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Abstract: We present a general method to deform the inhomogeneous algebras of
the Bn,Cn,Dn type, and find the corresponding bicovariant differential calculus. The
method is based on a projection from Bn+\,Cn+\,Dn+\. For example we obtain the
(bicovariant) inhomogeneous ^-algebra ISOq(N) as a consistent projection of the
(bicovariant) ^-algebra SOq(N + 2). This projection works for particular multipara-
metric deformations of SO(N + 2), the so-called "minimal" deformations. The case
of ISOq(4) is studied in detail: a real form corresponding to a Lorentz signature
exists only for one of the minimal deformations, depending on one parameter q. The
quantum Poincare Lie algebra is given explicitly: it has 10 generators (no dilata-
tions) and contains the classical Lorentz algebra. Only the commutation relations
involving the momenta depend on q. Finally, we discuss a g-deformation of gravity
based on the "gauging" of this g-Poincare algebra: the lagrangian generalizes the
usual Einstein-Cartan lagrangian.

1. Introduction

Perturbative quantum Einstein gravity is known to be mathematically inconsistent,
since it is plagued by ultraviolet divergences appearing at two-loop order (the ab-
sence of one-loop divergencies was found in [1], whereas two-loop divergencies
were explicitly computed in [2]). In supergravity the situation is only slightly bet-
ter, the divergences starting presumably at three loops1. In the last fifteen years or
so there have been various proposals to overcome this difficulty, and consistently
quantize gravity either alone or as part of a unified theory of the fundamental in-
teractions. Such a unified picture is provided by superstrings (see for a review [3]),
where Einstein gravity arises as a low-energy effective theory, coupled more or
less realistically to gauge fields and leptons, and regulated at the Planck scale by an
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1 No explicit calculation like the one of ref. [2] exists, but there is no symmetry principle that
excludes them.
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infinite number of heavy particles (the superstring massive spectrum). How to make
phenomenological predictions from superstrings is still the object of current research.

Another, more speculative, line of thought deals with the quantization of space-
time itself, whose smoothness under distances of the order of the Planck length
Lp ~ 10~33cm is really a mathematical assumption. Indeed if we probe spacetime
geometry with a test particle, the accuracy of the measure depends on the Compton
wavelength of the particle. For higher accuracy we need a higher mass m of the
particle, and for m ~ \/LP the mass significantly modifies the curvature it is sup-
posed to measure (i.e. the curvature radius becomes of the order of the particle
wavelength: the particle is no more a test particle).

Thus it is not inconceivable that spacetime has an intrinsic cell-like structure:
lattice gravity, or Regge calculus may turn out to be something more fundamental
than a regularization procedure. Another way to discretization is provided by non-
commutative geometry: when spacetime coordinates do not commute the position
of a particle cannot be measured exactly. The notion of spacetime point loses its
physical meaning, and is to be replaced by the notion of spacetime cell; the ques-
tion is whether this sort of lattice structure does indeed regularize gravity at short
distances. References on non-commutative geometry and its uses for regularization
can be found in [4].

Fundamental interactions are described by field theories with an underlying alge-
braic structure given by particular Lie groups, as for ex. unitary Lie groups for the
strong and electroweak interactions and the Poincare group for gravity. It is natural
to consider the so-called quantum groups [5,6,7] (continuous deformations of Lie
groups whose geometry is non-commutative) as the algebraic basis for generalized
gauge and gravity theories. The bonus is that we maintain a rich algebraic struc-
ture, more general than Lie groups, in a theory living in a discretized space. This
does not happen usually with lattice approaches, where one loses the symmetries of
the continuum. For a review of non-commutative differential geometry on quantum
groups see for ex. [8]. This subject, initiated in [9], has been actively developed in
recent years: a very short list of references can be found in [10-15].

In this paper we address the problem of constructing a non-commutative de-
formation of Einstein gravity. For this we need a ^-deformation of the Poincare
Lie algebra. We obtain it in Sect. 4 as a special case of the quantum inhomoge-
neous ISOg(N) algebras, whose differential calculus is presented in Sect. 3. These
algebras are obtained as projections from particular multiparametric deformations
of SO(N + 2), called "minimal" deformations. Their R matrix is diagonal, and the
braiding matrix R = PR has unit square. On ^-groups with diagonal R-matrices see
for ex. [16] and references therein. Deformations of Lie algebras whose braiding
matrix has unit square were considered some time ago by Gurevich [17].

The projective method to obtain the bicovariant differential calculus on inhomo-
geneous quantum groups was introduced in [18] for IGLq(N), and extended to the
multiparametric ^-groups IGLqr(N) in [19]. References on inhomogeneous ^-groups
can also be found in [20].

A general discussion on the differential calculus on multiparametric ^-groups is
given in Sect. 2. In Sect. 5 we discuss the ^-deformation of Cartan-Maurer equa-
tions, Bianchi identities, diffeomorphisms and propose a lagrangian for ^-gravity,
based on ISOq(3,1). Other deformations of the Poincare algebra have been con-
sidered in recent literature [21]. Although interesting in their own right, none of
these deformations corresponds to a bicovariant differential calculus on a quantum
Poincare group.
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2. Bicovariant Calculus on Multiparametric Quantum Groups

We recall that (multiparametric) quantum groups are characterized by their i?-matrix,
which controls the noncommutativity of the quantum group basic elements Tζ (fun-
damental representation):

RabefTe

cTfd = Tb

fΓeR
efcd (2.1)

and satisfies the quantum Yang-Baxter equation

naxbλ na2cx J?b2c2u — Rb\c\, Ώa\c2 D<Z2b2 , (Ί Ί\
^ «2^2 a3c2 b7>cZ — &2C2 «2C3 β 3 ^ 3 ' \ Δ ' Δ )

a sufficient condition for the consistency of the "RTT" relations (2.1). The /^-matrix
components Rab

cd depend continuously on a (in general complex) set of parameters
qab,r- F° r Qab = q, r = q we recover the uniparametric g-groups of ref. [6]. Then
qab —> 1, r —> 1 is the classical limit for which Rab

cd —» δa

cδ
b

d\ the matrix entries T%
commute and become the usual entries of the fundamental representation. The multi-
parametric R matrices for the A, B, C, D series can be found in [22] (other refs. on
multiparametric ^-groups are given in [23]). For the B, C, D case they read:

— + (r - \)δab + (r-1 - 1)
qab

+ (r - r-ι)[Θabδbδa

d - εaεcθ
acr^-^δa'bδc,d], (2.3)

where θab = 1 for a > b and θab = 0 for a S b; we define n2 = ^ψ- and primed
indices as af = N -f 1 - α. The indices run on TV values (N = dimension of the
fundamental representation T%\ with N = 2w + 1 for 5^[5O(2« + 1)], iV = 2w for
Cw[»S'/7(2«)], Dn[SO(2n)]. The terms with the index n2 are present only for the Bn

series. The εa and pa vectors are given by:

r + 1 ϊoxBmDn,
εa = < -f 1 for CM and α ^ w , (2.4)

I — 1 for Cn and a > n .

.l,-l,...,-f) forC« . (2.5)

2 , . . . , l , 0 , 0 , - l , . . . , - f + 1) for£>M

Moreover the following relations reduce the number of independent qat, parameters
[22]:

r1

(2.6)

2 2

r rr r
qab = — = — = qa'b>, (2.7)

qay qa'b
where (2.7) also implies qaaι — r. Therefore the qab with a < b ̂  y give all
the q's.
Remark 1. If we denote by q,r the set of parameters gα^,r, we have

Rq,r =Rq-\ir-\ - (2.8)
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The inverse R~ι is defined by (R~λ)ab

cdR
cd

ef = δa

eδ
b

f = Rab

cd(R-χ)cd

ef. Equation

(2.8) implies that for \q\ = \r\ = 1, R = R~ι.

Remark. 2. For r = 1, i f = 1, where R = PR (Rab

cd = Rba

cd).

Orthogonality (and symplecticity) conditions can be imposed on the elements
T%, consistently with the RTT relations (2.1):

Γ a s-ibc ψd f^ad

T%CacT
c

d = Cbd , (2.9)

where the (antidiagonal) metric is:

Cab = zar~pabah, , (2.10)

and its inverse Cab satisfies CabCbc = δa

c = CcbC
ba. We see that for the orthogonal

series, the matrix elements of the metric and the inverse metric coincide, while for
the symplectic series there is a change of sign.

The consistency of (2.9) with the RTT relations is due to the identities:

(2.11)

a = Cbf(R~l)ca

fd. (2.12)

These identities hold also for R —> R . The co-structures of the B, C, D multi-
parametric quantum groups have the same form as in the uniparametric case: the
coproduct A, the counit ε and the coinverse K are given by

= T%®Th

c, (2.13)

= δa

b9 (2.14)

= CacTd

cCdb. (2.15)

A conjugation (i.e. algebra antihomomorphism, coalgebra homomorphism and invo-
lution, satisfying κ(κ(T*)*) = T) can be defined trivially as Γ* = T or via the
metric as Γ* = (κ(T))*. In the first case, compatibility with the RTT relations
(2.1) requires Rq^ — R~) = R -\ r~\, i.e. \q\ — \r\ — 1, and the corresponding real
forms are SOq^(n,n;RJ, SOq/.(n9n-h l R) (for N even and odd respectively) and
Spqir(n;ΈL). In the second case the condition on R is R cd — Rd%a^ which hap-
pens for qab<iab = r2, r e R. The metric on a "real" basis has compact signature
( + , + , . . . + ) so that the real form is SOq,r(N;R).

There is also a third way to define a conjugation on the orthogonal quantum
groups SOq,r(2n,C), which extends to the multiparametric case the one proposed
by the authors of ref. [24] for SOq(2n,C). The conjugation is defined by:

( Π ) * = ®aJc

d®
d

b , (2.16)

3) being the matrix that exchanges the index n with the index n + 1. This conjuga-
tion is compatible with the coproduct: A(T*) — (AT)*; for \r\ = 1 it is also compat-
ible with the orthogonality relations (2.9) (due to C = Cτ and also Q)CQ) = C) and
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with the antipode: κ(κ(T*)*) — T. Compatibility with the RTT relations is easily
seen to require

&)„„„+! =R~ι , (2.17)

where ()n^n+\ means interchanging the indices n and n + 1 in the expression in
parentheses. Eq. (2.17) implies

i) Itfabl = \r\ = 1 for a and b both different from n or n + 1;
ϋ) <lablr £ R when at least one of the indices a,b is equal to « or n -f 1.

Since later we consider the case r = 1 and (Λ )„*_»„+1 = i? (and therefore ^ =
R~ι because of (2.17)), the conditions on the parameters implied by (2.17) will be:

qab\ = 1 for a and b both different from n or n + 1 , (2.18)

#α£ = 1 for α or b equal to « or n -f 1 . (2.19)

This last conjugation leads to the real form SOq,r(n -f \,n — l R), and will in fact
be the one we need in order to obtain 750^(3,1; R), as we discuss in Sect. 4.

A bicovariant differential calculus [9] on the multiparametric ^-groups can be
constructed in terms of the corresponding R matrix, in much the same way as for
uniparametric ^-groups (for which we refer to [11,13,8]). Here we concentrate on
SOqr(N + 2), but everything holds also for Spq,r(N -f 2). For later convenience we
adopt upper case indices for the fundamental representation of SOqr(N + 2) and
lower case indices for the fundamental representation of SOq,r(N).

The basic object is the braiding matrix

f Λ ^ F % 2 F 2 , (2.20)

which is used in the definition of the exterior product of quantum left-invariant
one-forms ωA

B:

ωAι

A2 Λ ωD^ = ωAι

Ai ® ωD^ - ΛA[\^ \Clc2%2ωC[^ ® ωB^ (2.21)

and in the ^-commutations of the quantum Lie algebra generators χAβ'

χ\2χ
c'c2 - Λ£lV

2\DiD2

Clc2X
E%XFlF2 = C%2

c 'c2L,, V Λ 2 , (2-22)

where the structure constants are explicitly given by:

g^A\ B] I C2 ^ Γ SiBl βίAl βίc2 \ A B C2\
Λ\ B\ 1 ίΊ ΊΊ.\

C % lB2\Cι

 2 = γ_r-\ [""^^1^2 +ΛBC{ Ί A2

 lB2\ • (2.23)

The dA vector in (2.20) is defined via the diagonal matrix Σ^B as dA = Γ^A (no
sum on A), with D = CO\ or

i Λ = CACCBC . (2.24)

A graphical representation of the braiding matrix (2.20) is given in Appendix A.

Remark. 3. For r = 1 we have A2 = 1. This is due to R = 1 and L^B — bA

B.

The braiding matrix A and the structure constants C defined in (2.23) satisfy
the conditions

C r ι

π C Λ / - AklijCrk

nCnl

s = CijkCrk

s (4-Jacobi identities), (2.25)

Λ^jΛ^rpΛJ^ = Ank

riA
ms

kjA\q (Yang-Baxter), (2.26)
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Λmί

JΛ
ns

lk + Λ%Clk

s = ΛP"βΛ%CJ + Cjk

mΛis
CjΛmί

rJΛ
ns

lk + Λ%Clk

s = ΛP"βΛ%CrJ + Cjk

mΛis

rm , (2.27)

Crk

mΛns

ml = ̂ uΛ
m

riCm] , (2.28)

where the index pairs AB and ΛB have been replaced by the indices ι and re-
spectively. These are the so-called "bicovariance conditions," see refs. [9,10,8],
necessary for the existence of a consistent bicovariant differential calculus, as we
discuss further in Appendix B.

A metric can be defined in the adjoint representation of the Bn, Cn, Dn ̂ -groups
as follows:

Qj Ξ C\\ = Cc^(R-χte

fC2Cb2e, (2.29)

Cij = Caι\^ = CaιeR
e\fC

c^ , (2.30)

and satisfies the relations:

QjCJk = <$? = CkjCji9 (2.31)

and

CikΛsl

kr = (Λ-]frjσ', (2.32)

Λ%Cj, = Cik{Λ-χfsl, (2.33)

i.e. the analogue of Eqs. (2.11)—(2.12). These relations allow to define consistent
orthogonality relations for the g-group matrix elements in the adjoint representation
(see Appendix B).

Remark. 4. When r — 1 (=>R = 1, A2 — 1), the following useful identities hold:

D'j

= ^ ^bc

= C Cy*

Â slA π

= δ),

= δ"fδd

- δ'tf

\LJ ) I) — L̂  ^cZ) "

(D~ι V. = Γ ̂ ΓΊ -

fba ~ec
= ti dcK fa ,

-Air Λks= Λ 1SΛ ir .

= δ a

b ,

-δ ,

(2.34)

(2.35)

(2.36)

(2.37)

The first two * -conjugations (the "usual ones") on the Γ's we have discussed
earlier in this section can be extended to the dual space spanned by the g-Lie
algebra generators χ as in the uniparametric case. The consistent extension of the
third conjugation to the χ space is treated in Appendix C, for the case of minimal
deformations (r = 1) of SO(2n). We find that

(χa

by = - 0 * c t f M (2.38)

is compatible with the bicovariant differential calculus if the A and C tensors are
invariant under the exchange of the indices n and n-h 1, and if the following relation
holds:

Q/ = -C/ . (2.39)
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In this section we present a general method of quantizing inhomogeneous groups
whose homogeneous subgroup belongs to the BCD series. In particular we concen-
trate on the ^-deformations of the ISO(N) groups, as these are the groups relevant
for the construction of ^-gravity theories.

The idea is to project SOq(N + 2) and its differential calculus on ISOq(N),
much as we did for IGLq(N) in ref. [18] (see also [19]), where we projected from
GLq(N + l).

For this we have to consider the multiparametric deformations of the orthogonal
groups SOqr(N -f 2) with r — 1 (minimal deformations). Only for r — 1 we can
obtain a consistent projection on ISOq(N).

We know that the Rab

cd matrix of SOqr(N) is contained in the RABCD matrix
of SOqyr(N + 2): more precisely it is obtained from the "mother" R matrix by
restricting its indices to the values A,B,.. = 2,3,...N — 1. We therefore split the
capital indices as A = (o,α = l,...iV, ). Then the R matrix of SOqr(N + 2) can
be rewritten in terms of SOqr(N) quantities:

\

nAB _
KCD -

oo

o
•o•
ob

•b
ao

a
ab

oo

r

0
0
0
0

0
0
0

0 -

o
0

r~x

fir)
0
0

0
0
0

-Cbaλr-τ

•o

0
0

r~ι

0
0

0
0
0

0

•0
0
0
r
0

0
0
0

0

od
0
0
0
0

r §b

q o
λδ°

0

0

•d
0
0
0
0
0

Ψδd
ro
0

0

CO

0
0
0
0
0

0
*ψba

c

Ό c

0

c
0
0
0
0
0

λδb

0
r fia

qoa C

0

cd
0
0

-Ccdλr
0
0

0
0
0

Rabcd

(3.1)

where Cab is the SOq,r(N) metric, λ = r - r~γ and f(r) = λ(l - r~N).
It is not difficult to reexpress the A and C tensors in our index convention.

Less trivial is to find a subset of these components, containing the A and C tensors
of SOq,r(N), that satisfies the bicovariance conditions (2.25)-(2.28). This subset in
fact exists for r — 1 and is given by:

A a 2 , d 2 c \ b \ , — 7?f2b\/La\ d\ c2 b2

 i V

A
] d\

A a2 o\cχ bλ _
A αi d\ I o b2 —

o O I C J bx -

d\ \ o o —

C2ΰ\

n-\\C]b]
) e

d\a\

b2d\

d\a\

b2c2

A a2 d2\ b\ _ ^oa2 Ό.f?b] J>V2d2u fy i α j I c2 o2 — i V c2a\iy b2f2 '

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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A a2 dy\ Hoaj na2d2

Φ

 z . z\ c2 b2 — K b2c2 >

= structure constants of SOq>r=ι(N),

U,0 = lim —X—\-δ b

b\δ cJ
r — r Li r — r

c2 o|Jj ^ ^

c2 o| ~ Hod2

r^C! I ί/2 - ^£λRc\

9l (R~λ\ae\ ,

(R~ι\c\9\

(3.9)

(3.10)

(3.11)

i I o
c2 b2\dλ =

= lim

(3.16)

(3.17)

This is the key result of this section, and enables the consistent projection on
the ISOq{N) algebra by setting:

x°b = f . = χ°o = z \ - χ° = z% = o . (3.18)

The ISOq(N) Lie algebra is given explicitly in Table 1. The reason we call this the
ISOq(N) Lie algebra will be explained below. The limits in eqs. (3.12) and (3.17)
are finite, since the numerators behave as 0(r - r""1).

We prove now that the components (3.2)—(3.17) indeed satisfy the bicovariance
conditions (2.25)-(2.28). We label by the letter H the subset of indices present
in Eqs. (3.2)-(3.17), i.e. H = %, β

o , % (H = Λ Λ / ) , and by the letter K all the
other composite indices. We have to prove that, setting equal to H all free indices
in (2.25)-(2.28), only H indices enter in the index sums (and therefore the H-
tensors of (3.2)—(3.17) satisfy by themselves the bicovariance conditions). This is
true i) for the quantum Yang-Baxter Eqs. (2.26) since the tensor PA is diagonal
for r — 1, so that

Λ
HH

HK =
ΛHH

KH = ΛHH
KK =

ΛHK
HH =

AKH AKK

HH = Λ HH =

Table 1. ISOq(N) Lie algebra

[SOq,r=ι(N) Lie algebra]

#o«2

h

92 d
dλ

]
 A y α i y — 0

yc\ y , 92d2, γ yd], _ ^ o c l n C | d7

62c2Λ a2X d2 — n b2c2X d2q O C 2

v y .
X c2X b2 —

_π
Ό = 0



Differential Calculus on ISOq(N) 391

ii) for the g-Jacobi Eqs. (2.25) because CHHK can be different from zero only
when κ —m °, and CHKH — CKHH = 0 when % = o ; iϋ) for the last two bicovariant
conditions (2.27)-(2.28) again because of (3.19). D

Thus far we have shown that there is a subset of χA

B (the generators of the q-
Lie algebra of SOq^=\{N + 2)) closing on the ̂ -algebra of Table 1, namely χa

b, χa

o

and χ*b This algebra is bicovariant, in the sense that the corresponding A and C
tensors satisfy (2.25)-(2.28). It wold seem that the number of momenta is twice
what we need, since there are two kinds of "momentum" generators, χa

o and χ%.
However by examining in some detail the ^-algebra we can conclude that only
N combinations of these momenta do survive, and if we rewrite the algebra of
Table 1 in terms of these combinations we precisely obtain a deformation of ISO(N).
Let us prove this.

Consider the structure constants CCγ

o

b{b2\dx° It is not difficult to see from (3.12)
that for c\ = bι, b\ = b'2 these constants are vanishing for any value of r (use the
explicit expression (2.3)), and thus in particular for r = 1. On the other hand the
structure constants C ιb2

Cιo\d{° and C ιb2

Cιo\ dl are not vanishing for the same
values of C\9b\9b29 but:

Cbιb2

Clo\dι° = δc

d\ , (3.20)

r*h c} I d2 _ CCχhχn~λ Sdl (^?\λ
^ D2 O I ^ J-Odn υj ' \ - ^ " ^ x /

Thus we have the two commutations:

V

C 1 yb\ , —A e2 , °\C\ b\ , γe\ y / l — 0 C\')')Λ
A o/, b2

 jve\ f\\ o b2Λ e2A o v ? \O.Δ.Δ.)

yh\uΊ

C\ —A ° , fl\h\u

C\ γe\ γf\, — Ύ

b\ _L n~
X y , , Π ? λ ^

A b2A o yίe\ j \ I b2 OA oA j 2 A o î  yQa A b. \J.^J)

1 ]

with b\ = N + 1 - b\. Next we remark that for A2 — I (as is the case for r = 1)
the two left-hand sides of the above equations are equal up to a minus sign, so that
finally we have:

χbιo+q~#χm

b' = 0 . (3.24)

These N equations reduce the number of independent momenta to N. We can easily
rewrite the algebra in Table 1 in terms of the redefined momenta:

χa = qΊ ,χa

o - q~lχ'a' , (3.25)

and we have done so in Table 2.

Table 2. ISOq(N) Lie algebra in the χa = q\a,f o - #~J*V basis {a! = N + 1 - a)

Λ c2Λ bj yιa\ d\ I C2 b-χλ ajX dj — ̂  Q bι\d\ Λ dι \y^q,r=\ viV / ^ i e dlgCDΓdJ

χc'χb' ~^-(R-ιrbl<llalχ'"x'Ί = 0
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This was possible because the ^-commutator of χa

o with a given generator χ is
the same as the ^-commutator of —q~^χ*a

f with χ, because the constraint (3.24)
is consistent with the g-Lie algebra of Table 1. Another way to see it is to remark
that the algebra of Table 1 satisfies the g-Jacobi identities (2.25). Then we have
an explicit matrix representation of the ^-generators χ: the adjoint representation

(χiYk = CkιJ' Equation (3.24) means that the generators q\a,χ
ao and -<7 oJxV

have the same matrix representative, and hence the same commutations with the
other generators.

The #-Lie algebra of Table 2 satisfies the bicovariant conditions (2.25)-(2.28).
As discussed in Appendix B, these define a (bicovariant) differential calculus on
the quantum group generated by the elements M/ (adjoint representation).

Note however that we do not have an invertible adjoint metric any more (but
only a submetric C y with i,j along the SOq(N) directions). Then the existence of
the antipode of Mj is not ensured via Eq. (B.4): the quantum group generated by
MtJ is a Hopf algebra only if we manage to find an inverse (M~ι)t

J\ Otherwise we
have a bialgebra.

Let us examine now the dual algebra generated by χ,-, fιj, f~ι'j. In this case
we can find an antipode, without reference to an adjoint metric (see the discussion
at the end of Appendix B). For the argument, Eqs. (2.37) were crucial: do they
hold also in the "projected" case? The answer is yes, due to the matrix PA being
diagonal for r — 1. Then the algebra generated by the χί5 fιj, f~~ιj is a bonafide
Hopf algebra, which we call the quantum ISOq(N) bicovariant algebra (we reserve
the name of #-Lie algebra to the one generated only by the χ;).

Finally, we come to the *-conjugation on the generator space induced by the rule
(2.38), for ISOq(2n). Recall that this rule is consistent when the A and C tensors are
n <-> n + 1 invariant and condition (2.39) is satisfied. The question is whether the
projected *-conjugation is still compatible with the projected differential calculus.
This indeed happens: the A and C tensors corresponding to the algebra in Table 2,
satisfying the bicovariance conditions (2.25)-(2.28), are still invariant under the
exchange of the (fundamental) indices n and n-f-1. If the structure constants C
satisfy (2.39), the result of Appendix C holds also for ISOq(2n).

Then we have the (Hopf algebra) conjugation:

{Xab)* = -@acXcd@db, (3.26)

(χα)* = - ^ V , (3.27)

whose consistency can be checked explicitly in the example of the next Section.

4. ISOq(3,1) and the Quantum Poincare Lie Algebra

We come now to applying the preceding formalism to the case of 750(4). We know
from the discussion of the previous section that a real form exists corresponding to
a (3,1) signature. Let us consider the "mother" /^-matrix of SOq,r=ι(6). According
to (2.6) and (2.7) there are three independent deformation parameters, i.e. qo\, qO2
and qn (in the index convention a = o, 1,2,3,4, ). It is not difficult to see that this
R matrix has the 2 -̂> 3 symmetry only if qO2 = 1 and qn — ^- Therefore we are left
with the only parameter qo\ = q. Note that qn is the deformation parameter of the
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Lorentz subalgebra, and qu — 1, means that this subalgebra is classical. Moreover
the condition (2.18) becomes \q\ — 1.

Consider now the ISOq(4) algebra one deduces by specializing N = 4, qo2 = 1,
qo\ = q in Table 2.

Besides the ^-commutations between the generators, one finds a set of relations
similar to (3.24):

qnlXi + χ\ = 0, χl3 + qnX24 = 0, χ2ι + 412/3 = 0 , (4.1)

qnx\+x4 2 = 0, χ ι i - χ 2 2 - χ 3 3 + χ \ = 0, (4.2)

[Xl i + X22 4- χ3

3 + x\, any χ] = 0. (4.3)

We see from (4.3) that Σaχ
a

a decouples: we can consistently set it equal to
zero and obtain a reduced bicovariant g-Lie algebra (in fact this can be explic-
itly verified on Table 3, see later). We can therefore introduce the basis χab =
\[CacXcb — CbcXca]' for qγι — 1 the metric Cab is the classical antidiagonal metric
C1 4 = C23 = C32 = C41 = 1 (otherwise 0), and χab is antisymmetric in a and b.

Table 3 gives the commutations of the ISOq(4) generators in the new basis χab,
χa = Cabχb. The invariance under the index exchange 2 <-» 3 is explicit, and the
condition (2.39) is easily seen to hold.

Then we can define a consistent *-conjugation on the χ, according to (3.26),
(3.27):

llβ = -X*fi (α,/?*2,3),

llβ = ~X3β >

Xiβ = ~X2β ,

X*23 = Xii, (4-4)

(χi)* = -χi, ter = -χ3, to)' = -Z2, te)* = -*4, (4.5)

whose compatibility with the commutations of Table 3 can be directly verified.

Table 3. 750^(3,1) Lie algebra in the χa = Cabχ
b,χab = \{Cacχ

cb ~ Cbcχ
c

a] basis

[Xab,Xcd] = CbcXad + QrfZfcc ~ CbdXac ~ CacXbd

[X\2,Xa\q-\ =q~ϊC2aχi -q~ϊCιaχ2

[Xl3,Xa]q-l =q~^C3aXi -q'^CuXz

[XH>Xa] = C4aXl -Claχ4

lXuX2]q-i = 0 , [ χ i , χ 3 V i = 0

[Zl,Z4]^-2 = 0 , [X2,X3]=0

[X2,X4]q-ι = 0 , [χ3,Z4]g-i = 0

with [A9B]S =AB- sBA, C 1 4 = C 2 2 = C33 = C4\ = 1 (otherwise 0).
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This conjugation allows the definition of "antihermitian" quantum generators ξ:

ξaβ = Xzβ ,

&β = -JΞiXlβ + X3β) ,

ζlβ = -Ί=KX2β - X3β) ,

^23 = -IX23 , (4.6)

Cα = Xa j

1 .

ξ3 = -Li(χ2-χ3). (4.7)

On this basis the metric in Table 3 becomes

'0 0 0 1\

r I 0 1 0 0
Cab = I o o l o ( 4 8 )

1 0 0 0/

with the desired signature (+, +, +, —).

5. Cartan-Maurer Equations, ^-Diffeomorphisms and ^-Gravity

In this section we discuss the ^-generalization of Poincare gravity based on the
deformed Poincare algebra of Table 3. As in the classical case we start by defining
the curvatures. To do so, we first need the deformed Cartan-Maurer equations [9,8]

dcot + CflW Λωk = 0, (5.1)

where the ω are the left-invariant one-forms discussed in Appendix B. The C struc-
ture constants appearing in the Cartan-Maurer equations are in general related to
the C constants of the g-Lie algebra [8]:

CJk

i = CJk

i-Λ'*jkCrs

i. (5.2)

In the particular case A2 — I it is not difficult to see that in fact C = jC, which is
a worthwhile simplification.

The procedure we have advocated in refs. [25] for the "gauging" of quantum
groups essentially retraces the steps of the group-geometric method for the gauging
of usual Lie groups, described for instance in refs. [26].

We consider one-forms ωι which are not left-invariant any more, so that the
Cartan-Maurer equations are replaced by:

IV =dωi + Cjk

ico> Λωk , (5.3)
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where the curvatures Rι are now non-vanishing, and satisfy the g-Bianchi identities:

dK - C/RJ Λ ω ^ C/V Λ Rk = 0 (5.4)

due to the Jacobi identities on the structure constants C [8]. As in the classical
case we can write the g-Bianchi identities as VRι — 0, which define the covariant
derivative V.

Equation (5.3) can be taken as the definition of the curvature Rι. We apply
it to the g-Poincare algebra of Table 3: the one-forms are ω* = Va, ωab and the
corresponding curvatures read (we omit wedge symbols):

Rι =dVι + q-λ2ωnV2 + q-ϊωl3V3 + ωl4V4 ,

R2 = dV2 - q-l2ω

l2Vι + ω 2 3 F 3 + qϊω

24V4 ,

R3 = dV3 -q-\ωnVλ - ω23V2 + qϊω34V4 ,

R4 = dV4 - ωλ4Vx - ql2ω24V2 - ql2ω34V3 , (5.5)

Rab - dωab + Ccdω
acωdb , (5.6)

where Va = CatV
b, Cab being given in (4.8). We have rescaled ωab by a factor \

to obtain standard normalizations. Rab is the g-Lorentz curvature, coinciding with
the classical one (as a function of ωab), and Ra is the ^-deformed torsion.

From the definition (B.20) of the exterior product we see that for Λ2 — I the
one-forms ωι ^-commute as:

ω V = -ΛιJ

klω
kωι. (5.7)

Inserting the A tensor corresponding to Table 3 we find:

Vaωu - -q-χωnV\

Vaω13 = ~q-ιωl3V\

Vaωu = -ωl4Va ,

Vaω23 = -ω23Va,

Vaω24 = -qω24V\

Vaω34 = -qω34Va , (5.8)

V2Vι = -q~xVxV2 ,

V3Vλ =-q~ιVιV3,

2V3= -V2V3,

(5.9)

and usual anticommutations between the ωab (components of the Lorentz spin con-
nection). The exterior product of two identical one-forms vanishes (this is not true
in general when /12Φ/).
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We are now ready to write the lagrangian for the ^-gravity theory based on
ISOq(3,1). The lagrangian looks identical to the classical one, i.e.:

& = BabVcVdεabcd (5.10)

The Lorentz curvature Rab, although defined as in the classical case, has non-trivial
commutations with the g-vielbein:

VaRn =q-ιRnVa,

VaRn =q~λRuV\

VaR14 = Rl4Va,

VaR23 =R23Va,

VaR24 = qR24Va,

VaR34 = qR34V\ (5.11)

deducible from the definition (5.6). As in ref. [25,8], we make the assumption that
the commutations of dω1 with the one-forms ω1 are the same as those of Cjkιo^ωk

with ω\ i.e. the same as those valid for Rι — 0. For the definition of εabCd
 m (5.10)

see below.
We discuss now the notion of g-difϊeomorphisms. It is known that there is a

consistent ^-generalization of the Lie derivative (see refs. [8,27,15]) which can be
expressed as in the classical case as:

ίtι=itld + ditt, (5.12)

where itι is the ^-contraction operator defined in refs. [8,27], with the following
properties:

i) iv(a) = 0, a e A, Vgeneric tangent vector,

ii) ί,y - ψ ,

iii) it.{θ Aωk) = itr(θ)ωιΛrku + (-1 )pθ δk θ generic /7-form,

iv) iv(aθ + θ') = aίv(θ) + ivθ', 0, ff generic forms,

V) iχγ = λiy, λeC,

vi) iεV(θ) = iv(θ)s, εeA. (5.13)

As a consequence, the g-Lie derivative satisfies:

i) tγa = iv(da) = V(a) ,

ii) tfvdθ = d/vθ,

iii) tv(λθ + θf) = λev(θ) 4- tv(ff) ,

iv) ίεV(θ) = (fyθ)ε - (-l)piv(θ)dε, θ generic p-foήn,

v) ttχ(β Λ ω ^ {ttrθ) A ωιΛrk + θ A ttιω
k . (5.14)

In analogy with the classical case, we define the g-diffeomorphism variation of the
fundamental field α/ as

δωk = {jtω
k , (5.15)
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where according to iv) in (5.14):

ίεltω
k = (itdωk + ditiw

ky + dεk = (ittdωk)εi + dεk . (5.16)

Notice that if we postulate:

Λrk

uω
ιέ = εrωk,

Λ ' W Λ dέ = -</εr Λ ω* , (5.17)

we find
δ(J Λ ωk) = (5αy Λ ωk + ω7" Λ δω* , (5.18)

i.e. a rule that any "sensible" variation law should satisfy. To prove (5.18) use iv)
and v) of (5.14). The ^-commutations (5.17) were already proposed in [25] in the
context of g-gauge theories.

As in the classical case, there is a suggestive way to write this variation:

(5.19)

where

Vε* = dεk - Crs

kiti(ωr Λ ωs)ει

= dεk - Crs

kεrωs + Crs

kωrεs. (5.20)

Proof Use (5.3), (5.17) and iii) in (5.13).

We have now all the tools we need to investigate the invariances of the q-
gravity lagrangian (5.10). These are discussed in ref. [28]. The result is analogous
to the classical one: after imposing the horizontality conditions itabR

cd = UabR
c = 0

along the Lorentz directions one finds that, provided the ε tensor in (5.10) is ap-
propriately defined, the lagrangian is invariant under g-diffeomorphisms and local
Lorentz rotations. The correct definition of the ^-alternating tensor is:

£1234 = 1> £1243 = ~ <7>

£1423 = q
Ί
, £1432 = —q

1

£3124 = 1, £3142 = ~q,

£2314 = q
1
, £2341 = ~q

Ί

£3214 = -q
Ί
, £3241 = <7

5
,

£3412 = q2, £3421 = ~q\ β 4 3 1 2 = ~~? ' ε 4 3 2 1 = ^ (5.21)

Note 1. Using the general formula (B.22) one sees that the rule (5.17) follows
from postulating the following coproduct on ει:

A{ει) = εJ ®Mjl . (5.22)

Note 2. The #-Lie derivative was defined along left-invariant vectors in ref. [8],
and extended to a Lie derivative along any tangent vector in ref. [27]. In both these
references, formulas are given where U and ω1 are left-invariant. In (5.13) and
(5.14) we have generalized these formulas to non-left invariant t{ and co7, with the
tt still dual to the (o>.

£1324 =

£2134 =

£4123 =

£2413 —

£4213 =

-1,

-1,

3

-q
Ί
>

-q
2
>

q
2
,

£1342

£2143

£4132

£2431

£4231

= q,

= qϊ
— a

3

= —4
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Note 3. The D = 2 bicovariant g-Poincare algebra proposed in the first of refs. [14]
coincides with the one obtained from SOqr=\(4) via the procedure of Sect. 3.

Note added in proof: We have treated in this paper the ISOq(N) algebras. We
refer to [30] for the R-matrix formulation of the quantum inhomogenous groups
ISOq/t(N) and ISpq/l(N).

A. Change of Basis and Graphical Representation of A

Consider (2.22) with adjoint indices:

XiXj ~ Λuijχkχι = Q/χ* . (A.I)

Under a (nonsingular) change of basis

H = Sjξj , (A.2)

the q-Liε algebra transforms into:

ξiξj - Λk',jξkξ, = C,,kξk (A.3)

with

λUij = (S-i)/(S-ι)/Λk'l'i,J,Sk,
kS/ , (A.4)

C,/ = OS"1 )/(£-' ) / c , ' / V , (A.5)

which amounts to say that A and C transform as tensors under (A.2). Therefore
we have the

Theorem. The transformed A and C tensors satisfy the bicovariance relations (2.25)-
(2.28).

Proof. Obvious since (2.25)-(2.28) are tensor relations.

There is a particular change of basis for the χ that allows a graphical represen-
tation for the braiding matrix A. In the case of the B, C, D series the new ξ are
defined via the metric C:

ξab = Cacχ
c

b , (A.6)

and the A tensor takes the form:

Aa^d^CχC2hb2 = {R~X)hghxc2{R~X)eaι

9ιc/ia2feRd2fb2h. (A.7)

To prove this, one uses the definition (2.24) inside (2.20), and the identities (2.11)-
(2.12).

If we represent R and R as
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then the braiding matrix A is represented by (cf. also [12]):

399

y[aιa:

The metric Cat> is represented as

c Γ Λ
Cab =

a b

and, as an amusing exercise, the reader can draw the graphical representation of the
adjoint metric Ctj given in (2.29) and its inverse, and of the relations (2.11)—(2.12)
and (2.32)-(2.33). The metric Cab allows to close the braids into knots, and the
graphical representation of this section yields a knot invariant for any Bm Cn, Dn

g-group. The three Reidemeister moves hold because of

- 1
ί ) CabR cd OC Ccd,

ii) the definition of the crossings corresponding to R and R
iii) the quantum Yang-Baxter equations for R.

On the connection between knot theory and quantum groups see refs. [29,12].

B. A Note on Bicovariance Conditions and ^-Groups Defined in
the Adjoint Representation

Whenever we have a set of A and C components satisfying the bicovariance con-
ditions (2.25)-(2.28), and an invertible metric Qj satisfying (2.32), (2.33), we can
define

i) A quantum group generated by the matrix elements MJ. The "RTT" relations
become now "AMM" relations:

MJMqΛir i — ΛJq M rMiί ΓR λλ
iviι ίvir /l pk — /l rιlvlp l v l k ' v-*-**1/

The co-structures on M are similar to the ones defined on the T (Eqs. (2.13)-
(2.15)):

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

Moreover, we can impose the orthogonality relations:

MJMk

ιC'k = CjI,

J ' β = Cik,
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These are compatible with the ΛMM relations (B.I) because of Eqs. (2.32) and
(2.33).

ii) Functionals χι and fιj via their action on M:

χJ(Mi

k) = C,/, (B.7)

t (B.8)

whose co-structures are given by:

X i+ϊ®Xi, (B.9)

(B.Π)

( B 1 2 )

The action of χ, and /^ on products of M elements is defined in the usual way
via the coproduct A', i.e. Xi(ab) = Af(χi)(a 0 b), etc.

These functionals satisfy the relations:

which are the operatorial equivalents of the bicovariance relations (2.25)~(2.28),
cf. [10]. Indeed the latter can be obtained by applying the former to Mr

s. We recall
that products of functionals are convolution products, for example

The algebra generated by the χ and / modulo the relations (B.15)-(B.18) is a
Hopf algebra, and defines a bicovariant differential calculus on the g-group generated
by the M elements. For example, one can introduce left-invariant one-forms ωι as
duals to the "tangent vectors" χι, an exterior product

ω1" Λ a/ ΞΞ ωι <g> ω1 - Λij

klω
k 0 ω1, (B.20)
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an exterior derivative on Funq{M^) (the quantum group generated by the Mj) as

da = {id <8> Xi)Δ(ά)ω\ a G Funq(MiJ) (B.21)

and so on. The commutations between one-forms and elements a e Funq(MiJ) are
given by:

oJa = (id ® fj)Δ(a)ω> . (B.22)

Note. When A2 — 1 there is a way to define the antipode of f) without reference
to an adjoint metric. This we manage by enlarging the algebra, adding to χz and
fιj also the functionals f~ιj defined by:

f-'iWk1) = A>ι

]k. (B.23)

An antipode for f'j can be defined as

«'(/';) = Γ'j , (B.24)

since

ri

lΛ
sk = δ)δ)= f-'s(Mr,)rj(Mr

k) = Λri

slΛ
sk

rj = δ)δ) ,
(B.25)

the last equality being due to Eq. (2.37). Then we see that

Γ'sf'j^fy, (B.26)

so that f~ιj is a good inverse for fιj. Similarly we can prove that

f,f-sj(M,k) = δ'β, (B.27)

and therefore

κ'(f~ij) = fj, (B.28)

which means that i) κ'2 = 1, ii) the algebra generated by Xi,fιj,f~ιj is closed under
all the co-structures (actually the set of the generators itself is closed).

Using Eq. (B.24), the relations (B.15)-(B.18) can be easily extended to include
the f-tj.

C. Extension of the *-Conjugation to the Dual Algebra Generated by
the χ and / functionals

Here we want to show that the conjugation:

to)* = ®/z.', (C-i)

(/';)* = ®//j>®S , (C.2)

where Θ is the matrix that permutes the fundamental indices n <-> n + 1, is compati-
ble with the operatorial bicovariance conditions (B.15)-(B.18). We begin by
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taking the *-conjugate of (B.I5), which yields

/ (C.3)

Using now (C.I) and the fact that A is invariant under the index permutation
n <-» n + 1, we can rewrite the above equation as:

Ijli - Λkl

ijmk = -Cijmχm . (C.4)

k'ij = Λ'kβ . (C.5)

Remark. For \q\ — 1 we have

AkI — A
β '

Indeed rewrite (B.15) as

XjXi - Λlk

βχak = Cj,mχm . (C.6)

For r — 1, Aιkβ is proportional to δkδ\ (and contains only one term, as we can
see from the defining formula (2.20) and the fact that R is diagonal with only one
term in the diagonal entries) and it is easy to deduce that (C.6) is compatible with
(B.15) only if Alkβ = (Akl

υ)~ι (the inverse of the matrix element). For \q\ = 1 we

have A ^ — (Aklij)~ι so that (C.5) is proved.
Notice now that (C.4) would reproduce exactly (C.6), proving the compatibility

of the conjugation rule (C.I) with the g-Lie algebra, if we had also:

Cijm = - C / 1 . (C.7)

We could not prove (C.7) on general grounds: presumably one can always find a
basis for the χ/ generators such that it holds. This is indeed the case for ISOq(3,\).

In a similar way one shows the compatibility of the conjugation (C.I),(C.2)
with the remaining bicovariance operator conditions (B.16)-(B.18). One just needs
to use property (C.7) and a useful identity valid for A2 — I:

C m _ Λl p m /po\

i.e. the structure constants are /1-antisymmetric. This is easily proved by remark-
ing that the left-hand side of (B.15) does not change under multiplication by the
projector PA = (/ - Λ)/2, since PA(I - A) = I - A (for A2 = / ) , and thus

1

~U ~ A) ijK^kl ~ C// , (C.9)

which is just Eq. (C.8). Again this can be immediately checked to hold for
ISOq(3,l).

Finally, it is a simple matter to check that

(and similar for / / /,/~ ί

7 ) showing that (C.1)-(C2) is a Hopf algebra conjugation.
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