the remainder in the right division of LA by L.

Proof. We can write the left-invariant 1-form on Gjnt that corresponds to —A as

δL\L^ -(L~1OL,A) = -Ύr(δL AL~l) .
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Thus the pseudodifferential symbol that corresponds to this covector at L is -AL~l .
The image of this covector under the Hamiltonian mapping is

= LA - LAL'l L . D

Remark 7.10. For genuine differential operator L G ̂  the action (—A) L can be
obtained as a result of straightforward application of the differential operator A to
solutions \l/ of the equation Lψ = 0:

(L-εA L)(ψ + εA ψ) = O(ε2)

(see [30]). Note, however, that the formula in the corollary (but not the interpretation
as a remainder) remains valid for an arbitrary L £ Gint.

8. Relation of the GL- and SL-Poisson Structures

What we have described is an analogue of the GLw-Gelfand-Dickey structure. In
this section we describe an analogue of the SLw-case, i.e., the Poisson structure on
the set of pseudodifferential symbols of the form

(1 + w_ 2 (x)D~2 + n-3 WD~3 + •-}&.

We work mainly with the case of scalar coefficients, however, the case of matrix
coefficients needs only cosmetic changes in the hypotheses of the theorems.

Theorem 8.1. Consider the quotient of the adjoint ( = dressing) action of functions
(i.e., of differential operators of zeroth order} on Gint. The Poisson structure on
the quotient determines a Poisson structure on the space of pseudodifferential sym-
bols {(1 + u-2D~2 + w-3/)~~3 H )D1} without subleading term. For a fixed t =
n £ N the subset of differential operators of such a form is a Poisson submanί-
fold, the Poisson structure on it coincides with the second SLn - Gelfand-Dickey
structure.

Proof. The proof of this theorem occupies the rest of this section. To identify the
submanifold {(1 -f w_2£>~2 4- u^D~3 -f . . .)£>'} with a subspace in the quotient
or (what is the same in this particular case, as we show in the following section)
with a Poisson reduction of the GL-structure by the action of scalar functions (i.e.,
of differential operators of order 0), we need the machinery of Sect. 1.

8.1. Poisson quotients.

Lemma 8.2. Consider a Lie bialgebra (©,©*). Then the abelian quotient α =
©/[©, ©] of © has a natural Lie bialgebra structure.

Proof. Let t = [©,©]. It suffices to show that α* = i ̂  c ©* is a Lie subalgebra
of ©*. Indeed, α is abelian, and any Lie algebra structure on α* is compatible with
the structure on α .

Consider a Manin triple (©,©,©*). An element a G ©* C © is in i-1 iff
(X,a) = 0, provided X G [©,©] C © C ©. Now
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therefore a E i ̂  iff [α, ©] C ©. Since the normalizer of the subalgebra © in © is
a Lie subalgebra, i -1 is a Lie subalgebra. D

Remark 8.3. This lemma has a direct counterpart in the theory of Hopf algebras:
the quotient of a Hopf algebra by the two-sided ideal generated by commutators
is a (commutative) Hopf algebra. Thus for any Hopf algebra we can construct
two group schemes (i.e., commutative Hopf algebras) starting from the given Hopf
algebra and from its dual.

Corollary 8.4. Consider a connected simply- connected Poisson-Lie group G and
the (say, left) dressing action of the dual Lie algebra ©* on it. Consider the
subspace V in ©* formed by fixed vectors in the coadjoint representation of G.
Then

(1) this subspace is a Poisson-Lie subalgebra in ©* with a trivial Lie algebra
structure on V*\

(2) the dressing action of this Lie subalgebra on G is Hamiltonian',
(3) the Hamίltonian //α corresponding to an element α 6 V is a Casimίr

function iff α E Cent ©*.

Proof. The part concerning the Poisson-Lie properties of V is already proven since
V = i -1 in the notations of the previous lemma. To prove the claim on the existence
of Hamiltonians we note first that the dressing action of elements of V preserves
the Poisson structure, since this action is a Poisson-Lie action and the Lie algebra
structure on the dual space K* is abelian. Moreover, by definition the dressing
action is a result of the composition

©* Λ Ω1 (G) -» Vect (G) ,

where Ωl (G) is equipped with the natural Lie algebra structure associated with
the Poisson structure on G, the first arrow is the isomorphism to the subspace of
left-invariant forms, the right arrow is the Hamiltonian mapping (both arrows are
Lie algebra morphisms).

Let us show that the image of V in Ωl (G) consists of closed forms. Indeed,
by the geometrical description of the cochain complex of a Lie algebra, if α E
(g* = C^©), then d(λ(<x,)) E Ω2 (G) is a left-invariant form that corresponds to the
element Jα E /I2©* = C2 (©) . However, V — Z1 ((5), since the condition

(doc, X Λ 7} = (α, [X, Y]) = -{ad£ α, 7} = 0 for any X, Y G ©

is exactly the condition on the subspace V. Now let us associate to an element
α E V the Hamiltonian //α that is the only primitive of the closed form A ( α ) that
vanishes at e G G. By definition the dressing action of α is exactly the Hamiltonian
flow of HX. What remains to prove is the identity

However, the fact that / is a morphism of Lie algebras, and the compatibility of
d: Ω° — > Ωl with the Poisson bracket on Ώ° and the bracket on Ω2 imply that the
difference of two sides of this would-be-equality is a constant. This constant is equal
to zero since the left-hand side vanishes at e G G by definition of//., and so does
the right-hand side due to the vanishing of the Poisson bracket at e G G.
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If //α is a Casimir function, then /l(α) is central in Ωl(G). Hence α G Cent ©*,
since the map Λ, is injective. (Another proof of this fact is a direct application of
Formula (5.2).) D

Remark 8.5. It is easy to understand that the above Hamiltonians are characters of
1 -dimensional representations of G.6 Below, in Sect. 9, we discuss the Poisson-Lie
properties of characters of arbitrary representations, i.e., invariant functions on G.

We complete this digression with a general description when a dressing action
is a Hamiltonian action.

Proposition 8.6. ([35]) Let a Poisson-Lie group G with Lie algebra (5 act on a
Poisson manifold X in a Poisson-Lie way, and let H be a connected subgroup
of G with Lie algebra ϊ) c (5 such that the orthogonal complement ί)1- to I) in
(5* is a subalgebra. Then there is a natural Poisson structure on H\X such that
the mapping X — >• H\X is a mapping of Poisson manifolds. Moreover, if H is a
Poisson-Lie subgroup, i.e., ί)1- is an ideal in (5*, then the action of H on X is a
Poisson-Lie action.

Remark 8.7. One can extend this proposition to the case when H is a coisotropic
submanifold of G, i.e., a Poisson bracket of two functions vanishing on H also
vanishes on H. This condition is equivalent to the above condition if// is connected,
as shows a simple modification of the proof of Lemma 1.12.

8.2. The Case of Gjnt. Consider the (abelian in the scalar case) Lie algebra o
consisting of multiplications by functions. Consider it as a subalgebra in the Lie al-
gebra goo of differential operators. Its orthogonal complement in g^o = cjint consists
clearly of pseudodifferential symbols of degree ^ -2 , i.e., it is an ideal in gjnt. This
remains true if we consider 1 -dimensional extensions o , gDO , gint of o , goo and gint >
respectively. Therefore there is a natural Poisson structure on the quotient JΊ /6 if
gDO acts on Jί in a Poisson-Lie way.

Remark 8.8. Since the center of the Lie algebra o acts trivially in Gmt, below we
freely mix the Lie algebras o and o, and Lie groups O and 0 in our discussion.

Consider the quotient Jί/ΰ in the case Ji — Gint, or, better, in the case of a
submanifold Jt — {deg L = const φO} in Gint. We have seen that the action of
/ G o adds the term ε[/,L] to a pseudodifferential symbol

(Here ε in an infinitesimal parameter, cf. Corollary 7.9 for A — /.) Therefore this
action integrates to the action of the Lie group O of invertible functions (of the
form

O = {F\F(x) > 0 for all x}

in the real case and with the winding number 0 in the complex case) by the rule

F L = FoLoF~l .

6 Note that the tensor product of two such representations is again 1-dimensional. This is a key
reason why such functions should generate a Hopf subalgebra.
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Thus the group action on the coefficient ti-\ is U-\(x) H-> u-\(x) - t(\og F (x))' ,t =
deg L. It is easy to see that for ίφO any orbit contains only one point with u-\(x) —
const, therefore we can identify the quotient with the manifold

M = {(I + φD~l +w_2(»£>~2 + ...)£>'} C Jt, φ is a number .

Actually, this constant φ is the average value of the original coefficient u-\(x).

Lemma 8.9. The average value φ is a Casίmir function on the space Jt, i.e.,
{φ, φ} — 0 for any function φ on Jt.

Proof. Indeed, consider [cjint, gint]. The orthogonal complement to this subspace of
9int is the subset of cjDO consisting of "connections"

where K and y are numbers. The intersection of the center of gDO with this set is
spanned by the central element (0,1) and by (1,0), i.e., by u(x) = 1. The above
lemmas show that the corresponding Casimir functions on G are deg and φ respec-
tively. Moreover, an arbitrary function u(x) corresponds to a Hamiltonian which
sends

L = (l + w_ι(;c)D-1 +w_2(jc)Z)~2 + . . . )o J D
/ ̂  fu-}(x)u(x)dx ,

and the connection κO corresponds to the Hamiltonian

Thus

(1) the submanifold

= {L

is a Poisson submanifold, and we can restrict our attention to the subman-
ifold J^°

(2) any orbit of the <9-action on the submanifold Jί^ contains only one point
on Jfl Π M (i.e., with u-\ — 0), therefore one can identify Jf°/O with

° = {(1 +ι/_2(jc)Z)-2 + w_3(x)Z)-3 + . . .)D'\t = const}.

Consider the corresponding quotient Poisson structure on this manifold Ji . The
definition of the Poisson structure on the quotient gives the following algorithm: To
compute the Hamiltonian mapping on a 1-form on Jί^ we should extend this 1-
form to Jί in such a way that it vanishes on any tangent to an O-orbit vector,
and compute the Hamiltonian mapping on Jt. The result is a vector field on Jt.

To get a vector field on Jt we have to take its projection on Jt along the orbits
of O.

Launching into calculations let L G Jt^ and let α be a covector in T^M'. Recall
that Jl is an affine subspace in the affine space Jt, and that we have identification
of the dual vector space to Jt with the set of pseudodifferential symbols of the
form D~l o gD0.
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The cotangent vector space to M is a quotient-space of T^Jί, and we need to
lift α to get an element of the latter space. The above condition on this lifting α is
that ά is orthogonal to [o,L]:

(α,[/,!]) =0 for a l l / G o .

As usual, we identify α with a pseudodifferential symbol A of the form D~1A,
A being a differential operator A — Σ"=0 vt (x)Dl:

(&9δL) = Tr (A o δL), deg δL ̂  t - 1 .

Then the condition above becomes Ύτ([A,L] o /) = 0, and thus res [A,L] = 0. That
means that the lowest-order term D~*VQ(X) of A is uniquely determined by the
others (up to an additive constant). Let us identify the dual vector space to Jί
with the space of symbols with a constant lowest-order term VQ. We can write this
identification explicitly as

7 7 def 7 r^—t rA >—^ A — A — D o f ,

where the function f(x) satisfies the condition t f = res[^4,L]. Finally we ap-
ply the Hamiltonian mapping (6.1) to A. It is easy to see that the action of A differs

from the action of A by the term [/,!]. Therefore this difference is being killed
anyway by taking the quotient by the action of O. On the other hand, the coefficient
at D~l in [A,L] is 0, therefore the vector corresponding to A is already tangent to
Jί. That means that we get the usual description of the second Gelfand-Dickey
Poisson structure on the set of (pseudo Differential symbols without a subleading

term as a quotient by the action of functions: apply (6.1), but substitute such an A
(from the set of differential operators corresponding to the same covector) that the
result has a zero coefficient at D*~l. D

Remark 8.10. In fact we can describe the above manifold as a surface of codim
= 2 in the quotient of Gint by the action of functions. Indeed, the functions
deg and φ can be pushed down to the quotient, and the level sets of these functions
form a foliation of codimension 2. Above we worked with one leaf of this foliation.
In the following sections we are going to describe how to interpret these two steps
(taking the quotient and a subset) as a result of the Poisson reduction.

8.3. A Poisson Reduction. The usual notion in the Hamiltonian approach to the
classical mechanics is the symplectίc reduction. Once we know one conserved
quantity in the dynamics of a Hamiltonian system we can, reduce the dimension
of the system by two. Several quantities that are in involution make it possible to
reduce the number of degrees of freedom by twice their number. Roughly speaking,
the symplectic reduction is the description of what is possible to do without the
requirement that the quantities are in involution (and the Poisson reduction is a
generalization to the Poisson case).

To reduce a Poisson manifold one adds to the above set all the functions on
the phase space that can be expressed via the Poisson bracket and the conserved
quantities. After this procedure the set of functions obtained is closed with respect
to the Poisson bracket. Denote this Lie algebra as 9ί. The set of quantities can

be described as a Lie algebra $1 and a morphism $1 ̂  Func (Jΐ) of inclusion
of it into the Poisson algebra of the phase space Jί. Given a point m (E Jί one
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constructs a linear function

on 91, i.e., one gets a mapping μ\ Jί — >• 91*.

Definition 8.11. 77/w mapping is called the momentum mapping.

A simple verification shows that this mapping is compatible with the Poisson
structure on Jί and the Lie-Berezin-Kirillov-Kostant structure on 91*. Moreover,
the ad* -action of 9ί on 91* is compatible with the natural action of 91 on Jί (the
action of a function / E 9ί is the Hamiltonian vector field corresponding to this
function).

Definition 8.12. Fix an ad* -orbit (9 in 9X*. Then the Poisson reduction of Jί with
respect to (9 is the object described in either one of the following two ways:

(1) it is μ
(2) it is the μ-preimage of (9/aάy in

Here the quotient by the action of a Lie algebra means the same as the quotient
by the action of the corresponding group.

Remark 8.13. Starting with one Hamiltonian P (that automatically commutes with
itself), we obtain the usual reduction by two dimensions: dim 91 = dim 91* = 1,
codim 0=1, therefore μ~](0) is of codimension one and taking the quotient by
the action of 91 on μ~λ(&) kills one more dimension.

Example 8.14. Starting with two conjugate coordinates P and Q, we obtain a three-
dimensional Heisenberg algebra 91 = (P,Q,c) with c = 1 on Jί (since {P, Q} — 1 ).
The Poisson reduction with respect to 0 C 91* is nontrivial only if c\o — 1 (there
is exactly one such orbit), and it coincides with the Poisson reduction with respect
to the action of any one of P or Q. We see that if the Hamiltonians are not in
involution, it is not so effective to use them for reduction of dimension.

Remark 8.15. Suppose we start with an action of a Lie algebra (δ on a Poisson
manifold Jί that preserves the Poisson structure and symplectic leaves in Jί. For
any element X G (S we can find (locally) a Hamiltonian Hχ on Jί that defines the
same vector field on Jί as X. However, nothing guarantees that H[χj] = {HX,HY},
these two functions can differ by a Casimir function on Jί. This means that to get
a Lie subalgebra in functions, we need to consider all Hamiltonians that correspond

to a given element X G ©. It results in a central extension (δ of © by the space
of Casimir functions on Jί. After this the construction above can be carried out.
In other words, an action of © that preserves the Poisson structure on M leads

to a canonically defined central extension © and a mapping M — > © . One calls
these data the momentum mapping for the action of © on M.

8.4. The Result of the Poisson Reduction. It turns out that we work in a very rare
situation when the Poisson reduction almost coincides with taking a quotient:

Proposition 8.16. The second Gelfand-Dίckey structures on the sets

(I) of classical pseudodifferential symbols with the leading coefficient one
without the subleadίng term;
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(2) and of differential operators with the leading coefficient one without the
sub leading term\

are results of a Poisson reduction by the dressing (-adjoint) action of centrally
extended inυertible functions on the Poisson-Lie group Gmt of classical pseudo-
differential symbols and on the closed subset of differential operators respectively.

Proof. To compute the Poisson structure on the quotient Gmt/0 we apply the fact
that d is a subset of [gint, g^t]-1. Therefore the dressing action of this Lie algebra

is Hamίltonian. Consider the corresponding momentum mapping G m{ A o*. The
discussion in Sect. 8.1 shows that the central charge of μ(L) is equal to deg L.
This provides one Casimir function on o*. On the open subset in o* where the
central charge in non-zero, the symplectic leaves are of codimension two, and we
know that another Casimir function on o* corresponds to the function φ on Gmt.
Moreover, a stabilizer of an element in this open subset coincides with the center
of o, which acts trivially on Gmt. Therefore, the Poisson reduction on the preimage

Gjnt \Gjnt of this open subset coincides with taking the quotient by the action of
O on the subset {deg = const, φ = const}. And this exactly what we did in Sect.
8.1. D

Remark 8.17. Consider the restriction to the hyperplane t — 1. The KP hierarchy
([4]) usually considered as an evolution on the space of symbols of the form

D + M_! (x)D~l + w_2D~2 + . . .

We see that this is exactly the result of Poisson reduction with respect to the action
of O (or O) on Gmt. The corresponding orbit in o* is the orbit containing the
Maurer-Cartan 2-cocycle7

c(f,g)= Tr (Dog A /] o0) = -//«/£.

This shows that the KP equation is an evolution equation (=ODE) on a Poisson
submanifold of the quotient Gmt/Ad0 of the Poisson-Lie group Gmt by the adjoint
action of the group of functions with respect to multiplication. It is known also that
the usual KP hierarchy can be extended to the space of symbols of the form

in such a way that all the formulae remain the same, only the underlying manifold
changes. Therefore one can consider the whole hypersurface t = 1 in Gmt as a phase
space of the (extended) KP hierarchy.

In the following section we suggest a Poisson-Lie-group-theoretic approach to
the Hamiltonians that determine the KP hierarchy. This point of view on the KP
hierarchy is elaborated in [16], where a self-consistent ^-deformation is defined.

Remark 8.18. The same theory as above can be applied in the case of matrix
differential and matrix pseudodifferential symbols. The only significant change is the
description of the quotient of Gjnt by the adjoint action of matrix-valued functions.
Since the adjoint action of / on L = (1 + uo(x)D~} + . . .)D* and on (Ll/*)+ =
D -f \UQ (x) are related by the tth power and truncation, it is clear that the "invariant

7 The 2-cocycle which determines a central extension is naturally identified with a vector in the
dual space to this extension.
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part" of the coefficient w0 is the monodromy of the connection (Ll/*)+. On the other
hand, we can reduce a generic connection to a connection with constant diagonal
coefficients by a conjugation, and the function we conjugate by is defined up to a
multiplication by a constant diagonal matrix. The corresponding evolution system
is called the multicomponent KP hierarchy, see [5].

So an open subset in the quotient can be described as the set of operators

Here φ is a constant diagonal matrix, u-2(x) is defined up to a conjugation by a
constant diagonal matrix.

Remark 8.19. The above arguments rely on the fact that o is a subset of [ftnt^δmt]"1-
The latter set contains also an additional element D. The Hamiltonian for D is
the average value i/_2 of the coefficient u-2 (x) of the operator L in the standard
notation. Therefore the reduction consists of consideration of the level set w_ 2 =
const and the quotient by the action of translations. Say, one can fix a section in the
latter quotient by considering w_2(0) = 0 or by fixing a phase of the first Fourier
coefficient of w_2

Remark 8.20. Let us investigate the behavior of the dressing (=Radul) action under
the above reduction. We know that once we fix the average value of the coefficient
w_ι (jc), the reduction is just a quotient by the (adjoint=dressing) action of functions
on the circle. Thus the problem is reduced to the following: consider the action of
a Lie algebra (5 on Jt and take the quotient by the action of a Lie subalgebra
§ C (5. What remains of the action of (S on Jί/ξ>Ί

The natural answer is that the (Weyl) algebra Norm (§ ) /§ acts on Jt/f). Look
what it means in our case, where (5 = goo? § = o. Evidently, Norm(o) is the Lie
algebra of all differential operators of order ^ 1. Thus the Weyl algebra in this
case is the Lie algebra of vector fields. On the other hand, T. Khovanova described
in [20] an action of the Virasoro algebra on the Gelfand-Dickey manifold. It is
easy to see that this action is the above action of Vect (S1) on the Gelfand-Dickey
manifold (that leads to the Poisson action of the Virasoro algebra).

Corollary 8.21. The Khovanova action is a result of Poisson reduction applied to
the Radul action.

Remark 8.22. It is interesting to describe a Poisson version of the above picture
that includes the central charge for Virasoro in it.

9. KP Hamiltonians on the Poisson-Lίe Group

We have seen that the Poisson submanifold t — 1 of the Poisson-Lie group Gint is
the usual KP manifold with the second Gelfand-Dickey Poisson structure. However,
in the theory of integrable systems the Hamiltonians are no less important than the
Poisson structures themselves.

In this section we introduce a hierarchy of Hamiltonian equations on the
Poisson-Lie group of pseudodifferential symbols. The corresponding Hamiltonians
satisfy simple commutation relations: they are divided into two natural groups, the
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Hamiltonians in the first group {Kφ,c} commute as elements of a Heisenberg alge-
bra, the elements of the second group {Hi} are central. The usual (=reduced) KP
hierarchy is the result of the Poίsson reduction with respect to the first group of
Hamiltonians, i.e., the result of restrictions Kφ = 0, c = 1. After this reduction of
the Hamiltonians Hl became the standard local Hamiltonians of the KP theory.

Moreover, after the reduction Kφ = 0, c — 0 we get the usual Hamiltonians and
the Poisson structure of the Benney hierarchy, and the «-KdV-hierarchy is the re-
striction to a Poisson subset of the reduction Kφ — 0, c — n.

Recall that the usual Hamiltonians in the KP theory are

Hk:L = D + u0(x) + U-ι(x)D~l + u^2 O)£>~2 + - - - •-> Tr Lk, k = 1,2,...

In the standard form of the KP equation UQ vanishes, however, we postpone this
reduction until later. The principal property {//£> HI} — 0 remains true without this
restriction.

9.1. Invariant Functions are closed under Poίsson Bracket. It is known that the
Ado -invariant functions on a Poisson-Lie group G are in involution if the Poisson
structure on G is associated with an r-matrix r G Λ2(£ of the form (5.1) (see [34]).
Here we recall what remains of this property for arbitrary Poisson-Lie groups.

Proposition 9.1. Consider two Ado-invariant functions f and g on a Poisson-Lie
group G. Then the Poίsson bracket {/,#} of these functions is also AdG-invariant.

Proof. The simplest possible proof of this fact uses Proposition 8.6 in the context
of the two-sided action of G on itself. Indeed, the definition of a Poisson-Lie group
implies that the action of G x G~ on G itself by

is a Poisson-Lie action. (Here G~ is G endowed with the opposite Poisson struc-
ture.) Since the diagonal subgroup G^ C G x G~~ is a coisotropic submanifold,8 the
quotient of G by the action of GΔ has a natural Poisson structure. This is exactly
the claim we are proving. D

9.2. Invariant Functions on G mt. We know already one invariant function on Gint:
the degree of a pseudodifferential symbol. However, this function is not very in-
teresting from the point of view of Poisson geometry: it is in involution with any
function. On the other hand, this allows us to restrict our attention to any level
set of the degree function: since the exponential mapping is an isomorphism, the
mapping g ι— >• gs identifies the level sets t — a and t = sa, and preserves the adjoint
action (it should be mentioned that this mapping is in no simple relationship with
the Poisson structures on the level sets!).

Moreover, any pseudodifferential symbol L can be reduced to that with constant
coefficients by the adjoint action of the Lie group of pseudodifferential symbols
of zero order with an invertible leading coefficient. Furthermore, this reduced form
with constant coefficients is uniquely defined:

Lemma 9.2 ([7]). Suppose we work in the case of periodic scalar coefficients. Con-
sider a pseudodifferential symbol L of the order t φ 0 with the leading coefficient 1.

See the remark after Proposition 8.6.
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Then there exists a pseudodifferential symbol of the form

Q = UQ (x) + M _ I (jc)ir1 -f U-2 (x)D~2 + - -

with periodic coefficients such that UQ(X) is nowhere 0 and LQ = Q oL o Q~l has
constant coefficients. The symbol LQ is uniquely determined by L.

In the matrix case the same is true for a generic symbol L, and the normai
form LQ is determined up to a conjugation by a constant matrix.

This lemma can be proved by a simple induction over the (undetermined) coef-
ficients of the symbols LQ and Q. It is clear from this proof that the coefficient ι/c
is determined uniquely up to a multiplicative constant by the subleading coefficien!
of the symbol L.

The lemma has a direct counterpart in the case of rapidly decreasing coefficients
Constants have to be replaced by multiples of a certain function.

Corollary 9.3. Any pseudodifferential symbol L £ Gint, deg Z/ΦO, can be written in
the form L = Q^1 /"^o/βo, where the symbol LQ £ Gmt has constant coefficients,

f is an invertible function (i.e., a differential operator of order 0) and QQ £ Gmt.
The symbol LQ is uniquely determined by L, the function f is determined up to a
multiplicative constant.

Proof. Take Q — fQQ in the previous lemma. D

Thus we get the following free generators in the ring of invariant functions or
/-/

Gmt: the coefficients of the symbol LQ and the values of '-γ at different points of S

(Here we pass from a group element, i.e. an invertible function / to its logarithrr
log/ defined up to an additive constant, and then to its derivative (log/)' to reduce
the last degree of freedom. ) Define the following two sets of invariant functions or
the group Gmt (in the case of scalar coefficients).

Definition 9.4. a) For a function φ ( x ) on a circle define Kφ as

Kφ:L = (l+ u-ι (x)Z)-1 + . . .)D{ ̂  fφ (jt) w_ι (x)dx .

b) Let H-ι be the degree t of the symbol L, Hl be the coefficient at /y-0+0 />
the symbol LQ from Corollary 9.3.

The next task is to find the commutation relation for these invariant func-
tions (recall that invariant functions form a subalgebra in the Poisson algebπ
due to Proposition 9.1). As we have already noted, the functions Kφ for φ witi
/ φ (x) dx = 0, and the functions Hl are independent and generate the algebra of in-
variant functions on Gmt, moreover, Kφ=\ = H\. However, the functions Kφ can bί
recognized as characters of 1 -dimensional representations, therefore they are Hamil
tonians for dressing action of o. Hence the Hamiltonian flows for these function!
(i.e., flows of the corresponding Hamiltonian vector fields) are conjugations b}
functions. Thus the functions Kφ commute as functions in the Heisenberg algebra:

Moreover, the functions Kφ commute with //,, since Hl are invariant with respec
to the action of O by conjugation. What remains to find out is the commutatioi
relation of /^ and H .
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Lemma 9.5. The functions Hl are in involution,

We postpone the proof of this lemma until Corollary 9.12.

Remark 9.6. The description of the invariant functions Kφ generalizes literally to

the matrix case. They obviously commute as elements of the affine algebra glw. It
is interesting to generalize the functions /// to the case of matrix coefficients.

Corollary 9.7. The functions Hl can be pushed down to the result of Poίsson
reduction of G mi with respect to the dressing action of ό. Moreover, these pushes-
down are in involution on the reduced manifold.

Remark 9.8. If we consider the result of the Poisson reduction as a submanifold
Jί^ — {u-\ = 0} in Gmt, then these pushes-down are just restrictions of ad-invariant

functions to Gmt. Moreover, Jl^ is an ad-invariant submanifold (and even a sub-
group) of Gmt, and these functions are exactly ad-invariant functions on Jt®.

We should note, however, that though the subgroup ^° carries a natural Poisson
structure (as a result of Poisson reduction), it is not a Poisson-Lie subgroup of Gint.
In particular, this Poisson structure is not compatible with the group structure on

9.3. The KP Hamiltonians. Here we investigate the relations of the above Hamil-
tonians //& with the widely known KP Hamiltonians H^.

Since Tr is ad-invariant, the functions H^ are also ad-invariant, thus can be ex-
pressed via the functions Hj9j > — 1. To find these expressions, we get rid of the

restrictions u-\(x) = 0 and deg L = 1 by extending the Hamiltonians H^ to the

whole Gint\Gint by

I = ( l + w-iOt)/)-1 + ...)£>' ίi ΎτLk/t, k ^ 1 ,
~ Hff

Ho = Tr (log L-tlogD),

Here we used the good properties of the exponential mapping §int —> Gjnt to in-
troduce the powers Lα = exp(α log L) of pseudodifferential symbol L, the symbol
log has the same meaning as in Sect. 3. Note that both H-\ — H-\ and //o — HQ.
The element logZ is a natural analogue of U for an infinitesimally small ε. Since
degZ^ = £, the function Tr is well defined. Note that Tr is not defined for operators
of fractional power or for log D.

The above definition is natural analogue of usual Hamiltonians for Gelfand-
Dickey structures.

Theorem 9.9. Consider the following system of differential equations on a function
of variables tk,k ^ 1, with values Gmt:
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(1) These equations are compatible, Hamiltonian, and their Hamiltonians

^j^Hk are in involution with respect to the second Gelfand-Dickey

bracket on G ιτΛ .
(2) These equations preserve the submanifolds deg L = const;
(3) When restricted to the submanifold deg L = 1 they give the (extended)

hierarchy of KP equations.
(4) After the Poisson reduction by the action of functions they give the usual

hierarchy of KP equations.
(5) When restricted to the submanifold of differential operators of order n

they give the GL^-KdV hierarchy.

Proof. The proof takes the rest of this section.

Proposition 9.10. Define universal polynomials ffl^ of the variables (t',x\,X2. .)
by the identity

in Q[[Γ]]. Then Hk = j^k+λ( jf-\H^Hλ,...,Hk\k ^ \,Hk = Hk for k = 0,-1.

Moreover,
i

Hk are polynomials in {//&} and H_λ .

Proof. We need to prove only the last part of the proposition. However, by homo-
geneity the polynomial ffl^ is linear in txk, therefore Hk+\ is a polynomial in Hk+\
ιmdHll9H-ι,HQ, . . .,Hk. D

Example 9.11.

1 ^2 HiTT TJ , A fτΔ

= tt-\ϊl\ 4- -nQ —
2

^0 ^0lO12

Corollary 9.12. The functions from the families {H^} and {/4} ^r^ ̂  involution.

Proof. It is sufficient to proof that H^ are in involution. However, since H-\ —
deg, HQ — φ, these two functions are Casimir functions. Let us show that the Hamil-
tonian flow for the function //#, k ^ 1 can be written in a familiar form:

Lemma 9.13. The flow for Hk,k ^ 1, w

£ = k- [(Lk")+,L] = -k- [(!*/')-,£] . ί = deglΦO .

Here the symbol Lk/t has an integer order k, therefore the operation ()+ of taking
the differential part makes sense.
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Proof. Fix a symbol L of degree t. Now the differential of the function Hk at
L G Gint can be identified with a symbol of the form X = D~t oX9 where X is a
differential symbol:

Tr (L + <5L/A - Tr I,*/' = Tr (IT* oXoδL).

Let us show that we can take Jf = *L~f~l.
If the symbol L = LQ has constant coefficients, then the canonically defined

differential part of X also has constant coefficients. Thus to find such an X it is
sufficient to consider symbols δL also with constant coefficients. In this case the

--ileft-hand side is Tr (yLJ o δL$) up to terms of order o(3L\ therefore for symbols
with constant coefficients

x-kύ~λ

~ 7 °
If the coefficients of a symbol L are not constant, L can be represented as

QL$Q~l, where LQ has constant coefficients, and Q is an invertible pseudodifferential
symbol of degree 0. Since the function Hk is invariant with respect to conjugation
by Q, the differential of Hk at L is the image of the differential at LQ by the action
of this conjugation. Therefore in general

t

Now we can apply Formula (6.1) and get

dtk

D

Moreover, the second formula of Lemma 9.13 shows that the flow for Hk
changes a symbol to a conjugated one, therefore the ad-invariant function Hj re-

mains constant on a trajectory of the flow. Thus the commutator of Hk and H}

vanishes. D

This finishes the proof of the theorem. D

It is also known that the same system of evolution equations restricted to the

submanifold {L = D + ψ(x)D~lψ(x)} (where ψ(x) is a complex-valued function on
the circle) generates the NLS hierarchy. The classical NLS-equation corresponds to
the flow with time t^.

Now we turn back to the relation of two families of Hamiltonians.

Remark 9.14. The formulae relating the functions Hk and Hk show that the func-
tions Hk have a pole of order k on the hypersurface deg L = 0 in Gint. Therefore
it is interesting to consider the flows for Hk instead of flows for Hk. Although
Lemma 9.2 is not valid if we drop the restriction ίφO (one cannot make the co-
efficient u-\ (x) constant), and the functions Hk have poles Gjnt when considered

on the whole group Gmt, we can fix the Hamiltonians by restricting to a smaller
submanifold.

Consider a subgroup M C Gint consisting of pseudodifferential symbols with a
constant subleading coefficient. It is easy to check that Lemma 9.2 remains valid
for this subgroup even without the restriction rφO. Hence the functions Hk extend
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smoothly on Jί. By our definition of functions Hk what we get on Jt Π {L\ degL =
0} is the well-known Benney hierarchy of Hamiltonian equations.

Remark 9.15. We would like to emphasize here that the above systems preserve
deg L, and can be obtained for any deg L = t by taking the tth power of pseu-
dodifferential symbols from the usual KP hierarchy. Indeed, the operation of taking
the tth power identifies level set deg L = 1 with the level set deg L — t (due to
existence of good exp and log), and it is easy to see that the above systems of
differential equations are identified under this transformation. Moreover, the Hamil-
tonian functions are also identified (up to a multiplicative constant t). However,
the Poisson structures are not identified, so in fact we get different Hamiltonian
realizations of the same hierarchy (cf. [11]).

Thus it is interesting to consider the above systems for a fixed (real or complex)
number t. As we have seen above, for an integer t this system allows an additional
restriction to a submanifold formed by differential operators.

These evolution equations define an infinite set of commuting flows.

Remark 9.16. It is a widespread belief that the ^-KdV systems and KP system
(with some natural restrictions) are completely integrable with respect to the second
Gelfand-Dickey structure according to any of the (equivalent for finite-dimensional
systems) definitions of this notion. In particular, this would mean that the result
of the Poisson reduction of Gmt with respect to the action of the Lie algebra of
invariant functions has a trivial Poisson structure. It is interesting to check this fact
and find a general Poisson-Lie-group-theoretic approach to this question.

Remark 9.17. Consider a Poisson-Lie subgroup Gint of Gmt. We can apply all what
we did with Gmt directly to this subgroup. However, in this case we should take
the Poisson reduction with respect to a much bigger subgroup of the dual group.
Indeed, [gint ?9int] consists of pseudodifferential symbols of order ^ —3, therefore
the orthogonal complement is the vector space &^\ of all differential operators of
order rg 1.

Obviously one can reduce any pseudodifferential symbol of order —1 with an
invertible leading coefficient to an operator with constant coefficients by a diffeo-
morphism of the circle and by a conjugation with an invertible symbol of order 0.
This means that aά^-inυariant and ^^ι-invariant functions on this open subset
of Gjnt are exact analogues of the above functions /// (and concide with them after
the restriction u-\ =const). We see that though //7's have singularity on Glnt, this
singularity "can be compensated" by the fact that the group of diffeomorphisms of
Sl acts on Gιnt and does not act on Gmt as on Poisson-Lie groups.

9.4. PoLsson-Lie Structure and the Exponential Mapping. We want to provide
here a different proof of Proposition 9.1, since it uses an interesting fact that seems
to be unknown: the relation between the Poisson structure on the Poisson-Lie group
and on the corresponding Lie algebra. However, to do this we need to state this
relation first.

Consider a Poisson-Lie group G and its Lie bialgebra (©, ©*). The vector space
(5 carries a natural linear Poisson structure, since (5 is identified with a dual space
to the Lie algebra (5*. However, one can also define another Poisson structure on
(an open subset of) (£. Indeed, in the points where the exponential mapping is a
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diffeomorphism we can consider the inverse image of the Poisson structure on G.
It is easy to see that the former Poisson structure is a linear part of the latter. We
are going to characterize the relation between these two Poisson structures more
precisely.

For this purpose we recall that a Poisson structure on a manifold Jί can be
described by a bivector field η (i.e., a section of

Obviously, for any Poisson structure one can find the corresponding bivector
field. Moreover, this field uniquely determines this Poisson structure.

Lemma 9.18. Let ηlιn be a bivector field on © corresponding to the linear Poisson
structure on ©, ηPL be a bivector field on © corresponding to the inverse image
of the Poisson structure on G by the exponential mapping. Then

,Λιn (9.1)

Here ad^ maps © —> ©, for a linear operator M:V-+V we denote by λ2M and
Λ2M the following mappings Λ2V —> Λ2V:

λ2M :a/\b^Ma/\b + a/\ Mb, Λ2M : a Λ b »-> Ma Λ Mb .

Proof. We begin with recalling the following simple fact from the theory of Lie
groups. Consider an element X in a Lie algebra ©. The differential Jexp \χ of the
exponential mapping identifies the tangent space 7>© = © with TQXpX G. On the
other hand, we can identify TexpX G with © via left-invariant vector fields, i.e.,
using the differential d&^x of the right translation on G.

Lemma 9.19. These two identifications are related by

ad*

Proof. We provide a proof here since it is useful in the proof of the previous
lemma. For a fixed t denote the mapping

by F(t). We express the derivative of the exponential mapping as

d\x=XoexptX = (rfΛexptxb) o F(t) .

Now the rule
exp (t + δt)X = exp tX exp δtX

gives us after differentiation in x using the Leibniz

F(t + δt) W d3t^btχ O (rf^exptf ° F(t))
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or
F(t + δt) « F(t) + Ad^tf oF(&) .

Thus

F'(0 = ead'^F'(0), here ' = ^- .
at

Evidently F'(0) = id, which proves the lemma. D

We proceed with the proof of Lemma 9.18 in the same way. The compatibility
condition of the multiplication mapping with the Poisson structure can be written
as

η\gιg2 = Λ2d@92 . η\gι+Λ2d&gι η\92 .

Here $t and <£ denote the mappings of right and left translations on G. Denote
Λ2&QXp(-tχ)η\eχptχ as H(t). Now the substitution g\ — exptY", g2 = expδtX gives
us

H'(t) = Λ2etaάχH'(0) = et}2 ad*#'(0) .

And finally //'(()) coincides with ηlm\χ, which finishes the proof of the lemma. D

9.5. A Different Proof of Closedness under Poisson Bracket. Here we provide
another proof of Proposition 9.1. This proof is based on Formula (9.1) from Lemma
9.18.

To compute the Poisson bracket of functions on G we can consider their images
under the exponential mapping. After this we can apply Formula (9.1):

{ f , g}\x =

However, if / and g correspond to invariant functions on G, then they are ad®-
invariant functions on the Lie algebra (5, therefore ad£ df\χ =0, and ad£ dg\χ
— 0. Hence the complicated expression we pair with ηlιn coincides with df\χ f\dg\χ.
Thus the Poisson bracket {/, g} of these functions on G goes under the exponential
mapping into the Poisson bracket on the Lie algebra (5. Now the only fact we need
to prove is the linearized version of Proposition 9.1:

Lemma 9.20. Let (5 be a Lie bialgebra. Consider the corresponding linear Poisson
structure on (5. Then the Poisson bracket of two ad® -invariant functions on (5 is
ad® -invariant.

Proof. Note first that on the dual space ©* to a Lie algebra an Ad^ -invariant
function is in involution with any function on (5*. Consider now two covectors
α,/J G Tχ@. These covectors are differentials of ad© -invariant functions / and g iff
aάχ α = ad^ β — 0. Consider the Lie bracket of (5* as a mapping η : (5 — > (5 0 ©.
One can express {f,g} \x as

fabr,αΛ/ϊ).

To show that the Poisson bracket of / and g is ad© -invariant, we should show that

(η\Mgx, Ad* α Λ Ad^ β) = (η\X9v Λ β) ,

or, infinitesimally, that

, oc Λ β) + (η\χ, ad^ α Λ β) + (η\Xt α Λ ad*γ β) = 0 .
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However, we know that η is 1-cocycle of © with coefficients in © <8> ©, therefore

(η\[YΛ a Λ β) + (η\Xt ad*γ a Λ β} + (η\Xι a Λ ad^ β)

- (η\Yt adl α Λ β) - (η\γ, a Λ ad^ β} = 0 .

Now applying the above conditions on α and β we get the required statement. D

10. 4- Dimensional Extension and the Reduced KdV and KP Hierarchies

10.1. "Universal" Central Extension and the Lie Bialgebra Structure. In this sec-
tion we give a construction that results in the following objects:

(1) A (trivial) central extension of the group Gint together with a Poisson-Lie
structure on it (a Poisson-Lie central ex tent ion);

(2) An extension of the Heisenberg algebra that sits inside the dual group;
(3) A quotient by the action of the extension of the Heisenberg algebra on the

extension of Gmt.

Moreover, it turns out that this quotient can be naturally identified with the phase
space of the reduced KP hierarchy.

In some way this construction is a little bit "more canonical" than the construc-
tion in Sect. 4. There we defined a central extension, the corresponding dual object
(i.e., an extension by log D), and a fusion of these two extensions, i.e., a central
extension g of the extension by log D. After this we decomposed the algebra into
a direct sum, that gave us a Manin triple.

However, the ambiguity of this construction is in the fact that the Lie algebra
of pseudodifferential symbols (say, on S { ) has in fact two central extensions: one
is given by the cocycle c\ogD = c from (2.4), another one by the cocycle cx = c°
from (2.5):

c.(L,M) = Tr([ ,Z] oM) . (10.1)

The 2-cocycle properties are insured by the operations

being outer derivations of the Lie algebra g: they send (periodic or rapidly de-
creasing) pseudodifferential symbols into themselves and preserve the Killing form.
In fact the cocycle cx is much more simple than the cocycle c = c\ogD: it gives a
trivial extension of the differential part goo of g, and moreover, it even vanishes
on gD0. (Recall that the cocycle c\ogD gives the Virasoro extension when restricted
to the algebra of vector fields.) Therefore before formulation of Theorem 2.9 we
should have chosen a central extension to work with. A different choice of a central
extension would result in a different theorem.

We would like to stress here that it is possible to postpone this arbitrariness
much longer: we can take the universal central extension, and then the arbitrariness
is postponed until the choice of decomposition of the extended algebra into a sum
of two isotropic subalgebras. In particular, there is a Poisson-Lie structure on any
central extension of g.

To show this we need the following generalization of Lemma 4. 1 :

Lemma 10.1. Let © be a Lie algebra with an ad-invariant bilinear pairing (,). Let
3) be a vector space of derivations of (5 that are skew-symmetric with respect to
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(,). Suppose that a commutator of any two derivations in 3) is an inner derivation
o/©. Consider an arbitrary extension

of © corresponding to this "action" of the abelian Lie algebra 3> — > Out®. Fix a
splitting © = © 0 2.

Let @* be the dual space to 2. Then the vector space

§de = © e ^* = © e 2 Θ ^*

carries a natural bracket [,]̂  with [^de-invariant bilinear form (,)^ Here the
only non-zero brackets in ©^ are

[d,X]de = d(X) + Σ([ύM]<|,X)C,, X, X,, X2 e ©, d, dι, d2

the pairing remains the same on ©, the subspace © is orthogonal to &(&&*,
and (dl,dJ)de = (Ci9Cj)de = 0, (d\C^de = δlj. In these formulae (dl) and (C, ) are
dual bases of the spaces 2 and Qi* correspondingly.

The bracket and the splitting of © induce the mapping [,]̂  : 2 0 2 —> ©. If
the ske\v symmetric 4-linear form on 2

vanishes, the above bracket on ©^ defines a Lie algebra structure with ad-
invariant bilinear form (,)</«?•

The proof of this lemma consists of a direct calculation. In particular, if
dim 2 < 4, the bracket always satisfies the Jacobi identity. In what follows we need
the case dim 2 = 2. Note that in the case dim 2 = 1 we automatically get an ex-
tension of © by 2 basing only on the outer action. In the case of dim 2 > 1 we
need to specify the extension separately.

Return to the 2-dimensional central extension of the Lie algebra of differential
operators by elements Cx and Cιogz) (the cocycles cx, cιogz) are naturally identified
with the coefficients at these elements, i.e., elements of the dual space):

Consider a corresponding exact sequence of dual spaces:

Here g is self-dual, thus one can identify g* with g using the Killing form. The
above description gives a natural construction of the space (Cx, CιogD}* and a lifting
of this space into g* .

In particular, starting with 2 = (ad^adiogz)) we obtain the following central
extension of the Lie algebra:

g* = {L\L = L + ax + blogD}, L is a pseudodifferential symbol ,
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by
cx(L,M) = Tr ([jc,ϊ] oM), L G g*,M G g; c^logZ)) - 0 ,

(these rules uniquely determine cx by the skew-symmetry property), and

clogD(Z,M) = Tr ([log D,L\ oM), L G g*,M e 9; clogD (x,log£>) - 0 .

Theorem 10.2. Γfese ίw0 2-cochaίns are nontrivial independent cocycles for the
Lie algebra g*. 77ze corresponding central extension ̂  by elements Cx and C\og£>
carries a natural ad-invariant inner product defined by the rule (A, B)^
on the subspace of pseudodifferential symbols, and by

being the only non-vanishing pairings including the elements x, logD, CX9 and
CΊogD

Remark 10.3. It is easy to see that the above laws have some strange consequences,
e.g. the pseudodifferential symbol 1 ceases to be in the center of the algebra:

, [UθgD] - Cx.

However, they are direct counterparts of Lemma 4.1.

We constructed the Lie algebra g^ in order to determine a Lie bialgebra struc-
ture on the 2-dimensional central extension of the Lie algebra of differential oper-
ators with periodic coefficients. This Lie bialgebra structure is associated with the
structure of a Manin triple, i.e., a decomposition into a direct sum, on the alge-
bra g(2). One subspace of this decomposition includes differential operators and the
elements Cx and CιogD, another includes integral pseudodifferential symbols and x
and log Z), completely analogous to the case of the 1 -dimensional central extension
in Sect. 4. However, there is another decomposition: the first subspace includes
differential operators and Cιog£, #, the second one consists of integral symbols and
Cjc, log/λ Similar to the previous considerations, both decompositions determine a
Poisson-Lie group structure on the Lie group associated with the second compo-
nent.9 (We actually got a one-parameter family of different extensions of gDo: the
first half always contains subalgebra gDO and is contained in the 2-dimensional cen-
tral extension of goo x* (•*}• The other half has yet many more degrees of freedom,
thus we can provide a lot of different Poisson-Lie structures on any member of this
family.) We start with the first decomposition.

10.2. The First Decomposition. The corresponding extension Gmt of the Lie group
of pseudodifferential symbols of negative order is generated by Dl ', esx and (1 +
L-i), degL_ι ^ — 1. Therefore the generic element of this group is

^(l+L-i)/)'. (10.2)

The center of the dual Lie algebra is 3-dimensional and contains elements Cx,C\Qgrj
and 1. To describe the Casimir functions on the group we note that the correspond-
ing left-and-right-invariant 1 -forms on the Lie group Gint are ds.dt and dφ - ids
(here φ is the mean value of the leading coefficient u-\ of the symbol Z/_ι) . There-
fore the corresponding Casimir functions with left-invariant differentials are s and t

9 The first component cannot be integrated to a group.
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from (10.2). Though the third 1-form is not closed, it can be corrected by addition
of the product of the first by the antidifferential of the second to get dφ. This gives
us three Casimir functions s, t, and φ on the group.

Remark 10.4. We do not know any algebraic explanation of this anomaly, when
we should correct one left (and right) invariant 1-form by some combination of
others to get a closed form, i.e., a Casimir function.

Consider now the Poisson structure on the group Gjnt and its relation to the
Poisson structure on the_group Gmt investigated above. It is easy to see that Gint is
a Poisson subspace of Gjnt, because this is true for the corresponding Poisson-Lie
algebras. Moreover, the vector space generated by x is also a Poisson-Lie subalge-
bra, hence the action by (say) left multiplication preserves a Poisson structure.

Thus as a Poisson manifold Gint is a direct product of Gint and the 1-parameter
subgroup {esx}.

However, as a group it is only a semidirect product, therefore we should begin
our search for invariant functions from scratch. It turns out that on Gint there are
no invariant functions at all but the functions of t and s. Indeed, for a generic
pair (s,t) the action of the Lie algebra of integral symbols spans the whole tangent
space.

Consider now the (left) dressing action. Here_we show that there is no essential
difference between the quotients of Gjnt and Gjnt by the dressing action of the
algebra of functions.

Indeed, this action obviously goes via the non-extended Lie algebra of differential
operators (that is the same for both cases). The action on the Poisson submanifold
Gint is the same. Now the action of {esx} by left multiplication preserves both the
Poisson structure and left-invariant 1-forms, therefore it commutes with the dressing
action. Therefore the left dressing action on s = SQ is isomorphic to the left dressing
action on s = Q.

In the same way if we consider the translation of the right dressing action from
s = SQ to s = 0 by left action of {esx}, it differs from the right dressing action
on s = 0 by conjugation by eSQX on s — 0, which preserves the Poisson structure.
This conjugation preserves the decomposition of g into gmt 0 cjDO and preserves the
invariant form on g. This allows us to conclude that instead of this conjugation on

Gint one can make a conjugation on gDO: the action of X on eSQXL0e~SQX is the same
as the action of e~~SQXXeSQX on LQ (i.e., the second tangent vector field goes to the
first by the mapping L ι—» es°xLe~SQX). We see that there is no essential difference
between the quotients of Gjnt and Gjnt by the dressing action of the algebra of
functions, the only one is the absence of invariant functions away from special
submanifolds.

10.3. The Second Decomposition. Consider now the second decomposition into a
sum of two isotropic subalgebras. To simplify the notations we continue to de-
note these subspaces by g^too though they differ from the subspaces in the last
paragraphs.

Since Cx generates a Poisson-Lie subalgebra in gint, the left multiplication by

the corresponding 1-parameter subgroup preserves the Poisson structure on Gjnt.
Moreover, this subgroup is in the center of Gjnt, thus as a Lie group Gmt is a direct
product Gjnt x IR. Therefore, except for the coefficient at Cx in esCχ, the invariant
functions on Gmt_are the same as on Gint (and, in particular, all the KP-Hamiltonians
are invariant on Gint).
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However, Glnt is not a direct product as a Poisson manifold. Indeed, Gint is not
a Poisson submanifold, since gmt is not a Poisson-Lie subalgebra. The difference

between the Poisson structure on Gjnt and the Poisson structure on Gint x IR is a
2-vector field

d d

on Gmt. Here s is a parameter on {VCχ}, -jξ is a vector field on Gjnt given at a

point L G Gint by [x,L].
The center of gDO is 1 -dimensional and is generated by C\ogD The corresponding

Casimir function on Gjnt is t.
Consider now the dressing action by the algebra of functions. In this case we

consider not only the central extension of this algebra by the element Cιogz>, but
also the extension by the element x. Now the element 1 of this algebra ceases to
be in the center, since

[1,*] = -Ciogz) -

This algebra continues to act by conjugation, as in the case of Gjnt. It is clear that
the dressing action of periodic functions is the same as in the case of Gmt, the
element x acts by — Jl, and the center acts trivially. We see that the Hamiltonians

for the action are values of the leading coefficient u-\ of L_ι in the representation
esCχ (1 -\-L^\)Dl at different points of the line:

Hf = //(*)"-!(*) <fr, HCίogD = ί, Hx=s.
o

The Poisson reduction again coincides with the quotient. Since a choice of the
point in the coalgebra fixes t, s, anάu-\(x), we can see that the Poisson reduction
corresponds to a choice of values of these parameters. Different values of u-\ and
s correspond to a choice of different points on a coadjoint orbit if ίφO, therefore
they give the same Poisson reduction.

Thus for a fixed t φ 0 the Poisson reduction of Gιnt by the dressing action of
the algebra of functions is exactly the reduced KP Poisson structure, and the KP
Hamiltonians are exactly the images of the invariant functions on the Poisson-Lie
group.

The reduced rc-KdV hierarchy can be obtained in the same way by taking a
Poisson submanifold in the hypersurface t = n G N.

10.4. The Fourier Transform. Let us return for a moment to the non-extended
Lie algebra of pseudodifferential symbols. Throughout this paper we considered
pseudodifferential symbols with smooth (periodic) coefficients um (x). Consider now
the coordinate change on the circle S{ : x = Πogz, i.e., consider this circle as a
unit circle in the complex z-plane. Now instead of functions on S1 we can consider,
say, functions in the unit disk, or, better, functions on an infinitesimally small circle,
i.e., the algebra (C((l/z)) of jets of rational functions at z = oo (this choice is better
than z = 0, as shows the following discussion).

Moreover, since j^ = zz jr, any pseudodifferential symbol on S1 can be written
as a pseudodifferential symbol in z with coefficients in functions on {|z| = 1}. The
composition law of pseudodifferential symbols in this basis is given by the same
Formula (2.1) with the only changes of x to z, and of ξ to £, where ζ represents
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j-z . Thus instead of going via a new coordinate z we could as well consider pseu-

dodifferential symbols with coefficients in <E((x~1)) from the beginning. However,
in the above approach it is clearer that the formula for the Tr can be extended to
this case. Now it can be written in a symmetrical form:

This formula manifests the new feature of the new algebra we consider: it has
an additional symmetry between z and ζ. Indeed, an element of the algebra is a
Laurent series in ζ~~l that has only a finite number of terms with positive powers of
ζ, and a coefficient at ζm is a Laurent series in z"1 that has only a finite number of
terms with positive powers of z. To achieve a complete symmetry we can demand
the orders of poles at z = oo of coefficients um (z) to be bounded from above.

This algebra allows a remarkable automorphism of order 4: the Fourier trans-
form, which sends z to iζ, and ζtoiz. It is easy to see that the Fourier transform
determines an involution in the #2(9), which interchanges C\ogD and Cx = C]ogz.

Thus this involution can be extended to the Lie algebras 9,9* and g(2).
The Fourier-transformed constructions of Manin triples define Lie bialgebra

structures on the Lie algebras of pseudodifferential symbols of different kinds with
analytic coefficients at z = oo. It would be very interesting to give an independent
description of the Poisson-Lie groups corresponding to these Lie bialgebras.

11. Results for Hopf Algebras

This section plays a separate role: we allow ourselves to be vague and succinct and
discuss some unpolished ideas and open questions. Here we provide the interpre-
tation of several results of this paper from the viewpoint of Hopf algebras. Recall
that a Poisson-Lie group is the one-term expansion at h = 0 of a deformation of a
commutative Hopf algebra. Thus we can, for example, conjecture that there exists
a Hopf algebra with a parameter h such that at h = 0 we get the group Gmt, and
the linear part of this deformation corresponds to the Poisson structure on Gint.

10

A naturally arising question is for which of the results obtained here there exists a
generalization to an arbitrary h.

ILL KP Hamίltonίans. First of all, our description of KP-Hamiltonians allows
translation for an arbitrary Hopf algebra instead of the ring of functions on G.
Indeed, these Hamiltonίans are, first of all, ad-invariant functions on the group.
However, in the case of Hopf algebras there are two possibilities for the ad-action.
One can consider either left- or right-adjoint action of the dual Hopf algebra H* on
H. The invariant functions with respect to such an action (i.e., functions on which
H* acts as the counit ε) form an algebra.

Second, the KP-Hamiltonians form a center of the Lie algebra of ad-invariant
functions with respect to the Poisson bracket. The corresponding notion for an
arbitrary Hopf algebra is the notion of the center of the associative algebra (with
respect to the */^-product in the case of deformation).

Definition 11.1. A (left) KP-Hamilίonian in a Hopf algebra IH is an element of
the center of the associative subalgebra of functions that are invariant with respect

This construction has been (formally) carried out in [40].
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to the (left) adjoint action:

JT0>(Ή) = CentH^V), HHaV) = {/ e H | ad<L)/ = ε(g)f Vg G H*} .

Here ε w counit for H*,ad^I) is the mentioned above left adjoint action.

To explain the definition and relation to the formula in the Poisson-Lie case

Jf^ (Group) - Cent Func (Group)Ad°rouP

recall that for an action of an associative algebra j/ with a counit ε (say, for a
universal enveloping algebra £/(©)) the set of fixed vectors in a representation V
can be written as

V* = {v G V I av = ε (a) v Va G so} .

Conjecture 11.2. For an appropriate quantization J^ of Gint the limit of Jf 2P (^h\
h —> 0, coincides with the algebra generated by KP Hamiltonians on Gjnt.

This would mean that any KP Hamiltonian survives after quantization.

11.2. WQQ and the Second KP Poisson Structure. Suppose again that we could
quantize the group Gmt. Denote by Jf/, the corresponding Hopf algebra, J^Q being
the Hopf algebra of functions on Gmt.

It is a widespread belief that so-called W^ algebra (i.e., the modified in one
way or another the Lie algebra of differential operators cjDO) is closely related to
the KP Poisson structure. Here we show they are indeed related, and the relation
is like the relation between two double limits with interchanged orders. Here for
simplicity we work with the extended KP manifold

{L = D + u0 (x) + z/_! (x)D~l + w-2 (x)D~2 + . . .} .

We start with a verbal description of what we want to do. Consider first the non-
quantized variant. The exponential mapping gint —» Gmt identifies the Poisson struc-
tures on these two Poisson manifolds (recall that gint = g^Q, thus it carries a Poisson
structure) modulo a quadratic term in the origin. The hypersurface {degl = const}
corresponds under this identification to the hyperplane c = const in g^o (here c
is the central charge for gDO). We see that the Poisson algebra of functions on
{α G g^o c(α) — const} is a good approximation to the Poisson algebra of func-

tions on {L G Gmt |degZ — const} if L is close enough to identity. (In fact we
should consider both small degL and "small" coefficients M/(;c)of L). Slightly abus-
ing the standard notations, we can denote the Poisson algebra of functions on
{L G Gint I degL = δ} as W&. (The "genuine" ^-algebras are defined only for posi-

tive integral δ = k and they are not functions on {L G Gjnt | degL = k}9 but on the
Poisson submanifold 3)^ of purely differential operators.)

On the other hand, (polynomial) functions on g^Q can be described as the sym-
metric algebra of functions S* (gDO)» and the Poisson bracket on this Poisson algebra
is the natural Lie algebra structure on 5* (goo) Hence we can identify the functions
on {α G g^o I c (°0 — const} with the quotient Poisson algebra S*(gDO)/(c = const).

Thus the above relation can be written as
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However, the Poisson algebra S* (©) is not a very natural object to study. The
only place where it appears naturally is the semiclassical limit of the associative
algebra £/(©). It is natural to conjecture that since the left-hand side has a natural
quantization U (cjDo)/(c ~ <^)> me right-hand side should also have such a quantiza-
tion that preserves the above approximation. Let us investigate such a quantization,
or, better, a quantization of the whole Gint as above.

Consider the function deg on Gint. The extended KP manifold is the level set
deg L = I. Thus the algebra of functions on it is

Wλ= JTo/(deg = 1 ) .

We saw in Sect. 6 that the function deg is the Casimir function with respect to the
Poisson structure. Hence it remains in the center of tffh modulo the second term
in the expansion in h. It is reasonable to conjecture that it remains in the center
for any h. Since we need this conjecture to define quantizations of algebras W ̂
let us conjecture it. Then the quantization of W & is J^/j/(deg = (5), in particular,
quantization of KP structure is the associative algebra J f/,/ (deg = 1 ).

On the other hand, consider an arbitrary Hopf algebra H/j parametrized by h.
Suppose that H0 = Func (G), and the first term in h near h — 0 of this deformation
corresponds to some Poisson-Lie structure on G with the corresponding Lie bialge-
bra (©,©*). Consider the linearization of this Poisson structure near the unity. It
clearly coincides with the Lie-Beresin-Kirillov-Kostant structure on the dual space
© to the Lie algebra ©*.

However, the linearization itself is a result of a limit process, when we consider
the manifold in question in bigger and bigger magnification. Thus we get the struc-
ture of the bialgebra as a result of two subsequent limit processes: one corresponds
to h —> 0, another one to the characteristic length unit (on the group G) going to 0.
However, we can get the same Poisson structure as a limit when only h goes to 0,
but for this we should start from a different family of associative algebras £/(©*Λ)).

Here for any Lie algebra © we denote by ©(A) a Lie algebra that is isomorphic to
© as a vector space and carries a commutator

(It is evidently just a rescaling of © by the factor of h if /zφO.) Indeed, identify
a polynomial on ©(Λ) = ©, i.e., an element of S*©^) = S9®, with an element

of £/(©(£)) by symmetrization. Now if we could interchange two limits in the
right-hand side of

limU(®(h\) = lim lim H/, ,
Λ-»0 V V ;; scale-+0/z-»0

then we would "identify" £/(©(/>)) with a small-scale limit (^linearization) of H/,.

In other words, IH^ would be a non-linear version of C/(©(Λ)) — £/(©).

Let us apply this discussion to the case G = Gint. We can describe the universal
enveloping algebra of centrally extended differential operators as a "linearization" of
the would-be deformation of quantization of the group Gmt (up to the exchange of
limits order). When we reduce the scale the hypersurface deg = 1 goes further and
further from the origin. Since the element of cjDO that corresponds to the linearization
of deg is the central element Ciog£> E cjDO, then the best approximation to deg = 1 we
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can choose is c = oo. Thus

t/(gDO)/(c = oo) is a linearization of quantum KP manifold

(up to an interchange of two limits).
We can make this argument a little bit more precise by introducing one more

parameter δ and considering a limit of

when £ — » 0. In the classical picture (h — 0) this corresponds to consideration of
pseudodifferential operators of a very small order. This hypersurface contains a part
that is close to the unit element of the group, thus it allows a linearization. The
above identity becomes

lim(t/(© ( Λ ))/(c = /(A))) - lim lim lim JfA/(deg = δ) ,
h—*Q scale-^0 δ— »0 A— >0

here we need to introduce an unknown function f(h) that describes the relation
of the central charge with the expansion parameter h on the left-hand side. While
the former formula did not allow a precise variant, with the latter formula we can
expect that the associative algebra £/(©)/ (c = const) can be obtained as an honest
limit of the right-hand side as the scale and the parameters δ and h go to 0 with
some particular relations between them. Thus we come to

Conjecture 11.3. For an appropriate quantization Jf^ of Gmt one can realize
= y) as a limit

deg = δ) ,
scale A/*— >0

here 7 is an arbitrary number, in the limit process the variables decay subject to
a certain relation that depends on y. Here "scale" under the limit sign means that
we identify different algebras J^y(deg = δ) using some analogue of rescaling in a
non-local situation.

Remark 11.4. Having appeared in physics literature on JF-algebras the limit deg i-»
oo (on the submanifolds of differential operators of growing size, what is irrelevant)
can be viewed in the framework of the Poisson-Lie group Gιnt. In our description
we consider a hypersurface in a very small neighborhood of unity (hence of a small
deg) instead, but since the Plank constant h decreases, we should rescale our picture
to preserve the commutation relations (this is the standard process of linerization).
Thus in the rescaled coordinates the hypersurface goes to infinity (if we preserve
the degree), i.e., the effective central charge we consider increases. In other words,
we look at a family of algebras with very small central charges, but if one considers
approximate isomorphisms of those algebras with a fixed one, the central charge in
the latter algebra goes to infinity. This is the relation of our description with the
physical ones.
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