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Abstract: It is shown that the flip automorphism U ι-» U*, V t-> F* of the irra-
tional rotation algebra A# is an inductive limit automorphism. Here, the algebra AQ
is generated by unitaries U,V satisfying VU = Q2πιθUV, where θ is an irrational
number. Recently, Elliott and Evans proved that AQ can be approximated by uni-
tal subalgebras isomorphic to a direct sum of two matrix algebras over C(TΓ), the
algebra of continuous functions on the unit circle. This is the central result which
they used to obtain their structure theorem on A#; namely, that A# is the inductive
limit of an increasing sequence of subalgebras each isomorphic to a direct sum of
two matrix algebras over C(ΊΓ). In their proof, they devised a subtle construction
of two complementary towers of projections. In the present paper it is shown that
the two towers can be chosen so that each summand of their approximating basic
building blocks is invariant under the flip automorphism and, in particular, that the
unit projection of the first summand is unitarily equivalent to the complement of
the unit of the second by a unitary which is fixed under the flip. Also, an explicit
computation of the flip on the approximating basic building blocks of A# is given.
Further, combining this result along with others, including a theorem of Su and a
spectral argument of Bratteli, Evans, and Kishimoto, a two-tower proof is obtained
of the fact established by Bratteli and Kishimoto that the fixed point subalgebra
Bθ (under the flip) is approximately finite dimensional. Also used here is the fact
that Bθ has the cancellation property and is gifted with four basic unbounded trace
functionals. The question is raised whether other finite order automorphisms of AQ
(arising from a matrix in SL(2,Z)) are inductive limit automorphisms - or even
almost inductive limit automorphisms in the sense of Voiculescu.

1. Introduction

In a recent paper, Elliott and Evans [6] devised a subtle construction of two towers
of projections in their remarkable proof of the structure theorem on the irrational
rotation algebra AQ. This result states that AQ is the inductive limit of a sequence of
direct sums of two matrix algebras over C(TΓ), the algebra of continuous functions
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over the unit circle TΓ. The objective of the present paper is two-fold. The main
theorem is that the towers can be suitably chosen so that each of the two matrix
algebra summands - see Theorem 1 of [6] - is invariant under the flip automorphism
(see Sect. 2). The second objective is to combine this result along with others,
including Su's classification theorem ([9] and [10]) and a spectral argument of
Bratteli, Evans, and Kishimoto [2, Sect. 2], to give a two-tower proof that the fixed
point subalgebra of Ag under the flip automorphism is an AF-algebra (Sect. 3). The
latter result was first proved by Bratteli and Kishimoto [4].

Let θ be an irrational number and let Ag denote the universal C*-algebra gener-
ated by two unitaries U and V such that VU = λUV, where λ = Q2πiθ. Recall that
its canonical smooth dense subalgebra is

Aθ° = \ Σ amnU
mVn\ {amn} is rapidly decreasing \ ,

consisting of the smooth yectors in Ag under the canonical action of the 2-torus T 2 .
For a given pair (z, w) G TΓ2, the canonical automorphism α2jW satisfies αz>w(C/) = zU
and αZjW(F) = wV'. The subalgebra A^° is closed under the holomorphic functional
calculus.

Let Φ denote the flip automorphism on Ag defined by Φ(U) — U*, Φ(V) = V*,
and let B^ denote the fixed point subalgebra of Ag under Φ, commonly called the
non-commutative sphere. It is known that Bθ is simple [3, p. 161] and has a unique
tracial state [3, Theorem 4.5], denoted by τ, given by the restriction of the trace state
on Ag. (A short proof of the uniqueness of trace is given in the appendix below).
Similarly, the canonical smooth dense subalgebra of Bθ is Bθ Π A^° and consists of
sums Σm namnU

mVn, where {amn} is rapidly decreasing and α_OT>_Λ = amn.

An interesting feature of the algebra B^ is that it possesses four basic un-
bounded trace functionals. They were first discovered by Bratteli, Elliott, Evans, and
Kishimoto [3] and later (independently) by the author. Using the author's notation
in [12], these trace functionals can be written as

CO

Ψιj\u) — Z-/ Λ a2m—ι,2n—j •>
m, n= — oo

for ij = 0,1, where a — YJamnU
mVn and {amn} is rapidly decreasing. For generic

vectors UmVn,

Ψιj\u v ) — Λ υι,m<Jj,n ->

for m,n G Έ, where m is m reduced modulo 2 (so m — 0,1) and δy is the Kronecker
5-function. For smooth vectors α, b G Ag, φtj satisfies the following "twisted" tracial
property with respect to the flip automorphism:

φυiab) = φij(Φ(b)a).

It follows that φtj is tracial on Bθ.
Putting these trace functionals together along with the (bounded) trace τ,

introduce the (densely defined) vector trace τ on the fixed point algebra B^ by
setting

(τ(x); φoo(x\ φo\(x), φ\o(x), Φu(x)) ,
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for (smooth) x £B°. It is known that τ induces an injective map on Ko(BΘ) (with
values in R 5 ) and that for any two projections p,q e Mk{Bθ)\ τ[p] = τ [q] if and
only in p and q are unitarily equivalent in Mk(Bθ) [12, Corollary 5.6]. If p and q
are smooth projections the unitary implementing the equivalence can be chosen to
be smooth. This fact will be used in the proofs below. Note that the vector trace
of the identity element 1 e Bθ is τ(l) = (1; 1,0,0,0).

Remark. In [12] the vector trace was actually considered on the crossed product
AQ XφZ2 and computed on its K0-group. But this algebra is strongly Morita equiv-
alent to the fixed point algebra B^ and so justifies the above application of [12,
Corollary 5.6].

As in [6], recall that a tower of projections in AQ is defined by a projection e
in AQ and the (canonical) action of some cyclic subgroup G of T 2 , with generator
/ G T 2 , such that e, oct(e),...,ocl~l(e) are mutually orthogonal projections. Here,
q is the order of G and is called the height of the tower. The projection e will
sometimes be referred to as the base projection of the tower. The unit of the tower
is the sum ]Γ\ α,'(e) of its projections. Clearly, the trace of e is at most -.

Some interesting questions arise about certain automorphisms of the irrational
rotation algebra.

Questions and Comments. Let σ be an automorphism of AQ arising from a matrix in
SL(2, Έ) (which has a natural action on AQ in the sense of Brenken and Watatani).
Is every finite-order σ an inductive limit automorphism (with respect to some choice
of the basic building blocks of Elliott and Evans)? Does the fixed point subalgebra
A^ have real rank zero (cf. Theorem 3.0 below)? Does it have the cancellation
property? If K\(Aσ

θ) = 0, is Aσ

θ an AF-algebra? Does the fixed point algebra have
an ample collection of unbounded trace functionals? If σ is not an inductive limit
automorphism is it (at least) an almost inductive limit automorphism in the sense
of Voiculescu [11] with respect to the basic building blocks of Elliott-Evans?

These questions are unknown for the order 4 automorphism of AQ defined by
U H->• V, F H C / * . Except that the ΛTo-group of its corresponding fixed point sub-
algebra B is probably Έ? (G. Elliott, private communication). We know that B
has lots of projections, but probably not of Rieffel type. This follows from earlier
work of George Elliott on the gaps in the spectrum of the almost Mathieu operator
H = U+V+U* + V* (at least for irrationals close enough to | , since H is in
the fixed point algebra B). Perhaps the spectral projections of H can be used as
model projections in a new tower construction for this situation.

2. The Main Result

The first objective of this section is to prove that for any

V

with q,q' > 0 and - < θ < ^ , the two towers constructed in [6] of heights q and
q' with base projections (in AQ) having traces β — p' - q'θ and β' = -p + qθ,
respectively, can be chosen so that their units are in Bθ and, more importantly, that
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the unit of the second tower is unitarily equivalent in B^ to the complement of the
unit of the first tower. The second objective is to show that these towers give rise
to basic building blocks of A# which are invariant under the flip automorphism.

Note that qβ + q'β' = 1 so that

β < - and β' < 1 .
q q1

The base projection of the first tower will be taken to be the Rieffel projection
(as in [6, p. 480])

ê  = V-«'gx{U) + f{(U) + gx{U)Vq,

where f\ is a smooth function which is supported in an interval of length - (in
1R/Z) and has trace β. This projection generates a tower of height q under the
canonical action of the cyclic subgroup {zy:0 ̂  j < q} x {1} of T x T, where
z — e2πί/^. The unit of this tower is easily seen to be the smooth projection

Ex = V-q'

where

q J U ) and G{(U) =

The graphs of F\ and G\ are just the sum of all the shifts of the graphs of f\
and g\, respectively, by length all integer multiples of - along IR/Z. In order for

E\ to be in B^ the following conditions on Fi and G\ must be satisfied:

(*1) Fχ(-t) = F{(t\ Gλ(β -t) = d ( 0 ,

for t G R/Z, as can easily be checked.
The second tower is based on the Rieffel projection ([6, p. 481])

eβ, = Wg2{V) + MV) + g2(V)U-« ,

where fj is a smooth function which is supported in an interval of length -7 and

has trace β'. This projection generates a tower of height q' under the canonical

action of the cyclic subgroup {1} x {wJ: 0 ^ j < q1} of TΓ x TΓ, where w = z2mlq .

The unit of this tower is the smooth projection

E2 = UqG2(V) + F2(V) + G2(V)U-q ,

where

q'-\ q'-\
F2(V)= Σf2(wJV) and G2(V) = Σ

7=0 7=0

The graphs of F2 and G2 are just the sum of all the shifts of those of f2 and g2,
respectively, by length all integer multiples of Λ along the unit interval. Similarly,

7
in order that E2 be in B^ the following conditions on F2 and G2 are required:

(•2) F2{-t) = F2(t\ G2{-β' -t) = (hit)
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Now a specific choice of the functions f\,g\,fa,gi will be given in each of the
following two cases.

Case 1. β > ψ. Define a smooth function f\ such that f\ — 1 on [- — β, β], f\=0

on [1,1], and /,(*) = 1 - /,(* - β) for / G [β, I] . Put 3, = ( - l ) V / ι - / i 2 on

[β, -] and ^ i = D elsewhere. Inspection of the graphs of F\ and G\ shows that they

satisfy (*1) and a little arithmetic gives the values

-)=δ-, Gι(£--)=-(-iγδίiδ-ι

on the union of the intervals [β + £, ̂ 1 ] , 7 = 0,1,..., q - 1, and that § - f (mod 1)

is a midpoint of one such interval (where G\ is j(—l)q) if both k and q are odd,

and otherwise | - |(mod 1) is not in their union.

for all k e Έ. The latter values of G\ can be obtained by noting that it is supported

§-!<

Since βf < γi, for the second tower choose a smooth function fa such that

fa = 1 on [0, ij8;] U [1 - | ;3', 1], fa = 0 on [f β', 1 - f j8'] and fa(t) = 1 - fa(-βf +

0 for ί G [|j8;, f j87]. Let g2 = y/fa - /^ on [1 - fjg', 1 - \β'l and ^ 2 - 0 else-
where. The graphs of F2 and G2 show that they satisfy (*2) and a similar arithmetic
gives the values

F 2 ( 0 ) = l ,

for all k e Έ.
It is important to recall that f\ (and hence F\) should be chosen so that

its derivative is bounded (say, as in [6, p. 485]) by 6 max{β~\(- - β)~1} =

6(- — β)~~ι. This will also be required of fa (and hence F2), where β is replaced
by β' and q by q\ as well as for the choices made in the next case. This is needed
in order to control the estimates in [6].

Case 2. β < γ . Let f\ be a smooth function such that /1 = 1 on [0, ^β] U

[1 - f, 1], /, = 0 on [\β, 1 - |/S] and /,(*) - 1 - /,(-/? + ί) for * 6 [\β, \β\. De-

fine g\ = y/f\ — f\ on \\β, \β\ and ^ 1 = 0 elsewhere. The graphs of F\ and G\
show that they satisfy (*1) and have values

for all k G Z, which are analogous to the values of F2 and G2 in case 1.
Since β' > ^r, for the second tower choose a smooth function / 2 such that

fa = 1 on [jr - β'9β% fa = 0 on [^, 1], and fa(t) = 1 - fa(t - ^ ) for ί e [β\ ^ ] .

Put 2̂ = (~Όq'V/2 - / I o n I-0' 7 ~ i8'] a n d #2 = 0 elsewhere. Again, F 2 and G2

satisfy (*2) and have the values

F2(0) = 0, F2 Q ) = ̂ , , G2 ( - | - ^ = I(- l/^ l ( 5 ?

for all k G Z, which are analogous to the values of Fi and Gi in case 1.
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The next lemma gives the unbounded traces of the unit projections E\ and Eι
in terms of point evaluations.

2.1. Lemma. For i,j = 0,1 one has:

and

Φij{E2)=ί^[F2(0) + (-\yF2[^

G2 ( - ^ - - 1

Proof. It is enough to prove the first equality, the second being similar. The com-
putation is the same as that done in [12, Sect. 3] which is repeated here for the sake
of completeness. Recall from above that E\ is in Bθ and, fixing / and j , one has

The quantities φij(F\(U)) and φij(G\(U)Vq ) are worked out separately. First write
the Fourier series of F\ as F\(z) — ΣnanzH^ where z e TΓ and {an} is rapidly de-
creasing. The above expression becomes

oo

φ,J(Fι(U))= Σ anφij(Un)
Π— — OO

OO

= Σ anδi,ήδj,0

The last sum can be found by splitting the series for F\(\) and F i ( - l ) according
to the indices / 4- 2k and / + 2k + 1 and thereby obtaining Σk ai+2k — \iF\(X) +
(- iy 'F i (- l ) ) . Hence

(*) Φij(Fι(U)) = 1
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where in the last equality F\ is written as a function of t E IR/Z. To find
φii(G\(U)Vq ), one similarly writes out the Fourier series of G\ as G\(z) = Σn bnz

n

and obtains

φ,,{Gλ{U)V<ι ) = £ bnφi}φ
nV )

n= — oo

& o& = — o o

k=-oo

To determine the last sum one splits the series for G\ as follows:

oo oo

Lrι{Z)=Z 2^ Vi+2kZ +Z Z^ t>\+i+2kZ
k— — oo k= — oo

Evaluation at z = λ~q ^ (or t — ~ — y ) gives

( R n'\ f oo . . oo ,

— — — 1 — λ~qi^2 V /?• ; ~ ^ | - ^ +i)/2 y^ / ; ~ ^
2 2 J k=~oo k=-oo

and at z = -λ~q'12 (or / = \ - ^ + \) the series becomes

k=-oo

-(-Dύ-'C-1-1^ Σ bι+i+2kλ-k" .
k=-oo

Multiplying this by ( - l ) z and adding the result to the previous term yields

which together with (•) gives the first equality of the lemma. D

Inserting the values of F\,G\,Fι and G2 found in each of the above two cases
into the unbounded trace expressions of Lemma 2.1 it can be checked, with a little
arithmetic, that the following equality of vector traces holds

(Here, 1 is the identity element of Bθ.) In fact, since cases 1 and 2 are dual to
each other it is enough to check this for just one of them. Thus, τ(E\) = f(l - E2)
and so E\ is unitarily equivalent in B^ to 1 — E2 (by [12, Corollary 5.6]), as was
required above. Let if be a smooth unitary in B^ such that E\ = W{\ — E2)W*.

In their proof of the structure theorem, Elliott and Evans showed that the
irrational rotation algebra Aθ can be approximated by a sequence of (unital)
subalgebras of the form Cq 0 Dqι (orthogonal sum), where Cq ~ Mq(C(Έ)) and
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Dqι = Mq/(C(Έ)) are the basic building blocks [6, Theorem 1]. Let us now digress

and recall briefly their construction of the matrix units and generators of these

subalgebras, as these are at the heart of the proof.

Since the first tower was generated by the projection e^, one lets

en=eβ and e22 = cc(eβ),

where α = uζx (z = e 2 π ^) and the projections en and e2 2 are mutually orthogonal.

Next, |e 2 2Ken| is an invertible element of enA^en (where \x\ = (x*x)2) and so

the unique partial isometry, denoted by e2i, of the polar decomposition of e 2 2 Feπ

belongs to Ag. Then, as in [6, p. 490], put

(••) e2+/,2+i = αf(e22), e2+,-,i+/ = α / (e 2 i), 0 ^ i ^ q - 2 ,

and let (^ij)\^ij^q be the completion of (••) to a system of q x q matrix units.

Finally, there is a unitary υ in eπA^eπ such that

(•••) α^~ 1 (e 2 1 ) = ι;e^.

The subalgebra Cq is generated by the matrix units (e^ ) and v. Its identity is the

unit of the first tower ]Γ\ e# = E\, which is fixed under the flip.

In the same way the second tower is generated by the projection tβt under the

action of α' = α ^ , where w — Q2πilq . So, e'n = ê / and e 2 2 = α'(e^/) and the rest

of the construction proceeds along the same lines of the preceding paragraph giving

the subalgebra C, generated by the matrix units (e^ ) and a unitary v! analogous

to v above (see [6, p. 490]). The identity element of C, is Σ z e^ = E2, which is

also fixed under the flip.

Now one lets Dq, = WC'qlW* which has identity element WE2W* = 1 - Ex so

that the subalgebra Cq ® Dq> has the same identity of A#. As required by the

construction of Elliott and Evans, it is important that this subalgebra contain el-

ements which approximate the canonical generators U and V of AQ. This follows

because W approximately commutes with U and V as shown by the following

remark.

Technical Remark. The classes of E\ and 1 — E2 are equal in Xo(A#) and hence

E\ and 1 — E2 are unitarily equivalent in A# (by [8, Corollary 2.5]) - in fact, by

a smooth unitary. Call this unitary w. It is important to point out that w is chosen

very carefully in [6]. Namely, the derivatives of w under the canonical basis of

derivations are required to be appropriately bounded in norm (see [6, p. 483-484]).

This will guarantee that w approximately commutes with U and V. However, a

careful examination of the proof of Theorem 1 in [6] will show that the bound on

the canonical derivatives of w is determined by the bound on the derivatives of the

functions F\ and F2 corresponding to the units E\ and E2, respectively. Thus the

bound on the derivatives of W is determined by the bound on the derivatives of

the functions F\ and F2, which is no more than, say, 3 times the. bounds in [6] -

as remarked at the end of case 1 above. It follows that the remainder of the proof

of [6] remains unchanged and so W will have appropriate bounds on the norm of

its derivatives.

In showing that the flip automorphism is an inductive limit automorphism, both

Cq and Dqt must be invariant under the flip. This is shown here only for Cq, the

algebra C, being similarly invariant and hence so is Dqι — WC'.W* since W is
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fixed under the flip. To show that Cq is invariant, use will be made of the following
two lemmas, which will also be required in the next section.

For arbitrary integers m,n it will be convenient to write emn = e w v , where
m' = m(modq), n' = n(moάq) and 1 ^ m\ n' ^ q.

Notation. Throughout the rest of the paper, r will denote the unique positive
integer such that r=\— q'(moάq) and 1 ^ r ^ q. This will be relevant only for
the case β > γ .

The following lemma shows that the flip automorphism actually flips each of
the towers.

2.2. Lemma.
(i) If β > ^ , then Φ(ek+ιtk+\) = er-kir-k,for k = 0,1, . . . ,# - 1 .

(ii) If β < ±, then Φ ( e * + u + i ) = eq-k+ι,q-k+u for k = 0, l,...,q - 1 .

Proof Since

e*+i,*+i = Atβ) = V-4fgχ{zkpU) + f^U) + gχ{zkpU)V^',

one has

When β > j - this is in fact equal to

e r_,, r_, = V-"''ff,(zC-*

since

are easily verified from the construction of f\ and ^i in case (1) above.
When β < Y one sees that (#) is equal to

since in this case

are easily verified from the construction of f\ and ^i in case (2). •

2.3. Lemma.

= 0, 1,...,q - 2
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(ii) If β< ±,then

= a*"''-' (e2*,),

and
Φ ( α ^ 1 ( e 2 1 ) )

Proof Begin with the polar decomposition

Fix 0 ^ i ^ q — I. Applying a1 gives

e, +2, i+2 Vei+\t , +i = α ^ i ) |e/ + 2, ,

The polar decomposition which is adjoint to this is

eI + i , I + i r 'eI +2,, +2 = α 1 ^ ) |e/+i,i+iK*e/+2,/+2| (2)

Applying Φ to (1) gives

Φ(e I + 2 f l + 2 )F*Φ(e I + 1 , / + 1 ) = Φ(αI'(e2i))|Φ(e l+2,I +2)F*Φ(e I + i , l + 1 ) | . (3)

Suppose that β > j - . Then by Lemma 2.2(i) Eq. (3) becomes

*r-i-\tr-i-\V*er-ur-ι = Φ(α'(e2i)) |e r_ ί __i,r_, _iF*e r_ ϊ-, r_z | . (3')

Applying α r " 2 / ~ 2 to (2) yields

er_/_i>r_l_iK*er_l,r_I = ^Ή^l ) l^r-i-l, r-i-l V*er-it r-i\ ,

and comparison with (3 ;) using the uniqueness of the polar decomposition, yields
Φ(α/(e2i)) = a r"1"-2(ej1) and so (i) holds.

Now suppose that β < j - . Then by Lemma 2.2(ii) Eq. (3) becomes

q q q q 9 _ l ,9_ I F*e^_I +i^_ I-+i | . (3")

Applying ocg~2ι~ι to (2) gives

and, again, comparison with (3") using the uniqueness of the polar decomposition,
yields (ii). D

2.4. Theorem. The irrational rotation algebra AQ is the inductive limit of an
increasing sequence of direct sums of circle algebras which are invariant under
the flip automorphism.

Proof Once it is shown that Cq and Dqr are invariant, then by means of a spectral
modification argument carried out in the proof of Theorem 2.1 in Sect. 2 of [2] it
will follow that A# is the inductive limit of an increasing sequence of direct sums
of circle algebras invariant under the flip. It is enough to check that Cq is invariant.
Lemma 2.2 shows that the tower projections e^ are mapped unto each other by the
flip. Lemma 2.3 shows that Φ(e/+2,/+i) G Cq since Cq is α-invariant - recall that
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α = αf j . Therefore, it follows that Φ maps the generators ei} and ι? back into Cq by
virtue of equation (•*•). D

3. The AF-Structure of Bθ

The objective of this section is to apply the preceding results with the two-tower
construction to show that Bθ is an AF-algebra. An outline of the procedure is
in order. Since AQ can be approximated by the subalgebras Cq Θ Dqι it follows
that Bθ can be approximated by the subalgebras C® ΘDt9 where C® is the fixed
point subalgebra of Cq under the flip. The main objective now is to show that
the subalgebra C® (and similary also D?) is one of the basic builiding blocks
considered by Su. Then, as in the proof of Theorem 2.4 above, a modification of
the spectral perturbation result in Sect. 2 of [2] can be carried out to show that Bθ

is the inductive limit of an increasing sequence of finite direct sums of Su's basic
building blocks.

This last result will have two ramifications. First, it will guarantee that Bθ has
real rank zero. This follows from Theorem 3.0 below which was used by [5, Sect. 9],
[4, proof of Theorem 8.1] and [9, Sect. 9.1] as a modification of the result in [1,
Theorem 1.3(b), (c)]. Secondly, this result will allow the algebra Bθ to fall into the
classification scheme of Su ([9, Theorem 8.3] or [10]). And once it falls into that
scheme, it will follow from the fact that ^i(B^) = 0 (proved by Kumjian in [7])
that B^ is an AF-algebra.

Remark. As pointed out to the author by the referee, in order to get a stronger result
than Theorem 3.0 (below) one could use Theorems 7.2 and 8.1 of [4]. In fact, this
gives another way to get an increasing sequence of direct sums of basic building
blocks (in the sense of Su) for Bθ from the approximating subalgebras C® (&Dφ

f.
Recall that a basic building block according to Su [10, Definition 2] is a C*-

subalgebra of some C(X, Mn), the continuous functions on a graph X with values in
a matrix algebra Mn, consisting of all functions which have a specific block diagonal
form at each vertex of X. The block diagonal form can vary with the vertex. Such
a basic building block will be referred to as a Su building block.

3.0. Theorem, (cf [1] & [10, p. 224]). If A is a simple unital C*-algebra with a
unique tracial state and if A is the direct limit of a sequence of finite direct sums
of Su building blocks, then A has real rank zero. If in addition, K\(A) = 0, then
A is an AF-algebra.

Therefore, all that remains is to compute the subalgebra C® and show that it is
a Su building block. For this, two lemmas are needed.

3.1. Lemma. As above let r be the unique positive integer such that r = 1 — q'
(modg) and 1 ^ r rg q.

(i) Ifβ>^> then Φ(v) = oT" V ) = erlυ*elr.

(ii) If β < ±, then Φ(υ) = υ*.

Proof Recall that the unitary v is defined by v — ofl~ι{t2\) e î and belongs to
. Now expand eq\ as
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to get

(t) ί; = α9~ l(e2i)e (?,?_ie?_1;(?_2 e32e2i .

If β > Y, applying Φ to (f) and using Lemma 2.3(i) gives

= oT-'(ej,K(e2*,)••• α«(e 2 *,)α(e 2 *!) α ' " 3 ^ * , K " 2 ^ *

= α ί - 1 [ e 2 * 1 α ( e 2 * I ) aP-'+ι{£x)••• a"~2(e*2i^"'(ej,)]

= αr-V)
To obtain the last equality in (i) one applies ocr~1 to (f) and gets

( e 2 1 ) α ( e 2 1 ) e 2 1 i ; e ! , a ^ 2 ( e 2 1 )

a r ( e 2 i ) a r ~ 1 ( e 2 1 ) e r , r _ 1 e r _ 1 , r _ 2 . . . e 2 i e 1 2 e 2 3 e r _ i , r

- e r + 2 , r + i e r + i 5 r e r 5 r _ i e r _ i ? r _ 2 . . . e 2 i e 1 2 e 2 3 e r _ i > r

If β < j - , applying Φ to ( f ) and using Lemma 2.3(ii) yields

1

u _ 2 ) . Φ ( e 3 2 ) Φ ( e 2 1 )

as required. D

3.2. Lemma.

lϊ)ifβ> h
er-ι+i,r for i ^ r

er_,-+i,ii;*eir for i > r

(ii) Ifβ< ±,then

en for i= 1

q-i+2,\v* for i ^ 2

/ o r / = 1,2,...,^.

Proof When / = 1 this follows from Lemma 2.2. Otherwise, the relations follow

by applying Lemma 2.3 to the expansion e,i = e ί > ί _ i e / _ i > / _2 ••• ©32621- •
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Recall that Cq is isomoφhic to Mq(C{Έ)) and is generated by the matrix units
(e/y) and partial isometry v having the projection en as range and support. So its
elements have the form

X = Σ e n x ^ ) e υ ,

where xιJ e C(ΊΓ). This element is, in effect, the q x q matrix [xiJ] of Mq(C(Έ)).
So X will be identified with this matrix form when convenient.

First, suppose that β > y. Then in view of Lemmas 3.1(i) and 3.2(i) the

following summation can be split as

= Σ Φ{tix)

= Σ Φ(e, i)eΓi^(i;*)eirΦ(eiy)

Uj=\

9

Σ

r q
E Σ e^+i,
1=1 y=r+l

i,j=r+\

Now upon replacing z by r + 1 — / and y by r + 1 - j in each of the last four
summations they become (respectively)

Φ(X)= Σl Σ enxr

Σ ei,
ί=r+iy=l

Writing out the matrix form for this element one obtains

v*xqr(v*)

v*xr+ι>r(v*)

xrl(v*)

,C-'(V)

x'q(v*)v xι'q ι(v*)v ••• xr'r+^(v*)v

x{q(υ*)v xUq~ι(v*)v ••- xUr+ι(v*)v

J-ζn J-w'v) ::: ^X^

X^-«{v*) ^ > . * - ' ( B ) ••'• x'^'^iv*)

and a moment's reflection will show that this matrix is equal to

Z[xHv*)]Z* ,

where Z is the q x q block matrix

'Si 0
z = 0 t?*
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and *SΊ and S2 are the r x r and (q - r) x (q - r) matrices, respectively, of the
form

"0 0 . . . 0 Γ

0 0 ••• 1 0

0 0 .'' 0 0

0 1 •.. 0 0

.1 0 . . . 0 0.
which flips the rows of a matrix when pre-multiplied and flips its columns when
post-multiplied. Hence,

giving the explicit form of the flip on Cq. Now if X G C® then in terms of functions
X G C([0, \],Mq) of the variable t this equation entails

x{t) = ztx(\ - t)z;.

So, in effect, X is a function defined on the interval [0, ^] where at its end points

and X{\) commutesX(0) commutes with the self-adjoint unitary Zo =

with the self-adjoint unitary Z\ = \ } o . This means that C? is isomor-
2 L U —Λ2 J q

phic to the subalgebra of the continuous functions in C([0, ^],Mq) which have

block diagonal form at the end points. Therefore, C® is a Su building block.

Finally, consider the case β < γ . By virtue of Lemmas 3.1(ii) and 3.2(ii) the

summation for Φ(X) is

Φ(X)=

1 V ) e n + Σ enxιJ(v*)veι9q-j+2

7=2
q q

Σ ! Σί=2 ι,j=2

Upon replacing / by q + 2 — / and 7 by ^ + 2 — j in each of the last three summa-
tions they become (respectively)

Φ(X) = V)eπ + Σ
7=2

Σ
i=2

Σ
ι,j=2

This is, in effect, the q x q matrix

xn(υ*) !(„*)„ xl2(v*)υ

x21{υ*)
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which is easily seen to be

379

where Z is the q x q matrix

" V

0

0

0

0

.0

0
0

0

0

0

1

0
0

0

0

1

0

... o

... o

... i

.' o
... o
... o

0
1

0

0

0

0

Consequently,

Therefore, if X 6 C® then (as a function of the variable /) this equation entails

X(t) = ZtX(l - t)Z? ,

which, as before, means that X is a function defined on the interval [0,^] and
has block diagonal form at the end points. Therefore, C® is again a Su building
block.

Appendix

Since B^ is strongly Morita equivalent to the crossed product B# = A# x $ Έι (and
both being unital C*-algebras), if it can be shown that B# has a unique tra-
cial state, then the same will hold for Bθ

9 in view of RieffeΓs Proposition 2.2

of [8].
Let W denote the canonical unitary implementing the flip automorphism so that

the algebra BQ is generated by 3 unitaries U, V9 W satisfying

VU = λUV ,

wuw = u*,

wvw = K* ,

W1 = 1 .

Proposition. [3, Theorem 4.5] If θ is irrational, then the C*-algebra B# has a
unique tracial state.

Proof. Let τ be any tracial state on B#. It restricts to the unique one on A#.
Since the unitaries UpVq and UpVqW are total in Bθ, it is sufficient to show that
τ(UpVqW) = 0 for all integers p,q. So fix p,q and note that for all integers k

(*) τ(UpVqW) = τ(UkUpVqWU~k)

= τ(Up+kVqUkW)

= λqkτ(Up+2kVqW).
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For each n G N, consider the element

xn = (UpVqW + λqUp+2VqW + + λnqUp+2nVqW)
n + 1

^ λqu2 +
n+ϊ

From (*) it follows that τ(xn) = τ(UpVqW) for all n. The product

1 n

* _ v ^ %q(i-

has trace

1

Λ+l

The continuity of τ and its associated Schwartz inequality yield

\τ(UpVqW)\2 =

and since n was arbitrary, it follows that τ(UpVqW) = 0. Π
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Note added in Proof. Since the completion of this paper the author has learned that Elliott and
Q. Lin had obtained another proof that A# is the inductive limit of direct sums of basic building
blocks consisting of type I C*-algebras ("Cut-down method in the inductive limit decomposition of
non-commutative tori," to appear in J. London Math. Soc). Subsequently, Florin Boca has shown
that these building blocks are in fact flip invariant and obtained yet another proof of the result of
Bratteli and Kishimoto ("The structure of the flip fixed point algebra in certain noncommutative
3-tori," preprint).
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