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Abstract: We examine the BRS cohomology of chiral matter in N = 1, D — 4 super-
symmetry to determine a general form of composite superfield operators which
can suffer from supersymmetry anomalies. Composite superfield operators Ψ(a,b)

are products of the elementary chiral superfields S and S and the derivative
operators D^Dβ and d^. Such superfields Ψ(a,b) can be chosen to have "0" sym-

metrized undotted indices α, and "£" symmetrized dotted indices βj. The result

derived here is that each composite superfield Ψ(a,b) is subject to potential su-
persymmetry anomalies if a — b is an odd number, which means that Ψ(a,b) is a

fermionic superfield.

1. Introduction

The only known candidate for a unified theory of all matter and forces is super-
string theory, but there are two major obstacles to making a comparison between
this theory and experiment. The first problem is to discover how and why su-
persymmetry gets broken, preferably without generating a ridiculously huge cos-
mological constant. The second problem is to explain why our own universe is
picked out from other possibilities. In a recent book written for the general pub-
lic [15], Weinberg has expressed some doubt whether either of these questions
has a mathematical answer-and suggested that the explanation may simply be
that if our universe were not as it is, we wouldn't be here to ask the ques-
tion.

But of course this "explanation" is a last resort. Our purpose here is to continue
the search for supersymmetry anomalies. If these exist, their elimination would
naturally be expected to impose restrictions on the possible superstring theories.
In addition, it has been conjectured [5] that such anomalies might also provide
a natural mechanism whereby "supersymmetry breaks itself," while at the same
time retaining the cosmological constant at the zero value it naturally has in many
unbroken supersymmetric theories.
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The essential missing link in this program is that, as yet, there has been no
calculation of a non-zero coefficient for any supersymmetry anomaly. Efforts in this
direction will be reported elsewhere.

In this paper, we work out in detail the cohomology of the BRS operator de-
fined by the supersymmetry invariance of chiral multiplets of rigid N = 1, D = 4
supersymmetry. The new result here is that this cohomology space contains poten-
tial anomalies in the renormalization of fermionic superfields with all half-integer
spins. Formerly it had been shown that there were potential anomalies for fermionic
superfields with spin \ only.

This may be very important for superstring theories, since such higher spin mul-
tiplets necessarily occur in all such theories. In addition, these higher spin potential
anomalies may be of more immediate phenomenological interest [11] in relation to
supermultiplets containing particles like the A which has spin |.

2. Summary of Previous Work

A systematic method for the calculation of local BRS cohomology spaces was
described in [6]. The method starts with the definition of a grading operator which
generates a "spectral" sequence of simpler nilpotent operators whose cohomology
spaces are easily found. This sequence of spaces converges to a space isomorphic to
the desired cohomology space. To facilitate computation of each of the cohomology
spaces, we introduce a Fock space so that each successive cohomology space is the
kernel of a "Laplacian" operator.

The cohomology space enables one to determine whether the theory can possess
anomalies, either in the renormalization of the action itself or in the renormalization
of higher dimensional composite operators formed by the fields in the theory. In
most cases, it is quite arduous to analyze the cohomology space of a field theory
in this general way, especially when the space itself is nontrivial to describe, as
is frequently the case. The cohomology of Yang-Mills theory was examined in
a specific case in [6]. An investigation was done of the simplest supersymmetric
theory in four dimensions, the Wess-Zumino chiral theory, in [7]. The present work
completes those results, as explained below. The results of [7] were generalized in
[8] and [9] to include the case where chiral matter is coupled to supersymmetric
Yang-Mills theory. Most recently, this method was used in a general study of
the cohomology of the supertranslation operator [10]. The results of [10] and the
results here are closely related, since in both cases the cohomology is determined
by Laplacians which involve only counting operators and coupled SU(2) angular
momentum operators.

A different approach was used by the authors of [2], where a general formula
for the creation of Lorentz invariant polynomials in the cohomology space for all
compact gauge groups for the restricted BRS operator in Yang-Mills theories and
gravity is given. Some aspects of the BRS cohomology of supersymmetric theories
in four dimensions, restricted to Lorentz invariant polynomials, are investigated
in [3,4]. The cohomology of local integrated polynomials in field theories was
also examined recently in [12,13]. Spectral sequences have also been used in the
BRS cohomology of 2d gravity (but without the introduction of a positive Fock
space metric) [14]; for a review of this technique applied to CFT and 2d gravity
see e.g. [1].
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3. Action and Supersymmetry In variance for Wess-Zumino Model

The first correct calculation of the BRS cohomology of the Wess-Zumino theory
was made in [7]. That paper used Majorana spinors and real four dimensional
Dirac matrices yμ. That notation obscures the symmetry of the theory under com-
plex conjugation, and also makes superfield formalism much harder to use. As a
consequence, no method was found in [7] to solve Eq. (214) of that paper, except
for the simplest case, which occurs when no derivatives are present. We shall show
below, in analogy with the work in [10], that Eq. (214) of reference [7], which
becomes Eq. (7.12) below, can be solved including the situation when derivatives
are present, using the theory of coupled angular momenta. This is most easily seen
using the complex notation of [10].

The new result found here is that there are potential anomalies of spins
1/2,3/2,5/2..., all of which involve derivatives. The results of [7] found only
potential anomalies of spin 1/2, none of which involve derivatives.

In complex two-component notation, the (free quadratic) action for the Wess-
Zumino chiral model is:

S = -fd4x[dμAdμA + ψ*σμ dμψ - FF]. (3.1)

This action is invariant under the following supersymmetry and translational trans-
formations (which are assumed to imply their complex conjugates):

dA = c*\l/χ + εμdμA , (3.2)

Here cy is a constant (spacetime independent), commuting two component complex
chiral spinor and εμ is a constant real anticommuting Lorentz vector. Their variations
are:

δεμ = -cyσμ cβ = -c - σμ c, (3.5)

δc* = 0 . (3.6)

It is straightforward to show that

δ2 = 0 (3.7)

on any field (including εμ and cy as constant fields). Note that

y.6 β% '

is a real quantity.
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Another way to express the generator δ is

δ = Λ [c"& + efd^-jj + [δμAσ^ + Fc, + e%&]4-

[3^V^ + ε"<3,,F] A + [c^d + ε'V]|=

_ c V ' . (3.9)

4. The Grading of the Spectral Sequence

The final goal is to find the cohomology space

HπKerδ/lmδ, (4.1)

which is isomorphic to the kernel of the Laplacian

A=(δ + δϊ)2. (4.2)

Unfortunately, A is in general a very complicated operator, and it is not possible
to deduce much about kernel A from the expression for A directly -one just gets a
huge number of terms and no insight.

The key idea behind the spectral sequence formalism1 is to divide δ into parts
which are easier to work with. For this purpose, we need to define a suitable
counting operator Λ^rading, which assigns to each term of δ a positive (or zero)
integral order. We decompose

(4.3)
/=0

with

[^grading, <5, ] = ΐδi. (4.4)

The grading is certainly not uniquely defined, and an important and difficult part
of the spectral sequence technique is to find a useful grading. The spectral se-
quence generated by a given grading consists of a sequence of positive semidefinite
Laplacian operators

Δr = (rfr + rfj)2, r ^ 0, (4.5)

where each successive nilpotent operator dr+\ operates in the cohomology space
Er+ι, defined by Er+\ = kerzlr. The spaces satisfy the relation (£0 is the whole
space in which δ acts):

£oc C - C Er+l CErC CEQ. (4.6)

In practice, the sequence collapses (i.e. dr — 0 for r ^ r0 so that E^ =£V0) for
some low value ΓQ of r (ΓQ = 3 in the present case).

1 A complete discussion of the spectral sequence method for finding BRS cohomology can be
found in [6].
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For the present problem, we will use the counting operator

^grading = ^grad + A^grad (4.7)

with
Λ^grad - 37V(Λ) + 2N(ψ) + N(F) + N(c) . (4.8)

We easily see that the decomposition

δ = δ0 + δ2 (4.9)

fulfills (4.4), where
δo = cy-Λ, + c*Λd + εμdμ (4.10)

and
δ2 = cαVα + c*Vi - cV^V)1 . (4.11)

Here we define:

(412)

V, = /

The grading (4.7) separates (5 into parts with no derivatives (A) and with derivatives
(V, 3) and is appropriate for this problem, because the A part is particularly easy
to deal with. dμ was already fully analyzed in [6].

5. The Operator AQ

Now that we have chosen a grading, we go through the steps of the spectral se-

quence. The starting point is to calculate the kernel of the operator AQ = [So + <5j]2.
From (4.12) and (4.13), it follows that:

(5.1)

(5.2)

{ΛΛ9(Λβ)i} = 09 (5.3)

and, therefore, AQ computed from (4.10) takes the form:

εlεμ + nN + nN . (5.4)
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In (5.4) we used the counting operators

n = ca(cj, (5.5)

n = c,(cΛ)1, (5.6)

and

which can also be written as

oo J

N= 2L*fTτ{Λ μlμ2...μk(Aμlμ2...μ^ ) + ψχμlμ2...μk(ψχμlμ2...μk ) + ^μ\μ2 ^k^^l^2 ^k ' / *
k=QK-

(5.8)

Here the definition

Aμιμ2...μ/, — Vμι Cμ2 . . . 0 μ^A (5-9)

is used (same for F and ψα). Equation (5.4) also uses the relation:

[dj,3v] = <5{ί(tf + #), (5.10)

which was discussed in [6].

6. The Space E\

Since (5.4) consists of a sum of separately positive semidefinite operators in the

form ΣjQlQi = A, the kernel satisfies the equations

0, (6.1)

or, more specifically:

ΛΛEι = 0 , (6.2)

ΛxEι -0, (6.3)

(^)^ι-O, (6.4)

Q, (6.5)

0, (6.6)

(N+N)εμEι = 0 . (6.7)

The solutions of these constraints are much more obvious than they were in the
real notation of [7]. If nN = 0 then either n = 0 or N = 0. Hence, any function of
the form

,ιl/,c)Θ (6.8)

satisfies this whole set of equations, if it fulfills (6.2) and (6.4). Functions of
this kind and their complex conjugates exhaust the solutions of these equations
depending non-trivially on c or c.
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Solutions independent of c and c can depend on all variables

d9A9F9 \I/9A9F9 \j/)Θ (6.9)

and must satisfy all the equations (6.2), (6.3) and (6.4).
The expression Θ is defined as

Θ = εμεvελεpεμvλp (6.10)

and satisfies
εJε^Θ = (4-N(ε))Θ = 0 . (6.11)

We can think of Θ as being equivalent to fd4x (see [6]).
To construct the operator d\ we will need the explicit form of the operator Π\,

which projects the entire space EQ onto E\. A general form is easy to write down:

Π\ = 77ε=o Π^=Q{ΠN^Q ΠN^Q ΠΛ=O Π^=Q Πn=$ Π^=o

-f 77/v> oΠn=Q ΠU=Q Πn>Q 77/1=0

Πn>Q Πλ^} + 77^0/^=0 - (6 12)

Here, the first part projects onto solutions of type (6.9). The second operator projects
onto states of type (6.8) and the third projects onto their complex conjugates, i.e.

^ = ̂ (d9A9F9ij/9c)Θ . (6.13)

The fourth operator projects onto pure ghost states, formed by εμ,c
y and cα only.

One can easily verify that these states satisfy (6.2)-(6.7) also, but they do not
contain any information of interest for this paper (see [10] for a discussion of these
terms).

Now we find explicit forms of the operators contained in (6.12). In addition to
the defining equations for an orthogonal projection operator Π2 = Π = 77^, ΠΛ=O
is subject to the constraint

^77,1=0 = 0. (6.14)

It is easy to see that the projection operator

(6.15)

satisfies (6.14). Note that the Ax are anticommuting objects, so that (6.15) involves
only quadratic terms (Λ3 =0).

Similarly,

Λ(Λβλrf (6.16)
47V

fulfills the corresponding condition for A. Equation (6.4) requires an operator
satisfying

=o = 0. (6.17)
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This projection operator has the form

as can be shown using the commutation relation (5.10). The projection operators
ΠN=Q and I7/v>o for the counting operators are

-Nk (6 19)

with Nk = Σψ}[ΦM<^2 '- ΦιJ[Φι\Φi2 •• 0ιjt ' Φ rePresents anY relevant set of
fields. Of course, J7/v>o is given by ΠN>Q — \ — ΠN=Q.

1. The Operator A2

The operator d\ ~ Π\δ\Π\ vanishes since ί>ι =0, which results in E2 = E\ and
Π2—Π\. Then d2 reduces to

- 772{cαVα + cαVα}772/7ε.0 - ΠN=^(c^σ[.c(^ . (7.1)

Now we concentrate on the sector where either N =t= 0 or N φ 0 or both. Then the

operator cV'1 c^(ε'')t can be dropped. Its cohomology can be found in [10]. From

the general theory of spectral sequences, it follows that d-ι is nilpotent, as can be
verified explicitly. To compute Δ2, we first evaluate some (anti)commutators. It
is a remarkable fact that these (anti Commutators frequently give rise again to the
operators we start with (or their adjoints):

0, (7.2)

0, (7.3)

0, (7.4)

0, (7.5)

0, (7.6)

</iU/i)t, (7.7)

σ^dμ, (7.8)

0, . (7.9)

{ V a , ( v } = z*βM + <;V (7.10)

Using the above relations, we find

Π2VJ72 = Π2Vα , (7.11)
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and hence,

A2 = Π2c>(

2Vβ + n[M - 4] - 4J,Ll

~7y + w[M - 4] - 4J1L1}Π2 . (7.12)

We use the following abbreviations

M = N(Γ) + 4N(F) + 2N(ψ), (7.13)

M = 7V(r) + 4N(F) + 2N(\jι), (7.14)

00 1

W ( £ ) = Z i — [Φ/M ;/ (φμ / ί A 4 . , ) 1 ] (7.16)

A-=0 ^ '"' A + 1 '"' /1 + 1

N(c ) and its complex conjugate count the number of derivatives in each expression.
The coupled angular momenta J]Ll arise as follows. Computation yields the term

-cy(cβγ(σμv)yβLμV9 (7.17)

where
00 1

Lμγ = ^— ίΦμ\ μ/Jι(Φlι n )' ~ Φμ\ μ/ v ( Φ ί j /; ) ' ]? (Φ ~ ̂  » Ά??^) (7-18)
/.^o/c! "' l !- A '" l '- A

Now using the identities

(7.17) can be written as J/Z/, where

-Λ = -c7(σ/)(/V
/J)t , (7.20)

/ - 1J l r ,1 , Π 2 Π^/ — ~~^jLQι ~ T ^ / / A ^ / A V ' ^ 1 /
2 4

Equivalently, one could write

It is easy to verify that Ll and J} obey the commutation rules of the SU(2) Lie
algebra:

M,J,] =/C^VA , (7.23)

[£„/,,] = /ε / / A 'LA . (7.24)
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The complex conjugate equations are:

and we note that

(7.25)

(7.26)

(7.27)

From this we see that the effect of the Lz is to "rotate" the dotted indices that arise
in derivatives dάό. It follows that the Laplacian contains only counting operators,

coupled angular momenta and the operator Π^^άΠi-

8. The space £3

Given the manifest SU(2) structure of the Laplacian

V2 - 772{(Vα)t772 Vα + ή[M - 4] - 2[(J/ + Li)(J, + L>) - M - LtL,]

n[M - 4] - ) - M ~ £«£• (8.1)

the problem of finding the kernel reduces to the determination of the eigenvalues
and eigenstates of the operators. We assume n — 0, «ΦO here (if n — ή = 0, we
just get (8.6) below.)

Now the eigenvalue of the SU(2) operator J = Jl J/ is given by (see [10])

(8.2)J2= 7(7+1) with 7 = ^ ,

since the operator J is acting on polynomials in c^ which are totally symmetric.
As is clear from (7.22), the operator Z,/ rotates the dotted indices occurring in

derivatives. Hence, the maximum possible eigenvalue of L2 = Z,//,/ is ^ .̂ There-
fore, we find

(8.3)

where [x] is the greatest integer in x.
The coupling operator of the two angular momenta leads to the term

(J + L)2 = k(k + 1), where k=j + l-r,

and r = 0, 1,2, . . .,mm(ή,N(d) - 2s).
Now it follows from (8.1) that

(8.4)

A2 = 772{(V^)/72Vα + ή[4N(F) + 2N(φ) - 4 + 2r + 2s]

x 712 + complex conjugate . (8.5)
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Equation (6.15) implies that N(F) Ξ> 1 or N(ψ) ^ 2 for each term in every poly-
nomial in ker/Lα and since r ^ N(d) — 2s, the following terms in (8.5) are positive
semidefinite:

Π2VE3=Q, (8.6)

ή[4N(F) + 2N(\I/) - 4 + 2r + 2s]£3 - 0 , (8.7)

r[N(d) + 1 - r - 2s]E3 = 0 . (8.8)

The complex conjugates of these equations are also true of course, for the case
when ή — 0 and n Φ 0.

The only possible solutions for (8.8) occur when r = 0, hence, the only possible
solutions of (8.7) occur for s — 0. This result implies k — j + /. It follows from

this and / = ^ ,̂ that the polynomials in E^ are totally symmetric in the dotted
indices.

With r = s = 0, (8.7) reduces to

ή[4N(F) + 2N(ψ} - 4]E3 = 0 . (8.9)

9. The Cohomology Spaces £00 and H

The higher operators dr for r = 3,4,5,... vanish due to (8. 6), (6. 17) and (6.2)
(these operators are written down explicitly in terms of c>o and 62 in [6]). Hence,
the spectral sequence collapses at this point, resulting in E^ = £3, and the defining
equations of E^ are:

ΛΛEOQ=0, (9.1)

(^£00=0, (9.2)

=Q, (9.3)

E00=Q^ (9.4)

0=09 (9.5)

ή[4N(F) + 2N(ψ) - 4]̂  - KE^ = 0 , (9.6)

and their complex conjugates. In addition, for « Φ O («=t=0) the objects in E^ have
to be symmetric in their dotted (undotted) indices, as discussed above.

We can construct solutions of these equations using superfields in the following
way. The basic chiral superfield is:

S(x9 θ, θ) = A(y) + θψ(y) + ^ θ2F(y) , (9.7)

where

yμ=xμ+l-θy σ»βθ
β. (9.8)

To find a solution of the above equations for E^, we simply take any polynomial
P(5, d, c) of the superfields, the derivative operator and the antighost c. Then we
choose its "F " component, i.e. the coefficient of θ2 in the polynomial. Let us
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denote this / = [P(S9d9c)]p. Then we claim that the following is a solution of the
above equations plus the symmetry requirements discussed in the previous section:

e = Symdotted mdlces 77et=0/6> e Ex . (9.9)

We believe that all solutions of these equations are obtained in this manner, but
will not attempt to prove that here. We have shown that there are an infinite set of
objects in the cohomology space, and the missing proof would only establish that
there are no more. The more interesting question now is whether any of the known
ones correspond to anomalies.

Now we show that, in fact, (9.9) is in the cohomology space E^- To see this,
we notice that the grading operator

(9.10)

where 7Vgrad is given by (4.8), satisfies

N^S = 3S9 (9.11)

so each term in (9.7) has eigenvalue A^rad = 3. Obviously, for a product of kS

fields (including arbitrary number of space-time derivatives), Λ^radS
A = 3k Sk holds.

In terms of this new grading, operator K in (9.6) becomes

K = ή[2N(θ) + 2N(c) + 2(3N - A^rad) - 4] . (9.12)

Recalling NSk =kSk, we note that

(9.13)

Note that this would not be true in general if P contained any covariant derivatives
Z)α. Using this result we see that

KP = ή[2N(θ) - 4]P . (9.14)

Now P is not homogeneous under the action of K. This equation shows that the
terms of P which are homogeneous in θ are also homogeneous under the action of
K. In fact, the θ2 terms of P is homogeneous of degree zero when acted upon by
the operator K. So we find that the operator K acting on the θ2 term of any product
of chiral superfields involving only partial derivatives vanishes assuring that the F
component (with θ2) of this product is a solution of (9.6).

Let us generalize our analysis to the case where there are several superfields Sa.
Then a more explicit form of our solution is:

e = SymdottedιndjceJJ2ΘΠ,t=0P(5fll,a^5α2,a,Λ3, ..)CκΊ% ... , (9.15)

and the undotted indices are "free." In the above expression, δα« = Sμσ
μ and P

represents any polynomial of its argument fields. Acting with Π^=Q on any expres-
sion simply corresponds to a subtraction of the total derivative part. e9 as defined
above, satisfies (9.2), (9.3), (9.4) and (9.6) trivially; (9.1) and (9.5) need to be
checked explicitly. As stated above, any product of S's is homogenous in Ngrad,
therefore, its F component is also homogeneous in Ngrading and Ngra^ng, leading to
f — fk with Abrading Λ = &/*• As a consequence, the supersymmetry transformation
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δ' = δ - ε^ldμ + e

independent parts:

' = δ - εμdμ -f c*(fcP(εμy = cΛ + cΛ + cV + cV, acting on fk splits into two

W + dμX^2 , (9.16)

where δ'0 = cΛ + cΛ and ̂  = cV + cV; ̂  and Xk+2 don't need to be further
specified. Equation (9.16) reiterates the well-known fact that the F component of
any superfield transforms into a total derivative. Using (7.4) and (7.5), we find that
[Λ,Πtf=Q\ — 0 and, therefore,

ΛΛe = ΛΛΠ#^fkθ = Πdi=QΛΛfkθ = Π^dμX^Θ = 0 , (9.17)

since Π^=0d = 0. Hence, (9.1) is fulfilled. Using (7.11), we see (9.5) is obeyed
as well:

= Π2VβΠ2fkθ = Π2Vβfkθ = Π2dμX£k+lθ = 0 . (9.18)

This proves that the objects of the form (9.9) (or their complex conjugates) are
indeed in E^.

The states with n = n — 0 can be built with chiral and antichiral superfields,
superco variant derivatives Da and D±, and their anticommutator θ » . This result
reflects the fact that the usual supersymmetric actions with ghost charge zero are
BRS-invariant.

The one-to-one relation between E^ and H [6] leads to the following objects
3C in the cohomology space:

X = Jd4xf

= Sym^ώJ</V*20p(^ ••• - (9--19)

(The operator Π^=QΘ has been mapped into / d4x.)

10. Conclusion

We have shown that there are no polynomials in H for the Wess-Zumino theory
that contain both c and c. The complex conjugate of every solution of the defining
equations for E^ is also a solution. Hence, we can restrict the discussion of the
complete cohomology space to objects containing only the antighosts c. Revealing
the index structure explicitly, we have shown that there is an infinite set of states
of the form

} (I O.I )
! , (n-\) (n-}) » » » » n+y

in the cohomology space of the Wess-Zumino model. The states found in [7] are
those states of this form that contain no derivatives - so that for ghost charge one
they are necessarily of spin ^. To get spin |, one needs at least one derivative, for

spin |, one needs at least two derivatives, etc. The corresponding complex conjugate
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expressions are obtained by converting dotted into undotted indices and vice versa,
and S —> S, c — » c. By contraction and symmetrization of the undotted indices, we
can decompose & into operators of the form

where b = kn + g and kn — a is even and greater than or equal to 0, since con-
tractions always involve pairs of undotted indices. In particular, we are interested
in polynomials with ghost charge g = 1, which correspond to anomalies. For these
objects, we find b — a is odd and positive. Therefore, the operators sϋ are spinors.

These objects could appear as anomalies in the renormalization of composite
operators with the same spin structure as the anomaly. To compute the anomalies
of a given such composite operator, a term of the form

sΨ = /Λrf> V.WWΛ

Φ*' WW^ (103)
would be introduced into the action. Here Ψ is a composite operator with ghost

charge zero and φ^i-WΛΆ js a chiral source superfield. There is a matching be-
tween the indices of the anomaly and those of the anomalous operator, because both
must couple to the source Φ. Now to compute the anomaly, some specific form for
the composite operator Ψ would be chosen and then the one particle irreducible
generating functional Γ including one vertex (10.3) would be calculated. If there
is an anomaly, one would find that the supersymmetric variation of this part of Γ
would be of the form

δΓ = K/Λ^θt^,...,...^1-^1^] , (10.4)

where K is a calculable coefficient.
Note that (10.4) is still in the cohomology space because Φ transforms simply

as a chiral superfield as does S. Hence, our derivation of the cohomology applies to
Φ just as it did to S. The indices of Φ play no role in the cohomology discussion.

Because all possible anomalies have half-integer spin (see discussion of (10.2)),
it follows that all operators which can be anomalous also have half-integer spin.
Generally, the entire class of spinor operators in supersymmetric theories containing
chiral matter can be anomalous.

It would be interesting to extend the results of the present paper to the BRS
cohomology of the supersymmetric Yang-Mills theory. This appears to be rather
difficult, because the gauge symmetry mixes with supersymmetry in a tricky way.
However, it is important. In fact, we conjecture that if there are one-loop super-
symmetry anomalies in rigid supersymmetric theories, they will require at least
one gauge propagator in the diagram- i.e. they will occur only in supersymmetric
theories where chiral matter is coupled to gauge theory.
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